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1. In the previous paper [4], we treated systems of partial differ-
ential operators of the form
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where P;,(X) is a polynomial of / variables X=(X,, -+, X,) with
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without loss of generality, m_>n (see [4] §2.).

In the polynomial ring C[X,, ---,X,], denote by a the ideal
generated by all the (#, n)-minors of the matrix P(X)=(P;,(X)).
And denote by V the affine variety defined by a. Let us recall
some concepts defined in [4].

we get the differential operator P,k< > We can suppose here,

Definition 1. A differential operator P<%§x> is called elliptic
if the corresponding variety V has no real point at infinity.

Definition 2. A differential operator P(l._%) is called analytic-

hypoellzptzc if every solution U of the equation

1) For notations, see [4]
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is (real) analytic in the open set of R’ where the right hand
side F is analytic. Here F is a known and U is an unknown
column vector function® with » and m components respectively.

One of the results obtained in [4] is the following

THEOREM. For the operator P(—}—%), ellipticity is a necessary

and sufficient condition for analytic-hypoellipticity®.

To prove the sufficiency in the above theorem, the ellipticity
of the differential operator corresponding to Lech’s polynomial
L(X)ca was used in [4] (see Corollary to Theorem 2 and the
proof of Theorem 4 in [4]). For the proof of the previous
theorem, however, only the existence of a polynomial €a cor-
responding to an elliptic differential operator is needed. And the
use of Lech’s theorem (see [3]) seems too heavy for the purpose.
Therefore, in the following, we give a proof of its existence
without wusing Lech’s theorem. (We use only Hilbert's basis
theorem instead.)

2. To this end, it is sufficient to prove the following

PROPOSITION. For any given ideal a in C[X,, -, X,], there
exists a polynomial f in a such that any real point at infinity of
the hypersurface H defined by f is also a real point at infinity of
the variety V defined by a.

And replace Lech’s polynomial L in the proof of Theorem 4
in [4] by the above polynomial f.

Proof of Proposition. Let P,(C) be the complex projective
space of / dimensions with a fixed homogeneous coordinates
system which contains canonically the real projective space P,(R)
and the complex affine space C'.

2) Strictly speaking, each component of these vectors is a distribution of L.
Schwartz [5].

3) See Theorem 4 in [4], where F is supposed to be 0 for simplicity but the
proof doesn’t require any change for general F.
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Let p:C[X,, X,, -, X,]—C[X,, -+, X,] be the homomorphism
sending each polynomial %(X,, X,, ---, X,) into 2(1, X,, -+, X,), and
consider the ideal a* in C[X,, X,, -, X,] generated by the
homogeneous elements in @ '(a). Take a system of generators
h,, -+, hy of a*. Since a* is a homogeneous ideal (see [2, pp.
30-31]), we can suppose that #4,, -+, ky are homogenous poly-

d

nomials. Let d, be the degree of &, and put g, =h" with d the
least common multiple of d,,:--,dy. And consider the following
homogeneous polynomial in a*

N
g=§&g,

where g, is the polynomial whose coefficients are complex con-
jugates of those of g;.

In P,(C), let V* be the variety defined by a* H* be the
hypersurface defined by g. H* is well-defined since g is homo-
geneous. Then, by the construction above, it is evident that

P](R)f\ V* = PI(R)f\H* .

And it is clear that the polynomial f=f(X,, -+, X,)=g(1,
X,, -+, X,) satisfies the requirements of the proposition.

3. We notice here that the original basis of a, i.e. the set of
the (#, n)-minors of P(X) cannot always play the role played by
the basis of the homogeneous ideal a*. For instance, consider
the following system of differential equations in two independent
variables x=(x,, x,) and in one unknown function u=u(x,, x,).

( Pl(i.——a—>u = l 9 u+u =0,
‘ 1 ox 1 ox,
] (2= L2y

1 Ox 1 ox,

Subtracting the second from the first, we see that this system
has no solution other than the trivial one #=0. Therefore, accord-
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ing to the theorem in the first section, this system is elliptic®.
But the operator

p(L2)p(L2).p(L2)p(L2)
1 oOx 1 Ox 1 Ox 1 ox
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is clearly not an elliptic operator in two variables (x,, x,).
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4) For the analytic-hypoellipticity, it is sufficient that every solution of the
equation with the right hand side O is analytic (see [4] § 6. Definition 4, ii) and Theo-
rem 4).



