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Infroduction. We denote by R} the compactification of an open
disc R and by Ar the harmonic boundary of R, here the com-
pactification is the one studied in the former paper [5]. In the
first chapter, we shall study the relation between Ar and the
Martin minimal boundary of R in connection with the harmonic
measure on K. In the second chapter, we shall treat the multiply
connected domain, and a certain theorem with respect to the cluster
sets will be studied from the view point of the compactification.

1. Martin minimal boundary A, and A,. Let R be an open
Riemann surface which admits the non-constant bounded harmonic
functions, and let A, be the Martin minimal boundary of R. At
first, we shall treat some lemmas with respect to A, to make use
of them later on. These lemmas were given by C. Costantinescu
and A. Cornea [1] in general case.

Lemma 1. Let D be a non-compact subregion of R and A be a
subset of A, such as A={s€ \,; [,Ks -0}, then it holds that

1= | nE(paxe+| do,p
for any point p in D.

Proof. According to [1], u=I,u+ H} for any u€ HP. From
this, we know that K. (p)=H&(p) (p€ D) for each se A,—A. In
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the following, we show that A is the X-measurable set and I,K(p)
(p€D) is the X-measurable function on A,. At first, we prove
that I,K,(p) is measurable. Let s,(€A,) converge to s€ A,, then

Ksn(p) = IDKsn(p)_‘_Hgs"(p)
K.(#) = lim K, (p) = lim IpK,,(p)+lim Hf+(p)

lim Hifn(#) = lim | K,,(P)do,(5) Z | K.(B)dw,(B) = HE(5),

9

consequently, I,K,(p)+ HE (p)=K,(p) = lim I, K, (p)+ H 5 (p), that
is, I, K, (p)= 1179 I,K,(p). This shows that I,K,(p) is the upper

semi-continuous function on A,. From this, we can see that A is
the F,-set. Now, for any point p€ D

1= | K@ = | Kpaxe+{  K(paxe)

- SAIDKS(p)dX(sHSA HE ax(s),

and

[ B (Baxe) = | x| K.(pdo,(®)
- Ldep( ) \ K,(B)dX(s) = Swda)p( 3).
Thus, this lemma is proved.

Corollary 1. D€ SOy if and only if A={s€A; I[L,K, >0} is
of X-measure zero.

Definition 1. Let s be any point of A, and G be any domain
of R such as I;K, >0. Then we define the set § in R} as follows:
$=nG for all G (IcK,>>0), here G is the closure of G in R¥. $
is the connected and compact set [5].

Lemma 2. Let wa be the harmonic measure on R such as
wa(p) = | KB)AX(s),

here A is a Borel-set on A,, and let D be the open subset of R
such as D*={peER; wa(p) >a, 0<a<1}. Then INa)={s€A,;
I,K, >0} is identical with A except for a set of X-measure zero.
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From this, it holds that 4 attains 1 or zero on each s except for
a set of X-measure zero.

Proof. From lemma 1, we know that 1'(«) is non-empty and
is the F,-set. That I'(«) is the F,-set is proved by the way in
[1]. D% be a component of D” and p, be a fixed point in Dy. Let
l‘k(n)z{seA; IDc:Ks(po)g—l—}. It is clear that l',(«¢)(={se€A;

n
I,2K,>>0}) is identical with \J I'x(n). The 1',(n) is closed, because

s—»IDc;Ks(po) is upper semi-continuous on A (c.f. lemma 1). Thus,
we know that A.,=AND.(n) is the Rorel-set for each component
D%. Now, we restrict ws to Dj, then it holds that

oa(p) = | KD = | K(pax©+|,  Kpaxe,

JA-

and if A, is the X-null set, then for any point p € D}

49

oa(p)= | K(DaX(©) = | HED ) = | X9 K (Bdw,(P)

= [ s P| K DX = | do,(5)= 1% (1= 0a().
From this, it holds that ws=« in D§, that is, wy=« on R. This
is absurd, that is, A, is of positive X-measure. Now, we can see
easily that \ / A, is identical with A except for a set of X-measure
zero. Indeed, if A—\J A, is of positive X-measure, then the
harmonic measure w4 _ya, is of positive but less than w4, con-
sequently is holds that

D= {I’GRi (UA—UAk(p)>a}<D)

here D={p€R; wa(p)>c}. Thus, there exists the subset B of
A—\J A, with positive X-measure such that I3 K ,~>0 for any s € B,
that is, I, K,_>0 for any s€ B. This is absurd, that is, A=\ A,
except for a set of X-measure zero.

Lemma 3. Let u be a bounded harmonic function on R. Then
u is constant on each $ respectively except for a set of X-measure
zero.
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Proof. Without loss of generality, we suppose that # is the
positive harmonic function. By the theorem with respect to a non-
negative measurable function, u(p*) (p* € Ap) is the limit function
of the non-decreasing sequence of simple functions {,}. This
convergence is uniform on Ay since « is bounded. Let #,(p)(p € R)
be such as

a,(p) = SAFu,,(P*)d/b(zb*, p)

for each n [4]. It is clear that #, is the linear combination of a
finite number of harmonic measures and #, converges to # uni-
formly on B%. From lemma 2, we conclude that this lemma holds.

Corollary 2. Lemma 3 holds for the positive quasi-bounded
harmonic functions. Indeed, a positive quasi-bounded harmonic
function is the limit function of the non-decreasing sequence con-
sisting of positive bounded harmonic functions.

Lemma 4. A positive singular harmonic function vanishes on
each s except for a set of X-measure zero.

Proof. Let u be a positive singular harmonic function on R
and D be such as D={p€R; u(p)<_«}. It is clear that D¢ SOy,
consequently the set A={s€ A,; I, K, >0} is of positive X-measure
by lemma 1. Then it holds that for any p€ D

1= |, LK (p)aX()+ || HE(0)aX() = LKD)+ do, (5.

Ja

We notice that (@ —u)/a is the harmonic measure of the ideal
boundary with respect to D. From this, it holds that for any p€ D

(@-wja =1-| HEaxe) = | LEDXE.
If A,—A is of positive X-measure, then
[ LEmax< | K(paxe <1,

that is, L.H.M. {(a—u)/a}*gSAstx(s), here  {(@—u)/a}*
=(a—u)/a on D and =0 on R—D. On the other hand, L.H.M.
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{(¢—u)/a}* =const. 1. This is absurd, that is, A,—A is of X-
measure Zzero.

Theorem 1. Let u be a positive superhamonic function on R

such as G.HM. u=0, then u vanishes on each $ except for a set of
X-measure zero.

Proof. Let G, be an open subset of R such as an{peR:

u(p)>%}, then #=1/n on oG, except for a set of capacity zero

(in a sense of local) [2]. Let D be such a component of
R—G,\J oG, that u is non-constant on D. It is sure from G.H.M.
#=0 that there is such a component D. Then H?% is the non-
constant harmonic measure on D, here #nu is the boundary function
of the Dirichlet problem with respect to D. From this, we know
that there exists at least one component of R—G,\/dG, that does
not belong to SO,z. Consequently A,={s€A,; I ¢,voc,K;_>0}
is of X-measure positive by lemma 1. Moreover it holds that
A,=A, except for a set of X-measure zero. Otherwise, by lemma 1

Ti-ouuaonl = 1= HE 00 D)AX() = | Tk 6,006, K.(5)X()

A

<[, Kpaxe <1

for any point p€e R—G,\J 0G,.
From this, it holds that

> 1T gpune,1 > 1| K.dX(s)>0

against CH.M. #«=0. Thus we know that A,= A, except for a set
of X-measure zero. From this, we know that Iim «=0 at each

point of §, here s¢€ f”\A,,. (q.e.d.)

In the following, we shall treat the harmonic boundary of the
unit open disc R. It is known that Martin minimal boundary of
R coincides with the circumference of R. Now, we shall study
the relation between A, and Ap. Let R’ be the open disc such as
R’={]Jw|< 2} and f be the conformal map of R= {|z|< 1} into R’
such as w=/f(z)=2, that is, the identity map. From the former
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paper [5], it is concluded that the image M, (p*) is located at some
point of the circumference of R, here we identify R={|w|< 1}
with R={|z|<1}. Conversely, the following holds that

Proposition 1. Let w=e? be any point of 6R={|z| =1}, then
there exists some point of Ap whose image is w.

Proof. Let Gg/(w;e?®) be the Green function on R’ such as e
is the singular point. Then G/ (f(2); e) is the positive harmonic
function on R, consequently it is continuous on Ry and it attains
+ oo at some point p* of A,. Clearly ¢ is the image of the p*.
(q.ed.)

From now on, we denote by A(6) the subset of Ap such as
A(O)={p*eArr: M (p*)=e"}. It is evident that A () is compact.

Proposition 2. Let s any point of 0R and 0s be the closure
of the radius os in RY. Then it holds that osNn(R%¥— R)S.

Proof. The minimal function K, is symmetric with respect to
the radius os. From this, we get the above conclusion.

Proposition 3. Let L be a subset of X-measure positive on oR
and v be the subset of Ay such as y={A(0); e €L}, then

o(zi 1) = | K.(2dx(s),

here w(z; v) is the harmonic measure of . If L is X-measure
zero, the v is of harmonic measure zero.

Proof. We consider the case that L is compact. Let Q(z; L)

be the harmonic measure of L with respect to R'—L, that is,

Q(z; L) vanishes on |z|=2 and =1 on L except for a set of
capacity zero. Let Q(z) be the restriction of Q(z; L) to R. Then

€ (2) attains the boundary value 1 at each point of L except for

a subset of capacity zero. From this, we know that ((z) attains 1

at each point of 7 except for a set of harmonic measure zero.

For, the set of the irregular points of L is of F, and with respect

to the compact subset of F, with zero capacity, its Evans function

restricted to R is continuous on R}. Consequently we conclude
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that =1 on v except for a subset of harmonic measure zero.
Now, we notice that v is compact. For, let p* be an accumulation
point of v and Gg/(z; M,(p*)) be the Green function on R= {|z|< 2},
then we can see that G, the restriction of G to R, is unbounded
on L since G is continuous on R¥. Thus, it holds that M,(p*)€e L
since L is compact. Consequently the harmonic measure w(z; 1)
vanishes at every point of Az—¢ and attains 1 at each point of
v except for a set of harmonic measure zero (c.f.[4]). Itis clear
that A(6)CC Ap—« provided that ¢? €9R—L by the definition of ¥.
From this, we can see that »(z; ) attains zero at e® as the

boundary value. This shows that o(z; fy)ggLstX(s), therefore

w(z: 7)=S K.dX(s) because of lemma 2 and proposition 2. Next,
L
we treat the case that L is open in 0R. Noticing that oR—L is

closed, we can verify that »(z; ) coincides with \LstX(s). This
leads us to the result that the v is of harmonic measure zero pro-
vided that L is of linear measure zero. Now, we treat the case
that L is any measurable (Lebesgue) subset in dR. Then L is
decomposed to a null-set and F,-set. From this, we can see that
the proposition is true.

Corollary 3. Let L be a subset of X-measure positive on oR,
(2) be the harmonic measure such as w(z)=S K.,dX(s) and let A(L)
L

be such as A(L)={A(0); s=e?*®€L}. Then A(L) is of measurable
with vespect to the harmonic wmeasure dp(p*; p) and the set
co={Pp*€A(L); o(p*)=0} is of harmonic measure zero.

Corollary 4. Let v be a simultaneously open and closed subset
of Ar and w(z: ) be the harmonic measure of . Let w(z; v)
=S K.dX(s) and A(L) be such as A(L)={p*€v; M (p*)eL}.

L ~
then the closure of A(L) in R¥% coincides with .

Remark. Let L be the image of v in corollary 4, that is,
L={M,(p*); p*€n}. then LDL. It is possible that L—L is of

positive measure. I thank to M. Nakai for his kind advice on
this fact.
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Lemma 5. Let u be a bounded harmonic function on R, u(0)
be the radial limit function defined on 6R and L be an open arc on
OR. Then it holds that

sup #(0) = sup u(p*).
L-L, acly

here L, is the subset of OR on which u has not the radial limits
and A(L) is such as A(L)=1{A(0); e € L}.

Proof. We define the function # on Ay such that @(p*)=u(9)
provided that M,(p*)=e” €0R—L,. According to corollary 3,
#(p*) is the bounded measurable function on Ap. Indeed, for any
bk, A={p*€Ap; @(p*) >k} is of measurable since the image of X
is identical with {«(0)_>k} and the set {u(6)>k} is of measurable.
Now, let v(z) be the harmonic function on R defined by

0(@) = {4, 8" du(p*; 2.

then v(p*)=u(p*) except for a set of harmonic measure zero.
Hence it holds that v(z)=u(p) on R, because the X-harmonic mea-
sure of L=1{e¢ €9R; a>u(0)">B} is identical with the harmonic
measure of the inverse image {A(0); e € L} of L by proposition 3,

consequently
0@ = |, 2" dus*: p) = | K(@uedxXe) = u@).

Now, L, is of linear measure zero, consequently A(L) is contained
in the closure (in R¥) of A(L—L,). Thus, Lemma 5 holds.

Definition 2. Let ¢ be any point of IR, K,={z; |z—e"|< &}
be the neighborhood of ¢ and K, be K.nR. Then we define NG
as follows: I'(@)= N\ {K.~(R¥—R)}, here K, is the closure in R}

g0

of K,. It is clear that 1I'(d)==¢ and L'(6,)n1'(8,)=¢ for any 4,, 6,
(0,%=06,). Let X(0)=1'(0)nAr, then A(F) is identical with A(0).
Indeed, let Ggr/(z; ¢?) be the Green function on R’={|z|< 2}.
Then Gg/(2), the restriction of Gg/(z; e"") to R, is continuous on

¥ and attains + oo on A(#). Let us consider the level curve of
Gr(2), then the image of each points of A(#) are all identical
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with ¢#, while the image of any p*€ Ap—A(0) ‘is different from
¢ since G is finite at p*.

Lemma 6. Letf u be a bounded continuous subharmonic function
on R and e® be any point on OR. Then it holds that

lim #(2) = max # = max u (z€R).

2ol NG RO

Proof. Without loss of generality, we suppose that # is non-

negative on R. Let £ be maxu and A, be such as A,= {p* € Ap;
A(E)

u(p*)< A, A>k}. Then it holds that
u(2) < do(z; A)+M(1—o(2z; AY)),

here w(z; A,) is the harmonic measure of A, and M= sup «.
R

Because, # is continuous on R¥ and w(z; A,) attains 1 at each
point of A,, while 1—w(z; A,) attains 1 at each point of Ar— A,
except for a set of harmonic measure zero. Now, A(d) is con-
tained in A, since n:(agtu=k(<x), consequently w(z; A,) attains 1

at each point of A(¢). From this, we can see easily that
limw(z; Ay)=1 (c.f. lemma 8). This shows that [im u#(z)<<X\.

z—»eie z_,eie
Thus we know that lim #(z)<<k= maxu. While lim «(2)= max «,
e NG 2 ei® NO)
consequently max = max u.
e Al

Lemma 7. Let u be a bounded continuous subharmonic function
on R, u(0) be the radial limit function defined on oR and L be an
open arc on 0R. Then it holds that

sup u(0) = sup u(p*),
L-1, prEA)
here L, is the subset on OR such as L,={e® €0R; lim u(re’)==
v>1
lyim u(rei’) and A(L)={A(9); e’ € L}.

Proof. We note that #u=L.H.M. « on Ar. Let #(0) be the
radial limit function of L.H.M. «, then the following holds by
lemma 5 and the above notice that sup#(6)=sup L.HM.

7 ACL)

_ L-1
u= sup u(p*), here L,={e’€caiR; lyim L.H.M. uo(ref")=(= lim L.H.M.
A >1 ¥>1
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u(re’)}. From this, s?[?u(p*)g sup #(f), while according to
AL II~L0

Theorem 1 u(0)=du(0) except for a set of linear measure zero.
Thus, the following holds that

sup #(0) = sup #(0) = sup LH.M. « = sup u(p*)
(€] AL

L-10 L-Toy I a

sup a#(0) = sup u(0) = sup u(6)< supu(0)< supu(p*),
L= I AL

L-Igy Iy L-royTou 1’ Lo-louTou 1/
that is, sup u(8)= sup u(p*), here L'={0€oR; a(0)-1-u(9)}.
I,—LO Al
Remark. From lemma 7 we can get the Lindelof’s theorem :
Let # be a bounded continuous subharmonic function on R= {|z|< 1}
and «(0) be the radial limit function on 6R. Then it holds that

lim #(0) = Iim u(2),
0->6, 2 0if0

“here ¢'% is any given point on OR.

2. On multiply-connected domains. Now we shall treat the
case that the domain is of multiply-connected. Let Q be the
bounded domain in z-plane. We denote by 60 its boundary and
denote by Qf the compactification of Q constructed in [5].

Lemma 8. Let o be the harmonic measure on the bounded
domain Q, that is, oA(1—0)=0, and &, be a boundary point of 0,
which is regular with respect to the Dirichlet problem and o=1 on
A(&,). Then o has the boundary value 1 at ¢,. (cf. definition 2
on A(&,))

Proof. First, we notice that A({,) is non-empty provided that
¢, is regular with respect to the Dirichlet problem. Now the func-
tion v(u)=1]z2—¢&,| is a bounded continuous subharmonic function,
consequently v(2) is continuous on Qf and H(z) (=L.H.M. v) coin-
cides with »(2) on A, (the harmonic boundary of Q). From this,
we know that H(z) vanishes on A(¢,) and attains a positive con-
stant value on each A({) (£€0Q, &==¢,). Next, there exists an
&-neighborhood V(¢,, €) such that o=1 on A(¢) provided that
teV,, €. If otherwise, A({,) contains a zero-point of » against
that ®=1 on A({,). We know that k= min H is positive, here

AF—“I



Harmonic boundary of a plane domain 109

vy=1{p*€ Ar: w(p*)=1}. Thus, it holds that 0< k(1 —w(2))<H(2).
From this, we know that lim w(2)=1 as z—¢,.

Lemma 9. Let u be a bounded harmonic function on Q and §,
be a boundary point of Q, which is regular with respect to the
Dirichlet problem. Then the following holds that

lim #(2) = max# = max «.
2>¢y o Al

Proof. Let k= maxu and A,= {p* € Ap; u(p*)<k+&} for any

INTS)
given §(>0). Then the harmonic measure o(2; A.) attains 1 at

every point of A(&,), because A, is open in Ap [4]. Thus the
following holds that

w(2) < (k+&o(z; A)+M(1—o(z; A),

here M= sup# on Q. From lemma 8, we conclude that Tim #(2)<
k+6, that is, imu#(2)<k as z2—¢,. (q.e.d.)
Now, we study the behavior of the subharmonic functions in Q.

Lemma 10. Let u be a bounded subharmonic function on Q and
¢, be a boundary point of Q, which is regular with respect to the
Dirichlet problem. Then it holds that

lim #(z) = max {L.HM. «} .
AL

=>%o
Furthermore, this is true provided that uw is bounded from above.
Proof. Let @ be a function defined on Ar such as #(p*)
= ﬁu( D) (p€Q), According to [5], #(p*) is continuous on Ap

and
LHM.u = |, 2(s")dp(s*; ) (€ Q).

From lemma 9, the following holds that

Iim #(2) < Iim {L.HM. «} = max {L.HM. «} .
= o

#>%o
On the other hand, F}lu(z)z inf {supx in V(¢, €§)nQ} and
(S
sup #=max {L.HM.«} since each point of A({,) is the inner
V(¢ ©INQ Al

point of the closure (in R%) of V(¢,, & Q. Thus it holds that
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Iim #(2) = max {L.H.M. u}, (%)

2>, Algy
that is, Iim #(z)= max {L.H.M. u}.
) algy!

Remark. This lemma is equivalent to the following theorem
(cf. [6] p. 15): let D be a bounded open set, 1' its boundary, E
a compact set of capacity zero and z, a point of E. Suppose that
z, is a regular point for the Dirichlet problem. If # is bounded
from above and subharmonic in that part of D contained in a
neighborhood U(z,) of z,, then it holds that

lim #(2) < lim (Iim #(2)) .
kel [Sal IS
LET- B

Indeed, we can see easily that \ / A(¢) is of harmonic measure
¢Ex

zero (c.f. Prop. 3), consequently A(z,) is contained in the closure
of \/ A(¢). From this fact and (%) in lemma 10 it holds ihat
LET-F

Om (im #(2)) = Im( im #(2)) = max {L.HM. «} = lim «(2).
{-)zo z-)g g-—»zo z—»g A(ZO) z_’zo
LET-E (ET - H, {€regular

Now we shall study the Iversen-Tsuji’s theorem in connection

with the harmonic boundary.

Theorem 2. (Iversen-Tsuji) Let Q be a bounded domain, 0Q
its boundary and z, any point of 0Q. If f(z) is of bounded and
regular on Q, then it holds that

max | f| = max |f], (1)
IGe ACzg)
provided that A(z,)==¢. LIf A(z,) is empty, then z, is the removable
singular point of f(2).

Proof. We note that f and |f| are continuous on QF respec-
tively. Let 2z, be a regular point of the Dirichlet problem, then
A(z,) is non-empty and that the equality (1) is evident from
lemma 10. Consequently we treat the case that z, is an irregular
point of the Dirichlet problem. Then either A(z,) is empty or
non-empty. In the following, we shall treat the case that A(z,) is
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non-empty and z, is the irregular point of the Dirichlet problem. We
suppose that max |f|>rr(1ax | fl, and we put |f(p*)|= max |f|
ey INEIH) TG
(p*el'(z,)—A(z,)). Now, we notice that 1'(z,) is connected pro-
vided that 2z, is an irregular point of the Dirichlet problem.
Let k be a positive number such as max |f| <k<|w,| (f(p*)=mw,),
ACzg)

then there is an open disc K, = {|z—2,|< 7} such as |f(A (L)) >F
for every ¢(€0QnK,) different from z,, here max | fI<k <k
aCzg

This is verified from the continuity of f on Qf. Without loss of
generality, we assume that there is a point g¢*(€1'(z,)—A(z,))
whose image is a boundary point of f(I'(z,)) and |f(g*)|=k.

Now, we notice that there is a closed Jordan curve C(C Q) sur-
rounding 2z, provided that 2z, is irregular with respect to the
Dirichlet problem, [7]. Let us consider the inverse image f '(LI;)
of Ils, here II; is a 6-neighborhood of w,(=f(g*)). Then there
is at least one component of f '(II;) which is contained in K, for
a suitable small number 8. For, let C be the closed Jordan curve
in K,nQ surrounding 2z,. Then the number of components of
f7'(11;) meeting the C is of finite, consequently if any one of
components of f~!(II;) is not be contained in K, for every &, then
a[;\of—"—(ﬁs_)f\ [C] would contain a non-degenerated continuum con-

sisting of the w,~points of . This is absurd. Thus we know that
K, contains at least one component of f'(l1l5) and that f '(1I;)nC
is empty for a suitable small number 8. The latter is verified
from the following : f~*(1I;)nC consists of at most a finite number
of components for any 6. In the following, a certain C is fixed
in K, and we assume that f~'(lI;,))NC=¢, that is, for any 8(<8,)
f'(Als)nC=¢. We denote by [C] the interior of C. Now, in a
case that f~'(11;,))N[C] consists of an infinite number of compact
components, then II, is contained in the cluster set Cq(f, 2,),
while w, is the boundary point of Cga(f, 2,). This is absurd, con-
sequently f'(II,)N[C] contains at least one non-compact of
f7'(Il;). Let D; be a non-compact component of f'(lI;) such
that Dy<f~'(1I;,))n[C], and let f be the restriction of f to D,
then f is the map of type-B! [3], because the closure of D; in Q}F
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does not contain the harmonic boundary points of Q by the defini-
tion of K,. Without loss of generality, we suppose that f (I )N
[C] consists of the non-compact components. Now, let {D})} iey, o,
be the sequence of the components of f ~!(IIs,) each of which is
included in [C]. According to M. Heins [3], the set f(Dj) is
dense in I, since f is a map of type-B/ from Dg'o to II;,. Let
{r.} be the decreasing sequence such as 7,0, and let {C,} be
the family of the closed Jordan curves each of which belongs to
K, ,nQ and surrounds z, respectively. Then it is clear that [C,]
contains some Dj for each » provided that the closure (in z-plane)
of Dj does not contain z, for every i. We shall deal with this
case. Let Dji: be such the element of {D{} that Dj[C,]
(n=1,2,3,-*). By means of the notice on the map of type-B/, it
holds that II;, is included in the cluster set Cq(f; 2,). This is
absurd, because w, is the boundary point of Cg(f, z,). Thus we
conclude that max |Lfl= max |f| provided that A(z,)==¢. Next we
% .

shall treat the case that the closure of some D§° contains z,. Let
{8,} (8,<8,) be such as 8, 0(n—cc) and D, be the component of
S7'(s,)ND§ such that the closure of D, contains z,. We repeat
this process and we obtain the decreasing sequence {D,,} each of
which contains z, in its closure. It is sure that there exist such
a D,. If not, then the former case would occur. Now, we con-
clude that w, is the asymptotic point because of existence of {D,}.
Let L be the asymptotic path tending to 2,. Then z, is the regular
point of the Dirichlet problem with respect to Q—L. Let (Q—L)*
be the compactification of Q—L and A be the harmonic boundary
of Q—L. Then it holds that max |f| = max |f|, here I' means the

A(z I‘(z

ideal boundary of Q—L, thatis, I'=(Q— L)* (2—L). We notice
that the regular points of 9(Q2—L) are identical with the regular

points of 0Q except for 2z,, and max |f|= max |f|= max |f]
AW TWw A
= max |f| for any regular point ¢. From this, it holds that
Jae3)

max | f| = max lfl<max | fI, while max |fl = max |f] = max Lfl].
(z0) 0 T'o
’i‘hols is absurd. Thus we conclude that max | fl= max | ] prov1ded
rzgd

that A(z,)==¢. Finally we treat the case that A(zo) ¢. Then
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there exists an open disc K= {|z—z,|<(r} such that A({)=¢ for
every £ €0QnK. For, let Gpr(z; z,) be the Green function of R/,
where 2, is the singular point of Gz anp R’ is an open disc such
as R’ >0. Then Gp is continuous on Q%, consequently the K
exists provided that A(z)=¢. Now we study the property of Gr'
which is the restriction of Gg to Q. It is clear that L.HM.Gg
has the non-vanishing singular component, and similarly we can
see that at each point ¢ of KcdQ Gg/(z; ¢) has the non-vanishing
singular component. This shows that KN9Q is of capacity zero

[3].

Theorem 3. Let Q be a bounded domain, z, any point of 0Q
and f(z) be a bounded and regular function on Q. Then the boundary
of the cluster set Cq(f,.2,) is contained in the image f(A(2,)) of A(2,).

Proof. This is trivial provided that Co(f; 2,) consists of a
single point, therefore we shall deal with another case. Let w, be
any point of the boundary of Cg(f, 2,) and II;= {|w—w,|< 8} be

. . . )
any given open disc. Now we take an open disc II1= {Iw—wol <T}

and a point % in II such as 7 ¢ Co(f, 2,). Let y= {lw—n|<&} be
such as yCII and Cg(f, 2,)ny=¢. Now we consider the open
subset (3 of Q such as Q=Q—CIl{f '(y)}, here C/{f '(y)} is the
closure of f~'(y) in z-plane. Then @(2)=1/(f(z)—7) is a bounded
and regular function on & and the cluster set Cz(®, 2,) is obtained
from the linear transformation of Cg(f, z,). We denote by Q* the
compactification of 3 and by A the harmonic boundary of , then
from Theorem 2, max || = max |p|, that is, there is a boundary

point of Cg(p, z,) vlgr(lzlt)i)ch is thg(zg)mage of some point of A(z,) by .
It is clear that it is the point transferred from some point w* of
;N Ca(f, 2,). We shall prove that w* is the image of some point
of A(z,). Noticing that f is continuous on 0*, we can see that w*
is the image of some point of A(z,) by f, here f is restricted to
0. Consequently f (restriction of f to £) is not locally of type-Bl
at w*. We prove this fact as follows: let G(w; w*) be the Green
function of R’= {|w—w*|< c}, here ¢ is a suitable number such
as R’ Df(Q). Then G(f(z); w*) is the positive superharmonic
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function on O* and G.H.M.G(f(2); w*) has the quasi-bounded
component #(z) which attains + co at some point of A(z,) [3] [5].
Now let k£ be a suitable large number and D,={z€Q; u(2)>Fk},
where # is the above quasi-bounded component of G(f(z); w*).
Then the image f(D,) is contained in the domain G,={w; G(w; w*)
>k}. Let D, be the component of D, such that the closure D,
of D, in O* meets A(z,). It is clear that D, ¢ SO, because u is
the quasi-bounded harmonic function taking the constant value k&
along dD,. Therefore the closure of D, in QFf contains some har-
monic boundory points of Q. It is clear that for any given &-
neighborhood U(z,; €) of z,, there is some D, such as D, U(z,; €).
From this, we know that the closure of U(z,; §)nQ in QF contains
the harmonic boundary points of Q. This shows that G(f(z): w*)
attains + oc at some point of A(z,). From the continuity of # on
QF, we know that the image of the points of A(z,) is dense on
the boundary of the cluster set Co(f, 2,). Thus we conclude that
the theorem holds, because A(z,) is compact.

Remark. Theorem 3 contains the following: let Q be a
bounded domain, 2z, any point of dQ and f(z) be a bounded and
regular function on Q. Then it holds that the boundary of Cy(f, z,)
coincides with the boundary of the boundary cluster set Cya_z(f, 2,),
here E(C0Q) is the F,-set of capacity zero such as z,€ E and
Cl{o0—E} >z, Next, if fis of type-B/ from Q to f(Q) and z,
is the singular point of f, then Cqy(f, 2,) coincides with C/{f(Q)}
provided that Cqo(f, 2,) contains at least one point of Q.

We shall treat the Seidel’s theorem.

Theorem (Seidel) Let Q be an open unit disc, z, be any point
of 0Q and f(2) be a bounded and regular function on Q belonging
to the class (U). If z, is the singular point of f, then the cluster
set Co(f, 2,) is the closed unit disc \w|< 1.

Proof. LHM.log |f]=log |f| on Ar and L.H.M.log |f|=0
on R={|z|<1}, consequently log |f| takes zero at every point of
Ar, that is, the boundary of Cg(f, 2,) coincides with {|w|=1}
provided that Cg(f, 2,) contains at least one point of 1I= {|w|<1}.
We suppose that Cgo(f, 2,)nII=¢, then there exists an &-neigh-
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borhood U(z,; €) of z, such that at each point ¢ of U(z,; E)NoQ|f]
has the boundary value 1 and inf | f(2)|”>0 on U(z,, §)nQ. Then
log f(2) (restricted to U(z,, §)nQ) is regular at z,. This is absurd,
that is, Co(f, z,)={|w|<1}.

(1]

L3l
L4]

£5]

L6]
L71
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