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1. Introduction. Consider a Markov process x(¢) on a locally
compact separable metric space S with right continuous path func-
tions and, given an open set D, let 7, be the first passage time
for the complement of D. The main purpose of this paper is to
establish the following relation

Efen; a(r) € B) = | g8, dyn(y, ),

under some appropriate conditions where g2(x, -) is the Green
measure of the subprocess on D:

and n(y, E) is Lévy measure of this process :
n(y,E)At ~ P, (x(At) € E) @10).

This relation was first introduced by J. Elliott and W. Feller
[4] for the Cauchy process on the line (—oo, o) and was used for
the investigation of the symmetric stable processes [3], [8].

It is natural to conjecture that

1) The suffix x of E,, P., etc. refers to the starting point,
2) xn(x) is the characteristic function of set E,
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E(e*r; x(tp,—)€EF, x(m,) € E)
= | 2% dyn(y, B)

for FCD and p(E, D)>>0%, and this formula will be proved under
certain assumptions. We shall apply this formula to the one-sided
stable process x(#) to compute the joint distribution of x(r,—) and
x(7p) for D=[0, b) which was obtained by E. B. Dynkin [1] by a
different method.

2. Assumptions. Let M=(S, P,, x€S) be a Markov process
on a locally compact, separable, metric space S which satisfies the
following two assumptions.

(A.1) Its semi-group

T.f(x) = | fOIP(, %, dy)

maps C(S) into C(S)® and is strongly continuous in t=0.
(A.2) There exists a positive kernel® n(x, E), x€ S, E€ B(S)®
such that

(1) n(x, E)< +oo  if p(x, E) >0,
and
(i1) for f€C(S) and a bounded open set D

with p(D, S(f))>07,
T, f(x)/t is uniformly bounded in x€ D, t >0
and

lim T, £()/t = tim | PP, 2 dy)ft = | fonz, dy)

for every x€ D.
We shall call n(x, E) the Lévy measure of the process M.

3) p is the metric of the state space S.

4) S=S if S is compact and S=SU{} is the one-point compactification of S if
S is not compact. C(S) is the Banach space of all continuous functions on S which
vanish at co.

5) Hunt’s terminology, cf. [5].

6) B(S) is the topological Borel field of S.

7) S(f) is the support of f.
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Remark. We assume as we may by virtue of (A.1) that the
path functions are right continuous and have left limits and that,
if {o,} is an increasing sequence of Markov times, then

lim x(o,(w), w) = x( lim o, (w), w)
"4 400 n4 00
for almost all w for which o,(w) is bounded.

Example 1. Let x(f, w) be a temporally homogeneous Lévy
process on R” given by

E(expi(&, x,)) = exp {ty(6)} ,

where

_ 7 _ w1 i€, )
WO = ilm, H— @k, 2+ (et -6 51 Vot

This process induces a Markov process if we define the probability
law governing the paths starting at x€ R” by

P.(B) = P(x+x(-,w)€ B),

where B is a Borel subset of the space of path functions®. The
process thus obtained satisfies (A.1) and (A.2) and in this case

n(x, E) = o(E—x);
in fact, putting =,(E)=P(x(¢, w) € E), we have

T.f(x) = | a9y (dy)
from which (A.1) follows at once, and using the known fact
7 (E)/t > o(E) (¢} 0) for any continuity set E
for the measure o such that p(E, 0) >0, we have (A.2).

Example 2. Let x(¢, w) be a Markov process on S which
satisfies the condition (A.1) and (A.2). We shall denote its transi-
tion probability and Lévy measure by P'(¢, x, E) and #'(x, E) re-
spectively®.

8) Cf. [6].
9) If P'(¢, x, E)=o0(?), uniformly in x€ D, p(E, D)>0, (A.2) is trivially satisfied
and n'(x, E) =0,
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Let 6(f, w) be a one-dimensional Lévy process with increasing
paths given by

Efexp[—v0(1)]} = exp {—ty(n)}, v=0, 6(0)=0,
where
Y(y) = cy+ S:(l—e"“)n(du) ,
c=0, S:ﬁz—{n(du)< + oo,

Further we assume that these two processes x(¢, w) and (¢, w) are
independent. Then the process y(¢, w) defined by

¥, w) = x(0¢, w), w)
is a Markov process on S which satisfies (A.1) and (A.2) and the
Lévy measure n(x, E) is given by

n(x, E) = cn'(x, E)+ SMP‘(T, x, E)n(dr) .

For the proof, putting F,(dr)=P@@#)€dr) and T;f(x)=
EAfG) = | FOPYE, 5, d9), we define P(t, x, E) T.f(x) by

P, x, E) = SwP‘('r, x, E)F,(dv)

T.fw) = | AP x dy) = | T r(0Fi(an).
Then it is easy to show that
WT A1 <AL
Tt+s = Tth ’
T f—=fIl—=0, t]0,

and
Px(y(tl) € El y *°° ’y(tn) € En)

={ | P, & dx)Pt—t,, 5, dx) o Pyt S, d).
E, En
Hence y(#, w) is a Markov process on S which satisfies (A.1), (cf.
[6D.

10) |} || is the norm of C(S): ||f||=max|f(x)].
xe8
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Now (A.2) can be proved by using the method given by
K. Ito [7]. Since it was published in Japanese only, we shall
reproduce here some of his arguments. We have

[[a-en BYD — Byt = (1—e v}t

() = en + S:(l—e‘”)n(dv) (0.
Put
G(dr) = (1—e")Fdr)/t, t>0,
and
G(d7) = (1— e "Yn(dr)+cs,(dr) .

We shall prove that for any bounded and continuous function ¢(7),
0 £T< + oo,

[, #)Gdn) > | pinGan, ti0.

For this it is sufficient to show that considering G,(dr) and G(dr)
as measures on [0, + o] G,(dr) converges weakly to G(d7), since
G({+})=0. Take any sequence {¢,} tending to zero. Since the
total measure of G,, is bounded in #, there exists some subsequence
{s.} of {¢,} such that

G, — G* weakly for some measure G* on [0, +oo].

Define A,(t) by

(1) =N, =0,
=1—e™/1=e7), 0r< oo,
=1, T = 00

b

then #4,(7)€ C[0, + ] and hence
S”hA(T)GS,,(dT) - S ha(1)G*(dr) .
0 [o,+0]
On the otherhand
[ n(n)Gldr) = |~ (= ey (dm) s,

= vt | "= e i) = i@
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and hence we have

S[O,‘Feo] I(r)G*(dr) = S: h(r)G(dT) .

Letting A | O we have, since /(1) =0 (7== +o0) and &,(+ «0)=1,
G¥({+}) = G({+=}) = 0.
Now S[ w)hx('r)G*(d'T) = xG*({O})+S (1—e)G*(dr)/(1—e"

(0,00)

- cHS (1— ¢ )G(dr)/(1—e~7)

(0, )

= |, m@Gan

and putting H*(o)=S°°G*(dT)/(1—e-*) and H(O')=SMG(dfr)/(1—e‘T),
we have from this

G*({O})"FSNH*(T)e"“dv =c+ rH('r)e'“d-r .
Letting A 1 + oo we have
G*({0}) = ¢ = G({0})

S‘” H*()eMdr — S“’ H(r)edr .

This proves H*(r)=H(7) and hence

G* =G,
that is
' Gs, — G weakly on [0, +oo].

Now returning to (A.2), take € C(S) with (S(f), D) >0, then
@it = T r@F 0]t

= 7L Gy gam.

o l—e "

Since x,~process satisfies (A.2), T!f(x)/r is uniformly bounded in

x€D, >0 and hf{)x Tlf(x)/fr=Sf(y)n‘(x, dy), where n'(x, dy) is the

Lévy measure of x,-process.
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Defining () as
p(r) =T f(x)/A—e7), 07 +o0,
= [roms,an, =0,

@() is a bounded and continuous function on [0, + o) and hence

[ #(Gi(dr) = | p(r)Glam)
this means

T.f@/t | fomix, an+ | T f@m(an)

— Sf(y){cn‘(x, dy)+S:P‘(‘T, x, dy)"(d‘T)} .

This proves that y,~process satisfies (A.2) and the Lévy measure
is given by

n(x, E) = en'(x, E)+ S“P*(T, x, E)n(dv) .
3. The joint distribution of v, and x(7,). Let M=(S, P,, W)
be a Markov process on S which satisfies (A.1) and (A.2) and let

D be an open set in S such that D is compact. Define ,(w) for
any path function x(¢, w) by

mpw) = inf {¢; £ =0, x(¢, w) ¢ D},
= 4 oo if there is no such ¢.
The subprocess MP = (D, P2, x€ D) of M on D is a Markov

process on D obtained from M by killing the paths of M at time 7,'".
Its transition probability PP(¢, x, E) is given by

11) The precise definition is as follows: we take as the probability space W of
M the set of all functions w; [0, + ) — S —{w} which are right continuous and have
left limits and further if w(#)=w then for any s=¢, w(s)=w, where o is an extra
point (killing point) which we add to S as an isolated one. Define a mapping w— w7 »
from W into itself by
wi (D =w(®),  t<p(w),
=w, t=7p(w).
Then MP=(D, P,”, x€ D) is defined from the process M by P.’(B)=P.(w; w;DE B),
x€ D.
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Po(t, x, E) = P,(x(t, w) € E, vp,(w) >1t), x€D, EeB(S).
Also we put

g°(x, E) = S:e‘“Pl’(t, x, E)dt = E, {S;De‘“XE(x(t, w))dt}, XS0

Theorem 1. If p(D, E) >0, we have for every x € D and x>0,

(1) Ede™n; x(ro)€ B} = | g8(x, dy)n(, B,
and this formula holds also for A=0 if
(A.3) Erp) < +oo.

Proof. Take any fe€ C(S) such that it has the compact sup-
port and f=0 on some neighborhood of D.
Put

nG,f(x) = u,(x).
Then it follows immediately from the assumption (A.1) that u,(x)
converges to f(x) uniformly in x€ S. In particular,

lim #,(x) = 0, uniformly on D.

e

Now

nu,(x) = n? S:e‘”'T,f(x)dt
= et Tr @) tmat
By the assumption (A.2), we have that
T,.f(x)/t/n is uniformly bounded in x€D, t >0, n =1,2, -
and for fixed ¢
lim T,y f(0)/¢/n = | FOIn(x, d), xe D
Hence by Lebesgue convergence theorem

1}12 nu,(x) = S:e"’tdt Sf(y)n(x, day)

~ sz, ay), xeD,

12) If E.(7p) <+, €D, then gP(x, E) can be defined including A=0.
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and the above convergence is bounded on D.
Let @ be the generator of M, then if x€ D,

= nu,(x) .
Hence

lim Gu,(x) = | fIn(x, dp), x€D,
np oo
and ®Gu,(x) is bound on D uniformly in #. Hence it follows from
the Dynkin formula (cf. [6]).
Ex(e_}\fpun(x('TD))) - un(x)
- E, {STDe""(x—@)u,,(x(t))dt}

0

- —| gb d)O—Bu(y), xeD, 1>>0.

Letting # {1 + o, we have
Ede o fxmo))} = | g2, d)| r@m(s, dz)
= | r@(], b, dns, a2)),

since #,(x) converges uniformly to f(x) and f(x)=0 on D. This
proves the theorem.

We introduce the following assumption (A.4).
(A.4) For every point x,€ S, if fe C(S) vanishes on some neighbor-
hood of x, then

[ FOmca, )
is continuous at x=x,.

Remark. Every process of Example 1 satisfies this assumption.

Corollary 1. [If the process M satisfies (A.4) and every point
is no trap, then putting =Un(x, dy)=P,(x(Ty,) € dy) for a neighbor-
hood U, of x, we have

wUn(x, dy)

— n(x, dy), when U,| x,
Ex(TUn)
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in the semse that for any function f€ C(S) which vanishes on some
neighborhood of x, we have

i, anro)
lim
[ Ex('r Un)
Proof. We remark first that by Lemma 4 of Dynkin [2] there

exists a neighborhood U of x such that E,(v,)< 4o, y€ U. Then
from (1) we have for every U'C U and x’'C U

= S n(x, dy)f(y) .

Puxtry)€ E) = | ', dyn(y, B).
Hence
[, 7 anr) |, gbnx, d2) | niz, anry)
E,(Tv,) - Svng‘(’jn(x’ dz)

_ E(S {S n(,, dy)f(y)}dt)

B[ )

~ | dif),  Udix,

from the continuity of Sn(z, dy)f(y) at z=x and the right-con-

tinuity of the path functions.

4. The joint distribution of 7,, x(v,—), and x(7;). Define
x(Tp(w)—, w)y=x(tp—) by

#(rpla) =, ) = lim (7o) — L, w).

We want to obtain the joint distribution of =, x(vp,—) and x(vp,).
For this purpose we introduce the following assumption (A.D5).

Put Dnz{x; p(x, DC)>%}, then
pD,<D,Z--, D,CD,,, and limD,=D.

(A.5). There exists a finite Borel measure m on D such that the
Green measure gP(x, <) is absolutely continuous with respect to m :
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20, B) = | g, yym(dy) .

Further the operator
GE: CD) 3 £() — u@) = | 289, D)7 (yym(dy)

maps C(D)™ into C(D) and the range G}¥(C(D)) is dense in each C(D,),
n=1,2, -,

Theorem 2. [If the process M satisfies (A.5), then we have,
A >0, x€ D,

(2) Ede™; x(rp—) € F, 1(r,) € E}
— | gbx, ayniy, B)

- Spgf(x, n(y, EYm(dy) ,

for E, Fe B(S) such that p(E, D)_>0 and FCD, and the formula
holds also for =0 if (A.3) is satisfied.

Proof. It is enough to prove (2) for a closed set F<D such
that m(oF)=0, since both sides are Borel measures with respect
to the set FCD.

Now take such F and A >0. Put for x€ D

u(x) = E.(e*r; x(1p) € E, x(1p—)€EF)

v(x) = E.(e " ; x(1p) € E, x(Tp,—)€D,—F)

v(x) = E (e *™; x(1p)€E, 2(r,—)ED—F),
and

w(x) = E(e*™r; 2(mp) € E).

Then it is obvious that »,<{v,<---and limv,=v on D. We have

n4 oo

also

w(x) = u(x)+ov(x) on D.
For this it is sufficient to show that

P.(x(mp—)€3D, x(rp)€E) = 0.

13) C(D)={f; f is bounded and continuous on D}.
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Put E,=D—-D,,
o, (w) =inf {t =0, x,€ E,}
= + oo, if there is no such ¢,
and
o,(w) = min (Tp(w), g, W)) .
Then o,(w) is an increasing sequence of Markov times and it
is easy to see that if x(r,(w)—, w)€ 9D, then
o (W) = og,(w) < 7p(w)
for large » and x(lim o,(w), w)=lim x(o,(w), w)€ 2D. This implies

that lim o,(w)=7p(w) and x(rp(w), w) ¢ E. Hence

P (x(rp—)€OD, x(p)€EE) = 0.

We shall now prove that u(x) is A-excessive with respect to
MP-process, that is'®

e MEP(u(x(1))) < u(x)
and
e MER(u(x(t)) tu(x), t10,

at every point x€ D', For, using Markov property,

u(x) — e MED(u(x(1))) = u(x)—e ME (u(x(8)) ; t < 7p)
= E (e *p; x(tp—)€ F, x(mp) € E)
— e MEAE (e M2 ; x(1p—) € F, x(7p) € E), t < 7p)
= E.(e*>; x(vp—)€ Fx(vp) € E)
—E (e M@ x((t+mp(wi))—) € F, x(t+7pwi)) € E, ' t < )
= Ee; x(rp—)€EF, 2(mp) € E)
—E (e*r; x(rp—)EF, 2(1p) € E, t < 7p)
= E(e?; x(p—)EF, x(1p) EE, t >p),
and this decreases to zero with ¢#| 0 by the right continuity of
path. functions.

14) E,P( ) is the expectation with respect to MP-process, thus E.”(u(x(¢)))=
E.(u(x(t)); t<7p), cf. foot note 11).

15) Cf. [5].

16) w; is defined by wf(s)=w(t+s), cf. [6].
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Let G (GCD) be an open neighborhood of F and o be the
first passage time for G:
ogw) = inf {{ =0; x(t, w) e G},
= + oo, if there is not such ¢.
Then .
u(x) = E(e*»; x(rp—)€ F, x(7p)€ E)
= E,(e"; x(rp—)€EF, x(mp) € E, 7p >>0)
+ E(e_)\‘r” N x(TD_) € F’ x(TD)G E’ ‘TD< O-G) ’
and the second term is zero since if o _>7, x(7p—) ¢ F.
u(x) = E(e™r; x(tp—)€F, x(1p) € E, 0c<p)
= B¢t W)yt iyt )—)EF,
x(oc+Tpws )€ E, 06 Tp)
= E (e x(a-G)(e_M”; 2(rp—)EF, 2x(mp)EE); 06<1p)
= E‘zD(e_MTG u(xaq)) ’
by strong Markov property and hence from a theorem of Hunt
[5, Th 6.6.] there exists a sequence of functions {f,} (f,=0)
each vanishing outside G such that sc ZP2(x, ») f(»)m(dy) increase
to u(x) everywhere on D as n 1 + . Take @,€ C(D) such that
Y(x) = Gip(x) =1, x€G,

(such a function exists by virtue of (A.5)). Then

[ A mids) < | v)Aman < | u@ o xymdn) < + oo,

and hence there exists a bounded measure x on G such that some
subsequence of {f,(y)m(dy)} converges to w. Then for @€ C(D)
we have

[, ump@mdz

= lim | {]_g2(x, 5)£.(5) miay)| p(xym(az)

n4 +o0 Jp

= tim {_{] 28 »p(xym(dn)} £,5) miay)

n4 oo
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= {{ 2o 5 p(xymid)|uidy)

= | o ][ g0, ) an)|mid) .

Hence
ux) = | gt @y, aax (ndx),

and since each function of both sides is A-excessive with respect
to MP-process the above equality holds for every x€ D. From the
assumption (A.5) we can easily see that the measure g is uniquely
determined by u(x) and since G is an arbitrary neighborhood of
F, it follows that the support of x is contained in F':

ux) = | g00x, ) udy).

Now a similar argument applies to v,(y) and we can prove
that for each » there exists a measure v, such that

ve) = | P 9)vdy) .

n—

It is easy to see that

v, < v, < ............
and hence
o) = limo,() = | 28z, 3)v(a) ™,
np oo D-F
where

v=limv,.

N4 400

Now using (1) we have
w(x) = u(x)+ox) = | gox, (v, Eym(dy)
= [ e uan+| b 5@y .

Noting the assumption m(oF)=0, we have

17) F is the interior of F.
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ux) = | 200, )n(y, Eym(dy)

o) = | ghx, nly, Bym(dy),

since the measure of a potential is uniquely determined by virtue
of the assumption (A.D5).
This proves our theorem.

Corollary 2. If the process M satisfies besides (A.3), (A.5)
the following condition (A.6)",

(A.6) P (x(mp)€2D) =0, -
then we have for E€ B(S), p(E, D) >0,

(3) P,<x<vn>eE/x<wn—>=y>=ﬁ%, yeD.

Proof. Put U,= {x; p(x, D)>7ll—} , then U,1S—D and

P (x(rp—)€F, x(mp)e U,) = SFg“o’(x, ay)yn(y, U,) .
Letting # 1 + oo, we have, noting (A.6)

P (x(rp—)E F) = SF 22(x, dy)n(y, S— D)
and

3. E) yy 5-D)g
Loty sy S=D)ak(x, )

= [ n(y, B)gbx, dy)
= P, (x(rp—)€EF, x(mp)€EE).

Corollary 3. Under the same assumptions as in Cor. 2, v, and
x(rp) are independent under the condition that x(r,—) be given.

Proof. By (3)

PAx(rp) € Efx(rp=) = 3) = ML yeD.

18) This condition is satisfied, e.g. in the case that M is the symmetric stable
process on R" with exponent 0<C&<(2 and D is a sphere in R"
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Similarly, we can prove

Efen/x(mp=) =) = B8 yep,

zh(x, »)’
and also
E e ; x(p) € E/x(mp—) = ¥)
n(y, E) gl(x, y)
= 2 , yeD.
n(y, S—D) gi(x, »)
Hence

E (e ; x(mp)€ E/x(Tp—) = )
= E[e?/x(1p—) = y) P(x(mp) € E[x(rp—) =)  y€D.
Remark. Cor. 3 may be considered as the continuous analogue
of the well known fact for the Markov process with discrete states

and right continuous paths that , and x(+,) are independent where
7, is the holding time at a state a.

5. Application. Here we shall give an application of Theo-
rem 2.

Example 3. Consider a one-sided stable process given by
E(e " ®) = exp {—tv*}, 0<a<ll, x0)=0.

This process is a special case of Example 1 and a Markov
process on (—oo, o) is induced from it. Its transition probability
P(t, x, dt) is p(t, E—x)dE, where

[Ceeat, HdE = exp {177} ,
and
pt, 8 =0, if £<0.
Now
g = | e, Bar = [r@g—1, E>0.
Since

o _ (T gy @ du
v SO( e )F(l—a)u‘+“”

the Lévy measure is given by
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n(x, dy) = [a/I"A—a)J(y—x)"*"Pdy, y>=x,

= 0 , y<x.
Let D=(—1, ), 6_>0, then
Zo(x, dy) = (L(@)(y—x)*dy, —1<xy<b
= 0 , otherwise .

In this case, taking m(dy)=dy, (A.3), (A.5) and (A.6) are satis-
fied and so we have for 0< §<b<n,

Py(x(tp—) € d§, x(7p)€ d7)
= g&(0, d&)n(n—&)dn ,
= (a sin wa|m)E*(n—E)" O+ PdEdn .

Now put

»w) = b—x(rp(w)—, w),
y(w) = x(mpw), w)—0b,

then the joint distribution of y,, y, is given by

P(y, € du, y,€ dv) = p,(u, v)dudv
0<u<lb, v>0,

where

[1]

L21
£31]
[4]
[5]
L6]
L71

[8]

Do(w, v) = (asin wa/7)(b— ) (u+v) .

This formula was obtained by E. B. Dynkin [1].
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