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In tro d uctio n . We denote by RP , th e  compactification of an open
disc R  and b y  A r the harmonic boundary o f R , here the com-
pactification is  the one studied in the former paper [5 ]. In the
first chapter, we shall study the relation between _IF and the
Martin minimal boundary o f R  in  connection with the harmonic
measure on R .  In the second chapter, we shall treat the multiply
connected domain, and a certain theorem with respect to the cluster
sets will be studied from the view point of the compactification.

1. M artin  m in im al boundary A, a n d  F .  Let R  be an open
Riemann surface which admits the non - constant bounded harmonic
functions, and let be the Martin minimal boundary o f R .  At
first, we shall treat some lemmas with respect to A , to make use
of them later o n . These lemmas were given by C. Costantinescu
and A. Cornea [1] in general case.

Lemma 1. Let D be a non-compact subregion o f R  and A be a
subset o f A , such as A= {s E A i ; ID K s> 0 } , then it holds that

1 D K ,(b )d X (S )+Ç  d c o  f i)
ar)

fo r  any  point p  in D.

P ro o f .  According to [1], u = / D it H P ,  for any u E H P .  From
this, we know that K s (p )= T p co s (p )  (p E  D ) for each s E A .  In
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the following, we show that A is the X-measurable set and Lacs (p)
(pED ) i s  the X-measurable function on Ai . A t  first, we prove
that I D Ifs (p ) is m easurable. Let s„( E Ai )  converge to s E A „ then

Ks„(P)= IDKs„(P)+116s.(P)
Ks (p)—  lirn Ks„(p) iim iDif s n (p ) + lirn( P )n-,co
lim H ( P )  =  urn f s „ ( f i ) d a ) p (15) Ks(fi)dco p (fi)

D
=  1 1.6' (P)

B

consequently, /Xs (P)+ HE'(p)—  K  (P )>  lirn /DK.s,g (P)+HEs(p), that
is, /DK.,(P) lim iD ifs .(P ). This shows that /„,K$ (P ) is  the upper
semi-continuous function on From this, we can see that A  is
the F a - s e t .  Now, for any point pED

1 = K s (p)dX(s) Ks(p)dX(s)+ Ks(p)dX(s)
A Ai- A

= IDK.(P)dX(s)-1- IPISsdX(s),
A Ai

L i n s (P)dX(S) = 5 dX(S)
5
 K,(15)dCil p (fi)

Ld(t) p (fi) 1  K s (fi)dX(S) = LC16) p (fi) .

Thus, this lemma is proved.

Corollary 1. DE SOH R  if and only i f  A= {s  E /DiCs>0} is
o f X-measure zero.

Definition 1. Let s be any point of A, and G  be any domain
o f R such as I G K s > 0 .  Then we define the set g in Rt. as follows :
.1= n 0  for a ll G  ( I G Ifs > 0 ),  here i s  the closure of G  in R .  .1
is  the connected and compact set [5].

Lemma 2. Let WA be the harmonic measure on R such as

(i)A ( p )
A

Ks (p)dX(s),

here A  is  a Borel-set on A „  and let D ' be the open subset o f  R
such a s  D'—{p E R; 0A(P)>a,  0 < a < 1 }. T h e n  P(a)= is E A,;

hy, Ks >01 is identical with A  except for a  set o f X-measure zero.

and
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From this, it holds that (DA attains 1 or zero on each e x c e p t  for
a set of X-measure zero.

P ro o f. From lemma 1, we know that r (a ) is non-empty and
is the Fe -set. That r (a ) is the Fe -set is proved by the way in
[1 ] .  D : be a component o f D  and p, be a fixed point in D .  L e t

1', (n) Is E  ; ( P0) — 1 1. I t  is  c lear that rk(a)(= {s E A ;

/D IKs >0}) is identical with V  r k (n). The r k (n ) is closed, because

s —..Id.: K s (p o )  is upper semi-continuous on A (c.f. lemma 1). Thus,
we know that A k =  A n r  h (n ) is the Borel-set for each component
D .  N o w , we restrict (0,4 to  DZ, then it holds that

( OA(P) = Krs(P )dX (S ) = K s (P )d X (S )+ Ç K s (P )d X (S )
AJ A k A - Ak

and if A k  is the X.-null set, then for any point p  E

(DA(P)= K s (P)dX (s)= 11 (P)dX (s) = dX (s) „K s(fi) do) p(fi)
A A A

clo)p (fi) K ,(P )dX (s)=  c z e l ( o p ( f i ) —  l
a  (1— coA(P)) •aDT A

r a
k

From this, it holds that (4)A  = a  in Du,., that is, 0)A —a on R .  This
is absurd, that is, A k  is  of positive X-measure. Now, we can see
easily that V  A k  is identical with A except for a set of X-measure
zero. Indeed, i f  A — V  A k  is  o f positive X-measure, then the
harmonic measure WA_u Ah i s  of positive but less than coA ,  con-
sequently is holds that

D --- { PE R ; (» A _u Ak (P )>  ce} D ,

here D= fp E R ; c»A (P)>a} . Thus, there exists the subset B  of
A— V A k  with positive X-measure such that Lb Ks > 0  for any s E B,
that is, ID  Ks > 0  for any s E B .  This is absurd, that is, A = V  A h
except for a set of X.-measure zero.

Lemma 3. Let u be a  bounded harmonic function on R . Then
u  is  constant on each .1 respectively except for a set of %-measure
zero.
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P ro o f . Without loss of generality, we suppose that u  i s  the
positive harmonic function. By the theorem with respect to a non-
negative measurable function, u(p*) (p* E AF )  is  the limit function
of the non-decreasing sequence o f  simple functions {un }. This
convergence is uniform on A F  since u is bounded. Let ii,g(p )(p  E R)
be such as

a„(P) =  ,d u .(P * )ciP(P * , p)

for each n [ 4 ] .  It is clear that a ,  is  the linear combination of a
finite number o f harmonic measures and a„ converges to u uni-
formly on B .  From lemma 2, we conclude that this lemma holds.

Corollary 2. L em m a 3  holds f o r th e  p o sitiv e  quasi-bounded
harm onic functions. Indeed, a positive quasi-bounded harmonic
function is the limit function of the non-decreasing sequence con-
sisting of positive bounded harmonic functions.

Lemma 4. A  positiv e singular harm onic function vanishes on
each S except f o r a se t  o f  %-measure zero.

P ro o f . Let u be a positive singular harmonic function on R
and D be such as D= {p  E R;  u (p )< a } .  It is clear that D  SOHB,
consequently the set A = {s E /D K s>0}  is of positive X-measure
by lemma 1. Then it holds that for any p E D

1 = 1„K.,(p)dX ( ) D (P ) ( )1-17b(p)dX(s)=-
D 0 +

p )dX (s )+  
'a.r) '

do) h (fi).
A Al A 

W e notice that (a —  u)/a i s  the harmonic measure o f th e  ideal
boundary with respect to D .  From this, it holds that for any p G D

(a— u)/ce = 1— 1-1 dX(s) = I,K ,(p)dX(s) .
A

If— A  is  of positive X-measure, then

A ./. s (p )dX (s)<  A .Ks (p)dX (5)<  1

t h a t  is, L . H . M .  {(ce — u)I <  A K ,  dX (s), h e r e  {(a—u)la}*

—(a—u)Ice on D  and = 0  o n  R— D .  On the other hand, L.H.M.
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{(a — u)/a}* = const. 1. This is  absurd, that i s ,  A ,-  A  is  o f X-
measure zero.

Theorem 1. L e t u  be a positive superhamonic function on R
such as G.H.M . u=0, then u  vanishes on each g except for a set of
X -measure zero.

P ro o f. Let Gn b e  an open subset o f R  such a s  G — tpG R ;
1)u (p )> then u =1 1 n  on aG  except for a set of capacity zeron f '

( i n  a  sense o f lo c a l)  [ 2 ] .  L e t  D  be such a  component of
R— G„\ .1 acn  that u  is non-constant on D .  It is sure from G.H.M.
u =0 that there is such a  component D .  Then  H y is  the non-
constant harmonic measure on D, here nu is the boundary function
of the Dirichlet problem with respect to D .  From this, we know
that there exists at least one component of R — G„\I aG,, that does
not belong to SOH B . Consequently A n = {s E A l ;  I R_G„uG n K s > 0 }
is  of X-measure positive by lemma 1. Moreover it holds that

A, except for a set of X-measure zero . Otherwise, by lemma 1

R_Gn uaGn 1 = 1 - j H  G n U a G n (P )d X (S ) IR-Gflubc„Ks(P)dX(s)

<  K s (p)dX (s)<1

for any point p  G R— G„\J aG
From this, it holds that

n u >1 - 4 - G  bGn
 1 > L n K sd X (S ) >

against C.H.M. u= 0. Thus we know that A,= A n except for a set
o f X-measure z e ro . From this, we know that hill u =0 at each

point of here s E P\ A .  (q.e.d.)
In the following, we shall treat the harmonic boundary of the

unit open disc R .  It is known that Martin minimal boundary of
R  coincides with the circumference o f R .  Now, we shall study
the relation between A , and A F .  Let R ' be the open disc such as
R '={ 1w l<2}  and f  be the conformal map of R = liz i<1 1  into R '
such a s  w =f (z )— z , that is , the identity m ap . From the former
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paper [5 ] , it is concluded that the image My (p*) is located at some
point of the circumference o f R , here we identify R = {1w1<1}
with R = { z < 1 . }. Conversely, the following holds that

Proposition 1. Let w =e o  be any  point of aR= {lz1=1} , then
there ex ists som e point of A F whose image is w.

P ro o f . Let GR , (w;e") be the Green function on R ' such as eo
is the singular point. Then G  ( f  (z ) ; eo) is  the positive harmonic
function on R , consequently it is continuous on R F  and it attains
-i-- co at some point p* o f A F .  Clearly e 9 is  the image of the p*.
(q.e.d.)

From now on, w e  d e n o te  b y  (0) the subset o f A F  such as
A (0) — 1p* E L IF ; M 1(P* ) = e 1  . It is evident that (9 ) is  compact.

Proposition 2. Let s  any  poin t of aR  and us be the closure
of the radius os in  R . T h e n  i t  h o ld s  th at  osn(14— R ) .

Pro o f . The minimal function Ks is symmetric with respect to
the radius os. From this, we get the above conclusion.

Proposition 3. Let L  be a subset o f X -m easure positive on aR
and 7  be the subset o f  p such as 7 = { A M ; e  EL} , then

a ( z ; 7 )  =1  K s (z )dX (s),

here co(z ; 7) i s  the harm onic m easure o f  7. I f  L  i s  X -measure
zero, the 7  is  o f  harmonic measure zero.

P ro o f . We consider the case that L  is  compact. Let 2 ( z ;  L )
b e  the harmonic measure o f L  with respect to  R '— L , th at is,

12(z ; L )  vanishes o n  12'1 = 2  and = 1  on  L  except fo r a  se t o f
capacity zero. Let f2(z) be the restriction of f2(z ; L ) to R .  Then
f2," (z ) attains the boundary value 1  at each point of L  except for
a subset of capacity zero . From this, we know that f2(z) attains 1
at each  point of 7  except fo r a  set o f harmonic measure zero.
For, the set of the irregular points of L  is  of F o. and with respect
to the compact subset o f F ,  with zero capacity, its Evans function
restricted to R  is continuous on R .  Consequently we conclude
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that f2=1 on 7  except fo r  a  subset o f harmonic measure zero.
Now, we notice that 7 is compact. For, let p* be an accumulation
point of 7 and GR , (z ; M f (p*)) be the Green function on R = { z < 2 },
then we can see that C , the restriction of GI? ,  to  R , is unbounded
on L  since is  co n tin uo us on R .  Thus, it holds that M f (p*)E L
since L  is  compact. Consequently the harmonic measure co(z ; 7)
vanishes at every point of AF - 7  and attains 1 at each point of
7 except for a set of harmonic measure zero (c .f . P l. I t is  c lea r
that A (9) A F - 7  provided that e" E aR —  L by the definition of 7.
From  this, w e can see that co(z ; 7 )  attains zero a t  e o  as the

boundary value. This shows that co(z ; 7) Ç K s dX (s), therefore

co(z ; KrsdX (s) because o f lemma 2 and proposition 2. Next,
we treat the case that L  is  open in aR. Noticing that aR —  L is
closed, we can verify that co(z ; 7) coincides with \ K s d X (s ) . This. L
leads us to the result that the 7  is  of harmonic measure zero pro-
vided that L  i s  o f linear measure zero. Now, we treat the case
th a t L  is any m easurable (Lebesgue) subset in R .  T h e n  L  is
decomposed to a null-set and Fa -set. From this, we can see that
the proposition is  true.

Corollary 3. Let L  be a  subset o f X -m easure positive on aR,

(0(z) be the harmonic measure such as (0(z )=5 , K 3 c a(s )  and let A (L)

be such as A (L)---= {A (19); s = E  L}. Then A (L ) is  o f measurable
w ith  respect t o  th e  harm onic m easure dp(p* ; p ) and the set
0-0 = 1p* E  (L ) ; co( p*) = 0}  is  o f harmonic measure zero.

Corollary 4. Let y be a simultaneously open and closed subset
o f  A F and c0(z : y ) b e  th e  harm onic m easure o f  7. L e t (0(z ; 7)

=1  I f s dX (s) and A ( L )  b e  su c h  a s  A (L)= {p* G 7 ; mf (p*) EL}.

then the closure o f A (L ) in  irk  coincides w ith 7.

R em ark . Let L  be the image of 7  in  corollary 4, th at is,
L= {mf (p*); p* E then L L .  I t  is  possible that L- L  i s  of
positive m easure. I  thank to M . Nakai fo r  his kind advice on
this fact.
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Lemma 5. Let u  be a  bounded harmonic function on R, u(0)
be the radial lim it function def ined on aR and L  be an open arc on
R. T h en  it h o ld s  th at

sup u (0) = sup u(p*).
A (L )

h e re  L , is  the subset o f  aR on w hich u has not the radial limits
and A (L) is such as _I (L)—{z_1(0); e" E

P ro o f . We define the function et on A F  such that a(p*)=u(o)
provided that M1 (p*)=e 0  E aR—Lo . A ccording to corollary 3,
a(P * )  is the bounded measurable function on A F . Indeed, for any
k, 3 =  {p* G ri(P* )›k }  is  o f measurable since the image of A
is identical with lu (0 )>1 4  and the set { u(0)>k }  is  of measurable.
Now, let v (z ) be the harmonic function on R  defined by

v(z) = (p*)dp(p* ; z ),

then v(p*)=1-t(p *) except fo r  a  s e t o f harmonic measure zero.
Hence it holds that v (z )=u(p) on R , because the X-harmonic mea-
sure o f  L= te" E aR ; ce>u (0 )>O 1  is identical with the harmonic
measure of the inverse image 1.1 (0) ; e" E L I  of L by proposition 3,
consequently

v(z) = ,,, F a(p*)dp,(p* : p) = K s (z )u(s)dX (s) = u(z)

Now, Lo i s  of linear measure zero, consequently (L ) is contained
in the closure (in R t)  of (L—  LO. Thus, Lemma 5 holds.

Definition 2. Let e "  be any point of aR, K,— {z;lz— e'l<6}
be the neighborhood of e" and K , be KE n R . Then we define r(0)
as follows : r (e)— f \{ k ,n(R P— R )} , here k ,  is  the closure in Rt.

o f K , .  It is clear that r(e)=1=q) and r(9 i )r\F(0 2 )=¢) for any 0„ 0,
(0i   I   02 ). Let A (0)=F(0)r\ _ I F ,  then 3 (0 ) is identical w ith  A(9).
Indeed, let G R /(z ; e " )  b e  the Green function on R '=
Then a R i (z ) ,  the restriction of GR

, (z ; e")  to R , is continuous on
R P and attains +  0 0  on 3 ( 0 ) .  Let us consider the level curve of
OR/(z), then the im age of each points of am  are all identical
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with e ", while the image of any p* E M O )  is different from
e "  since a ,/  is finite at p .

Lemma 6. Let u be a bounded continuous subharm onic function
on R  and e' 9 be any point on R .  Then it holds that

lim u (z ) =  max u  = max u (z E R ).
z•-■eie A(0)

P ro o f. Without loss of generality, we suppose that u  is non-
negative on R .  Let k  be max u  and A x be such as A x =  1p* E

A(0)
U ( p*)<x , X >k ) , . Then it holds that

u (z) < ? (z; A ) -FM (1 -0 )(z ;  AO),

here (z ; A O  i s  the harmonic measure o f  A x a n d  M = sup u.
72

Because, u  is continuous on R t  and co(z ; A x )  attains 1  at each
point of A x , w hile 1 —0)(z ; AO attains 1 at each point of A F

except fo r a  se t o f harmonic measure zero. Now , A (0 ) is con-
tained in A x since max u =k (<X ) , consequently co(z ; A x )  attains 1

A(0)
a t  e a c h  p o in t o f z..\ (0). F ro m  th is , w e  c an  see  e a s ily  th a t
Hun co(z ; Ax ) = - 1  (c.f. lem m a 8).

z--e 0

Thus we know that lim u ( z ) ‹

consequently max u = max u.
r ( 0 ) (19)

This shows th a t  lim X.
z—e.e

max u. While firn u(z)— max u,
.109) P(B)

Lemma 7. Let u  be a bounded continuous subharmonic function
on R , u(0) be the radial limit function defined on aR
open arc on R .  Then it holds that

sup u(8) =  sup u (p * ),
L - 1 , 0P E A ( r )

here L ,  is  the subset on  aR such as L 0 = E aR ;
lim u(rei ) )}  and A (L )= {A (8 ); e" EL} .

P ro o f . We note
radial limit function
lem m a 5  and the

u = sup u (p * ) ,  here

that u= L.H.M. u  on A F .  Let u (0 ) be the
of L.H .M . u ,  then the following holds by
ab o v e  notice th at sup  a(0)= sup L.H.M.

A (L )Lo
1,0 = lez 9 Ea R; lim L.H.M. u (r eo) lim L.H.M.

and L  be an

lim u (re o )*
7,1
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u(re'')} . F ro m  th is , su p  u ( p * ) >  sup u (0), w hile according to
A (L ) 1:0

Theorem 1 u(9)= ( 0 )  except fo r  a  se t o f  linear m easure zero.
Thus, the following holds that

sup am sup ü (0) = sup L.H.M. u  = sup u (p* )
L-2-70 L- Lo u AU) Au)

s u p  ( 0 )  =  s u p  12(G) = sup u (B) sup u(0) sup u(p*) ,
LOUZn L - !OU TOU 1-011-1-011T/ L(1A C ! )

that is , sup u ( 0 ) = sup u(p*), here L i=  {8 E aR ; 2-1(û)=1 u(e)}.
L oA C T )

Remark. From lemma 7  w e can  get the Lindela's theorem :
Let u be a bounded continuous subharmonic function on R =  z l < 1 1
and u (0 )  be the radial limit function on 5 R .  Then it holds that

urn u (0 ) =  lim  u(z ),
0±00

here e1 0 0 is any g iven  point on R.
2. O n multiply -connected domains. N ow  w e shall treat the

case  th a t  th e  d o m ain  is  o f  multiply-connected. Let 2  b e  the
bounded domain in  z-plane. W e denote by an its boundary and
denote by f2 ; the compactification of s-2 constructed in  [5].

Lemma 8. L e t co be th e  harmonic measure o n  th e  bounded
domain C2, that is ,  (0 A  (1—  co) =  0 , and be a  boundary point of  f2,
which is regular with respect to the Dirichlet problem and (0= 1  on

Then o has th e  boundary value 1  at (c.f. definition 2
on A (0 )

P ro o f . First, w e notice that A “ - ) is non-empty provided that
is regular w ith respect to the Dirichlet problem. Now the func-

tion v (u) = z  —  e l  is  a  bounded continuous subharmonic function,
consequently v (z ) is continuous on DI and H (z )  ( = L.H.M. y ) coin-
cides with v (z )  o n  F  (the harmonic boundary of n ) .  From this,
w e know  that H ( z )  vanishes o n  (0  and attains a positive con-
stan t value on each ( " )  ( E  f1 ,    N ext, there  ex ists an
6-neighborhood V( 0 , 6 )  such  that c = 1 o n ( " )  provided that

E V( - 0 , 6). If otherwise, ( )  contains a zero-point of a) against
th a t (0=1 on V . W e  k n o w  th a t  k = min H  i s  positive, here
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7= {P * E co(p*)= . Thus, it holds that 0<k (1 --(0 (z ))<H (z ).
From this, we know that lim u (z )= 1 as z—> o .

Lemma 9. Let u  be a bounded harmonic function on 1- 2 and
be a  boundary point of s-2, which is regular with respect to  the
Dirichlet problem. Then the following holds that

lim u(z ) = max u  = max u.
.+4'0 r(o) Ac-o)

P roo f. Let k = max u and A, = E  A F ;  U(p*)<k +El for any
Ac4.0)

given 6 (> 0 ).  Then the harmonic measure (0(z ; AO attains 1 at
every point of A g - ,), because A , is open in AF  [ 4 ] .  Thus the
following holds that

u(z ) <  (k +6)(0 (z ; A ,)+M (1-0 )(z ; AO),

here M = sup u  on Q . From lemma 8, we conclude that lim u (z )<
k-F&, that is, fin]. u (z )< k  as z-->"0 . (q.e.d.)

Now, we study the behavior of the subharmonic functions in D.

Lemma 10. Let u be a bounded subharmonic function on 12 and
be a  boundary point of n, which is regular with respect to the

Dirichlet problem. Then it holds that

lim u(z ) = max IL.H.M. .=,4-0

Furthermore, this is true provided that u  is bounded from above.

P ro o f. Let i  b e  a  function defined on A F  such as ù ( p * )

= Jim  u(p) (p E 0 ) ,  According to [5 ], U (p*) is continuous on A F
P+P ,

and

L.H.M. u  = (p* )d ,a (p*  ; (p  E 11) .

From lemma 9, the following holds that

lim u (z) l i m  IL.H.M. = max IL.H.M. .
z÷ i ) aC4'0)

O n  th e  other hand, lim u(z )= inf {sup u  i n  V( 0 , 8)r■S-2} and
.+4.0

sup max {L.H.M. u} s in ce each  point of A (
-

o)  is  the inner
V(4-

0 , e) f AC;0 )

point of the closure (in RP o f V( o ,  & ) n n ,.  Thus it holds that
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urn u (z) max {L.H.M. u} ,Acro )

that is, lim u (z)— max {L.H.M. u} .
4(4'0

Remark. This lemma is equivalent to the following theorem
(c.f. [6 ] p. 15) : let D  be a bounded open set, 1' its boundary, E
a compact set of capacity zero and zo a point of E .  Suppose that
2'0 i s  a regular point for the Dirichlet problem . I f  u  is bounded
from above and subharmonic in  that part of D  contained in a
neighborhood U (z 0 )  o f zo , then it holds that

lim u (z) •"" lim u(z)) .

Indeed, we can see easily that ( )  is  of harmonic measure

zero (c.f. Prop. 3), consequently (z0 )  is contained in the closure
o f V  (0 .  From this fact and (*) in lemma 10 it holds ihat

Er -  0]

hm (hm u (z)) lim  ( lim  u (z)) max {L.H.M. u} = lim u(z) .
AN)

4- Er -  Fl 4 -E r -E , E re g uiar

Now we shall study the Iversen-Tsuji's theorem in connection
with the harmonic boundary.

Theorem 2. (Iversen-Tsuji) Let n be a  bounded domain, an
its boundary and z o any  point of an. I f  f ( z )  is o f  bounded and
regular on 2, then it holds that

max Ifl =  max If I , ( 1 )rozo, AN)

provided that (z 0 )  I  4). I f  _I (z0 ) is empty, then z o is  the removable
singular point of f(z).

P ro o f. W e note that f  an d  f l  are continuous on f»,. respec-
t iv e ly . Let zo b e  a  regular point of the Dirichlet problem, then
x(z 0 ) is non-empty and th a t the equality (1 ) is evident from
lemma 10. Consequently we treat the case that zo i s  an irregular
point of the Dirichlet problem. Then either A (z0 )  is  em pty  or
non-em pty . In the following, we shall treat the case that A (z0 )  is
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non-empty and z , is the irregular point of the Dirichlet problem. We
suppose that max If I> max 1 f i ,  and w e  p u t I f (P*)1 --- max i frc=,) rc )
(p* E  (z o) — A(z o )). Now, w e  notice that F (z 0)  is connected pro-
v id ed  th a t 2'0 i s  an  irregu lar point of the Dirichlet problem.
Let k  be a positive number such as max If I < k < 1 1:0 01(f (P* )= 11)0),Acz
then there is an open disc K, = — zo l< r }  such as If(A (0)1>k'
fo r  every ( E 8f2n K ,)  different from z „, here max Ifl < k '< k .

A(zo
This is verified from the continuity of f  on 12 .  Without loss of
generality, w e assume th a t th e re  is  a  po in t q*( E r(z0)— A(z„))
whose image is  a boundary point of f (F(z o ))  and If (q*)I=k .
Now, w e notice that there is a  closed Jordan curve C ( s-2) sur-
rounding z o p rov ided  that z o is  ir r e g u la r  w ith  respect t o  the
Dirichlet problem, [ 7 ] .  Let us consider the inverse image f ' ( 1 -18 )
of H 8 , here 1118 i s  a  8-neighborhood o f  v , (= f  (q*)). Then there
is at least one component of f - 1 (118) which is contained in K r for
a suitable small number 8. For, let C  be the closed Jordan curve
in  K ,r\12 surrounding zip. Then the number o f  components of
f - 1 (118 )  meeting the C  i s  o f finite, consequently i f  a n y  one of
components of f - 1 (118 )  is not be contained in K . for every 8, then

f  TO n [C ] would contain a  non-degenerated continuum con-
sisting of the w0-points of f .  T h is  is  absurd. Thus we know that
K , contains at least one component of f 1 (116) and that f  - 1 (118 )r\C
is  em pty fo r  a  suitable small number a. The latter is verified
from the following : f  (118 )n C  consists of at most a finite number
o f components fo r  an y  8. In the following, a certain C  is fixed
in K , and we assume that ri( 1 1 80 )r\C— ¢), that is, for any a(<8,)
f - 1 (118 )n C=01). W e denote by [C ] the interior of C. Now, in a
case that f  (H s  0 ) n [C ]  consists of an infinite number of compact
components, then H8 0 is  con ta ined  in  the cluster set Co (f , z o ),
while w , is  the boundary point of Co ( f , z 0 ). This is  absurd, con-
sequently f ' ( 1 -180 )n [ C ]  con tain s at least one non-compact of
f 1 (1180). Let D s be a non-compact component o f f  ' (ITao ) such
that /38 < f  - 1 (118 o )n  [C ], and let f  be the restriction of f  to Da
then f  is  the map o f type-B/ [3], because the closure o f D s in 1-2;
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does not contain the harmonic boundary points of ,f2 by the defini-
tion of K , .  Without loss of generality, we suppose that f - 1 (118 ,) n
[C ] consists of the non-compact components. Now, let {Diso} i=i,
be the sequence of the components of f (14 0)  each of which is
included in [C ].  According to M. Heins [ 3 ] ,  the set f ( D 0)  is
dense in 1-18° since f  is  a map of type-B/ from Di° to  1180 . Let
{r n }  be the decreasing sequence such as r „  0, and let IQ  b e
the family of the closed Jordan curves each of which belongs to
K , n  S 2  and surrounds z ,  respectively. Then it is clear that [C„]
contains some Disc, for each n provided that the closure (in z-plane)
of Di° does not contain z ,  for every i. W e shall deal w ith this
case. Let Di8z  b e  suç,h the element o f  {/40} th a t  1:V o [C„]
(n=1 , 2, 3 ,— ). By means of the notice on the map of type-B/, it
holds that Hs° is inc luded  in the cluster set Co (f ,  z 0). This is
absurd, because tv , i s  the boundary point of Co (f ,  z 0). Thus we
conclude that max f i  =  max f i  provided that A (z o)+ 0 .  Next we

r(=0) A00)
shall treat the case that the closure of some Dto contains z ,. Let

{8 .1  (8n< 8o) be such as 8n I, O(n—  09) and D, be the component of
f - 1 (1180 )n  D t such that the closure of D, contains z o . We repeat
this process and we obtain the decreasing sequence {D,J each of
which contains z ,  in its c lo sure . It is sure that there exist such
a D , .  If not, then the former case would occur. Now, we con-
clude that wo is  the asymptotic point because of existence of {D, }.
Let L  be the asymptotic path tending to z o . Then z ,  is the regular
point of the Dirichlet problem with respect to s-2,— L .  Let (D—L)*
be the compactification of SI— L  and a be the harmonic boundary
of (2 —  L .  Then it holds that max If =  max i f i ,  here r  means the

3c=0 ) F'('0)
ideal boundary o f  f i — L, that is, r =(12 —  L)* — (D — L). We notice
that the regular points of a(ii —L ) are identical with the regular
points of an except fo r  z o , and max f i  =  m ax If = max If i

acp 7-(0 A(4-)
max ifi f o r  an y  regu lar point From  this, it holds that
r()

max ifi =  max If I <max
 i f l  w h ile m ax  f i  =  max f i  =  max I f I .

rczo)AN) r(o) Ecro) F-(4-0)
This is absurd. Thus we conclude that max f  =  max provided

A (

 
r ( zo

that A (zo) + 0 .  F inally  w e treat the case that z ( z 0)= c f . Then
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there exists an open disc K = {I z— z, 1< r }  such that A (0= 4) for

e v e r y  E a S 2 n K . For, let GR ,(z  ;  z o)  be the Green function of R',
where z o i s  the singular point of G  anp R ' is  an open disc such
as R '> S 2 .  Then G R ' is continuous on S24;,, consequently the K
exists provided that A (z )=.1). Now we study the property o f OR /

which is the restriction of GR
, to  S I  I t  is  c lear th a t L.H.M. GR'

has the non-vanishing singular component, and similarly we can
see that at each point o f  K c 2 0„ , (z ;  )  has the non-vanishing
singular component. This shows that K r  an is  o f capacity zero

[ 3 ].

T heorem  3. Let n  be a bounded domain, z , any  point of af-2
and f (z )be a bounded and regular function on 1-2. Then the boundary
of the cluster set Ca ( f,_z o) is contained in the image f (A (z o )) of A (z o).

P ro o f . This i s  trivial provided that Co (f , z o)  consists o f a
single point, therefore we shall deal with another case. Let w, be
an y  point of the boundary o f Ca ( f , z o )  and 118 =  w  — wo l< 6 1  be

any given open disc. Now we take an open disc II=  t w —  w° < 8
 4  }

and a point n  in  11 such as 7/ c . ( f ,  z o ). Let y = { lw— n1<9 0}  be
such as ryc H and  Ca ( f , z o )ny  =95. Now we consider the open
subset n  of i su c h  as f2,=E2 —  Cl {  f'(7)}  , here Cl {_I'M }  is  the
closure of f  - l(ry) in z -p la n e . Then p(z )=11(f (z )— n) is a bounded
and regular function on 1-2 and the cluster set Ca(rp, z o)  is obtained
from the linear transformation of Ca ( f , z o). We denote by S-2,-*  the
compactification o f  -1-1 and by a the harmonic boundary of S-2, then
from Theorem 2 ,  max I p  that is, there is a boundary

point of C (g ) , z,) which is the image of some point of a (z o )  by q).
It is c lear that it is the point transferred from some point w* of
118 n Ca ( f , z o). We shall prove that w* is  the image of some point
of (z 0). Noticing that f  is continuous on E2* , we can see that w*
is  the image of some point of (z o )  by f ,  here f  is restricted to
1-2. Consequently f  (restriction of f  to /-2) is not locally o f  type-B/
a t w * . We prove this fact as follows :  let G(w ; w *) be the Green
function of R '=  —  w *  1<c}  , here c  i s  a  suitable number such
as  R ' f ( f 2 ) .  Then G (f (z ) ; w *) i s  the positive superharmonic
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function on n*  and G.H.M. G (f- (z ); w * ) h as  the quasi-bounded
component u(z ) which attains + 00 at some point of a (z 0) [3 ] [5 ].
Now le t k  be a suitable large number and Dk= { z E (2 ; u(z)>k}  ,
where u  i s  the above quasi-bounded component o f G (f (z ); w*).
Then the image f(D k ) is contained in the domain Gk= {w ; G(w; w*)
> 1 4 .  Let D k  be the component o f D k such that the closure Die
o f Dk in  f r  meets 3 (z0). It is clear that Dk S O „ ,  because u  is
the quasi-bounded harmonic function taking the constant value k
along apk .  Therefore the closure o f Dk in 12$ contains some har-
monic boundory points of D .  I t  is  c lear th at fo r any given 5-

neighborhood U(z o ; &) o f z o , there is some DI, such as U ( 2 . 0 ;  8 ).
From this, we know that the closure o f U(z o ; 6)n f2 in DI contains
the harmonic boundary points of 12. This shows that G(f(z ): w *)
attains + oc at some point of (z o ). From the continuity of f  on

we know that the image of the points of  (; )  i s  dense on
the boundary of the cluster set C .(f , z „) . Thus we conclude that
the theorem holds, because (z 0)  is  compact.

R em ark . Theorem 3  contains th e  following : let 1 2  b e  a
bounded domain, z o a n y  point of an and f ( z )  be a bounded and
regular function on 12. Then it holds that the boundary o f Co (f , z o )
coincides with the boundary of the boundary cluster set Ca E (f , z o ),
here E (cam i s  the Fo.-set of capacity zero such as z 0 E E  and
Cl { f2—E} 3 z o , Next, if f  is  of type-B/ from 12 to  f ( 12) and z,
is  the singular point of f ,  then C,,,(f, z o)  coincides with C l {f(12)}
provided that Cc ,(f , z o )  contains at least one point of

W e shall treat the Seidel's theorem.

T heo rem  (Se ide l) Let 12 be an open unit disc, z o be any  point
o f  an and  f (z ) be a  bounded an d  regular function on 12 belonging
to the c lass  (U ). I f  z o is  the singular po in t o f  f , then the cluster
set C a (f , 2 . 0)  is  the closed unit disc liv1 1.

P ro o f . L.H.M. log If l = log  l f  o n  A F  and L.H.M. log If i  =0
on R = ii,z 1<11, consequently log if i  takes zero at every point of
A F ,  that is, the boundary o f  C ( f , z o ) coincides with =1}
provided that Ca (f , z o)  contains at least one point of 11= flwl<11.
W e suppose th at C .(f , zo)rN 11=CP, then there exists an '5-neigh-
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borhood U(z o ; &) of z, such that at each point o f  U(z o ; 6 )n an Ifl
has the boundary value 1  and inf if(z)1 > 0  on U(z o ,  &)(-\12. Then
log f (z ) (restricted to U(z o , 6)r\ f2) is regular at z„. This is absurd,
that is, Co(f, z0)=

Ritsumeikan University. Kyoto.
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