A. Skorohod's stochastic integral equation for a reflecting barrier diffusion

By

H. P. MCKEAN, JR.¹

(Communicated by Professor K. Ito, July 30, 1963)

1. Introduction. Given a standard Brownian sample path b with b(0)=0, let [x, t] be a solution of

1a)
$$\mathfrak{x}(t) = a + \int_0^t \sqrt{c_2[\mathfrak{x}(s)]} db + \int_0^t c_1[\mathfrak{x}(s)] ds + \mathfrak{t}(t)$$

1b)
$$\mathfrak{x}(0) = a \ge 0^2$$

1b)
$$g(0) = a \ge 0$$

subject to the conditions: a) for each $t \ge 0$, g(t) and t(t) are Borel functions of the path $b(s): s \le t$, b) g(t) is continuous and non-negative, and c) t(t) is continuous, non-negative, increasing, flat outside $\mathfrak{B}=(t:g=0)$, and t(0)=0. A. SKOROHOD [6] proved that if $c_2 \ge 0$ and if

2)
$$|c_1(b) - c_1(a)| + |\sqrt{c_2(b)} - \sqrt{c_2(a)}|$$

$$\leq \text{constant} \times (b-a) \qquad (0 \leq a < b),$$

then 1) has a unique solution [x, t] for all but a negligeable class of Brownian paths, x being identical in law to the diffusion with generator $\Im u = (c_2/2)u'' + c_1u'$ subject to the reflecting barrier condition $u^+(0) = \lim_{\epsilon \neq 0} \varepsilon^{-1} [u(\varepsilon) - u(0)] = 0.$

SKOROHOD seems to have overlooked it, but t is the local time³ of g:

$$\mathfrak{t}(s) = c_2(0) \lim_{\varepsilon \neq 0} (2\varepsilon^{-1}) \text{ measure } (s : \mathfrak{x}(s) \leq \varepsilon, \ s \leq t) ,$$

 $^{^{\}rm 1}$ The support of the National Science Foundation, NSF G-19684, is gratefully acknowledged.

² $\int f db$ is an Itô stochastic integral.

³ See K. Itô and H. P. McKean, Jr. [4] for information about local times.

and this identification (together with time substitutions and scale changes) can be used to make a simple proof that the reflecting barrier motion g associated with G and its local time t solve 1) for a suitable Brownian motion b under the sole condition that c_1 and $0 < c_2$ be piecewise continuous. GIRSANOV [2] proved that $g = a + \int_0^t |g(s)|^{\gamma} db$ has several solutions if $0 < \gamma < 1/2$, so some extra condition such as 2) is needed to ensure that 1) has just one solution.

2. Reflecting BROWNian Motion. P. LÉVY [5] proved that if b is a standard Brownian motion starting at $b(0) = a \ge 0$ and if $t^+(t) = -\min_{s \le t} b(s) \land 0^4$, then $b^+ = b + t^+$ is a reflecting Brownian motion starting at $b^+(0) = a$ and t^+ is its local time:

$$t^+(t) = \lim_{s \downarrow 0} (2\varepsilon)^{-1}$$
 measure $(s: b^+(s) \leq \varepsilon, s \leq t)$.

 $[x=b^+, t=t^+]$ solves SKOROHOD's problem 1) in this special case $(c_1=0, c_2=1)$, and to see that no other solution can exist the best method is to follow SKOROHOD who observed that if two solutions x=b+t and v=b+r existed, then x-v=t-r could not become $>0 \ (<0)$ because that would make $x>0 \ (v>0)$, t(r) would be flat, and t-r=x-v would be falling (rising).

3. A Time Substitution. Given piecewise continuous $c_2 > 0$, if $f(t) = \int_0^t ds/c_2(b^+)$, then $x = b^+(f^{-1})^5$ is identical in law to the reflecting barrier motion associated with $\mathfrak{Gu} = (c_2/2)u''$, $t = t^+(f^{-1})$ is its local time:

$$c_{2}(0) \lim_{\varepsilon \downarrow 0} (2\varepsilon)^{-1} \text{ measure } (s: \mathfrak{x}(s) < \varepsilon, s \le t)$$

$$= c_{2}(0) \lim_{\varepsilon \downarrow 0} (2\varepsilon)^{-1} \int_{0}^{t} e_{0\varepsilon}(\mathfrak{x}) ds^{-6}$$

$$= c_{2}(0) \lim_{\varepsilon \downarrow 0} (2\varepsilon)^{-1} \int_{0}^{\mathfrak{f}^{-1}} e_{0\varepsilon}(b^{+}) ds / c_{2}(b^{+})$$

$$= \mathfrak{t}^{+}(\mathfrak{f}^{-1}),$$

⁴ $a \wedge b$ means the smaller of a and b.

⁵ f^{-1} is the inverse function of f; for information about time substitutions, see B. Volkonskii [7].

⁶ e_{ab} is the indicator function of [a, b].

and $\mathfrak{x} = a + \int_0^t \sqrt{c_2(\mathfrak{x})} db^{\bullet} + \mathfrak{t}$ with a new standard Brownian motion b^{\bullet} as is clear from $\mathfrak{x} = b^+(\mathfrak{f}^{-1}) = b(\mathfrak{f}^{-1}) + \mathfrak{t}^+(\mathfrak{f}^{-1})$ and the following indications.

Given d>0, change c_2 so as to have $c_2(a) \equiv c_2(d)$ $(a \ge d)$. DOOB's optional sampling recipie [1:373] tells us that under the time substitution $t \to f^{-1}$, the martingales b and $b^2 - t$ go over into new martingales. Also, $f^{-1}(t_1) = m$ is a Brownian stopping time, and introducing the field B_{m^+} of Brownian events B such that $B \cap (m \le t)$ depends upon $b(s): s \le t$ alone for each $t \ge 0$, it develops that

$$E(|b(f^{-1}(t_2)) - b(f^{-1}(t_1))|^2 | \boldsymbol{B}_{\mathfrak{m}^+})$$

= $E(f^{-1}(t_2) - f^{-1}(t_1) | \boldsymbol{B}_{\mathfrak{m}^+})$
= $E\left(\int_{t_1}^{t_2} c_2(\mathfrak{x}) ds | \boldsymbol{B}_{\mathfrak{m}^+}\right).$

DOOB [1:449] now tells us that $b(f^{-1}) = a + \int_0^t \sqrt{c_2(x)} db^{\bullet}$ with a new standard Brownian motion b^{\bullet} , and it is obvious that the provisional modification of c_2 is not needed for the correctness of the final formula.

4. A Scale Change. Bring in a new scale l = l(a) based on c_2 and another piecewise continuous function c_1 :

$$a = \int_0^t db \exp\left(-2\int_0^b c_1/c_2\right),$$

let x be the motion described above but based on b and $c_3 = c_2(l) \exp\left(-4\int_0^l c_1/c_2\right)$ instead of on b and c_2 $(dx = \sqrt{c_3}db + dt)$, and let v be the scaled motion v = l(x). K. ITÔ's rule of stochastic differentiation [3:59] tells us that

4a)
$$d\mathfrak{v} = l'(\mathfrak{x})d\mathfrak{x} + (1/2)l''(\mathfrak{x})(d\mathfrak{x})^2,$$

	db	dt
db	dt	0
dt	0	0

and computing
$$(d\mathfrak{x})^2$$
 with the aid of the indicated multiplication table gives

4b)
$$d\mathfrak{v} = \sqrt{c_2(\mathfrak{v})} db + c_1(\mathfrak{v}) dt + d\mathfrak{t}$$
.

t is the local time of v, and it follows from v = l(x)

that \mathfrak{b} is identical in law to the reflecting barrier motion associated with $\mathfrak{Gu} = (c_2/2)u'' + c_1u'$. It can happen that $l(\infty) < \infty$; in this case \mathfrak{b} explodes to ∞ at a time $t = \mathfrak{e} < \infty$, and 4b) holds just up to time \mathfrak{e} .

REFERENCES

- [1] Doob, J.: Stochastic processes, J. Wiley and Sons, New York, 1953.
- [2] Girsanov, I.: An example of the non-uniqueness of the solution of K. Itô's stochastic integral equation, Teor. Veroyatnost. i ee Primenen 7, 336-342 (1962).
- [3] Itô, K.: On a formula concerning stochastic differentials, Nagoya Math. J. 3, 55-63 (1951).
- [4] Itô, K. and H. P. McKean, Jr.: Brownian motion on a half-line, Ill. J. Math. 1, 181-231 (1963).
- [5] Lévy, P.: Processus stochastiques et mouvement brownien, Gauthier-Villars. Paris, 1948.
- [6] Skorohod, A.: Stochastic equations for diffusion processes in a bounded region
 (1) and (2), Teor. Teroyatnost. i ee Primenen. 6, 264-274 (1961); 7, 3-23 (1962).
- [7] Volkonskii, B.: Random substitutions of time in strong Markov processes, Teor. Veroyatnost. i ee Primenen. 3, 332-350 (1958).

H. P. McKean, Jr.