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In the theory of Tychonoff spaces, the existence of (Hausdorff)
compactification is of great significance because of the fact that
it is a characteristic property of Tychonoff spaces as well as the
property that they are uniformizable. Some developments of the
theory have been made through utilization of compactifications, as
we can see in the recent literatures.

In the present paper, we shall make a systematic treatment
of the properties of Tychonoff spaces in connection with the pro-
perties of their compactifications, with a view to visualizing those
properties in a unificative fashion and establishing a general back-
ground for the concepts in the theory of Tychonoff spaces.

§1 is devoted to the preliminary results which will be used
in the sequel. In §2, some properties of a Tychonoff space X will
be characterized by the properties of its compactification BX.
More precisely, we shall characterize some topological properties
of X in terms of the properties of X as a dense subspace of BX.
In §3, we shall be concerned with the properties of the product
Xx BX. Suggesting by the author’s theorem [27] which states
that the paracompactness of X is equivalent to the normality of
XxBX (BX: the Stone-Cech compactification), it may be expected
that some topological properties of X can be characterized by
simple properties of Xx BX. Our main results in the present
paper are concerned with this subject, and we shall characterize a
number of topological properties of X by modifications of the
normality proposed on the product Xx BX. For example, a collec-
tionwise normal space X will be characterized by the property
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that Fx8X is normally embedded in X x 8X for any closed subspace
F of X. It will be shown that a space X is second countable if
and only if Xx BX is perfectly normal for some compactification
BX of X. On the other while, Dowker’s results [5, Lemma 3
and Theorem 4] can be stated as follows: X is normal and count-
ably paracompact if and only if X x M is normal for any compact
metrizable space M (Theorem 3.13). This suggests the possibility
of characterizing some properties of a Tychonoff space X in terms
of the properties of the product of X with some compact metrizable
space. Some related results on this subject will be given in the
last part of §3. In §4, we shall show that Michael’s problem on
the paracompactness of a metrizable space and a paracompact
space can be reduced to ask whether the product of a metrizable
space and a paracompact space is normal, and discuss some
related problems.

§1. Preliminary.

All spaces mentioned in this paper are Tychonoff spaces unless
the topology is explicitly represented. A compactification BX of
a space X is a compact (Hausdorff) space containing X as a dense
subspace. The Stone-Cech compactification BX is characterized
among compactifications of X by the property that every bounded
continuous function on X has a continuous extension over 8X. It
is the largest compactification of X in the sense that each com-
pactification BX of X is a continuous image of 8X, as the following
theorem shows.

Theorem 1.1. Any compactification BX of X is the image of
BX under a wunique continuous mapping ¢ that keeps X pointwise
fixed and that p(BX—X)=BX—X.

For the proof, see [3, P. 831].

Theorem 1.2. If f is any continuous mapping of a space X
into a compact space Y, then f has a continuous extension f* over
BX, which carries BX into Y.

The proof is in [18, P. 153]. (C.{. [25, P. 476].)
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Let C(X) denote the set of all continuous functions (real-valued)
on X and let C*(X) denote the set of all bounded continuous
functions on X. A continuous function f€ C(X) defines a con-
tinuous mapping of X into R*, where R* denotes the one point
compactification of the real number space R, and it has a con-
tinuous extension f* over BX by virtue of the preceding theorem.
The set {xe€BX: f*(x)€ R} will be denoted by X,.

As we shall be concerned with the properties of dense sub-
space, we now state some propositions on dense subspace. Let X be
a dense subspace of Y and let A be a subset of X. We shall denote
by Cix(A) (Cly(A)) the closure of A taken in X (resp. in Y).
Similarly, the interior of A will be denoted by Inf,(A) or Int,(A)
according as it is taken in X or in Y. A subset U of X is said
to be regularly open if Int(Clx(U))=U. Let U be an open subset
of X and let U* be an open subset of Y such that U=U*NnX,
then we shall say that U* is an extension of U over Y. Put
UP=Y—-Cl,(X—U), then U*Y is an extension of Uover Y. In
fact, UVP’NX=(Y—-Cly(X—-U)NX=X-Cl,(X-U)=X—(X-U)
=U. We call the set U*Y’ the proper extension of Uover Y. It
is evident that UCC V implies U*¥>C V*¥ in view of the defini-
tion of the proper extension.

Proposition 1.1. Let X be a dense subspace of Y and let U
be an open subset of X. Then, the proper extension U*Y> of U over
Y is the largest extension of U over Y.

Proof. Let U* be any extension of U over Y. If y¢ U*Y,
then y€Cly(X—U). Therefore 0*(y»)N(X—U)==@¢ and hence
0¥(y)N XLU*N X for each open subset 0*(y) of Y containing y,
and it follows that y¢ U*. Therefore we have U*C U*¥>, If U*
is the largest extension of U, then the reversed inclusion holds
and we have U*=U*"*Y’,

Proposition 1.2. Let X be a dense subspace of Y and let
U*Y> be the proper extension of U over Y. Then U™’ is regulary
open if and only if U is regularly open, and we have U*¥’=
Int +(Cly(U)) if U is regularly open.
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Proof. By an easy calculation, we see that Int,(Cly(A))=
Inty(Cly(A)NX for any subset A of X if X is dense in Y.
If U*¥ is regularly open, then we have U=U*¥'nX=
Int v (Cly (U)X =Int v(Cly (U N X)) N X=Int x(Cl (U’ N X))
=Intx(Clyx(U)). This shows that U is regularly open. Suppose
conversely that U is a regularly open subset of X, then U=
Int x(Clx(U))=1Int v(Cly(U))Nn X and hence U*=1Int,(Cly(U)) is an
extension of U over Y, which is clearly regularly open. Hence
U*CU*¥ by Proposition 1.1. We shall show that U*>U*Y’
which will complete the proof. Suppose on the contrary that
U*DU*Y, then U’ C/,(U*) and since X is dense in Y we
have [U*¥’N(Y—Cly(U*)]nX==0. It follows that U=U*"n
X' Cly(U*), which is contradictory. Therefore we have U*= U*¥>,

Proposition 1.3. Let Y be a dense subspace of Z and let X
be a dense subspace of Y. Let U, V denote any open subsets of X
and Y respectively. Then the followings are valid.

(1) UPAY=U*,

( 2 ) [UE(Y)]E(Z): UECZ).

(3) VO VnXT®., If V is regularly open, then V%=
[VAXT]®,

Proof. (1) and (2) are evident by the following calculations.
Q) Z—-ClL,(X-U)nNY=Y—-(Cl,(X—-U)nNY)=Y —-Cl(X—-U)=
U, 2) Z—-Cl,(Y-U)=Z—-Cl, Y- (Y-Cl,(X-U)]=Z—
Cl,(X—-U)=U*®, To prove (3), note that V is an extension of
VnX. By Proposition 1.1, we have VC (VN X)*¥’, and hence
VeEO(VNnX)Y® by (2). If V is regularly open, then VN X is
also regularly open by virtue of the formula; Inty(Clx(A))=
Inty(Cly(A)NX. Therefore V=(VNX)*¥ by Proposition 1.2,
and hence we have V*®=(VnX)?® by (2).

We now consider some properties of surroundings for X. A
neighborhood V of the diagonal of XX X is said to be a surround-
ing for X if there exists a sequence of neighborhoods of the
diagonal {V,} such that V=V, VoV, CV, * for each .

¥y VoV={(x,y) e XXX; (x,2) €V and (2, y) €V for some z€ X }.
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Throughout the sequel, neighborhoods are assumed to be open. We
call a surrounding V stable if there is a sequence {V,} such that
ViBXBONA(BX)= VEPXBXOAA(BX) for each n, where A(BX)
denotes the diagonal of BXxBX. In the following, we shall denote
by Z(f) the zero-set of feC(X): Z(f)={x€ X; f(x)=0} and by
0(f) the complementary set of Z(f). A partition of unity on a
space X is a family ®={p,; 3 p,=1} of continuous function on
X such that 0<gq,(x)<<1, X)o,(x)=1 for each x€ X and all but
a finite number of members of ® vanish outside some neighborhood
of x for each x€ X. It is clear that {0(p,)} is a locally finite
covering of X. If {0(p,)} is star-finite, then we shall say that ®
is a star-finite partition of unity on X. A partition of unity
P={p,; D pr=1} is subordinate to a covering {U,} if each 0(p,)
is contained in U, for some U,. By virtue of the theorem of
Dieudonné [4], for every point finite covering of a normal space
there is a partition of unity subordinate to the covering (with the
same index set). It will be shown that a star-finite partition of
unity determines a stable surrounding.

Proposition 1.4. The following conditions are equivalent.

(1) V is a stable surrounding for X.

(2) Prox[VFEXEONABX)]=X* is a paracompact subspace of BX,
where Prgy denotes the projection of BXxBX onto BX.

(3) There is a star-finite partition of unity ®={p,: 31 p,=1} on
X such that W={x,y)eXxX: Jlp(x)—p(N|<1IV and
Prﬁx[WE(ﬂX"BX’f\A(BX)] = Prpy [ V?EXBO A A(BX)].

Proof. For the sake of convenience, we shall denote by V*
the proper extension of V over BXxBX: Vi= VZEXxEX>  Suppose
that V is a stable surrounding for X and let {V,} be a sequence
of surroundings for X such that V=V, V,oV,V,_, and V,n
ABX)=V*NA(BX) for each n. It is easy to see that (Vi,oVi)n
(XxX)=V,oV,, and we have VyoViC(V,oV,) in view of Pro-
position 1.1. It follows that Ve V. V._, for each n. If we put
Vi=Vin(X*x X*), thén {V¥} is a sequence of neighborhoods of
the diagonal A(X™*) of X*x X* such that V¥ V¥ V%_, for each
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n. Let d be the pseudo-metric on X* defined by the family {Vi

such that {(x, y)€ X*x X*: d(x, y)<1} C V¥, and let = denote the
topology of X* induced by the pseudo-metric d, then the space
(X*, v) is a paracompact space by virtue of the theorem due to A. H.
Stone [24]. Put Ux)={ye X*: d(x, )< 1/2%, then Clgx(U(x))_
X* as we now verify : Let » be a point of Clgx(U(x)), and let d,
denote the restriction of d(x, y) on {x} x X*. By virtue of Theorem
1.1, d, has a continuous extension d¥* over 8X. Evidently, d*(»)<
1/2°<1/2 and hence there is a neighborhood (in B8X) W(r) of »
such that d¥(y)=d(x, y)<1/2 for each ye W(r)nX*. It is clear
that (W)NX*¥)x (WrNn X Vi Vi VEC VE; where Vi=
{(x, )€ X*x X* :d(x, )< 1/2}, and we have W(r)x W(r) V*® by
Proposition 1.1. It follows that r€ X* and consequently
Clex(U(x))CX* for each x€ X. Now, let us consider an open
covering {U(x)} .ex+ of (X*, =) and let {U,} be a locally finite open
refinement of {U(x)},cx+. Since = is weaker than the original
topology (induced topology of 8X on X*) of X*, {U,} is a locally
finite open covering of X* with respect to the original topology
of X*, and it is evident that Clsx(U,) X*. To prove the para-
compactness of X* let {G,} be any open covering of X*. Then,
each Clzx(U,) is covered by a finite number of G,’s, say G, -+, G,,.
Put H, ,=U,nG, 1<k<m), and construct a finite collection of
open subsets H, , for each A in this fashion. Then, the family
{H,, .} is an open locally finite refinement of {G,} as may easily
be seen. It follows that X* is paracompact. This proves the
‘implication (1)=(2).

Nextly, we prove the implication (2)=(3). Assume that X*
is paracompact, then it is a topological sum of o-compact spaces,
since X* is open in BX, and therefore each open covering of X*
has an open star-finite refinement. (Note that X* is a locally
compact paracompact space, in this case.) Since X* is para-
compact, V*= VEXxBXON(X*x X*) is a surrounding for X* and
there is a sequence {V*} of neighborhoods of the diagonal A(X*)
of X*x X* such that V¥=V* V¥ V¥ V*%_, for each n. Con-
sider an open covering {V¥(x)}.cx+, Where V§(x)={ve X*:(x, y) €



On compactifications 167

Vi), and let @*= {pf: > pf=1} be a star-finite partition of unity
on X* which is subordinate®> to the covering {V#(x)},ex*. Since
0(p,) V¥(x) for some x€ X*, the union of all 0(p,) for which
0(p.)NO(py)=+=0 is contained in some V¥(x). It follows that
W*={(x, y) € X*x X*: 3| p¥(x)—p¥(y)|< 1} is contained in V*.
Let @, denote the restriction of @¥ on X, then ®= {p,: > p,=1}
is obviously a desired one. In fact, W*C V* implies that
W={x, e XXX: p\(x)—p\(»)|<1}CV and it follows that
WeBXxBO YeBxxBX>  Therefore A(X*)C W* N A(BX)C WEBX*BXO A
ABX)VEBXBONA(BX)=A(X*), and hence we have Prgy
[WeBxxB A A(BX )] = Proy [ VX0 A ABX)].

Finally, we prove that (3) implies (1). Let ®={p,: > p,=1}
be a star-finite partition of unity on X. Let @¥ denote the exten-
sion of @, over BX and put 0(p¥)={peBX: p¥(p)>0}. Since
{0(p,)} is star-finite, {0(@¥)} is also star-finite. Let X* be the
subspace of BX consisting of all points p of 8X such that all but
a finite number of @F vanish outside some neighborhood of p.
Obviously X* is an open subspace of BX containing X, and
{0(p¥)Nn X*} is a star-finite covering of X*. Let @} denote the
restriction of @¥ on X*, then ® = {p;} is a star-finite partition of
unity on X* Put V,={(x, y)eXxX: J|p.(x)—p\(y)|<1/2%
and put V¥={x’, y)e X*x X*: 3| pi(x)—pi(v)|<1/2%}, then it
is clear that V}in(XxX)=V, and we have ViIn(XxX)=V,C
VEBXxBXO N (X x X) = [V, BXBO N (X*x X*)] " (Xx X). Therefore
VEBXXBO N (X*x X*) D V¥ DOA(X*) by virtue of Proposition 1.1
and 1.3. Thus, we have V;PX*BXNA(BX)DA(X*) for each .
To prove the reversed inclusion, let (p, ¢) be a point of V ®XxBx>
then U*(p)x W*(q)C V;#X*BX> for some neighborhood (in ABX)
U*(p) and W*(g) of p and ¢. Let x be a point of U*(p)nX,
then we have 3| @\(x)— @, ()< 1/2" for each ye W*(g)nX. Let
@, -, P,, be a finite set of all members of ® such that @, (x)=4=0
1<k<m), then ye\Ji,0(p,) for each ye W*(g)~n X and hence
we have W*g)n X \Jr10(p,). If ¢ does not belong to X*,

*) A partition of unity @ is subordinate to a covering {U,} of X if and only if
each member of @ vanishes outside some member of {Ug}.
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then W*(¢)nX intersects infinitely many O0(e,)’s and hence
\Jr10(p,) intersects infinitely many O0(p,)’s. It follows that
{0(@,)} is not star-finite which is contradictory. Therefore we
have g€ X *. Similarly, we see that p€ X* and hence we have
(p, )€ X*x X*. Therefore V X PO X*x X* and it follows
that V;®XPONABX)C(X* X X*)NA(BX)=A(X*). Thus, we have
ViBXBONA(BX)=A(X*)= V*BX-BONA(BX) for each n, The proof
is completed.

In view of the above proposition, we see that a surrounding
V for X is stable if and only if X*=Prg [ V:EXPONABX)] is
a topological sum of o-compact spaces. Now, let us agree to call
V a strongly stable surrounding for X if X* is a o-compact space.
Then, it may easily be seen from the proof of the above proposi-
tion that the following proposition hold true.

Proposition 1.5. The following conditions are equivalent.
(1) Vs a strongly stable surrounding for X.
(2) X*=Pryx [ V:EXBONABX)] is a o-compact subspace of BX,
(3) Thereis a countable star-finite partion of unity ®= {p, : >p,=1}
on X such that W={(x, e XXX: D p()—p N<VV and
Pray[WeBXxBX A A(BX )] = Prpy [ VX8 A A(BX)].

It is to be noticed that in a connected space every stable sur-
rounding for X is strongly stable. As is well known, a metrizable
space X is characterized by the fact that there exists a countable
family of surroundings {V,} for X such that /i, V,=A(X).
Similar characterization of second countable spaces may be obtained
in terms of the strongly stable surrounding.

Proposition 1.6. A space X is second countable if and only
if there is a countable family {V,} of strongly stable surroundings
for X such that N\po1 V,=A(X).

Proof. Recall that a second countable space is metrizable and
is a Lindelof space (c.f. [18], P. 49, P. 125). Let d(x,y) be a
metric on X, and consider a covering {V,(x)}.cx, Where V, (x)=
{yeX: d(x, y)<1/2"}. By virtue of the theorem due to K.
Morita [19], there 'is a countable star-finite partition of unity
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O™ ={pi”: SN p=1} on V subordinate to the covering. Put
V= {(x, )€ XX X: Z|pi"(x) — pi”(»)|< 1}, then V™ is a
strongly stable surrounding for X, for each »n. It is easy to see
that N\, V¥ =A(X), and the necessity of the condition is proved.
The converse will be proved is §3. (See, Remark of Theorem 3.4.)

We finally state a result on the completeness of a uniform
space, which will be used in the next section. In [26], the author
proved that a uniform space (X, {V,}) is complete if and only if
A(X)= [a\ Intgyvpx(Clox<px(Va)). This is equivalent to the following

Theorem 1.3. A uniform space (X, {V.}) is complete if and
only if A(X)=/\ V;Bx B,

§2. Characterization of topology (I)

In this section, we shall characterize some topological pro-
perties of a space X in terms of the properties of X as a dense
subspece of its compactification. E. Cech [3] proved that a space
X is normal if and only if Clyx(F)NClsx(C)=0 for each paire of
disjoint closed subsets F, G of X. In his paper [15], E. Hewitt
introduced the notion of pseudo-compact spaces and proved tnat
X is pseudocompact if and only if no closed C;-set of B8X is con-
tained in BX—X. Recently, S. Mréowka [22] has given a character-
ization of Lindelof spaces, which is similar to that of real compact
spaces (Q-spaces in the sense of E. Hewitt [15]). He introduced
the notion of Q-closed subset: A set XS is said to be @-closed
in S if and only if for each p<_S— X there is a continuous func-
tion f€ C(S) such that f(»)=0 and f(¢)==0 for each g€ X. Then,
he proved that X is a Lindelof space if and only if X is @-closed
in each of its compactification, and that X is real compact if and
only if X is @-closed in BX. G.I. Kac [17] has given a character-
ization of topological comploteness by the properties of the Stone-
(Vjech compactification. Further, some development of the theory
in this direction has been made in [13] and [14] by M. Henriksen
and J.R. Isbell. In [26], [27] and [29], some characterizations
of paracompactness has been given and used to solve some topo-
logical problems. We now state those characterization of topological



170 Hisahiro Tamano

properties with some new results.

Theorem 2.1. The following conditions on a space X are
equivalent.
1) X is normal.
(2) Clax(F)NClgx(G)=0 for each paire of disjoint closed subsets
F, G of X.
(3) If {U,} is a finite open overing of X, then {ULP*} covers BX.

Proof. It will be suffice to prove the equivalence of (1) and
(3). If BX—-\J U;P¥>=C=-0, then there is a point p € C such that
p€Clgy(U,) for some i, since {U,} is a finite covering and since
X is dense in BX. We may assume without loss of generallity that
{U,} is a minimal covering : That is, no proper subfamily of {U,}
can cover X. Evidently, p¢\J U,**> implies that p € Clyx(X—U;)
for each j, and hence p€ Clox(/\;+; (X—U,))=/\jx: Clox(X—U))).
Put F=/\; (X—-U;) and put G=X-U,;, then F and G are
disjoint closed subsets of X such that Clex(F)NClgy(G)==0. It
follows that X is not normal. Suppose conversely that X is not
' normal, then there are two disjoint closed subsets F and G of X
such that Clgx(F)NClgx(G)==0. Put U=X—F and put U,=X—G,
then Uy U5PX> doese not cover BX as may easily be seen
from the definitiod of the proper extensions.

Theorem 2.2. A space X is locally compact if and only if
BX— X is compact for any compactification BX of X.

Proof. For each x € X, there is a neighborhood U(x) of x such
that Cl4(U(x)) is compact, if X is locally compact. Then, it is
clear that no point of BX— X is contained in Clg,(U(x)) and there-
fore X is open in BX. Hence, BX— X is compact. Conversely, if
BX— X is compact, then there is for each x € X a neighborhood U(x)
of x such that Clg(Ux)N(BX—X)=0. Evidently, Clgx(U(x))=
Clx(U(x)) is a compact neighborhood of x€ X, and X is therefore
locally compact.

Theorem 2.3. X has unique uniform structure if and only if
BX— X is at most one point.
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Proof. By the theorem due to R. Doss [7], X has unique
uniform structure if and only if for each paire of functionally
separated closed subsets of X one at least is compact. If F and G
are functionally separated subsets of X, then Clgy(F)NClax(G)=0,
and the present theorem is an immediate consequence of the above
characterization due to Doss.

A space X is said to be pseudo-compact if every continuous
function on X is bounded.

Theorem 2.4. X is pseudo-compact if and only if BX—X
contains no closed Gs-set of BX.

Proof. If C is a closed Gs-set of BX, which is contained in
BX—X, then there is a continuous function fe C(8X) such that
C=Z(f)={peBX: f(p)=0 CTBX—X. It follows that there is for
each » a point x,€ X such that |f(x,)|<1/n, and 1/|f]| is clearly
an unbounded continuous function on X. Conversely, if g(x) is
an unbounded continuous function on X, then f(x)=1/max [ | g(x)|,1]
is a continuous function on X having no zero point. Let f* denote
the extension of f over BX, then Z(f*)==0 and Z(f*) is a closed
Gs—set of BX contained in BX—X.

A space X is said to be real compact [9] if it is complete
relative to the weakest uniformity for X with respect to which
every continuous function on X is uniformly continuous.

Theorem 2.5. The following conditions on a space X are
equivalent.
(1) X is real compact.
(2) For each point peBX—X, there is a closed Gs-set C of BX
such that pe CCBX—X.
(3) For each point pe€ BX—X, there is a countable star-finite par-
tition of unity ®={p, : XY p,=1} such that Clgx(0(p,)) % p for each n.

Proof. Let R* denote the one point compactification of the
real number space R. Then, each fe(C(X) has a continuous
extension f* over BX (into R*) by Theorem 1.2. Put X,=
{peBX: f¥(p)eR} and put C,=BX—X,. By virtue of Theorem
1.3, X is real compact if and only if A(X)=/\jeccx, V7P**PX°, where
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Ve={(x, ») e XXX :| f(x)—f(y)|<1}. If x€X,, then there is an
open neighborhood (in BX) U*(x) of x such that |f*x)—
F*(9)|<1 for each ye U*(x). It follows that (x, x) e V;PX*PX> for
each x € X,. Conversely, if p ¢ X,, then every neighborhood U*(p)
of p containe points x, y of X such that | f(x)—f(»)|>1, hence
(P, p) € Clox.sx(X—V,) and consequently (p, p) ¢ V;PX*8X There-
fore we have A(X)=A(BX)n V;PXPX  On the other hand, it
is easy to see that /\jcccp VyCA(BX), and it follows that X is real
compact if and only if X=/\scx Xy by Theorem 1.3. Evidently,
C, is a closed Gs—set of BX contained in BX— X and every closed
Gs;-set contained in BX—X is a C, for some feC(X). This
proves the equivalence of (1) and (2). If fis a continuous func-
tion on X such that Z(f*)=CCBX—X, then we can construct a
countable star-finite partition of unity ®= {p,: 3 p,=1} by letting
fo=max [1/n+1, min(f,1/n—1)], gu=|1/n—f,| and p,=g,/ 2 &».
It is clear that Clgx(0(@,))NC=0 for each n. This proves that
(2) implies (3). Finally, if ®={p,: >1p,=1} is a countable (star-
finite) partition of unity on X such that Clax(0(p,)) 3 p for each
n, then f=>1(1/2").p, is a continuous function on X such that
pPeEZ(f*)TBX—X. Thus we see that (3) implies (2).

A spece X is said to be topologically complete if there is a
uniformity for X relative to which X is complete.

Theorem 2.6. X is topologically complete if and only if for
each point p € BX— X there is a partition of unity ®= {p, : 3 p,=1}
such that Clgx(0(p))) % p, for each .

Proof. Suppose that (X, {V,}) is complete, then N\ V=A(X)

by virtue of Theorem 1.3, where V. denotes the proper extension
of V, over BXxBX. Thereisa V, such that V. #(p, p), for each
pEBX—X. Let d(x, ) be a pseudo-metric on X such that d(x, y)=1
whenever (x, )¢ V,, and let T denote the topology of X induced
by the pseudo-metric d(x, ). Then the space (X, =) is paracompact.
Now, let us consider an open convering {U(x)}.cx of (X, 7), where
Ux)={ye(X,7): d(x, ¥)<1/2%, and let {U,} be an open locally
finite refinement of {U(x)}.cx. Let ®={p,: 3)p,=1} be a par-
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tition of unity on (X, ) subordinate to the covering {U,}. Since
T is weaker than the original topology of X, ®= {p,: 31 p,=1} is
also a partition of unity on X with respect to the original topology
of X. We shall show that p ¢ Clyx(U(x)) for each x € X, which
will imply that p ¢ Clzx(0(@,)) for each X and the necessity of the .
condition will be thus proved. Suppose not, then there is
y€ U*(p)n X such that d(x, y)<1/2* for each neighborhood U*(p)
of p. Put d,(y)=d(x,y) and let d} be the extension of d, over
BX, then dX(p)<<1/2°<1/2. There is an open neighborhood
W*(p) of p such that [W*(p)x W*(p)]N\(Xx X)=[W*(p)n X]x
[W*(p)n X1 V. It follows that (p, p) € V; which is contradictory.
We now prove the sufficiency of the condition. If ®= {p, : D %\:1}
is a partition of unity on X such that p ¢ Clgx(0(p,)) for each X,
then V={(x, ) e Xx X: DV|p.(x)—p,(¥)|< 1} is a surrounding for
X such that (p, p)¢ V°. To prove this, let W*(p) be any neigh-
borhood of p and let x be any point of W*(p)nX. Then,
P.(x)==0 for all but a finite number of @,’s, and since Clgx(0(®,)) ? ,
there is a ye W*(p)nX such that (x, )¢ V. Therefore (p, p)€
Clox.sx[(Xx X)— V7] and consequently (p, p) ¢ V°. It follows that
X is topologically complete by Theorem 1. 3. v

A space X is said to be a Lindel6f space if every open cover-
ing of X has a countable subcovering. It is well known that X
is a Lindelof space if and only if every open covering of X has
a countable star-finite refinement (c.f. [20]).

Theorem 2.7. Let BX denote any compactification of X. Then,
the following conditions ave equivalent.
(1) X ¢s a Lindelof space.
(2) For each compact subset CBX— X, there is a countable star-
finite partition of wunity ®={p,: S p,=1} on X such that
Clgx(0(p)NC=0Q for each n.
(3) For each compact subset CBX—X, there is a closed Gs-set
G of BX such that CC G BX—X.
(4) For each compact subset CBX— X, there is a countable family
{G.} of compact subsets of BX such that G,nC=( for each n and
Ui G, D X.
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Proof. Assume that X is a Lindel6f space and let C be a
compact subset of BX contained in BX—X. For each x€ X, let
U(x) be an open neighborhood of x such that Clgz,(U(x))NC=4,
and consider a covering {U(x)},cx of X. Let {W,} be a countable
star-finite refinement of {U(x)},cx. Since X is normal, there is a
partition of unity ®={p,: > ®,=1} such that C/,(0(p,) W,
for each n. It is evident that Clzx(0(p,))NC=@ for each member
@, of the partition of unity. This proves the implication (1)=(2).
Suppose that (2) is valid and let f, be a continuous function on
BX such that 0<f,<1, f,=0 on C and f,=1 on Clgzx(0(p,)).
Put F=31(1/2")-f,, then Z(f) is a closed Gs-set of BX such that
CCZ(f)CBX—X. This proves that (2) implies (3). The impli-
cation (3)=(4) is obvious. Finally, let {U,} be any open covering
of X and let Ut denote the proper extension of U, over BX. Put
C=BX— \J U, then C is a compact subset of BX contained in

BX—X. Evidently, each G, is covered by a finite number of U,,
and therefore \ /i, G, is covered by a countable subfamily of {U.}.
Since \J,._, G, > X, we see that X is covered by a countable sub-
family of {U,}. It follows that X is a Lindelof space. The proof
is completed.

A space X is said to be paracompact if every open covering
of X has a locally finite refinement.

Theorem 2.8. Let BX denote any compactification of X. Then,
the following conditions are equivalent.
1) X is paracompact.
(2) For each compact subset CC_BX— X, there is a partition of unity
O={p,: D p,=1} on X such that Clgx(0(p\))NC=0 for each X\.
(3) For each compact subset CBX—X, there is a family {G,} of
compact subsets of BX such that G,NnC=0, \J G, DX and that there
is for each x € X an open neighborhood (in BX) U*(x) of x which
intersects finitely many G,'s.

Proof. Assume that X is paracompact, and let C be a com-
pact subset of BX—X. For each x € X let U*(x) be an open subset
of BX containing x such that Clgx(U*(x))NnC=0@, and consider a
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covering {U(x)},cx of X, where U(x)=U*(x)nX. There is a par-
tition of unity ®={p,: X ®,=1} subordinate to the covering
{U(x)} zex. Since 0(p,)C U(x) for some x, (for each A), we have
Clpx(0(@)) \C=0 for each A. This proves the implication (1)=(2).
The implication (2)=(3) is obvious in view of the fact that if
{H,} is a locally finite family of subsets of X, then {CIx(H,)} is
also a locally finite family. To prove the implication (3)=(1),
let us recall that X is paracompact if and only if every open
covering of X has a locally finite refinement (c.f. [17, P. 156]).
Let {U,} be any open covering of X, and let U; denote the proper
extension of U, over BX. Put C=BX—-\J U;, then C is a com-
pact subset of BX—X. It is clear that each G, is covered by a
finite number of U}’s say Uji, ---, U;, since G, is compact. Put
H, .=G,nU;n X, then each H, , is contained in some U,=U;NnX
and G,nX=\/%., H, ,, Constructing H, , for each G, in this
fashion, we have a locally finite refinement {H, ,} of {U,}. It
follows that X is paracompact.

A space X is said to be hereditarily paracompact if every sub-
space of X is paracompact. It is easy to see that X is hereditarily
paracompact if and only if every open subspace of X is para-
compact. Let E be any open subspace of X, and let BX be any
compactification of X. Then Cl/zx(E) is a compactification of E.
Applying the above arguments to E and Clzx(E), we obtain the
following

Theorem 2.9. Let BX denote any compactzﬁcatzon of X. Then,
the following conditions are equivalent.
(1) X is hereditarily paracompact.
(2) For each closed subset C of BX, there is a partition of umnity
D= {p,: D pr=1} on X—C such that Clgy(0(p,))NC=0 for each \.
(3) For each closed subset C of BX, there is a family {G,} of
closed subsets of BX such that CNnG,=0, \J G, DX—C and that
there is for each x € X—C an open neighborhood (in BX) of x inter-
secting finitely many G,’s.

Quite in a similar way, we have the following characterization
of hereditarily Lindel6f spaces.
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Theorem 2.10. Let BX denote any compactification of X.
Then the following conditions are equivalent. '
(1) X is a hereditarily Lindelif space: That is, every subspace of
X is a Lindelof space.
(2) Every closed subset C of BX is contained in a closed Gy-set C*
of BX such that X—C=X—-C*.
(3) For each closed subset C of BX, thereis a countable star-finite
partition of unity ®={p,: X p,=1} on X—-C such that
Clegx(0(p )NC=0 for each n.
(4) For each closed subset C of BX, there is a countable family
{G,} of closed subsets of BX such that G,nC=0 for each n and

Una1 G, DOX—C.
Corollary. Every hereditarily Lindelif space is per fectly normal.

Proof. Suppose that X is a hereditarily Lindelof space and let
F be any closed subset of X, then F*=Clgzyx(F) is contained in
a closed Gs-set G*=/\;7; O¥ of BX such that X—F*=X—-G* by
virtue of the preceding theorem. Therefore F=F*NX=G*n
X=(N\i1 OHN\X=/N\-1 (0¥nX) and hence F is a closed G;-set
of X. It follows that X is perfectly normal.

§ 3. Characterization of topology (II).

This section is devoted to the characterization of topological
properties of X in terms of the properties of the product XxZ
of X with some compact space Z. In most cases, we may take
Z to be a compactification of X. However, for the sake of con-
venience, some of the following results will be stated letting Z to
be a compact metrizable space or an arbitrary compact space.

From the work of Dowker [5] and the author [27], it may
be expected that the modifications of the normality condition
proposed on the product X x Z will yield some interesting properties
of X. This will be discussed in detail, and we shall show that a
number of important topological properties can be characterized
by the modifications of the normality proposed on XxZ.

Following Gillman and Jerison [9], we shall say that a sub-
space E of X is C*-embedded in X if every bounded continuous
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function on E can be extended to a bounded continuous function
on X. Asis well known, every closed subspace of a normal space
X is C*-embedded in X.

Let C'(X) be a subset of C(X). If there is a function f€C'(X)
such that f(x)=1 for each x ¢ F and f(x)=0 for each x €G, then
we shall say that F and G are functionally separated by a member
of C'(X).

Theorem 3.1. Let BX denote any compactification of X. Then,
the following conditions are equivalent.
1) X is paracompact.
(2) For each compact subset C of BX—X, there is a surrounding
V for X such that Cly,zx(V)N(XXC)=0.
(3B XxBX is normal.
(4) If G=XxC is a closed subset of Xx BX such that GNA(X)=0,
then G and A(X) are functionally separated (by a wmember of
C*(Xx BX)).

Proof. We prove firstly the equivalence of (1) and (2).
Assume that X is paracompact and let C be a compact subset of
BX—X. Then, there is a partition of unity ®={p,: 3 p,=1}
such that Clgzx(0(p,))NC=@ for each A, by virtue of Theorem 2. 8.
Put V={(x, ) e XxX: D@ (x)—p\(»)|<1}, then V is a sur-
rounding for X. We now prove that Cly.zx(V)N(XxC)=0.
Suppose on the contrary that Cly.pzx(V)N(XxC) contains a point
(x, p) of Xx BX, then there is a point (x, ') which belongs to V,
in each neighborhood U(x)x U*(p) of (x, p). Let us take U(x) to
be a neighborhood of x such that U(x) intersects finitely many
members of {0(p,)}, say O(p@), -, 0(p,), then 3., @, (x)=1 for
each x’ € U(x). It is clear that (x/, y') € V implies ¥y €\ /5.1 0(®.),
and it follows that p € Clgx(\J7-1 0(@,)) =\J%-1 Cl5x(0(®,)). But this
is impossible, since p € C and since CNClgx(0(p,))=0 for each k.
Conversely, let V be a surrounding for X such that Clz, (V)N
(XxC)=0. Let d be a pseudo-metric on X such that W= {(x, y) €

*) K. Morita has recently proved the equivalence of 1) and 3) independently.
(K. Morita, Paracompactness and product spaces, Fund. Math. Vol. 50 (1961) pp. 223
236)



178 Hisahiro Tamano

XxX:d (x, y)<1} V, and let = denote the topology of X induced
by the pseudo-metric d. Then the space (X, v) is paracompact.
Put W(x)={z € (X, 7): d(x, 2)< 1}, then it is clear that Clgx(W(x))n
C=0 for each x€X. Consider an open covering {W(x)},cx of
(X, v), andlet ®={p,: 3 @,=1} be a partition of unity on (X, T)
subordinate to the covering {W(x)},cx. Since = is weaker than the
original topology of X, ® is a partition of unity on X with respect
to the original topology of X. Thus, we see that there is a par-
tition of unity ®= {p, : 3} @,=1} on X such that Clz(0(p,)NC=0
for each M. It follows that X is paracompact, in view of Theorem
2. 8.

_ The implication (1)=(3) is well known [4], and the implication
(3)=(4) is evident. We shall prove that (4) implies (1). Let C
be any compact subset of BX—X. We shall show that there is a
partition of nnity ®= {p,: >3 @,=1} on X such that Clzx(0(®,))N
C=¢ for each A, which will complete the proof by virtue of
Theorem 2.8. Let F(x, p) be a continuous function on X x BX such
that F=1 on G=XxC and F=0 on A(X). Let F.(p) denote the
restriction of F(x, p) on {x} X BX, and put d(x, y)=||F.(p)—F,(p)l|=
,%B?'F”( D)—F,(p)|. Then d(x, y) is a pseudo-metric on X. Let r

denote the topology of X induced by the pseudo-metric d(x, y),
and consider the space (X, 7T) which is paracompact. Let &=
{px: 23 pa=1} be a partition of unity on X subordinate to the
covering {U(x)} ,ex of (X, 7), where U(x)= {y € (X, 7): d(x, y)<1/2}.
Since T is weaker then the original topology of X, ® is a partition
of unity of X with respect to the original topology of X. We
shall show that Clgx(0(p,))NC=0 for each A. It is clear that
d(x. »)<1/2 implies |F,(y)|=|F.(y)—F,()|<1/2. Therefore
F(p)<<1/2 for each p€Clyzx(U(x)), since F, is a continuous func-
tion on BX. On the other hand, F(x, p)=F.(p)=1 for each peC.
It follows that Clyx(U(x))NC=@ for each x € X and consequently
Clgx(0(p))NC=0 for each A. The proof is completed.

We now notice that F(x, y) € C(XxY) defines a continuous
mapping of X into C(Y) (F: X—C(Y)) by letting F{x>=F, € C(Y),
where F, denotes the restriction of F(x,y) on {x} xY. We shall



On compactifications 179

denote by Cx(XxY) the subset of C(XxXY) consisting of all
functions of C(XxY) such that F{X)>={F,}.cx is a separable
subspace of C(Y).

Theorem 3.2. Let BX denote any compactification of X. Then,
the following conditions are equivalent.
(1) X is a Lindelof space.
(2) For each compact subset C of BX—X, there is a strongly stable
surrounding V for X such that Cly.px(V)N(XXC)=(.
(3) If G=XXC is a closed subset of XX BX such that GNnA(X)=0,
then G and A(X) are functionally separated by a member of
Cx(Xx BX).

Proof. In the first place, we prove the equivalence of (1) and
(2). Assume that Xis a Lindel6f space and let C be a compact subset
of BX—X. Then, there is a countable star-finite partition of unity
¢={p,: X p,=1} on X such that Clgz4(0(p,)NC=@ for each #,
by virtue of Theorem 2.7. Put V={(x,y)eXxX: X |p.(x)—
P (y)|<1}, then V is a strongly stable surrounding for X by
Proposition 1.5. By the similar argument done in the proof of
Theorem 3.1, we can see without difficulty that Cly.zx(V)N
(XxC)=@. To prove the implication (2)=(1), let C be any com-
pact subset of BX— X and let V be a strongly stable surrounding
for X such that Cly . zx(V)N(XXxC)=@. By virtue of Proposition
1.5, there is a countable star-finite partition of unity ®=
{Pn: 22 P,=1} such that W= {(x, y) € XX X: 3] |@,(x) — () [<1}
V. Ttisclear that Clgx(W(x))NnC=0 for each W(x), where W(x)=
{yeX: (x,y) e W}. Putd(x, y»)=>p.(x)—®.(¥)| and let = denote
the topology of X 'induced by the pseudo-metric d. Then, the
space (X, 7) is secoud countable and hence it is a Lindelof space
Consider an open covering {W(x)}.cx of (X,7), where W(x)=
{veX: dx, y)<1} (={y€X: (x,y) € W}), and let {W,} be a count-
able subcovering of {W(x)},cx. Since Clgx(W(x))NC=0@ for each
W(x), Clgx(W,)NC=0 for each n. Thus, we see that there is a
countable covering {W,} of X such that Clg(W,)nC=¢g. It
follows that X is a Lindelof space by Theorem 2.7. We nextly
prove the implication (1)=(3). Let G=XXC be a closed subset
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of Xx BX such that GNA(X)=0, then C is a compact subset of
BX—X. By virtue of Theorem 2.7, there is a closed G;-set C*
of BX such that CCCC*C BX—X. There is a continuous function
f*eC(BX) such that0<{f*<1 and C*=Z(f*)={peBX:
f¥(p)=0}. Now let us construct a partition of unity ®=
{P.: 22 p,=1} on X by letting

FE(p) = Max [1/n+1, Min (f*(p), 1/n—1)],

gi(p)= 11/n—f¥(p)| and

Pu(%) = &%)/ 23521 &ul%) ,
where g, denotes the restriction of g¥ on X. In view of the
above definition of ¢,, it may easily be seen that o, has a con-
tinuous extension ¢¥ over BX and the extension @¥ is such that

PX(p) = gk(D)/ gt (D) +g¥(p)+gka(p) if pe0(gd) and
=0 if pgo(gY).
Define F € C(Xx BX) by letting F(x, p)=>r1 | p.(x)—p¥(p)|. then
it is clear that F’=1 on XxXC and F=0 on A(X). To show that
F eCx (X% BX), let T be the topology of X induced by the pseudo-
metric d(x, )= |p.(x)—p.(y)| on X. Then, the space (X,r) is
second countable, and hence there is a countable subset {x;} of
X which is dense in (X, 7). The set {Fx} is a dense subset of
F{X>. In fact, for any member F, of F{X) and for each € >0, we
can choose a point x; € X such that d(x;, y)<é. Then ||F,—Fx]||=
iggl () = PE DD — | Pu(x) — PO XX Pol2:) — P 9) | <E

Therefore, F€Cx(XxBX). Suppose conversely that there is a
FeCx(XxBX) such that F=1 on XxC and F=0 on A(X). Let
T denote the topology of X induced by the pseudo-metric
d(x, y)=||F,—F,||. Then the space (X, ) is second countable.
Consider an open covering{U(x)},cx of (X,7), where U(x)=
{ye(X, 7): d(x, y)<1/2}, and let {U,} be a countable subcovering
of {U(x)},ex. It is clear that d(x, y)<1/2 implies |F(y)—
F,(»)1<1/2 and hence |F(x, y)|<1/2. Therefore Clzx(U(x))NC=0
for each U(x) and hence Clgx(U,)NC=@ for each n. Thus, we see
that for any compact subset C of BX—X there is a countable
covering {U,} of X such that Clzx(U,)NC=0 for each n. It
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follows that X is a Lindelof space by Theorem 2.7.

Theorem 3.3. A space X is metrizable if and only if Xx BX
is normal and A(X) is a closed Gs-set of X x BX, where BX is any
compactification of X.

Proof. Every metrizable space X is paracompact [24], hence
XX BX is normal for any compactification BX of X. Let d be a
metric on X and put V,={(x, y) € XX X: d(x, y)<1/2"}, then it is
clear that N\r. V,=A(X). We shall show that N7, ViXxBX_—
A(X). Let (x, p) be a point of Xx BX which is not contained in
A(X), then there are two open subset U*(x) and W*(p) of BX
containing x and p respectively such that U*(x)n W*(p)=0.
There is a n such that {yeX: (x, y)e V,} CU*(x), and we have
(x,»)¢V, for each yeW*(p)nX. It follows that (x,p)€
Cly.px(Xx BX)—V,) and hence (x, p) ¢ V. ¥*BX It follows that
that A(X)=N\r, V.X*BX Supppse conversely that XX BX is
normal and A(X)=/\;.1 U¥, where U} is an open subset of X x BX.
Then G,=(XxBX)—U¥ and A(X) are disjoint closed subsets of
Xx BX. There is a continuous function F(x, p) on Xx BX such
that F=1 on G, and F=0 on A(X) and O<F<1. Put d.(x,y)=
||[F,—F,|l. where F, denotes the restriction of F' on {x} x BX. Put
Vo={(x,y»)e XxX: d(x, y)<1}, then V,CU¥Nn(XxX) because
d.(x, y)<_1 implies |F(x, y)|<1l. Therefore U¥n(Xx X) is a sur-
rounding for X, and hence A(X) is an intersection of countable
surroundings for X. It follows that X is metrizable [30].

Theorem 3.4. The following conditions on a space X are equi-
valent.
(1) X is second countable.
(2) X is metrizable and separable.
(3) X is homeomorphic to a subspace of compact metric space.
(4) XxBX is perfectly normal for some compactification BX of X.

Proof. The equivalence of (1), (2) and (3) is well known [18]
and the implication. (3)=(4) is evident. Therefore we have only to
prove that (4) implies (1). Suppose that X x BX is perfectly normal
and let {U,} be a countable family of open subset of X x BX such
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that N\, U,=A(X), where U,=Cly.px(U,). We put U, x)=
{peBX:(x, p)eU,} and U, (x)={p€ BX:(x, p) € U,}. Consider the
product BXxBX and put C,=Prg[A(BX)—UiBX*8X7] X =
BX—C,. Since BX is perfectly normal, X, is a o-compact sub-
space of BX and hence it is a Lindelof space. Now, let us con-
sider the product X,x BX, which is clearly normal. Put G,=
(X, xC)v({(X,x BX)— U;Bx*BX)  then G, is a closed subset of
X, % BX such that G,nA(X,)=0. There is a continuous function
F,eC(X,x BX) such that 0<F,<1, F,=1 on G, and F,=0 on
A(X,). Let F7 denote the restriction of F, on {x} x BX, and con-
sider an open covering {0(x)}.cx, of X,, where Ox)={ye€X,:
[|Fp—F%5||<1/2}. There is a countable star-finite partition of unity
®={p,: 3 p,=1} subordinate to the covering {0(x)},cx,. Define
a pseudo-metric d, on X, by letting d,(x, y)=>]|p(x)—®.(¥)|, and
let =, denote the topology of X, induced by the pseudo-metric d,.
Then, the space (X,, T,) is second countable, and therefore
=1, (X,, 7, is second countable [2, Chap. 1, P. 72]. Let P,
denote the projection of ITI onto (X,, 7,), and let X* be a subspace
of II consisting of all points @ of II such that Pr,(Q)=Pr(Q)eX
for each n. Then the space X* is second countable. We shall
show that X* is homeomorphic with X, which will complete the
proof. Let @, denote the point of X* such that Pr,(Q,)=x€X
for each n. Then, we have a one to one mapping ¢ of X onto X*
by letting 8(x)=@,. Since 7, is weaker than the original topology
of X,, for each #u, the mapping 6 is continuous. To prove that
6! is continuous, let V(x) be any open neighborhood of x¢€X.
Then, there is a U, such that U,(x) V(x)**®%> because BX — V{(x)*8X>
is compact and N\U,(x)=x We now prove that W, (x)={y€
(X,, T.): d(x, »)<1}CU,x). Let o, --,®, be the set of all
members of ® which do not vanish at x, and let 0(x;) be a member
of {0(x)}.ex such that 0(x;)) D0(p;,) A<i<m). Then xe€0(x;) for
each 7, and y € W,(x) implies y € O(x;) for some 7, therefore F2(y)=
F2(3)— Fy(0) < F2(3) — F2(3) | + | Fi(3) — Fy(0) | <IIF3— F2, ||+ |IF2,
—F?||<1/24+1/2=1 and hence y € U,(x). It follows that W (x)
Ul x). Put Wik=X*N(([,xy (X, Tm) X W,(x)), then we have
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O WHC U ()N X V(x)X°n X= V(x). Therefore 6~' is con-
tinuous, and consequently ¢ is a homeomorphism. The proof is
completed. :

Remark. From the proof of the preceding theorem we see
that if V, is a strongly stable surrounding for X, for each », and
it AX)="\7.V,, then X is second countable. (Put X,=
Prox[ABX) N\ Vi®BXxBX7] ) This prove the sufficiency of the con-
dition of Proposition 1. 6. '

We call a space X entirely normal if every neighborhood of
the diagonal of XX X is a surrounding for X.

Theorem 3.5. A space X is entirely normrl if and only if for
any closed subset F of XXX, Cly . ox(F)NA(X)=0 implies that F
and A(X) are functionally separated by a member of C(XxBX).

Proof. Assume that X is entirely normal and let F be a
closed subset of XxX such that Cly.sx(F)NA(X)=0. Then
(XxX)—F=V is a neighborhood of the diagonal A(X) of XxX.
There is a pseudo-metric d on X such that d(x, y)=1 for each
(x, )¢ V. Let d, denote the restriction of d(x, y) on {x} xX. As
we have noted above, d defines a mapping ¢ of X into C*(X) by
letting @(x)=d, € C*(X). The mapping @ is continuous by virtue
of the triangular inequality of d. Applying Glicksberg’s lemma
[10, Lemma 2] to d(x, y) € C(Xx X), we can see that d(x, y) has a
continuous extension d*(x, p) over XxBX. Itis clear that d*=1 on
Clyvpx(F) and that d*=0 on A(X). Conversely, let V be any
neighborhood of the diagonal of XXX and let V® denote the
proper extension of V over XxBX. Put E=(XxX)—V. Then
Cly.px(E)=(XxBX)—V* and we have Cly.sx(E)NA(X)=0. Let
F(x, p) be a continuous function on XxBX such that 0<CF<1,
F=0 on A(X) and F=1 outside of V: Put d(x, y)=I||F,—F,ll=
igglFx(p)—Fy( p)|, then d(x,y) is a pseudo-metric on X, ‘and it
is easy to see that {(x, y) € Xx X : d(x, y)<1} V. Therefore V is
a surrounding for X. It follows that X is entirely normal.

A space X is said to be collectionwise normal [1] if for every
locally finite collection {F,} of mutually non-intersecting closed
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subsets of X there is a collection {U,} of mutually non-intersecting
open subsets of X such that F, U, for each «.

Theorem 3.6. A space X is collectionwise normal if and only
if GXBX is C*-embedded (normally embedded) in X xBX for every
closed subspace G of X.

Proof. Let F be a continuous function (bounded) on G xBX,
and let F, denote the restriction of F on {x} XB8X. Define a mapping
@: X—C(BX) by letting p{x>=F, € C(8X), then ¢ is a continuous
mapping of G into C(8X). By virtue of the theorem of Dowker
[6, Th. 2], which states that a metric space is absolute retract
for collectionwise normal space if and only if it is absolute retract
for metric space and absolute Gs, we can see without difficulty
that the mapping ¢ can be extended to a continuous mapping ¢*
of X into C(BX)* By letting F*(x, p)=p*{x>(p), we have a (real-
valued) function F* on X xBX. The continuity of * implies that
F* is a continuous function on XxBX, and thus we see that F
has a continuous extension F* over X xBX. Therefore GxBX is
C*-embedded in XxBX. To prove the sufficiency of the contition,
note first that X is a normal space under the assumption of the
theorem. In fact, if G,, G, are disjoint closed subsets of X, then
the continuous function f on (G, XBX)Vv(G,xBX) defined by letting
f(x, p)=1 for each (x, p) €G,xBX and f(x, p)=0 for each (x, p) €
G,xBX can be extended to a continuous function f* on XxBX.
The restriction f¥ of f* on XX {p}, where p is a point of BX,
is a continuous function on X such that f¥=1 on G, and f}¥=0
on G,. It follows that X is a normal space. Now, let {G,} be
any locally finite collection of mutually non-intersecting closed
subsets of X. Put H,=\/pss Gs, then G, and H, are disjoint
closed subsets of X. Therefore Cly5x(G,)NClsx(H,)=0 by the norma-

*) Verification that C(BX) is absolute retract for metric space is as follows: Let
M be a metrizable space and let ¢ be a continuous mapping of a closed subspace G
of M into C(BX). By letting F(x, p)=¢<x>(p), we have a continuous function F on
GXBX. Since MXBX is normal, F has a continuous extension F* over XxpgX. Let
F.* be the restriction of F* on {x}XB8X, and put ¢*{x>=F,* then ¢* is a continuous
extension of ¢ over X.
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lity of X. Let g, be a continuous function on 8X such that g,=1
on Clgx(H,), £,=0 on Cley(G,) and 0<g,< 1. Define a bounded
continuous function F on (\J/G,)XBX by letting F(x, p)=X.(2)Q
g.(p), where X (x) denotes the characteristic function of G,. (That
is, F(x, p)=g.(p) if x€G,.) From the assumption of the theorem,
F has a continuous extension F* over XX BX. Let F* denote the
restriction of F* on {x} xBX, and put U,={yeX: |[|[F¥—F¥|<
1/2* for each x€G,}. Then {U,} is the desired family of open
subsets of X. Moreover, we can prove that {U,} is a discrete
collection of open subsets of X. (A family 2 of subsets of X is
said to be discrete if each point x € X has a neighborhood which
intersects at most one member of 2.) Let z be any point of X.
In case that [|[F¥—F#*||<1/2 for some x €G,, we have ||[F}—F¥||>
|F¥—F%|~||F¥—F¥|>1/2 for each ycGyB==a), since y€Gy
implies ||} —F3[| > |F¥(y)—F3(»)| =F¥(y)=F(x, y)=1. Therefore
W(z)={yeX: |[F¥—F}|<1/2} does not intersects U, for each
B==ca. In another case, where ||F}¥—F}*||>>1/2 for each x€\JG,,
W(z)={ye X: ||[F¥—F¥||<1/2% does not intersects U, for each «.
For otherwise there would be a point y€ U, such that [|[F¥—F¥||<_
1/2° and |[|[F}—F}||<1/2® for some x€G,. It follows that
[|F¥—F¥|<||[F¥—F¥|+||F¥—F#¥|<1/2, which is contradictory.
Therefore X is a collectionwise normal space.

By the similar arguments done in the proof of Theorem 3.1
and Theorem 3.2, we can obtain the following characterizations of
topologically complete spaces and real compact spaces respectively.

Theorem 3.7. The folloévz'ng conditions on a space X are equi-
valent.
1) Xis topologically complete.
(2) For each point pof BX—X, there is a surroundidg V for X
such that Cly sx (V)N (XX {p})=0.
(3) Let p be any point of BX. If XX {p} NA(X)=0, then XX {p}
and A(X) are functionally separated by a member of C(X XBX).

Proof. The proof of the equivalence of (1) and (2) is entirely
similar to that of Theorem 3.1. We shall show that (1) is equi-
valent to (3). Assume that X is topologically complete and let p
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be a point of BX—X. Then, there is a partition of unity ®=
@, D py=1} on X such that p¢& Clzx(0(p,)) for each A, by virtue
of Theorem 2.6. Put d(x, »)=>]|@\(x)—@\(»)|, then d has a con-
tinuous extension d* over XxXBX by virtue of the lemma due to
Glicksberg [10], as we have shown in the proof of Theorem 3.5.
It is easy to see that d¥*=1 on Xx {p} and that d*=0 on A(X).
This proves the implication (1)=(3). Conversely, if (Xx {p})n
A(X)=0, then p is a point of BX—X. We can construct a par-
tition of unity ®={p,: D p,=1} such that Clsx(0(p,))3p for
each A, by the similar arguments done in the proof of the impli-
cation (4)=(1) of Theorem 3. 1, and it follows that X is topologic-
ally complete by Theorem 2. 6.

Theorem 3.8. The following conditions on a space X are
equivalent.
Q) X is real compact.
(2) For each point p of BX—X, there is a strongly stable surrounding
V for X such that Cly .ax (V)N (XX {p})=0.
(3) Let p be any point of BX. If (Xx{p})NAX)=0, then
Xx{p} and A(X) are functionally separated by a member of
Cx(X XBX)

Proof. The proofs of the implications (1)=(2) and (1)=(3)
are entirely similar to those of (1)=(2) and (1)=(3) in Theorem
3.2. If (3) is valid, then we can construct a countable star-finite
partition of unity &= {p,: >3 p,=1} such that Clsx(0(p,)) % p for
each #, by the similar arguments done in the proof of the
implication (3)=(1) of Theorem 3. 2, and it follows that X is real
compact by virtue of Theorem 2.5.

We now characterize some topological properties of a space
X by the properties of the product of X with some compact space.
A space X is said to be countably paracompact if every
countable open covering of X has a locally finite open refinement.
F. Ishikawa [16] proved that X is countably paracompact if and
only if for every countable descending chain of closed subsets
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{F,} of X with empty intersection, there is a countable descending
chain {U,} of open subsets of X whose closure have empty inter-
section such that F, U, for each .

Theorem 3.9. Let M be any compact metrizable space con-
taining infinitely many points. Then X is countably paracompact if
and only if G and XXC are separated by open subsets of XxM
whenever G and X X C are disjoint closed subsets of X x M.

Proof. Assume that X is countably paracompact. Let {W,}
be a countable family of open neighborhoods of CC M such that
Neoy W,=C and Cl, (W, ) W,., for each n, and let G be a
closed subset of XxM such that GN(XxC)=0@. Put F,=
Pry[(XxCly(W)NG], then F, is a closed subset of X, for each
n, because Pry is a closed mapping. (Pry denotes the projection
of XxM onto X.) Put G,=Gn({x} xM), then there is a W, such
that (XX Cly(W,))NG,=0, for each x€X. It follows that {F,}
is a countable descending chain of closed subset of X with empty
intersection. (We may assume that F,==0 for each ».) By virtue of
Ishikawa’s characterization, there is a descending chain {U,} of open
subsets of X such that F,C U, and N\7,Cly(U,)=0. Put
V,=\UIX—-Cix(U)] X W,.,, then V, is an open subset of XXM
containing XX C. On the other hand, it is easy to see that
Clyxu(V)NG=0, and therefore V,=(XXM)—Cly, (V) is an open
subset of XXM containing G such that V,nV,=@. Thus, the
necessity of the condition is proved. Conversely, let {F,} be a
descending chain of closed subsets of X with empty intersection.
Let p be a point of M and let {W,} be a countable family of
open neighborhoods of p such that N\, W,=p and Cl/ (W, ) W,_,
for each n. Put G=\J;.. F,x(M—W,), then G is a closed subset
of XxM such that GN(Xx {p})=0. Let V,, V, be open subsets
of XxM such that V, DG, V,D(XxC) andV,nV,=¢. Put U,=
X—Pry[[Xx(M—W)INn[(XxM)—V]], then {U,} is a descend-
ing chain of open subsets of X, and U, DF, for each n. Let us
put further H,=X—Pry[[Xx(M—Cl, (W, ]nV,], then we have
H,>CI (U, for each » and N\7.. H,=0. Consequently, we see
that {U,} is a descending chain of open subsets of X such that
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U,DF, for each n and N\;., Cix(U,)=0. It follows that X is
countably paracompact. The proof is completed.

Theorem 3.10.*° Let M be any compact metrizable space con-
taining infinitely many points. Then, X is countably compact if and
only if the projection Pry of XXM onto M is a closed mapping.
(In other words, X is countably compact if and only any two disjoint
closed subsets X< C and F of XXM are separated by open sets of
the form Xx U and Xx V.)

Proof. Suppose that X is not countably compact, then there
is a countable covering {U,} of X such that \/,<,U, DX for
each n. Let p be a point of M and let {W,} be a countable
family of open' neighborhoods of p such that /N\7., W,=p and
Cly (WY W,_, for each n. Put F=\J;: [X—\U,e< U] x[M—W,],
then F is a closed subset of XxM such that (XX {p})NF=0.
Evidently p € Cly(Pry[F]) and it follows that Pr,, is not closed.
Conversely, if the projection Pr,, is not closed, then there is a
closed subset F' of XXM such that Pr,(F) is not closed. Let p
be a point of Cly(Pry(F)) —Pry(F), and let {W,} be a countable
family of open neighborhoods of p such that N3, C/y,(W,)=p.
Put U,=X—Pry[(XxClyy(W)NF7], then U, is an open subset of
X, since Pry is a closed mapping. On the other hand, it is easy
to see that {U,} is a covering of X. Obviously, (XX Cl,(W,)N
F==¢ for each n, and therefore no finite subfamily of {U,} can
cover X. It follows that X is not countably compact. The proof
is completed.

Theorem 3.11. Let Z be any compact space containing in-
Sfinitely many points. Then, X is pseudo-compact if and only if
Pr [ Z(F)] is closed for each FeC(XXZ), where Z(F) denotes the
zero-set of F. (Prz denotes the projection of XX Z onto Z.) In other
words, X is pseudo-compact if and only if Z(F) and a closed subset
XX C can be separated by open subsets of the form Xx U and XXV,
whenever they are disjoint. '

*) A slightly stronger result than this is valid. Cf. [10].
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Proof. In [28], the author proved that the following con-
ditions on the product Xx Y of pseudo-compact spaces (containing
infinitely many points) are equivalent.

(1) Both X and Y are pseudo-compact and Pryx[Z(F)] is a closed
subset of X for each FeC(XXY), '

(2) Both X and Y are pseudo-compact and Pry[Z(F)] is a closed
subset of Y for each FeC(XxY),

(3) BXXBY=BXXY).

(4) XxY is pseudo-compact.

(The equivalence of (3) and (4) is due to Henriksen and Isbell
[12] and Glicksberg [10].) The necessity of the condition follows
immediately from this facts: Since Z is compact, Pry is a closed
mapping and hence X x Z is pseudo-compact. Therefore Pr,[Z(F)]
is a clased subset of Z for each Fe(C(XxZ). To prove the
sufficiency of the condition, let us note that if Z is a compact
space containing infinitely many points, then there is a continuous
function f€C(Z) whose zero-set is not open (C.f. [28].) Suppose
that X is not pseudo-compact and let #(x) be an unbounded con-
tinuous function on X. Define a continuous function FeC(XX Z)
by letting F(x, p)=|h(x)|+|f(p)| —1, where f(p) is a continuous
function on Z whose zero-set is not open. Then, Pr [ Z(f)] is
not closed as may easily be seen.

Theorem 3.12. X is compact if and only if the projection Pr,
of XXZ onto Z is a closed mapping for any compact space E.

We omit the proof, which is easy.

In his paper [5], C. H. Dowker proved that the product of a
normal, countably paracompact space and a compact metrizable
space is normal (and countably paracompact). On the other hand,
Theorem 3.9 shows that if the product of a space X with some
compact metrizable space is normal, then X is (normal and) count-
ably paracompact. Therefore, we have the following characteriza-
tion of normal and countably paracompact spaces.

Theorem 3.13. Let M be any compact metrizable space con-
taining infinitely many points. Then, X is normal and countably
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paracompact if and only if XXM is normal.

§4. Comments.

By virtue of Theorem 3.1, we see that the normality of
Xx BX, where BX is any compactification of X, implies the para-
compactness of X. Therefore, Michael’s problem [19] can be
reduced to ask whether the product of a paracompact space with
any metrizable space is normal or not, as the following theorem
shows.

Theorem 4.1. The following conditions on a space X are
equivalent.
(A1) XXY is normal for any paracompact space Y.
(2) X XY is paracompact for any paracompact space Y.

Proof. Let BX and BY denote any compactification of X and
Y respectively. Assume that (1) is true, and consider the product
(XXY)X(BXXBY)=Xx(YXxBXxBY). Since YXBXxBY is
paracompact, it follows that (XX Y)x(BXxBY) is normal. On
the other hand, it is evident that BX X BY is a compactification
of XxY. Therefore, XX Y is paracompact by virtue of Theorem
3.1. The implication (2)=(1) is evident.

We now notice again that a paracompact space is characterized
by the property that
(A) XXZ is normal for any compact space Z.
While, a normal and countably paracompact space X is character-
ized (Theorem 3.13) by the property that
(B) XXM is normal for any compact metrizable space M.
In this point of view, it may be stated that the essential im-
portance of Michael’s problem lies in the following problem.

Problem 1. What is the space X satisfying the following
condition?

(C) XXY is normal for any paracompact space Y.
Now, let us call a space X satisfying condition (C) a =-space,
then we can see from Theorem 4.1 that every =-space is para-
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compact and that Xx Y is a =-space if and only if both X and Y
are m-space. Thus, we see that the property (C) is a productive
property. In [19], E. Michael proved that every o-compact space
is a m-space.

Another problem concerning Michael’s problem is as follows:

Problem 2. What is the space X satisfying the following con-
dition ?

(D) XXY is normal for any metrizable space Y.
An answer to the Problem 2 has also been given by E. Michael.
[19]. He proved that a paracompact, perfectly normal space X
satifies condition (D). Recently, Z. Frolik [8] has proved that a
paracompact, topologically complete (in the sense of E. Cech 3D
space satisfies condition (D).

Likewise, several problems may be considered. Among them,
the following seems to be interesting.

Problem 3. What is the space X satisfying the following
condition?

(E) XXY is normal for any second countable space Y.

Let E be any dense subspace of X and let BE be the Stone-
Cech compactification of E. Since BX is a compactification of E,
BX is the image of BE under a (unique) continuous mapping by
virtue of Theorem 1.1. It follows that Xx BX is the image of
XX BE under a closed continuous mapping. Since the closed con-
tinuous image of a normal space is normal, we can see that the
normality of X x BE implies the paracompactness of X. However,
it is not known to the author whether the normality of XX BE,
where BE is any compactification of E, implies the paracompactness
of X. “Does the mnormality of XX BE implies the normality of
XxBE?’ This is closely related to the following problem pre-
sented by K. Nagami (c. f. [23].)

Problem 4. Let f be a closed continuous mapping of X onto
Y such that f~'(y) is compact for each y €Y and that the image of
any proper closed subset of X is a proper closed subset of Y. Is



192 Hisahiro Tamano

it trus that X is normal whenever Y is normal?

It is obvious that the mapping of X xBE onto X x BE satisfies
the above condition.
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