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Introduction

The (n+t)-th homotopy groups =.+.(S™) of n-spheres S* are
stable if »>>f+1 with respect to Freudenthal’s suspension homomor-
phism S : 7,+,(S™) =71 (S™?), and the f-stem group =} is the limit
of {m.:.(S™)}.

Throughout this paper p will denote an odd prime which is
fixed. m(X,A:p) indicates the p-primary component of =;(X, A).
Serre [10] obtained the following direct sum decomposition:

T (8™ 1 p) = a (S p) D i (S 1 D).

So, we shall devote to consider the groups mm—s+:(S*™':p) and 2k-
fold iterated suspensions

S* . ﬂzm—1+¢(82m-1 P) i nz(m+k)—1+1(sz(m+k)_l P)
Moore [8] and Serre [10] proved that the above homomorphism
S* is an isomorphism if {<2m(p—1)—2, that is, the group mam_1+
(§*™1:p) is stable if m>(¢+2)/2(p—1) and denoted by (x}:p).

The homomorphism S* is related with groups =;(2:S™+, $"-1)
by the following exact sequence:
s 2
e (g?s2m+l’ Szm—l) 'i)ﬂ,‘ (SZm—l) —>TTig (S2’m+l)
H®

—; (stzmu, SZm—l) i> .ee,

In [13, Th. (8.3)] the author gave an exact sequence
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sor—> g (ST 1?)—4"77.41(52'""1 1 p)—m (28T, St p)
= (ST p) e, ((>2mp—2),

from which we shall have a direct sum decomposition
T (‘stzmu’ S2m-1 p) =~ 7T§—2nlp+2 ® Zp +T0f(7t'si—2mp+1, Zp)

for i<2mp*—4. This means that if we know the stable groups up
to n;, then we can estimate the unstable groups mum 1+(S*™1:p) for
2m—1+t<2mp*—5, such a case will be referred as a meta-stable
case.

In the present paper, the iterated suspensions, in particular, four
fold iterated suspensions S* are discussed. There are many numbers
of unstable elements.

The first type of unstable elements is an elements 7y of mym—14¢
(§8*1:p) such that y&ImS? and S®y=0. For example, if t=
2r(p—1)—2, r#0 (mod p) then such an element 7y exists for
Max(1, 7/(p+1))<<m<r and r generates a direct factor isomorphic
to Z, (see Theorem 5.2.).

The second type of unstable elements is a pair of elements
7 E T+ (S™1: p) and 7' Emypmo1+:(S™ 1 : p) such that y&EImS? p-r=
S*'#0 and ¥¢ImS?% The possibility of the existence of such a
pair will be proved for ¢{=2rp(p—1)—2, =2rp(p—1)—1. For
example, such a pair exists for 1<<m<<p, t=2p(p—1)—2 and for
m=2, t=2rp(p—1)—1. These examples reprove recent results of
Gershenson [4] and Hardie [5]: mmo1+:(S*™:p)=~Z,. for 2<m<p
and {=2p(p—1)—2, 2p(p—1)—1.

The third type of unstable elements exists: yeEImS? S**y%0
and S*7?;=0. We may announce the existence of the fourth type of
unstable elements: y&ImS?, S*y+#0 and S¥**y=0.

In section 1 we shall prepare some notions of homotopy theory.
Section 2 will be an introduction of the results of [13]. In section
3 we shall compute the cohomology of a space Q%' such that
7 (Q%) ~ ;41 (2°S?™+, S*™1). For dimensions less than p(2mp —2) —2
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the cohomology ring H*(Q%~'; Z,) has a form 4(ay, ay, ***, G-
Z,[da,, day, -+, da,-,] with relations P'a;=m+i+1ain, Pda;=
(m+1i)da;.,, i=0,1, ---, k—2. Section 4 will be a discussion on
homotopy groups of Moore spaces Y,=S""J,e", and the results will
be applied for the existence of unstable elements of the first and the
second types in section 5. Some results on meta-stable groups will
be obtained in section 6. In section 7 we shall determine the groups
Tam1+: (S 12 p) for t<<2(2p+3)(p—1)—3.

In the forthcoming paper II, we shall discuss more delicate pro-
blems. One problem is how to compute unstable but not meta-stable
groups which may be solved by clarifying the properties of 4: s
(S?m+1: p)— 7 (S™1: p). The second problem is the structure of

-1 which can not be determined by cohomological operations &".
A relative J-homomorphism of mod p type will be introduced in
order to solve the second problem. The other problems are the
existence of unstable elements of the third and the fourth types and
further computations of mwym 1+ (S*™: ).

1. Preliminaries.

In this paper, all topological spaces will have the base points *,
all maps and homotopies will preserve the base points. The set of
the homotopy classes of maps f: (X, A)— (Y, B) will be denoted by

n(X,A; Y, B).

We shall use the following notations:

a={f}ex(X, A; Y, B): the homotopy class of a map f:(X, 4)
—-(Y, B),

Br=8x:n(X, A; Y, B)»z(X, A; Y', B"): the covariant map
induced by a map g:(Y, B)—>(Y', B"), p={g}, B+{fi=g«{f}=
{gof},

r*=h*:2(X, A; Y, B)—»r(X', A'; Y, B): the contravariant map
induced by a map h: (X', A)—(X, A), r={(h}, +Yf}=r*{f}=
{foh},
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Boa or simply pa: the composition of homotopy classes & and
B, Bea=pya=a*B,

a(X; Y)=n(X,%; Y, +),

1x: the identity of X,

xEn(X; X): the class of 1y,

XAY: the reduced join of spaces X and Y, XAY=(XxY)
J(XX*Ux XY),

SANg:XNY—-X"A\Y’: the reduced join of maps f : X— X' and
g:Y-Y,

a/\B: the reduced join of homotopy classes a and B, a/\f=
{fAB} for a={f} and B={g},

I=10, 1]: the unit interval with * = (0),

CX=XN\I: cone over X,

S™: the unit n-sphere {(f;, -+, t.s) | E2=1},

E™1: the unit n-cube {(t;, *-+, t.r1) | > #2<<1} considered as CS™,

S*X=XA\S": nfold suspension of a space X, SX=S'X and
Sm™»X=8"S"X by suitable identification S™"=S™A S™,

S”f=f/A\1s: n-fold suspension of a map f, Sf=Sf,

m.(X, A)=n(E", S**'; X, A) : the n-th homotopy group of
(X, 4,

.(X) =n(S"; X): the n-th homotopy group of X,

t2E7.(S™): the class of the identity 1,=1s of S~

S*a=a/\¢,: n-fold suspension of a homotopy class a, Sa=Sa,

C,=YU,CX: mappingcone of a map f:X—Y, where we
identify SC, with Cs, by the natural way,

Y;=S"'Ue": mapping-cone of a map f:S" =S of degree ¢,
CY, =Y, n=2,

2(X; A, B): space of the paths [/:([, 0, 1)—=(X, A, B) with
‘the compact open topology,

2(X, A)=2(X;*, 4),

2X=9(X; », *): space of the loops in X,

f :2X-2Y(:2(X, A)—2(Y, B)): the map defined by a map
[+ XY X, A=Y, B)), f(OW)=fUd@)) for leoX
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(eg(X, A), tel.

Throughout the paper all pairs (X, A) will have the same
homotopy types of pairs of CW-complexes. We have Puppe’s exact
sequence [9] for a map f: X—->Y:

Sf* * * f*

= (SX; W)—a(Cps W)—n(Y; W)—a(X; W),
where

i: YéCf:YUfCX and H:Cf:YU/CX“)SX

are the inclusion and the pinching map of Y respectively. The
pinching map = is defined as follows. Let

¢: I, DS, %)

be an orientation preserving map pinching the boundary I of I and
1:(CX,Y)~(YU,CX,Y), 2| X=],

be the characteristic map, then
rox=1xNp : CX=XN\NI - SX=XA\S"

Let p: E—B be a fibering (in the sense of Serre) and F=p"(*)
be the fibre over #, then we have an exact sequence

P (SX; BY Don(X; F)D5n(X; EY25n(X; B),
where ¢: F—E is the inclusion and 6 is defined by

0=0"opilon* 1 2a(SX; B)—»n(CX, X; B,*)«<n(CX, X; E, F)
—-n(X; F),

{f}={f|X}. Here p, and =* are one-to-one onto, and we may
identify

#(SX; Y)==(CX; 7Y, )

by =*. For example, p: E=2(Y,B)—B, p(l)=I1(), is a fibering
with the fibre F=2Y, then the above sequence is equivalent to the
following usual exact sequence:

2 n(SX; B)Hn(SX: V) I5r(CX, X: Y, B)->n(X: B).
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Let dy: XXI—-CX=XA\I be a map defining CX. Put ¢'(x) ()
=dy(x, 1), x€X, tel, then

i X-2(CX, X)

is an imbedding and a homotopy equivalence. For each element
{f}€x(CX, X; Y, B) we put 2{f} = {@fi'} en(X; 2(Y, B)), then

we have
(1.1). 2:2(CX,X;Y,B)—=(X; 2(Y,B)) is oneto-one onto.
For the pinching map »:(CX, X)—(SX, *), we have an im-
bedding
i1=89n0t" : X—-02(5X)
which we call a canonical imbedding. From (1.1) it follows

.1 e{ft={efi}, {f1en(SX;Y), defines a oneto-one
onto map

2:72(8X; V)—n(X; 2Y).

Note that the sets #(SX; Y) and »(X; 2Y) form groups by
canonical methods, and the map £ of (1.1)" is an isomorphism.
The group =(S?X; Y) is abelian. These (1.1) and (1.1)" are
generalizations of well-known isomorphisms:

2:71(Y, B)=~n,(2(Y, B)), nman(Y)~n.(RY).
It is verified directly that the diagram
x L.y
7 i

2(SX) ¥ o(sy)

is commutative. Thus the commutativity of the following diagram
(1. 2) holds.

S .
5 =(SX; SY)
L2 =XV =
(X5 2(SY)).
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The following relations hold.
{1.3). (1) S(acp)=SacSB, acz(X;Y), pea(W; X).
(i)  2(aeSp) =2acp, acz(SX;Y), pern(W; X).
(ii1) ao(B1+pB:) =aoh +aop,,
acsx(X;Y), B,Ben(SW; X).
(iv) (a1 +a.)oSB=a;088+ a,0S5,
a, a,€7(SX; Y), pex(W; X).

For the suspension S we have

(1.4). Assume that Y is r-connected space and K is a CW-
complex. Then S:n(K; Y)—>n(SK;SY) is onetoone onto if
dim K<2r+1 and onto if dim K=2r+1.

This follows from the fact that (2(SY), Y) is (2r +1)-connected.
We denote the suspension limit of #(X; Y) by

~(X; Y)=1lim=(S"X; S*Y)
which is an abelian group. The notation
S=:z(S"X; S"Y)—-2°(X; Y)

indicates the projection to the limit. (1.4) shows that if X is a
finite dimensional C W-complex then the above S* is an isomorphism
for sufficiently large #. We shall also use the notation:

mi=n"(S*; S =lim7.(S™).
It follows from (1.4) that
S=: ax (S —nik
is an isomorphism for n>>k+1. We have

(1.5). Let p be an odd prime and n>4. Then =(Y;; Y} is
a cyclic group of ovder p genervated by ¢, Y=Y,. Thus the
groups =(Yy; W) and Sz(SX; Y} are Z,-modules.

The following (1.6) will be used in later.
(1.6). Let XDADB be atriple of spaces. Then the sequence
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2(A, B)-50(X, B)>0(X, 4)
of the inclusions is a fibering up to homotopy equivalence, i.e.,
2(A,B) and 9(X, B) are deformation retracts of F=2(2(X, A),
2(X,B)) and E=2(X, A); 2(X, B), 2(X, A)) respectively, and
the sequence is equivalent to the fibering F—E —g.Q(X, A). Further-
more, the inclusion i is equivalent to a fibering with a fibre
20X, A)).
For the sake of simplicity, we shall use the following notations:
2X=0'X, 2 X=002"X), 22(X, A) =20 (X, A)), k=23, -,
P =0"0:7(S'X; V) on(X; 2Y), 2'=8, k=23, -,
@11=0'0:n(CS'X, S'X; Y, B)=r(X; @*(Y, B)), k=1,2, -
The canonical imbeddings S™*C@S™*! k=0, 1, ---, define a
sequence of inclusions
S"C.QS”+1C"‘C,kan+kcgk+lsn+k+1C"'
such that the diagram
h
Sk m“(snﬁ) __S_) m+k+h(sn+k+5)
m(Sn _ =|e = |a
?*; (2 S™) il 7, (@ SkeR)
is commutative. We put

.7 Qi =202"'S™*, S™).

From the homotopy exact sequence associated with the fibering
?p:@i—S™ we have the following exact one:

S* H®
(1. 7) see=>T; (QZ) ‘p—*’ﬂi (S") —’ﬂ'iﬂ(sﬁk) —>Ti-1 (QZ) >y,
where
H(,,) =j* o F+1 ik (Sn+k) —Ti (Qhﬂsnﬂ) -7 (Qz)

for the inclusion j:@*7S~*C(@'S™*, S™) =Q;.

For an abelian group G, we denote by

(G:p)
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the p-primary component of G. Also we shall use the following

notations:
n(X:p)=@(X):p), m(X, A:p)=0(X, A):p).

We .denote by C, a class (in the sense of Serre [10]) of finite
abelian gronps with vanishing p-primary components. If G and H
are finitely generated abelian groups then a C,-isomorphism f:G—H
induces an isomorphism f:(G:p)—(H:p). For the convenience
we introduce the following theorems of C-theory from [10].

(1.8 () Assume that a pair (X, A) is 2-connected, A is
simply connected and the homology groups H.(X), H.(A) are
finitely generated for all i. If H,(X,A)eClC, for i<n, then
(X, A)eC, for i<n and Hurewicz homomorphism t :n.(X, A)
—H.(X, A) is a C, isomorphism.

(ii) Assume that spaces X and Y are 2-connected and H,(X),
H.(Y) are finitely generated for all i. Let f:X—Y be a map.
Then the following two conditions are equivalent:

¥ f*:H(Y; Z,)—>H(X; Z,) is an epimorphism for i<n
and a monomorphism for 1<n;

) fy m(X)—m(Y) is a Crisomorphism for i<n and a C,
epimorphism for i=n.

Serre also obtained the following (1.9) in [10].

(1.9)  The correspondence (a, B)—>Sa+ [tym, tam)°B gives a Cy
isomorphism 7;(5*™ ) + 2 (S™ ) =m0, (S*™), where [,] indicates
Whitehead product. Thus we have a dirvect sum decomposition:

Ti+1 (SZm : 17) = 7; (SZ"'—I : j)) +7ti+1(S4m_1 : p)
As a corollary we have
1.10). @) S:m(S™':p)—>mn(S™: p) is a monomorphism and
(kezm-1) °“% 2

for arbitary integer k and acn,(S™1:p).
(ii) For any element y of n;..(S™ : D) there exists an element
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a of m(S™:p) such that Sy=S5°a.

(i) follows from (1.9) and (1.3), (iv). (ii) follows from (1.9)
and S[,]=0.

Theorem 1.1. Let X be a 2-connected space having finitely
generated homology groups H,(X) for alli. Let w,.c H~'(X; Z,),
i1=1,2, -, 7, 4<m<n,<<---<<n,, be elements on which Bockstein
operators 8/q;, g;=p", are defined. Let Z,{u;, (6/q)u;} be a free
Zy-module with a base {u;, (6/q)u:, i=1,---,7}. Assume that the
natural homomorphism Z,{u., (6/q )u}y—H*(X; Z,) is an isomoy-
phism for dimension less than n, and a monomorphism for dimen-
sion n,. Then there exist a CW-complex K and a map f: K—X
satisfying the following conditions. There is a sequence » = K,C
K,c---cK,=K of subcomplexes of K such that K,., is a mapping
cone of a map g::Y,; =K, i=0,1,-,v—1. fy:m(K)—>n;(X)
is a Cyisomorphism for j<<n, and C,epimorphism for j=n,.

Proof. The case =0 is trivial. Assume that #.<#n.,=-=n,
and a complex K'=K, and a map f.,=f": K,—X are constructed such
that the conditions of the theorem are satisfied. By use of a mapping
cylinder of f’, we may assume that K,CX. Then we have H/(X,
K. Z)y~H (X, K,); Z,) for j<n,. Applying (1.8), (i) we see
that =, -.(2(X, K,)) is finite and the p-primary component of it is
isomorphic to Z,  +--+Z,. Then there exist maps g/:Y;'—
2(X, K,) the restrictions of which on S$"' represent generators of
Z,,. Put g;=pog! for the fibering p:2(X, K,)—K,. and construct
K,.. Then f, is naturally extended over f: K,—X and the required
conditions are verified without difficulties. By induction on 7 the
theorem is proved. q. e. d.

Theorem 1.2. Let K be a complex having a structure as in
Theorem 1.1. Assume that a map f:X—Y induces C,isomor-
phisms fy:n;(X)—n;(Y) for j<N and a C,epimorphism f. for
j=N. Then fy:n(K; X)—n(K; Y) is one-to-one onto if dim K<<N
and onto if dim K= N.
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Proof. Without loss of generality, we may assume that f is
a fibering. Let F be a fibre. Then the assumption is equivalent
to m;(F)eC, for j<<N. First consider the case »r=1, K=Y,
g=p'. In Puppe’s sequence

(Y (FY (V2 F) s s (YYD o (F)

(g)*a=qa=p'a. If m,(F), m.(F)EC,, then (ge)* are isomor-
phisms. Thus =(Y%; F) =0 for n<<N. Then the theorem is proved
for =1 by the exactness of the sequence

A(Yi; F)—n(Yi; X)Iom(Ye YY) (Yi F).

Assume that the theorem is true for K,,. Let K=K,=
K, ,U,CY;, and consider the following diagram

Sg* oF * g*
7#(SK,..; X)—=(Y " s X)—n(K; X)—n(K,; X)—=(Yy XD
lf* lf* lf* lf* 1f*
Sg* z* i* g*
2(SK,—; V)2 5n (Y V) o (K; V) -on(Ko; Y)Sn(Y2; V).

Remark that we can apply the five lemma to the diagram even if some
of these homotopy sets do not form groups. Then we have that the
theorem is true for K=K, and proved by induction on 7.

Corollary 1.3. In Theorem 1.1. assume further that the
natural homomorphism into H*(X; Z,) is an isomorphism for
dimension n, and a monomorphism for dimension n,+1. Then
complexes K satisfying the conditions of Theorem 1.1 are homo-
topy equivalent to each other and the map f is unique up to
homotopy equivalences.

Proof. Let f:K—X and f': K'=X satisfy the conditions of
Theorem 1.1. Apply (1.8), (ii) and Theorem 1.2 to these maps, then
we see that fy:n(K"; K)—»=a(K"; X) and f,:n(K"; K')—»=z(K'"; X)
are one-to-one onto for K”"=K or =K'. Then f;'{f’} gives a
homotopy equivalence g:K'—K. If K=K’, then this shows that
f is unique up to homotopy equivalences of K in itself.
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2. Double suspensions.

We shall recall the results of [13] on S?:7;(5*1: p)— w2 (S¥™1: p)
and add some necessary properties.

Let S:=S"Ue*J---Ue"U--- be the reduced product complex
[6] of S™ and S7;=S"UJ---Ue" the kn-skeleton of SZ. The canonical
inclusion of S™ into £S”*! is extended over S one-to-one way and
continuously, and the resultant is a (singular) homotopy equivalence:
S2—0S5", Thus we may consider that

Sz=05", H*(@S™) =H*(S2), m:(Sz, St) = (2S™*, S).
The following (2.1), (2.2) and (2. 3) are main results of [13].

(2.1) Thereis a map h,: (ST, Si")— (25™+1, x) which induces
C yisomorphisms hys :7:(SZ, S —m:(2S5*™+Y) for all ¢ [13: Theorem
2.11D)]. h,s is an isomorphism if i<2mp+2m—1.
(2.2) There exist a space Y and maps h:(2S;", S™)—(Y, *)
and ©:95* Y such that the maps induce C,isomorphisms
h* : 71;(93%@], SZm—l)_)n.’_(Y)
and 1y m(@S™ D) >z, (Y) (isomorphic if i<<dmp—4)

for all i [13: Proposition (7.5), (7.3)'].
(2.3) Let f:S™ =S pe q map of degree p. Then there

exists a homomorphism v such that the diagram

s (1) S (S s 1 (St T (5P
=|e [ |
(@S 27 st 083y 2m (ST, S 2 (V)
is commutative (see the proof of [13: Theorem (8.3)]).
Put
Q.=202S%,, S™) and Q,=2(2*S™, 2S;").

By use of (1.8), we have the following (2.1)" and (2.2)" from
(2.1) and (2.2).
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(2.1) H*(@Qu: Z,) and H*(@'S™+; Z,) are naturally isomor-
Phic. There is a C risomorphism Iy= 0270 by 027: 71,(Qn)—>m:45(S2*+Y)
for all i (an isomorphism for i<2mp+2m—3), hence an isomor-
phism Iy:7,(Qn:p)~nis(S™* . p) for all i.

(2.2) H*@Qn; Z,) and H*(2*S*™; Z,) are naturally isomor-
bhic. ii'ohy gives a C,isomorphism Ig:m(@n)—mia(S*™Y)  for
i<<dmp—5 and an isomorphism I;:n.(Q : p)~nn(S*™1:p) for
all 1.

By use of (1.3), (ii), we have the following (2.1)" and (2.2)".

(2. 1)” Io(doﬁ) :Iodosaﬁ,

(ST p).
(2.1)" Ij(aop) =IaoS*B, BEm;(S:p)

Apply (1.6) to the triple (2:S*+, 2S;™, S*™ '), then we have
a sequence

2’

7

2. 4) Q. Qs Q,

of inclusions equivalent to a fibering, and we have an exact sequence

@A) (@) o (@) (@) o (@) o
Put
A4=1:0I5", I'=ix I and I=1,iy,
then we have the following exact sequence.
@.5) (ST ) orman (ST ) Lo, (@ )
Lorisa (ST ),

where the first two groups are considered to be Z if {=2mp—3.
It follows form (2.1)" and (2.2)"

(2.6). I(acp)=IacS’B and I'(a’°S*B)=I'a’B for B=n;(S:p).
From (2.3) and (1.10), (i) we have

(2.7) The homomorphism 4 of (2.5) satisfies the relation
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A4S = (Ptomp-1) ca=pa
Jor acnn(S™7: D) (Eronp1(S™Y) if i=2mp—3).
As a consequence of (2.5), (2.7) and (1.7), we have

(2.8). m(@m*:p)=0 for i<2mp—3, ~Z, for i=2mp—3,
S?: 7 (SN P~ i (SPH1 D)

is an isomorphism for i<2mp—3, an epimorphism for i=2mp—3
and S amer (S P)= (=i p) for t<2m(p—1)—2.

Furthermore Corollary (8.7)" of [13] states that for a mapping

cylinder S;™' of a map f of degree p we have an isomorphism
(2.9). m@m )~ (Si, S*™Y)  for (<<2mp*—A4.

Since #;(Q3"™Y) ~mi (23S, SN~y (225, PSS e,
for i<2mp—3, we have by (1.8), (i)
(2. 8) ’ Z* . Hi+1 (stzmﬂ; Zp)zHHl (S2m—1; p)
dnd (.Qki) k . H;—k+1(gk+zs2m+1; ZP)%Hi—k-fl(.QkSZm—l; Z;)
for i<2mp—3.

Lemma 2.1. S%:m-20,(S™7°: p) = mtam-14:(S™ 711 )
is an epimorphism if m>2 and t<2m(p—1)—2.

Proof. 1t is sufficient to prove the triviality of the homo-
morphism

H® 100 (S™7: D)= 12, (@72 1)

in"the exact sequence (1. 7). By use of (2.8), (2.9) and the fact (zf:
) =0 for 0<<t<<2p—3, we see that mum—s+:(Q" " P) =manss. (SF™ 7,
SHm-Dr-1 = if 2m—2+1+£2(m—1)p—1 and 2m—2+t<2(m—1)p
—1+2p—3. Thus the lemma is proved except the case {=2(m—1)
p—(2m—1), in which case the above homomorphism is equivalent
to mod p Hopf homomorphism [14] and is trivial if m—1>1 by [7],
[11]. q.e. d.

Theorem 2.2. Assume that i<2p*m—4, then there exists an
exact sequence
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0712 (™) ® Z, o (@1 1)L Tor (e (S, Z,)—0
which splits, i.e.,
(R p) =~ 75 smprs@ Zyp + TOr (' —smpra, Z5)
if i<2mp*—5.
Proof. Let j=i+1, i+2 and consider the homomorphisms 4:

7+ (S84 p)—7,;(S™1: p) in the exact sequence (2.5), then we

have an exact sequence
0—Coker 4(j =i +2)—m (@i *: p)—>Ker4(j=i+1)—0.

By the assumption and (2.8), S*:7;(S*™: p)—>m;(S™+*: p) is an
isomorphism for j=7+1. Then it follows from the relation (2.7)
that Ker4(j=i+1) =S*Ker fx, where f«(a)=pa for ac€mu (S
p). Thus Kerd(j=i+1) =S’Ker fyx =Tor (m:i+s(5*™*"), Z,). Similarly
we have Coker 4(j=7+4+2) =n+.(S"™DR®Z, by Lemma 2.1. Then
the exactness of the sequence of the theorem is proved.

For the splitting of the sequence, by (2.9), it is sufficient to
prove that m;+,(S7™, S*™') is a Z,-module. Consider the following
commutative and exact diagram:

““"M‘H(Szm_l: P) &’ﬂﬁz(Szm_l:P)ﬁ’ﬂ'iﬂ(S}M—Ir Szmp_l)i’"'
l sn 1 sn l sn
F. j ?

°"—>7'L',~+2+;.(S": p) —*>7r;+2+h(8": P) 'ﬁ)ﬂi+2+h(S?y Sm: P) —>y
where n=2pm—1-+h and F=S"f. Let h be sufficiently large, then
S* is an isomorphism of 74,(S*™:p) for i<<2mp*—5. By the five
lemma, m;+,(S7™*71, S*™1) is isomorphic to mire+s(SE, S™) ~mi2:4(S2/S™)
=miraes(Y3) which is a Z,module by (1.5). This completes the
proof of the theorem.

Lemma 2.3. Let a, be a non-zero element of H*™3(Q; Z,),
then

H*(@Q ») =A4(a)RZ,[ da,)
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for dimensions less than p(2mp—2)—2, where 4 stands for the
Bockstein operator 6/p.

Proof. By (2.2)" and (2.8)', H*(Qn; Z,)~H*(S*3; Z,) for
dimensions less than p(2mp—2) —2. By (2.1)" and (2.8)', H*(Q,.;
Z,)~H*(SZ*?*, Z,) for dimensions less than 2mp’—3. By (2.8)
and (1.8), H™=*(@"; Z,)~Z, and da,#0. Consider the spectral
sequence associated with the fibering (2.4), then the transgression
is trivial for 1Qa, hence the spectral sequence is trivial for dimen-
sions <<p(2mp—2)—2. Then the lemma follows easily. q. e. d.

A similar discussion yields us to verify H*(2"@Q™*; Z,) by use
of (2.8)".

Corollary 2.4. H*(2*Q™; Z,) =A(s®ay)QRZ,[ 46™a,] for di-
menstion less than p(2mp—2k—2) —2, where ¢* indicates the 2k
fold iterated suspensions in cohomology. H*(Q*'@Q; Z,)=
Z,[6*a) QA(d6™a,) for dimensions less than p(2mp—2k—2).

Lemma 2.5. Assume that 2mp—h>6. Then there exists a
map g:Y™ ' '—0"Qim, uniquely up to homotopy equivalences,
such that g* is an isomorphism of H*™3(; Z,). For such a
map g the following diagram is commutative for some integers
%, y#0(mod p):

m (ST ) =T m (Y3 ) T (ST )
lg*
x- Sh*Z - (,Qh ng-l . p) ¥ Sh,+3

| zI.Q"(=id. if h=0)

Thi+nta (Szmp_l )] -I_,> 7ti+h(Q§m_l D) '—I" Ti+h+s (Szm‘Hl : P) .

Proof. The existence and the uniqueness of g follow from
Corollary 2.4, Theorem 1.1 and Corollary 1.3. Consider the case
h=0 and put go=g|S*3. The class {gs is a generator of mum,—s
@ 1:p)~Z,. By (2.1) and (2.4), i :mmp-s(Q5)—>mamp—s (™)
is a C,epimorphism. Thus we may assume that g(5"™°)cC@Q..
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Then there is a map g:S**—@Q, such that jog: Y™ -Qi"1-Q,
is homotopic to gom:Y?*-»S*»2.Q . We have obtained the

following commutative diagram:

m (S o (Y3 S, (S0 )
l gox l 43 l 2%
7 (@) o m (@)~ (@)
By (2.2), I1{go} =%Xtsms-1 for some x#0 (mod p). It is easily seen
that g* is an isomorphism of H*"”*(; Z,). Thus Iy{g} =Yt
for some y#0(mod p). Then the commutativity of the diagram
of the lemma is verified by use of (2.6). In the case >0, g
defines a map g': V22— Q" by the isomorphism 2":z(Y?2™1; Qim-1)
~n(Yimh2, 0*Qi™ ). This g’ satisfies the assumption for A2=0.
Then the conclusion for g is proved by use of (1.3), (ii) q.e.d.
Finally we shall make some remarks for the case m=1. Let X,
be a 3-connective fibre space over S°. The fibering induces a map:
2 X;—0Q;=02(2*S%, S) which induces isomorphisms of homotopy
groups.
(2.10) £2°X, is singular homotopy equivalent to @i, and
7:(QF) ~mi43(Xs) for all i.

Then the sequence (2.5) becomes
’ 2p+1. 4 2p-1., T, T
(2. 11) "'—>TE;+4(S .p)_>7t+2(s .p)_)ﬂ,‘+3(X3:p)_>
mira (S p)—> e,
Since m:43(X5)~m4s(S*) for i>>0, we have the following exact
sequence.

(2. 11) "°—’7t,-+4(sz'+1 : P)i’mn(sz'_l : p)_G’ﬂ-’Ha(Sa: p)ﬂ’
s (S¥H: pY—seee, 1=0.

In general H, is defined by
Hy s (S7) ~r, (ST 25 i (ST~ a (S04,
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and has the following properties:

(2.12), (i) H,(a°SB)=H,acSB,
(ii) H,=IoH®:7;;(S™; p)—mio (™11 D)
_)ﬂi+1<82mp+l : [)) .
The sequence (2.11)" is also obtained as follows. 2X; is a 2-
connective fibre space over £S%® The inclusion of S, into 2S5

induces a 2-connective fibering X'—S;_,. It is computed that H*(X’;
Zy)~H*(S**;, Z,). By use of (1.8), we have a map

g:8¥ 1= X'
which induces C,-isomorphisms g :m;(S* ) —m,(X’). From the homo-
topy exact sequence of the pair (2S3 Si.,), we have the following
exact sequence:
a -
e 5 (5%, S30) o s (X)) o sz (9 Ke) —> oo,

By use of (2.1), (2.10) and the above homomorphism g. we
have the exact sequences (2. 11)" and (2. 11), where G is equivalent
to 7xog%. Thus G satisfies

G(aoB) = GaoSB.
In particular
(2.13) G is given by the formula G(8) =ay(3)°SB, BE . (S¥1:
D), for some generator c,(3) of n,(S*:p)~Z,.

If S?8=0, then SG(B) =Say(3)S*3=0. By (1.10), (i), G(B)
=0. By the exactness of the sequence (2.11) we have

Lemma 2.6. If S$*3=0 for pEm(S*?:p), then B is in the
image of A:mii(S¥:p)—mi(S¥1:p), [18: Lemma 13.7].

As an analogy of Lemma 2.5 we have

Lemma 2.7. There exists a map g:Y'—X,s, uniquely up
to homotopy equivalences, which induces an isomorphism g* of

H*»( ; Z,). For such a map g, the following diagram is com-
mutative for some integers x, y==0 (mod p).
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ri(§#71: ) Do (V¥ 9) P (%2 1)

{S
=l ma(YPp) 7S
v 7 &x 7 v
(8?71 p)— i (Xs: p) ——ma (S D).
G Hp
~ l.ﬁ* P
7'E,'+1(Ss: p).

2m—1

3. Cohomology of Q3
The main purpose of this section is to prove the fol owing

Theorem 3.1. There are elements a,c H*+%@¢-0-3(Qir-1. 7.,
1=0,1, ---, k—1, such that

H*(@Q™; Z,) =4(ay, ay, -+, @) QR Z, [ dao, day, -+, dai,]
for dimensions less than p(2mp—2)—2 and the relations
Pa,=m+i+Daw, and P'da,=(m-+i)4a:+

hold for i=0,1, ---, k—2. (k<<mp).
We prepare the following lemmas.

Lemma 3.2. Let p:E—B be a fibre space with a fibre
F. Assume that E, F are arcwise connected and B is simply
connected having finitely generated homology groups. Let u.,
weH*(B; Z,) and w,eH*(E; Z,) be of odd dimensionlities
and %y, ys€H*(B; Z,) and z€ H*(E; Z,) be of even ones. If
H*(B; Z,) =tta, Vel RQ Z,[%y, ¥5s] for dimensions less than N,
H*(E; Z,) =A(p*va, w\)QR Z,[p*ys, 2.] for dimensions less than
N—1 and if p*(u.) =p*(xy) =0, then we have H*(F; Z,) =A(s%y,
*w)QZ,[otha, 1*2.] for dimensions less than Min(N—2, p-deg
(ouo) —1).

Proof. Let {E,} be the cohomology spectral sequence associated
with the fibering. Then E,=H*(B; Z,)QH*(F; Z,) and E.. is
associated to H*(E; Z,). Consider the following formal spectral
sequence {'E,}. Put B'=A(uq, vs)RZ,[%xy, ¥s] and F'=A(exy, i*w>)
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RZ,[ota, t*2,) for all dimensions. {'E,} is a spectral sequence
determined by the conditions: 'E,=B'QF’, 'd,=0 for the generators
except 'd,(1Q o) =1, X1, 'd,(1RQ0oxy) =2,xQ1 and 'd, is anti-
derivative. Then 'E, are computed easily, in particular we have
"E.=40sR®1, 1&i*ws, #.Q (ctta)’HNRZ,[ ¥:Q1, 1Q1*2., 1Q (eua)’].
‘We consider also a spectral sequence {E,} determined by the condi-
tions: E!*=E?»* and d,=d, for p+q<<N,, Et'=E?* for p+q=N,
and E?"=0 for p+q>N,, where N,=Min(N—1, p-degon.). Remark
that E#*C E?* for p+q=N,. Let f,:'E,—E,be a homomorphism which
is given by the correspondence of the generators of the same symbols.
Then we see that f, defines a homomorphism f: {E,}— {E,} of the
spectral sequences such that f,:’E?°—E?° are isomorphisms for
P<N,+1 and f..:"E%"—E?”* are isomorphism for p+g<<N,. Apply
the (cohomological) comparision theorem [20] to the homomorphism
f, then we obtain that f,:'E3*—E?2’ are isomorphisms for g<<N,—1.
Thus H*(F; Z,)=F' for dimensions less than N,—1=Min(N—2,
p-degou,—1). g. e. d.

Corollary 3.3. Let X be an arcwise connected and simply
connected topological space. Assume that H*(X; Z,) =A(u.)R
Z,[xs] for dimensions less than N. Then H*(QX; Z,)=A4(ovs)
RZ,[ou,) for dimensions less than Min(N—2, p-degou,—1).

Let K,... be an Eilenberg-MacLane space of type (Z,2m—1)

1

which is so chosen that K., contains S?"! and the inclusion of

S?m1 represents a generator of my, 1(Kim1)=~Z. Put Xym1=02Kom,
S*1), Then X,n: is a (2m—1)-connective fibre space over S*"!
and there are two fiberings:
B.1), (1) Xima—S™' with a fibre QK= Koo,
(ii) 'S™ 'Ky with a fibre Xopm,,

where 'S™'=0(Kyn-1; Kim-1, S™ 1) DS*™? (deformation retract).

Lemma 3.4. Let o: H (Kyn1; Z,)—>H' 7 (Xoma; Z,), j#2m—1,
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be the suspemsion homomorphism with respect to the fibering
(3.1), (Gi) and let ue H™'(Kyn1; Z,) be the fundamental class.
Then we have

H*(Xon; Zo) =Z,[6P™ ', 6 P ] QA6 dP™ 1, 6P 1),

where P, P’ are admissible cohomological operations A%Pf5-.-
PP of excess e=>)i1(2(am—p a) —e) +2a,<2m—2,
deg(P'u) is odd and deg(P’u) is even.

Proof. Consider the spectral sequence {E,} associated with the
fibering (3.1), (i). E,=H*(S8™"; Z,)QH*(Kyns; Z,). By Cartan
3], H*(Koms; Z,) =2Z,[v, P'v]R4(LP’v) for the fundamental class
ve H*™* Obviously, den1(1Qv) =51 for a generator s of H™!
(S*1; Z,) and d,(1QP) =d,(1QP'v) =0. It follows that E*=
Z,[1Qv?, 1QPv] RA(sQRQv*, 1QP’v). It is verfied without difficulty
that 1Qv’=1R%P™ v, 1Q P'v and 1Q P’'v correspond to sP™'u,
¢P'u and ¢%P’u respectively. Then it is sufficient to prove that the
element ¢4%P™u is an independent generator. To prove this, we
apply Lemma 3.1 to the fibering (3.1), (ii). Then we see that
the lemma is true for dimensions less than p-deg(cP'u) —2=
p(2m+2p—4)—2. This completes the proof since deg(sdP™'u) =
p(@2m—2) +1.

Lemma 3.5. Let k=2, then Theorem 3.1 holds for dimen-
sions less than p(2m+2p—4)—3. In particular the relations
Play=m+1)a, and P'da,=mda, hold in H*(Q™*; Z,).

Proof. Consider a (2m+3)-connective fibre space X,n+s over
S#+3 constructed as above. Then 2*X,n+s is a (2m—1)-connective
fibre space over £'S™+ from which a (2m—1)-connective fibre space
Xim: over S is induced by the inclusion of S**! into 24S¥™+3,
It is easy to see that the fiberings induce a homotopy equivalence:

202 Xomrs, Xom-1) —Qm =02 S, Sy,

By Lemma 3.4, we have
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H*(Xoma; Z,) =Z,[6P™ 1, 6 P ] QA0 dP™ 1, 6P ut)
and  H*(Xuwss; Z,) =Z,[6P™'w, o P'w] Q4(c4P™ w, e P'w),

where ue H™ ' and we H*** are the fundamental classes, e(/),
e(D<<2m—2 and e(I"), e(J)<2m+2. Apply Corollary 3.3 to
Xome: four times, then we have H*(Q*Xonis; Z,) =Z,[8*P™ W, *P"'w)
RA(AP™w, °*P'w) for dimensions less than p-deg(s*P'w)—1
=p(2m+2p—4) —1. By checking the excesses of I’ and J', we see
that

H* (@ Xomis; Zy) =Z,[a"P™w(j=1,0, 1), o"P'w]
®R4(PAP™w(j=1,0, —1), " P'w)

for dimensions less than p(2p+2m—4)—2. It follows from the
naturality of ! with respect to the suspensions that *(¢"P'w)
=¢%P'uy for the injection homomorphism *: H*(2'X,nes; Z,)—
H*(Xom1; Z,). The same is true for P, AP™ and P’. If j=0,
1, then *(PP™ w) =1*(6*4P™ w) =0 since P'u=0 for t>m—1.

The inclusion 7:X,n1—2'X:mss is equivalent to a fibering which
has a fibre 2(2'X,sm+s, Xom-1). Apply Lemma 3.2 to the fibering, then
we have

H*(Qim_l; Zp) = H*<Q(~Q4X2m+3> Xom-1); Z,)
=4(*P™w, * PP W)RZ, [ 4P™ w, 6* AP™* w)

for dimensions less than p(2m+2p—4)—3. Put a,=6"P"w and
a;=c"P™w, then day=6"4P™w and da,=s"4P™"'w. The relations
of the lemma follow from Adem’s relations P'P" = (m+1)P™* and
PUAP™ =mAP™ + P4, q. e. d.
Applying (1.6) to the triple (@*S>"+#-1 g St G1) we
have
(8.2). There is a sequence of inclusions Q- Qs
QY equivalent to a fibering.

Here remark that 2(2'X, 2'4) is homeomorphic to £'*'(X, A).

Proof of Theorem 3.1. Lemma 2.3 shows that the theorem
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is true for #=1. Let k>1 and assume that the theorem is true
for @' of h<<k. Consider the spectral sequence {E,} associated
with the fibering (3.2) of the case h=k—1. Then E,=H*(Q**
Qi Z)RQ H* QNS5 Z,) = (4(6"a)) @ Z,[ 46" *a] ) ® (4(as, -,
Qi) R Z, [ da, -+, daw_,)) for dimensions less than p(2mp—2) —2, by
the assumption and Corollary 2.4. It follows that

E,=E_~H*QW"; Z,) =4(ao, -, @) QZ,[day, +++, das-,)

for dimensions lass than p(2mp—2) —2, where i*a;=a;, j=0, -, k—2
and a,;=j**a;. This proves the first assertion of the theorem.
We remark that the generators a; are chosen as above inductively.
Then we have, with respect to the inclusions ¢ and j of (3.2),

i*a;=a;, j=0, -, h—1 and a,=j*s™a;, l=h, -, k—1.

In particular, @;=j*s%a;.,, j=1, --, k—1, for the inclusion j:Qi*
—2*Q+}, By the assumption the relations Pa) ;= ((m+1) —(j—1)
+1)a; and Pda; ,=((m+1)—(j—1))da; hold in H*(QW; Z,).
Then, by the naturality of $', we have the relations of the theorem

for i=1, :--, k—1. The relations for =0 follow from Lemma 3.5
and from that ¢*: H*(Q#*; Z,)—~H*(@Q?*; Z,) is an isomorphism
for dimensions less than dega.. q. e d.

Consider the homotopy exact sequence
(3.3).  mm (@ QD) o m (@) (@) .
associated with the fibering (3.2). It is known from the last half
of (1.6)
(3.4) There is a map d:2"7 Qa3 "'—>Qm~" such that dy: m
("t DN —m (@) is equivalent to o of (3.3).

In fact, ¢ of (3.2) is equivalent to a fibreing with a fibre
L2(Q%7', @' and the fibre is homotopy equivalent to 2%+ Qi+ -1,

Proposition 3.6. Assume that k(p—1)<<mp—1. There exists
a sequence of finite CW-complexes K(m,j), j=1,2, -, k, satisfy-
ing the following conditions:
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(1). K@m,1)=Y2 For 1<j<<k, K(m,j+1) is a mapping-
cone of amap h;: YD K(m, 7). Thus K(m,j+1)/K(@m, j)
— Yme-22i0-n,

(ii). There exists a map G:K(m, B)—Q=* such that G(K(m,
NHc@rt and G*: H*(Qir; Z,)—-H*(K(m, k); Z,) is an isomor-
phism for dimensions less than 4mp—3.

(iii). Put G,=G|K(m,j):K(m,j)—Q". Then there exist
maps g and g' such that the following diagram is homotopy
commutative:

Y3 s K m, ) K (m, j 4+ 1) Y-

lg’ lGJ le lg
emrents @pt s @z Loovren,

The maps g and g’ satisfy Lemma 2.5.
This follows from Theorem 1.1 and Theorem 3. 1.
For the case m=1, the following Propositions 3.7 and 3.8 will

be used in place of Theorem 3.1 and Proposition 3. 6.
(2.10) is easily generalized to

(3.5). "' Xy is singular homotopy equivalent to Qi and
”i(Q;k)%ﬂthu(szﬂ) f07’ all 3.
We have the following commutative and exact diagram.
7+3(Xs) LA s (22 X5)
P/*7 lpﬁ* 2P 3\
] 2

(3.6) - mirs(QD L5 711s(S) 2 i1 (88 oo s (QD) -+,
S? H®
\ zI.QZ //7

7'L'¢+5(S§)

where ps and 2P are isomorphisms for 7>>0.

From Lemma 3.4 and Corollary 3.3 it follows

Proposition 3.7. H* (2% Xoia; Z,) =Z,ay, a1+, ax1) Q4(da,,
v, daw-y) for dimensions less than 4p°—2 where the elements
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a,€ H¥+ve-De(gi2 X, Z,) satisfy the relations
Pa,=G+2a+ and P'da;=((G+1)da;. .

Proposition 3.8. There exists a complex K=Y%J,CY3,
h:Y93Y2 and there exists a map G:(SK, Y¥)— (2*X,, X;)
inducing an isomorphism of H*( ; Z,) for dimensions less than
4p—1. Put g=G|Y%** then there exist maps g'" and g' such
that the following diagrams are homotopy commutative.

vy yra Lok K -Ssyye
N
@ X, —oX,,  oX@.

The maps g" and g’ satisfy Lemma 2.5 and g does Lemma 2.7.

4. Homotopy of Moore spaces.

We denote
m(Y,; Y) =n*(Y3* YY), m(Y,; S)=»(Y3;*; S™
and 7 (Y,)==(S"*; Y}).

These groups are Z,modules by (1.5). Thus we have the
following split exact sequences:

@D, @  0-riu(Yy $)I5mi(Y,; Y I501(Y,; S)—0,
() 0= (V) omi(Vy; Yy onia(¥,)—0,
(i) 0—ma®Z (V) Z5Tor (, Z,)—0,
(V) 0=mQZ (Y S)~Tor(mis, Z,)—0.

The sum #n5(Y,; Y,)=>un(Y,; Y,) forms a Z,algebra with
the multiplication given by the composition. Yamamoto has obtained
the following relations.

(4.2) Let o=rn*i,(0)En’,(Y,; Y,) be the class of the com-
position ton:Y 'Yy and let acns, .,(Y,; Y,)~Z, be a generator
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which is characterized by the coefficient 1 mod p of its functional
Properation. Then the relations
06=0 and 2ada=a’0+édd’
hold [19: proposition 5.1].
The elements
ay=mnxt* (&) =*my (@) Exdigv, k=1,2, -,
coincide with those in [17] and [16]. Recently Adams has proved
(4.3). If k=a-p*, a£0 (mod p), then a, cannot be divisible by
P In particular o cannot be divisible by p if k=0 (mod p).
In fact, he has defined a homomorphism e:nd,_11—>®/Z which
has the value —(1/p) mod 1 on a, [1: Proposition 12.7]. On the
other hand each image of ¢ is of a form z/m(k(p—1)), z€Z,
where m(k(p—1)) =b-p*** for some integer 4==0 (mod p) [1: Pro-

position 7.9]. Then (4.2) follows immediately.
It follows from (4.3) and (4.1)

(4.4) da'o=n*i4(a)#0 if k=£0 (mod p).
From this Yamamoto has proved the following
(4.5). Let Z,(8,a) be a subalgebra of =3 (Y,; Y,) generated
by 6 and a, then the relations in Z,(8, a) are generated by those
in (4.2), and Z,(8,a) has a Zybase {1, 9, o, a*d, o 0, o' 0ad;
k=12, -} [19: Theorem III].

Every element of Z,(d, ) becomes a linear combination of the
above base by use of the following relations (4. 6) which is obtained
from (4.2).

(4.6) ada’=t-atVa+ A—1t)a's,
a’ba’d =0a'da’ =1 a'*' 0ad.

Now, we consider unstable cases. By (2. 8) there exists uniquely
an element a;(3) €7, (S*: p)=~Z, such that

S, (3) = Emsps .
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We denote that aa (1) =S"*ay(3) E mpa2y_s(S™: p) for n>3. Since
P a(3) =0, there exists an extension @ (3) €x(Y37#+; S*) of a(3),
ie., *(@(3))=a1(3). Consider peom(3). Since S® is an H-space
we have puom(3)=p @ (3) =a(3)opey=0. Thus there exists a
coextension a(4) €x(Y¥**; Y};) of & (3), in the sense of [18]. Since
w5l ¥ (a(4)) =i*ne (@(4)) =1*Sam(3) =Sy (3) =ay(4), and since a,=
nxi* () characterizes a, we have S“a(4) =a. We have obtained

(4.7). There exists an element a(4) of =n(Yy**; Y;) which is
a coextension of a(3) and S”a(4) =a. nya(4) =Sa;(3) and i*= (3)
:6\51(3).
We put for #>>4 and for k=1, 2, --- by induction on k:
an) =8S""*a(d) =a*(n), ) =a) ca’*(n+2p—2)
and a(n) =n,* (@), a:(3) =& (3) e (t*a' (20 +1)).
Obviously, S*a*(n) =af, S*a,(#) =a, and Sa.(3) =a,(4).

Lemma 4.1. Let t>0. If an element y&n=; is in the image
of S mi1ap3(S¥* ) —ns, then ayr=0. In particular, o,a,=0.

Proof. a;, is an image of the stable J-homomorphism [ :m;,s
(50(e=))—>n3,5s. Let ¥ be an element of 7w s(S¥*) such that
S°r'=r and BEm,s(SO(e0)) satisty J(B) =ai. Then air=J(Bor).
Since m42,-5(S¥*®) is finite, Boy’ is of finite order. Since ma, s+
(SO(e0))=~Z,Z, or 0, we have 2(Bo7") =0 and 2(aur) =p(ary) =0.
Thus a;y=0. Since a,=S"@:(3), aya,=0. q. e d.

The class of the composition Zox:Y;'—Y7 is denote by o(n)
ex(Y3y*; YD, n>3. Obviously

6(m)od(n—1)=0 for n>4.
We shall use the following notations:
a(n) =(—1)"' 8" (3), &'d(n) =a* ) ed(n+2k(p—1)—1),
0 (n) =6(m)oat (n—1), a’da’(n) =a’d(n)oa’ (n+2s(p—1) —2),

etc.
In general, if # is a coextension of 7 then 70SB8 is a coextension
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of yof and S7 is a coextension of —y, and if # and 7 are coexten-
sions of the same element y then 7 —7, is in the 7,-image. For
example, «(n) is a coextension of @, (n—1). nea(R) =a(n).

Proposition 4.2. The second relation of (4.1) holds for
unstable case n=6, i.e.,

2-aba(n) =dd6(n) +8a*(n) for n>>6.

Proof. ada(n) and &’0(n) are coextensions of a(n—1)cda
(n+2p—3) and &y(n—1)cad(n+2p—3) respectively. We have

a(n—1)cda(n+2p—3) =—i*rya(n—1) onea(n+2p—4)
=ay(n—1)oca(n+2p—4)

and this is an element of z*{ax(n—1), ay(n+4p—4), Dtnrsys} by
Proposition 1.9 of [18]. Here we remark that a,(n—1) ca(n+2p—4)
=0 for n>>6 since this is a stable case. Thus
a(n—1)oda(n+2p—3) =r*(x-as(n—1))

for some x=Z,. We have also

am(n—1)cad(n+2p—3) = —nya(n—1) on*i*a(n+2p—3)

=—n**red’(n—1) = —n*a,(n—1).

The proposition is true for sufficiently large » by (4.2). Then we
see that x=—1/2 and that 2-ada(#) and a’3(n) are coextensions
of the same element —z*a,(2—1). It follows that 2:ada(n) —a?d(n)
is in Z,x (Y3 S ). It is computed easily that =(Y3*%; S*1)
is generated by n.a’(n—1). Thus 2 -ada(n) —a?é(n) =y iymya®
(n—1) =y-0a’(n) for some yc=Z,. Taking » sufficiently large, we
see that y=1. q. e. d.

Corollary 4.3. The relations (4.6) hold for unstable case
n=>6.

Proposition 4.4. (i) i*a’En-n1(Y,) and i*(a*0a) <
mor-n-2(Y,) do not vanish.

(ii) For n>4, i*a'!n) Emprnc-1(Y3) is a coextension of
(=D ar(n—1).
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(iii) Assume that ai.(n)ocai(n+2(k—1)(p—1)—-1)=0 for
some odd n, then there exists an element

ar(n) € wprascp-1-1(S™: p)

such that ican(n)=1*a*0a(n+1)). Thus ai(m)=S""ar(n),
m>n, and a,=S"ai(n) EnSxpr-n-1 are not divisible by p. The as-
sumption holds for n>2k-+1.

(iv) If k=0 (mod p), then by putting ai(n) = (1/k)as(n) the
assertion of (iii) holds for n>6.

Proof. (i) =n*i*a’!=a'0#0 and =*i*(a''da) =a''6ad+0 by
(4.5). By the exactness of (4.1), ii) we have i*a*+#0 and
i*(a*10a) #0.

(ii) Since a(4) is a coextension of & (3), o’ (4) =acSa**(2p+1)
is a coextension of @ (3)oa**(2p+1). Then i*a*(4) is a coexten-
sion of *(@(3) o '(2p+1)) = (3) o (1*a* 1 (2p+1)) =ax(3). Thus
i*a*(n) =S"*i*a*(4) is a coextension of (—1)"*S"*a(3) =(—1"
ay(n—1).

(iii) It follows from (ii) that i*(a*0a(n+1)) = G*a'*(n+1))
oS(*rnya(n+2(k—1)(p—1)—1)) is a coextension of a(n)o
ai(n+2(k—1)(p—1)—1)=0. This means that *(a*6a) is in
IxTmtanr-D-1(S™). Choose an element a;(#) of marmen-1(S™:P) such
that 7, ar(n) =i* (@ 6a(n+1)), then the assertions of (iii), except
the last one, are verified easily. By Lemma 4.1

S"(ak_l(n) odl(n +2(k— 1) (p_ 1)) Iak_lalzwlak_IZO.

Let n=2m—1, then S~:mm 1imcr-1-2(S™ ' P)— (whecr-1y-1:P) iS an
isomorphism for 2k(p—1) —2<2m(p—1)—2, i.e., for k<m—1, by
(2.8). Thus the assumption of (iii) holds for »>2k+1.

(iv) By Corollary 4.3, n*ixai(5) =n*(1/k)isnsi*a*(5) =(1/k)
0a*0(6) =a*0ad (6) =n*i*a*0a(6). By the exactness of Puppe’s
sequence we have *ai(5)=i*a*0a(6) mod P ruc-p(Y5. It
follows from (1.5) that i*ai(n)=i*a*0a(n+1) for n>6. q.e.d.
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Proposition 4.5. The complex K(m,2) =Y ,CYimr+2-8
m>2, of Proposition 3.6 can be chosen such that the attaching
map h:Y;s Yt pepresents (m+1)0a(Cmp —2) —m- ad (2mp
—-2).

The complex K=Y*\,CY® of Proposition 3.8 can be
chosen such that the attaching map h:Yy? =Y vepresents
2-0a(2p) —ad (2D).

Proof. First remark that these elements belong to =(Y3**7%;
YD), n=2mp—2 or =2p, and the group is in stable range by (1.4).
Since the group is generated by da(#) and ad(n), {h} =x-0a(n)
+3y-ad(n) for some x,yeZ,. We may assume that %z maps S™**
into S*1. Let K=K(m,2) or =K, hy=h|S™**:S~*4_581 and
h:S™*3—S" satisfy noh=hor. Then h, and & represent x-a;(n—1)
and y-a;(n+2p—4) respectively by suitable orientations of the
speheres. Let K, be a mapping cone of h, naturally imbedded in
K as a subcomplex, then K/K, is a mapping cone of %. Given
orientations u,€ H* '(Ky; Z,), uye H™**(K,; Z,) and € H*(K/K,;
Z,), w'e H***(K/K,; Z,) by the construction of the mapping
cones, we have P'u,=x-u, and Pu=y-%. We denote by the same
symbol u,, uy, %, #'e H*(K; Z,) the elements corresponding uniquely
to the above orientations by the natural homomorphisms ¢* and =*.
Obviously du,=#%. But Adu,=—%u' since the cell CCS™*4=Sn+?4
AIAI in K is oriented with respect to one of the coordinates I, the
Bockstein operator 4 is defined with respect to the other coordinate
hence the sign appears by interchanging the coordinates. We have

the relation
x-Plane=x P'u=xy = —2xy dus=—y - AP u,.
On the other hand the relations
(m+1)Pda,=m(m~+1) da,=m- AP a,, P00

hold in Q™ '(m>2) by Theorem 3.1 and in £2*X; (m=1) by
Proposition 3.7. By use of natural isomorphism G* in Proposition
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3.6 or Proposition 3.8, we see that the same relation holds
replacing @, by #,. Since P'#+0 in K, x or y=0 (mod p) and
there is an integer z=0 (mod p) such that

zx=m+1 and zy=-—m (mod p).

If 2=1 (mod p), K is the required complex. If z=£1 (mod p),
replacing % by a representative A’ of z{h} and K by K'=Y;Uw
CY;**** we have a map f:K'— K which extends the identity of Y7
and induces isomorphisms of cohomology groups. Then f is a
homotopy equivalence and K’ is the required cpmplex. q. e. d.

Proposition 4.6. Let n>7, k>0 and let h.Y ;""" ?*-Y, be a
representative of (m—+1)oa(n) —mad(n). For the element i*a'™*
(n+2p—3) 0f mnrmcr--2(Y37®) we have

he G*a " (n+2p—3)) =(m+k) -i* (a1 0a(n)) E mpiarcr-n-2(Y5).
If n=6, the relation holds mod p- mucs-1+e(Y}).

Proof. For n>>6, we have by Corollary 4.3

*hy ((*a* (n+2p—3)) = {m+1)da(n) —ma(n)} ca**6(n+2p—3)

=(m+1)da’*d(n) —m-ada’o(n)
={m+1DEk—m(k—1)}a*W0ad(n) =a*(m+k)i*(a* " da(n)).

From the exactness of Puppe’s sequence
71'.>l<
4-8) (V) Lom, (Y Don (Y Y
it follows
h Gt *(n+2p—3))=m+k) -i*(a*0a(n))
mod P maiamcp-n—2 ( Y;) .

If #>7, the relation holds mod p:Snsars-n-3(Y3?)) which
vanishes by (1.5). q. e. d.
Lemma 4.7. Let h: X—Y be a map and let ac=n.(X) be an

element of order p such that hya=0. Let yen(YU.CX) be
a coextension of a and acx(Y*; X) an extension of a. Then
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there exists an element yi=mn(Y) such that
Pr=Jjsro and n*r=—h*=,
where j:Y—-Y U,.CX is the inclusion.

Proof. By Propositions 1.8 and 1.9 of [18] there exist elements
70, 70 € {{h}, @, pu;} such that pr=—j,y; and =*y)=h.a Since
ro=ro mod hym(X) +p (Y, ro—70=h.8+ps" for some €
71(X) and d'€rna(Y). Put ro=—1i+hed=—7)—pd then we
have

j*Toz —j*ré +j*h*5= br

and a*ro= —n¥ry —a*(pd") = —h,a. q. e. d.

Proposition 4.8. Let n>7, h:Y,**3*=Y} be a representative
of (m+1)oa(n) —mad(n) and let K=Y ;U,CY;**® be a mapping
cone of h. Assume that m+k=0 (mod p).

(1) For k=2, there exists a coextension yEn,inp-n-(K) of
* (2 0a(m+2Pp—3)) Empimee s (Y3 such that

pr=j«(@*at0a(n))  if n>T7
and p‘TEi* (i*a"'lﬁa(7)) mod p’j*ﬂzk(p_1)+5(Y;) if n="17.

(ii) For k=1, there exists a coextension rEmupimi11(K) of
i*ak'l (ﬂ +2p - 3) S5 ﬂn+2k(p—1)-2( Y;+2P-3> Such thdt

pr=—jx@t(n))  if n>7
and Prr=—7«(xa" (7)) mod p-jumucr-n+s(Y}) if n="7.
Proof. (i) Put ¢q=2k(p—1). By Corollary 4.3 the relation
*hy (% 20a(n+2p—3)) = (m+1)0a**0ad(n) —m- ada**8ad(n) =0
holds for n2>6. By the exactness of (4.8) we have
hy(@C*at?0a(n+2p—3)) € p-Snare-a(Y;7) =0 for n>7.

Thus a coextension 7 of *(a*?da(n+2p—3)) exists. Obviously
a**8a(n+2p—3) is an extension of i*(&**0a(n+2p—3)). By Lemma
4.7 there exists 1iEmn+,-2(Y;) such that pr=j.ro and #z*yo= —h.a’™?
da(n+2p—3). By use of Corollary 4.3 we have
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*ro=—{(m+1)da(n) —m-ad(n)} ca*0a(n+2p—3)
=—(m+1)oa* 0a(n) +m- ada*0a(n)
={—m+1)(k—1) +m(k—2)} a* "0ad(n)
=—n**m+k—1)a*0a(n) =n*i*a*0a(n).
Then (i) is proved by the exactness of (4.8) and p-Smuis(Y3)
=0.

(ii) By Proposition 4.6, h,(*a**(n+2p—3)) = (m+k)i*(a*?
da(n))=0. Thus there exists a coextension r of i*a*'(n+2p—3).
By Lemma 4.7 pr=j«ro and n*ro=—hyea*(n+2p—3) for some 7.
By use of Corollary 4.3 we have

a*ro=— {(m+1)da(n) —mad(n)} ca**(n+2p—3)
=—(m+1)oa* () +m- ada* ()
=—(m+1){k-a*0a(n) +(1—k)a'd(n)}
+m{(k—1)a" 0a(n) + (2—k)a'ds(n)}
=—(m+k)ad0a(n)+ (m+Ek—1)a'd(n) =—a'o(n)

= —n*i*at(n).

Then (ii) is proved by the exactness of (4.8).

5. Unstable elements of the first and the second types.

An element y of 7;(S*+': p) will be called as an unstable element

of the first type if S’»=0 and re&ImS® Consider the exact sequence
(1.7) of the case n=2m—1 and k=2:

S? H®
(5. ]_) e, (ng_l) ﬁ’”i (Sm_l) T>Ti+y (SZMH) —>7i (ng_l) ‘pi) RN

For the map d:2°Q""'—@:™" of (3.4) we have the following
commutative diagram.

Ti+3 (ng“) ﬁ’ Ti+3 (S 2m+1)
6. e e
(P P (i,

Thus we have
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(5.3). If d 2% =H®py'+0 for some 1 Snis(Qm:p), then
r=Dpx«1r s an unstable element of the first type.

Choose a complex K(m,2)=Y;2J,CY;™*=5 and a map G:
K(m, 2)—@Q7* which satisfy Proposition 3.6 and Proposition 4. 5.
Thus the map A:YXm+Dr-5 Y2m=2 represents

(m+1)0a(Cmp—2) —m-as(Cmp—2).
By Propositioh 3.6 we have a commutative diagram

7 (Y AmeD2-5) h_*) 7 (Yime-2)
(5.4) l &'« iG 1%

da
r(@QF) Tom (@Y.

For the case m=1 a complex K=Y J,CY ™ of Proposition
3.8 and the following commutative diagram will be also considered.

Sh
7o (V) s (Y34

(5. 4)' l g% » lg*
743 (@) —*>1r,-+3 (X)~m(@3).
Theorem 5.1. (i) Let fEr,(S¥™*7") be an element of order
p. Then there exists an element v of mis(Q™:p) such that

b7 =0, IG") =% and TH® (pur') = Hy(pur’) =2m- s (2mp+1) oS
for some x=0 (mod p). Thus if m==0 (mod p) and a,(2mp+1)e
S°3+0 then p.r' is an unstable element of the first type.

(ii) Let p be an element of = (S*™P¢=7:p). Then the element
' =I'(S8°B) Em:s(QF+': p) salisfies

' =0 and HOpuy'=y- (m+1) - I'(a(2mp—1) oS*8)
for some y£0 (mod p). Thus if m==—1(mod p) and a,;(2mp—1)
oS R Amirs (S*™*+1: p) then pyy' is an unstable element of the first
type.

(iii) In the case m=1, replacing B x,(S¥™*7) and S'B,
>3, by fEm(S?™®) and S8 respectively, (i) and (ii) still hold.
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Proof. (i) Let BoEmun (Y ™% be a coextension of B. m.fPo
=SB. By (1.5), p-SB,=0. By Lemma 2.5

127, SBo=y- S°S(n«Bo) =y~ S°B
for some y=£0 (mod p). For an integer z such that zy=1 (mod p),
we put ' =2z-27°g',.SB,. Then p-v'=0 and I’ =5°8. We have
IH®pyy'=z-TH®p 278 SBo
=2z-1(d+ &+ SB) by (5.2)
=2-1(G1x hy SBo) by (5.4)
=9'2-S*(ny hy SBo) for some y'=£0 (mod p) by Lemma 2.5,

and 7wy 1y SBo=rmy {(m+1)0a(2mp—2) —m-ad(2mp —2)} 0SB,
= {m+Dnyicmea@mp—2) —m-n*i* ne a(2mp—2)} 0SBy
=—m-a,(2mp—2) on, SBo= —m - as(2mp —2) o S*B.

Thus [H®p,y'=—my'zoa,(2mp+1)oS°8 and (i) is proved by
putting x=—3'z and by (5. 3).

(ii) By Lemma 2.5,
r'=I(S%) =x-23%¢;1.,SB for some x=£0 (mod p).

By (2.7) and (2.5), we have py'=I'(p-S°8) =I"4S*(S°8) =0. For
some x'==0 (mod p) we have

H®py'=x- HPpy 07°g4ix SB=%-d s 841+ SB by (5.2)
=%-Gu Ny 1, SB by (5.4)
=2x-G {m+1)i*i ma(@mp—3) —m-i*z*i*a(@mp—2)} 0SB
=x(m+1)Gryiya(Cmp—3)oSB
=xx'(m+1)I'S*(a;(2mp —3) oSB) by Lemma 2.5
=xx'(m+1D 1" (a;(2mp—1)S°B).

Thus (ii) is proved by putting y=x'x and by (5.3), (2.5).

(iii) is proved similarly by use of (5.4)" and Lemma 2. 7.

Theorem 5.2. For k>1 there exists an element 1 of
Tampranco—n-1(Q3™: p) satisfying the following conditions:



122 Hirosi Toda

@  p-r'=0,

(1) IG) =a2(m+1)p+1) E myminprac-ni-n (S*™ 1 p) for
k>1 and v =I'"tymins for kE=1,

(iii) if there exists an element ai(2mp—3) O0f Tamprarcr-0-4
(8?73 ) such that i,a;(2mp—3) =i*(a*da(2mp—2)) then

H®pyy'=x-(m~+k)-I'(S’ai(2mp—3))
Sor some x=£0 (mod p),
(iv) in the case m=1 we may veplace a;(2mp—3) by ar(2p—1)
such that i,a(2p—1) =i*a*0a(2p) in (iii).
Proof. By Lemma 2.5

I(@7gyi*a ' 2m+1)p—5)) =y S’nyi*a**(2(m+1)p—5)
=9-S%,(2(m+1)p—5)=y-ar.2m+1)p+1)
for some y==0 (mod p). Put ¥'=Q/y)2%¢ii*a**(2(m+1)p—5),
then (i) and (ii) hold. We have under the assumption of (iii)
H®pyy' =d, 2= (1/3)d+ &5 1*a* ' (2(m+1)p—5) by (5.2)
=(1/9) G hyi*a**(2m+1)p—5) by (5.4)
=(m+k)/y G i*a*0a(2mp—2) by Proposition 4.6
=m+k)/y-Giisai(2mp—3)
=m—+k)x'/y-I'(S*a;(2mp—3)) by Lemma 2.5
for some x'z£0 (mod p). Then (iii) holds for x=x'/y (mod p).

Here the condition 2mp—2>7 is necessary in order to apply Pro-

position 4.6. So for m=1 we use Lemma 2.7 in place of Lemma
2.5. Then (iv) is obtained and (iii) of m=1 follows. q. e. d.

Theorem 5.3. Assume that m+k=0 (mod p) and m=2.
(i) For k=1 there exist elements

€ E Tambaemimr-0-1(Q2" 2 D), & € Mamracminrs--3(Q3" 12 p)

and 1€ mmismino-n-s(ST 1 P)

such that
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Due=S%, Pue’=p-1, I(£) =x-a,(2mp+1) for some x5£0 (mod p)
and 1) =aw.Qm+1)p+1) for k=1, e=I"tymino1 for k=1.

(ii) For k=2 there exist elements

€ € Tym+a0m+r)(p-1)-2 (ng“ : p) ’ fe Tam+2(m+E)(p—1)-4 (ng_l : p)

and 7€ Tamtacminro-1-1 (S )
satisfying the following properties.
Pxe=S’r and pie'=p-7.

If there exists an element a;,(2(m+1)p—3) of Proposition 4.4,
(ii1), then e=I'(S*at1(2(m+1)p—3)). If there exists an element
ay(2mp—3) of Proposition 4.4, (iii), then I'(S*ai(2mp—3)) =x-¢
for some x=£0 (mod p).

Proof. By Proposition 3.6 and Proposition 4.5 we have the
following commutative diagram:

. 52
R (V328 e (RO, 20) o, (Y 30 ) Do (Yo
1}
lcl* lG* J{ g% l g%
. 3 .92
7 (@) B m (@) Lo (@) i ()
|~ =
D S? D
7".','(S2m_1> _)ni+2<82m+1) ,
-where K(m,2) is a mapping cone of a representatives % of (m+1)
Sa(2mp—2)—m-ad(2mp—2) and {g} =2°{g"’}. Translate the ele-
ments of Proposition 4.8, (ii), which are in the top sequence, to
the middle one, then we see the existence of an element 7 €
Tameacmino-n-3(@™ D) such that (3'=G,r for y of Proposition 4.8,
(ii))

—p 7 =1xGu ((*a* (2mp—2)) and jur'=g+(@* ' 2(m+1)p—4)).
As is seen in the proof of Theorem 5.2, (ii) these relations imply
the properties of (i) for r=z-p«v,e=2-27%j,y and ¢=-—2z-
Git*a*(2mp—2) with a suitable coefficient 220 (mod p).
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The proof of (ii) is similar applying Proposition 4.8. (ii),
and omitted.

Theorem 5.4. (i) Assume that m+k=0 (mod p) and there
exist a;(2mp—3) and a;,(2(m+1)p—>5) of Proposition 4.4, (iii).
If there exists an element y 0f mmiscmin-pn(S™:p) such that
H®r=I'a; (2(m+1)p—1), k=2, then there exists an element
¥ € mamracmano-n-1 (ST ) such that

pr=5%
and H®=x-I'a;(2mp—1) mod P Tamrscminr—n-s (@™ 11 D)
for some x£0 (mod p).
(il) Assume that m+k=0 (mOd p) and l'(ﬂ2m+2(m+k)(p_1)+r
(§¥m 0271 p)) N H P (mamssemrinr-p2(S*°: p)) =0, If there exists an
element v 0f momrcminor-nn(S™2:p) such that Hy=I(H®;) =ai,

@Qm+1)p+1) for k>1 and HPr=I'(tyonip-) for k=1, then
there exists an element y' 0f momssmino-n(S™':p) such that

pr=5S%
and for some x3~0 (mod p)
H,7'=I(H®)=x-a,(2mp+1) mod P momracmtrro-n (S p).

Proof. () H®(pv)=I'(p-ai(2m+1)p—1) =I'48%a; (2
(m+1)p—1)=0 by (2.7) and by the exactness of (2.5). It follows

144

from the exactness of (5.1) the existence of an element 7" such
that p-r=S%".

Let FEmmismeno-n-+(K(m, 2)) be a coextension of *(a*
(2(m+1)p—5)) then by Proposition 4.8, (i), Proposition 4.5 and

by Proposition 4.4, (iii) we have
pr=—Jx(@*a 0a(Cmp—2)) = —jyixar(2mp—3)
and ne7=1*(a*0a2(m+1)p—4)) =i, ai,(2(m+1)p—5).

By Proposition 3.6 we have the following commutative dia-

gram:
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m (Yime-?) Lﬂi(K(m’ 2)) ﬁ’n;( Y xmivr-t)

Gy lG* l Lx
5 d . ; _— ] .
7 (@ Qi) __*_)n,i(QEm—l> _’_*,n,i(sz ) —*>7t;(~92 Qim+h)
ngs IH@) '[HU) zI‘QZ

rian (@) L (57m0) S (s @,
For some x'z£0 (mod p) we have, by Lemma 2.5,
2 jxGiF =" gumiT =1 Gxlxaia(2(m +1)p—5)
=QI'S*ai 1 (2(m+1)p—5)
=0"a;,(2(m+1)p—1).

Thus j«(H®y—x'-G,7)=0. By the exactness of the above middle
sequence there exists BE mumtamine-n-+(Q2" "1 p) such that

i=HOr ' Gu7
and ix(D-B)=H®(S%") +x" Gy jsixai(2mp—3)
=1, (H®" + 1" Giutxa(2mp—3)).

Again by the exactness of the sequence we have
H®" = — %" Gruisar(2mp—3) +p-B+d4p for some g,
By Lemma 2.5
—x" Griar(Cmp—3) =x-I'S*a;(2mp—3) =x-I'a, 2mp—1)
for some x=£0 (mod p). Put y'=¢"—p,.27°, then we have
S =S~ S =p-r
and H®"=x-I'ay(2mp—1) +p-B.

Remark that the above proof breaks if m=1 and p=3 since
2mp —3<<7 and Proposition 4.8 cannot be applied for this case n=
2mp—3. So, in the case m=1 we use Lemma 2.7 in place of
Lemma 2.5. By Proposition 3.8 we have the following commutative

diagram:
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mina (V) Do (SK) Do s (SK, Y2 ,
: G G S~
@ o e e mia(CY P Y175
ﬂi+s(Q;);j’7T.'+3(Xs)'l_*)ﬁﬁs(-QZXs)ﬁ’ﬂﬁa(QzXa, Xs) zla
% , 0 .
~. D3 Dsx 2 ~. ~ |2 71';+2<Yf 2)
e 5T

S? H® .,
77-'i+3(ss)_) 71';+5(Sﬁ) I 7‘Ei+2(Q2>1 8%

where pi and ps.o2* are isomorphisms for :>>0 and the inverses are:
equivalent to H® and H®. By Proposition 4.8, there exists a co-
extension TEmpuo-n1(SK) of i*(a*?0a(4p—2)) =i, ai,(4p—3)
such that

j;7=%*6_1(i*a2_1(4p— 3))

and p'T: —j*i*ai(zp) +p‘j*5 fOI’ some €E7sz+2k(p_1)_1(Y§P+l),

where ¢=0 if p#3. Then (i) for m=1 is proved similarly as above:
and the details are left to the reader.

(ii) is proved by use of Proposition 4.8, (ii) in place of Proposi-
tion 4.8, (i) in the proof of (i). ITH®(p-v)=p -ar:(2(m+1)p+1)
=(0. By the assumption and (2.5) we have H®(p-y)=0 and S*;'"
=p-r for some y”'. Let 7 be a coextension of i*a**(2(m+1)p—>5),
then by Proposition 4.8, (ii) and Proposition 4.5 we have

pr=—jx(G*a*(2mp—2)) and mF=i*a""'(2(m+1)p—4).

By use of Lemma 2.5 we have 127%j,G, 7=y -a,.;Q(m+1)p+1) if
E>1 and 27%7.Gy7=3y I'tymins if k=1, for some y=£0 (mod p).
By the exactness of (2.5) and by the assumption we have H®y=
(1/y)27%j.G47. By a proof parallel to (i) we obtain

H®" = (1/9) Gyi*a* (2mp—2) + p+d '

for some B and B’. By Lemma 2.5, I(—1/y)Gi*a*(2mp—2))=
—y'/y-ar(2mp+1), y'=£0 (mod p). Then the assertion of (ii) is
obtained by putting x=—7y'/y and ' =3"—,.2°%3". q. e. d.
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6. Meta-stable groups I.
We introduce the following results of stable groups from [16].
6.1) (m:p)=~Z, for k=2r(p—1)—1, 1<r<<p?,
r=£0 (mod p): generator a,,
~Z, for k=2tp(p—1)—1, 1<t<<p—1:
generator a;,,
~Zp+Z, for k=2(p*—p)(p—1)—1:
generators ai,p,, a7,
~7Z, for k=2(sp+r)(p—1)—2(s—7r), 0<r<s,
sp+r<p®: generator Bi "B+,
~Z, for k=2(sp+r+1)(p—1)—2(s—r)—1,
0<r<s,sp+r+1<<p?, (r,s)#(0,p—1):
genevator a,Bi7 7 8,41,
=0 otherwise for k<<2p*(p—1)—3.
By Proposition 4.17 of [16], the above element a;, satisfies
(1/t)a;Pe {p‘7 -1, al} ) k:tp'
We see also the element a; of Proposition 4.4, (iii) satisfies
(6.2)" are =+ {p, asy, ai}.
For iyai=1*(a*0a) =i*a' 1 *nya=1%*a*"oa;,. Here i*a*' is a
coextension of *a; ;. By Proposition 1.8 of [18], i*a&'TeazE +i,

{bt, ar_1, az}. Since the kernel of i, is p-7,-n-1 and it is contained
in the indeterminacy, we have (6.2)'. We have also

(6.2). In (6.1), the generators ai, may be replaced by the
corrvesponding elements in Proposition 4.4, (iii). If »=£0 (mod p)
a, may be veplaced by « (Proposition 4.4, (iv)).

We shall use the following natations.

(6. 3) (1) For ve857m, (8™ p) Cralsmpts,
Q"(r) Em (@™ p)

denotes an element such that
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Q"(r)=I'y) and S7r'=r
for some v Eniy(S™71: D).
(ii) For yExni_smprs,
Q"(r) Em(Q": p)
denotes an element (if exists) such that S”I(Q™(y))=r.

In meta-stable case, {<2mp*—5, Q"(y) exists uniquely for any

7€ (B _gmprs: ) and if p-r=0 then Q™(y) exists and is unique mod
ImI'.
It follows from Theorem 2.2 and (6. 1)

(6.4). Assume i<2mp*—5 and i—2mp<2p*(p—1)—6, then
:(Q¥1:p) is a Z,module having the following base:
Q" (), @"(B)} if i—2mp=2p(p—1)—4,
Q" (@), @B}  if i—2mp=2(sp+s—1)(p—1) —4,2<s<p,
Q" (@), "B} if i—2mp=2(p*"—p—1)(p—1 -3,
Q™ (1), Q" (an D} if i—2mp=2(P"—p)(p—1) —4,
{Q—’"(oz(p_l),), Q-m<a13f_l>} if i—sz’:2<p2"p)(p—1)_3»

{I' tymp1} if i—2mp=—3,
Q" (a)} if i—2mp=2r(p—1)—3, 1<r<<p’,
r#<p—p, r#p'—p—1,
{Q"(a))} if i—2mp=2r(p—1)—4, 1<r<p’
r=%0 (mod p), r==—1 (mod p+1),
{Q"(ain)} if i—2mp=2tp(p—1)—4, 2<t<<p—1,
QB B,+1)} if i—2mp=2(sp+r)(p—1)—2(s—7)—3,
0<<r<<s, sp+r<p*, (r,s)#(0,p—1),
QB B} if i—2mp=2(sp+r)(p—1)—2(s—7)—2,
0<r7,r+1<s, sp+r<<p? (r,s)+(1,0),
{Qm (a1 By Br41)} if i—2mp=2(sp+r+1)(p—1—2(s—7r)—4,
0<r<<s, sp+r+1<<p’, (r,s)#(0,p—1),
@ (a8 B0} if i—2mp=2(sp+r+1)(p—1)—2(s—1)—3,

0<r<ts, sp+r+1<p? (r,s)#(0,p—1),
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{¢} if otherwise.
Consider the composition
H®op, =0 : n;(@: p)—m (S p)—m_s (™1 p), m>1.

Lemma 6.1. (i) Lef r=>0, p>s>1 and assume m=£0 (mod
D). For r=1 and for (v,s)=(0,1) we have a relation

H®(p(@(i8.))) =x-Q"(aufiB.), %5%£0 (mod p).
For r=0 and s>1, the relation holds provided that B.,=S~B.(n)
for some B,(n) E wprasprs--n-2(S™: ) of order p and for some
n<2(m+1)p-—3.
(ii) Let r>0, p>s>1 and assume m=—1 (mod p). For
r=>1 we have a relation

H®(p(Q™(81B.))) =x-Q"(a:BiB.), %70 (mod p).

For r=0, the relation holds provided the same one as in (i).
(iii) Assume k+m=z=0 (mod p). For k>2 we have, if
a,(2mp—3) exists,

HO(p, (@ (@) =2%-Q(a)), %520 (mod p).

Also we have H®P(p,I'tsminey1)) =%-Q™(ar), x£0 (mod p) if
m=£=—1 (mod p).

Proof. (i) By Theorem 5.1, it is sufficient to prove that there
exists an element B;B.(#) Emns(S™: p), k=2((r+s)p+s—1)(p—1)
—2(r+1) such that n<<2(m+1)p—3, p-BiB,(n) =0 and S=B;B.(n)
=p;B.. For r=0 and s>1 this is assumed. Let >1 or (7,s)=
(0,1). We shall prove the existence of such gi8,(n) for n=2p+1.
By (2.8), if n>2(sp+s—1)—1, B.=S=p.(n) for some B.(n)eE
mae(S™:p) and further if n>2(sp+s—1)-+1 B,(n) is of order p.
Define B8.(2p—1) by Bi(2p—1)=p.(2p—1)oS»¢Dp"1(2p—1),
r=2,3, -+, and BiB.(2p—1)=pi(2p—1)0B.(2p—1+2rp(p—1) —27).
Then BiB.(2p+1)=S?(B;8.(2p—1)) is the required element.

(ii) The proof of (ii) is similar to that of (i) with a remark
that for the case m=1 the existence of the element Bi5.(2p—1)
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satisfying the required properties has to be established. The only
difference with (i) is that p-8,(2p—1) is not necessarily zero.

(iii) follows immediately from Theorem 5. 2. q. e. d.
We have also from Theorem 5. 2

(6.5). If k+m=0 (mod p) then H®p, Q™" (ai.) =0 for k>1.
and H®p, (I'"tyminyr) =0 for k=1.

Proposition 6.2, Assume k<2(m+p>)(p—1)—1 and k<2m
(P+D(p—1)—3 then mmua(S™':p) has a direct summand
U(Ck, m) such that S2U(k, m)=0, Ulk,m)NImS?=0 and

Uk,m)~Z,+Z, if m*%=—1 (mod p) and
k=2(m+p"—p)(p—1) -2,

Uk m)y~=Z, if k=2r(p—1)—2, r>1, =0 (mod p) and not:
the above case,

Ulk,m)=Z, if m=£0 (mod p), k=2(m+ (s+7r)p+s)(p—1)
—2(r+1)—1, 0<r, 1<s,

Uk,m)=Z, if m“=—1 (mod p), k=2(m-+(s+7)(p+s)(p—1)
—2(r+1)—2, 0<r, 1<s, (r,s)#(p—2,1),

Ulk,m)=0 if otherwise.

This follows from (5.3), (6.4) and Lemma 6.1. U(k, m) are

generated by corresponding elements in H®( ) of Lemma 6. 1.

Proposition 6.3. Assume k<2(m+p'—1)(p—1)—4 and
2m(p—1) —2<k<<2(m—1)(p*—1)—3 then we have an exact
sequence

H® Dx
= V(k+1, m)—= (8™ p) /U, m—1)
S2 H(z)
—> Tumrx (S*1 p) / Uk, m)— V(k, m)—---,
where V(k,m) are given as follows:

V(k,m)~Z,+Z, if k=2tp(p—1)—1 and m=_{—p+1)p+1,.

V(k, m)~Z, if k=2tp(p—1)—1 and m*={—p+1)p+1,

V(k,m)~Z, if k=2tp(p—1)—2,
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V(ik,m)=Z, if k=2tp(p—1)—2s—1, p>s>1, m=(t—s)p,

V(k,m)=Z, if k=2tp(p—1)—2s—2, p>s>1,

m=(_t—s)p—1,

V(k,m)=Z, if k=2(ap+b)(p—1)—2, p=>b>>0,

m=_(a—b)p+1,

V(ik,m)~Z, if k=2(ap+b)(p—1)—2s5—1, p=>b>0, p>s>1,.

b, )+, p—1),m=(a—b—s+1)p or =(a—b—9)p,

V(k,m)~=Z, if k=2(ap+b)(p—1)—2s—2, p=>b=>0, p>s>1,

m=_a—b—s)p+1 or =(a—b—s)p—1,

V(k,m)=0 if otherwise.

Proof. V(k,m) are generated by the elements in (6. 3) which
does not appear in Lemma 6.1. mymep(@3"?:p) is a direct sum of
V(k,m), H®U(k,m) and a submodule U’(k, m) which is mapped
isomorphically onto U(k—1,m—1) under p,. Then the proposition
follows from the exactness of (5.1). q. e. d.

Corollary 6.4. Assume k<2(m-+p*—1)(p—1)—4 and k<<
2m—1)(p+1)(p—1)—3 then we have isomorphisms

Tam—14x (S p) =~ (mi: p) + Uk, m—1)
in the following cases:

i) k=2r(p—1)—1, r==0 (mod p),

(i)  k=2(ap+b)(p—1)—2, p=>b>0, m>(a—b)p+1,

(i)  k=2(ap+b)(p—1)—3, p=b=>0, m>(a—1>b)p,

(iv) k=2(ap+b)(p—1)—25—2, p=>b>0, p>s>1,
m>(a—b—s+1)p—1, (b,s)+(p—1,p—1),

) E=2(ap+b)(p—1)—2s—1, p=>b>0, p>s=>2,
m=>(a—b—s+1)p, (b, s)#(p—1,p—1).

Here the subgroup of mym-14(S*™':p) corresponding to (zf:p)

is mapped isomorphically onto (nf:p) by S=.

Proof. In these cases, we have V(k', m)=0 for k’>k. Then
the corollary follows from Proposition 6.3 and (2.8).
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7. Unstable groups I.

We shall compute the groups mon—1+:(S*™*: p) for t<<6p(p—1)—7
if p=>>5 and for #<C33 if p=3. The basic tool of the computation
is the exact sequence (5.1).

Theorem 7. 1.

(Z, for k=2r(p—1)—1,r=1,2, -+, p—1

‘ and m>2,
n2m_1+k<s2m—l:p>% Zﬁ for kzzr(p—l)_za 722;"’,17_1
and r>=>m>>2,

0 otherwise for k<2p(p—1)—2,
Zy for p>m>3,

Z, for m=2 and for m>p,
Ze  for m>3,

Z, for m=2.

7T:zm—1+2p(;—1)—2(szm_l 1p)=~= {

nzm—l+21«(ﬂ—l)—l(82m-] 1p)=~= {

Proof. For the case k<<2p(p—1)—3, the results follow
immediately from Corollary 6.4, (6.1) and Proposition 6.2. We
remark

(7.1D). (1) Zamersmn1(S™ D), 1<r<<p, m>2, is generated
by a,(2m—1).
(1) mam-ts2ro-n-2(S™ 1 p), p>r>m>2, is generated by an un-
stable element of the first type.

Put ¢=2p(p—1). Consider the exact sequences (5.1):
7'sz+q—4<s2m-1 : p)—)n'ZmM—ﬁ(SMH : p) > Tam+g-5 (Q%m-l . p) ,

for m=1,2, ---, where m,,(S':») =0 obviously and myms,—s(Q¥": p)
=0 by (6.4). It follows that mm-14,-3(S*™:p) =0 for all m. This
completes the first statement of the theorem.

By (5. 1) and by the result just obtained, we have exact sequences

b _ S?
7T2m+q—3<Q§m—1: p) _ﬂ;nz'm+q—3<82m 1 p) _)7T‘4’.7rl+q—1(SZ"H’l : j))

H(Z) Q2m—1. 0
—>71'27n+a—4< 2 -p>_'> s
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where
Z, generated by Q™(a,-n) for 1<<m<<p,
7T2m+q—4(Q§m_l . ,b)""‘*" { * ’

0 for m>p,

Z, generated by Q" (a,_m) for 1<m<<p,
Tomeo—s (@371 p)z{Z, generated by I’ for m=p,
0 for m>p,

by (6.4). Let B be an element of my.,-s(S*7':p) such that H®g
=@Q**(ay). By Theorem 5.4, (i), there exists an element g’ of
Tapras(S¥*2:p) such that SB'=p-p and H®R' =2x2-Q* (), x#0
(mod p). B’ does not vanish under S*® since the kernel of the S”
is generated by p.@*(a) and H®p,(Q*'(ay))=0 by (6.5). It
follows that the order of B is a multiple of p®. But, S?*(p-8)=0
since o1 (S p)=~(ni_s: p)=~Z, by (2.8) and (6.1). This shows
that p-B=y-ps(l'tsye-1) and p*-8=0, y=£0 (mod p). We have obtained
that 8 generates . s(S¥ i p)=~Z, and S’my,,s(S¥2:p)=~=Z,. If
>3, we repeat this discussion for g’ in place of § and so on. Then
the second assertion of the theorem is obtained. We have obtained

also

(7.2). (1) For S*:mm-1s2000-0-2(S™ 71 )= Momsrszeco-1y-2 (S p) we
have
. (Zs for p=m=>3
Ker S'%{
0 for m<<3 and for m>p
and
Z, for p—1>m>1

0 for m>=p—1.

(1) For m=>3, S*:mm 12000-1-1(S 11 p) = mamirsascr-p-1 (872 p)
is an epimorphism.

Coker S*~= {

Then the last assertion of the theorem follows easily from (5. 1),
(6.1), (6.4) and (7.2), (ii). g. e. d.

Theorem 7.2. Let p>r>2.
Tam-1+2041300-1-3(S™ 1 p)=~=Z, for m>2,
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Z, for p+1>m>2,
0 for m>p+1,

Tom-1420400-01 (S p)=Z,  for m>2,

Tom-142045p--4 (ST p)

TTom—1420p+1)(p-1D—2 (Szm-l : P) i {

Z, for m=r,

0 for m+#v,

Z, for p+r>m=>2,

0 for m>p+r,
Tom-14204n0-D-1(S" i P)=~Z,  for m>2,

Tam-14: (ST 11 p) =0 for k=2(p+1)(p—1)—4 and
for k==—1, —2, —3, —4 (mod p), 2p(p—1)<k<<4p(p—1)—5.

%ﬂzm-uz(ur)(p—n—a(Szm-l . P) == {

77527'1—1+2(1o+r)(Ab—l)-2(Sz’m”1 : p) = {

Proof. For the case m>>3 the results follow immediately from
Corollary 6.4, (6.1) and Proposition 6.2.

For the case m=2 the results will be computed by use of the
exact sequence (2.11). Consider the homomorphisms

A:mi (S p)—>m(S¥71: p)

for 2p(p—1)+1<i<4p(p—1). The two groups vanish except
‘the following cases:

a) i=2p+2(p+j)(p—-1)-2, j=0,1, -, p—1,
b) i=2p+2(p+5)(p—1)-3, j=0,1, -, p—1,
c) 1=2p+2(p+1)(p—1)—4.
In the cases a) and c) the groups are cyclic and S*:7;(S*7: p)
— 2 (S¥*: p) are isomorphisms since U(G—2p+1, p—1)=U
(1—2p+1,p)=0. By use of the relation (2.7) it follows

Ker 4~Coker 4~Z, for the cases a) and c).

‘Next consider the case b) of j=0, i.e., i=2p+2p(p—1)—3. In this
-case the groups are isomorphic to Z,» and Z, respectively and S? is
an epimorphism, by (7.2), (i). By use of (2.7), we see that 4 is
.a monomorphism. Thus



On iterated suspensions I. 135

Ker4=0 and Cokerd~Z, for the case b) of j=0.

Consider the case b) of j=0. Then the two groups are isomor-
phic to Z, and S*m.(S*:p)=S*U(E—2p+1, p—1)=0. By Lemma
2.6, we have that 4 are epimorphisms hence isomorphisms. Thus

Ker 4=Coker 4=0 for the case b) of j=>0.
By the exactness of (2.11) the results for m=2 are computed easily.
q. e. d.
Lemma 7. 3. If 1£t<p, then Sw 271'2,,(1,_1).,.4(85:1?)—-)(ﬂgm(p_l)_l :p)

is an epimorphism.

Proof. By (7.2), (ii) this is true for £=1.
an element «,(5) such that p-a,(5) =a,(5). Choose elements a;,(5)
from the secondary composition {@;(5), P tapis-14ey SV a(—1y,(5)}

Thus there exists

inductively as same as the construction of «,(3). Then it is verified
that p-S~ai,(5) =ai,, t<p [16: (4.15)]. This shows that S=(ai,(5))
is of order % and it generates (@}-n-1:p) if £<<p—1. In the case
t=p—1, the other generator a;8/ is the image of a,(3)°B:*(2p)
E mapp-1242(S°: D).

Theorem 7.4. Let p>5.
77-'2m—1+4p(p—1)~5<52m-1 . P) =0

q. e. d.

Then we have

Z,

Proof. For the case m=2 the same proof as Theorem 7.2 is

valid.

Tom-144p00-1-4(S™" 11 p) =~ {0

b
0
Zy
: p)%{zﬁ
0
A
Z,

)=~

Toam-144p00-1-3(S*" 12

TT2m—1+4p(p—1)—2 (S m

TCam—1+4p(p-1)—1 (S p)~ {

for m=p,

for m<<p,

for 2p>m_>p,

for m>2p and for m<<p.
for 2p>m>2,

for m=2p and for m=2,
for m=>2p,

for m>2,

for m=2.
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Put ¢=4p(p—1) and consider the exact sequences (5.1):
bx S?
()= Tame140- (@712 D) — Tam140-: (ST P) —
H®
ﬂ2m+1+q—i(szm+13 P)'—>7rzm-1+q-.~-1(Q§m-l . P) ﬁ’ ttty
for m=2, 3, ---, i=5,4,3, 2, 1.

By (6.4), Tam-141-6(QF" "1 p) =0 for m>2, and 7mum-140-s(Q"": p)
=0 for m>2 and m+#p—1, ~Z, for m=p—1. Then the first
assection follows imimediately by the exactness of (*), i=5. Also
the exactness of (*), =4, implies that mym_14,-4(S™1:p)=0 for
m<p, =Z, for m=p and S*:mum-1+0-4(S™ 1 D) > mami140-4 (ST p) are

epimorphisms for m>>p. These S* are isomorphisms since (75_s: p)
=~Z,. Thus the second assertion has kteen proved. Remark that

(7.3)  mam-14aso-1-«(S*™ 12 p), m=>p, are generated by Bi(2m—1).

Since S? in (*) of {=4 are monomorphisms, H® in (*) of i=3
are epimorphisms. By (6.4), mm 1. (@" " :p)~Z, for m=p—1, p
and =0 for m#=p—1, p. We have also U(q—3, p—1)=Z, by Proposi-
tion 6.2. It follows that mom_1,,-s(S™*: p) =0 for m<<p, ~Z, for m=p,
p+1 and S%:mm-140-3(S¥ 1 P)—>Momsr4e-s(S™1: p) are epimorphisms
for m>p+1. Assume that m_3.,-3(S*: p) =0 in which the element
Q% *(ay) is. Then there exists an element r of miy 1402(S¥*1: )
such that H®r=0"*(a;)#0. S?%* does not vanish since the kernel
of this S? is generated by p,(l'ts2n) and H®Pp,(I'e,o,) =0. But
S%* is already a stable element and this contradicts to (zf_.:p)=0.
Thus we concludes that mss.,-3s(S*: p)=~Z, and this is generated
by p+@”2(ay). Then the third assertion is proved.

Next consider the sequences (*) for 7=1. By (6.4), mm-14¢1
(@1 p) =0 for m>2. It follows that S*® in (*) of /=1 are mono-
morphisms for m>2. Then these S*® are isomorphisms for m>>3
by Lemma 7.3. We have proved the last assertion.

It follows also from the exactness of (*) of 7=1,2 that
D i tam-140-2 (@311 D) = mams140-2(S™ 11 p) are monomorphisms for m>3.
Put y=p«{['ts-1). Then ¢+#0 and y generates the group ms-140-2
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(S§*71: p) since mups1+e-2(S¥™: ) = (a7-2: ) =0. Thus mep-14,-2(S*7: P)
=~Z,. By Theorem 5.3, (i), there exists an element 7; of w312
(S*3: p) such that S*ri=r and p r,=2% - P,Q**(a;) #0 for some x50
(mod p). Repeating this we have elements 7; Of mip-si—14¢-2(S? 711 p)
for ¢=2, 3, -+, 2p—3 such that S*% =pr and pr.:=
% D@ (a;) #0 for some %340 (mod p). On the other hand from
the computation of the third assertion we see that the cokernel of
S? in (*) of {=2 are isomorphic to Z, for 2p—2>m>2. Then the
fourth assertion of the theorem is proved easily. q. e. d.
In the above proof we have seen

(7.4). (1) The groups mmriwes-v-s(S™ D) of 2p>m=>p are
generated by unstable elements of the third type, i.e., these
groups are isomorphic under itevated suspensions.

Gi) The groups mum-1sar-12(S™:D) of 2p>m=>2 are
generated by unstable elements of the second type, i.e., a similar
assertion as in (7.2), (i) holds.

Theorem 7.5. Let p>5 and p>j=>3.

Tam-1r2epsn-n-s(S " 1 p)~=Z,  for m=2,
0 for m>p+1,
Tom-142¢p+000--3 (ST 711 p) =0,

)N{Z,,+Zp for 2p+1=>m>p+1,

7t:.»m—1+z(z,>+1)(x:—1)-4(Szm_1 . p) == {

2m-1,
Toam-1+2c2p41--2 (ST 712

Z, for m>2p-+1 and
for p+1>m>=>2,
Tam-14200+000-n-1(ST 1 P ~Z, for m>2,

Tam-142¢20423¢0-13-6 (S*" 712 p)

Z, for m=2,
0 for m>2,
Z, for m=p+2,

0 for m#p+2,

S Mem-1+2(20 +2)(p—1)-5 (S ety )~ {

Tam-142cpen0-1-4(ST 1 P) =~ {
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Z,+2Z, for m=p+2,
Tam-14+2¢2p+2300-13-3 (ST p)%{Z, for m#p+2 and m=>2,
0 for m=2,
Z, for 2p+2>m>2,
0 for m>2p+2,
Tam-1rasrno-n1 (S P)~=Z,  for m=>2,

Tam-1+2020+ 5o-1-6 (S*" 712 P)

Tam—1+2(26+2)(p-1) -2 (St p)=~ {

Z, for m=j,
%thm—ln(zpm(p-n—s(Szm_l1P)w{op for m;&j,

Tam—1+2(2p+7)(p-1)—4 (Szm_l . p)

Z, for m=j—1, p+j,

0 for m#j—1, p+j,

Z, for 2p+j=m=>2,

0 for m>2p+j
772m—1+2(2p+f)(ﬁ—1)—1(521"-1:p>%Zﬁ for m=2,
om0 (S™1:p) =0 otherwise for 4p(p—1)<m<<6p(p—1) —7.

Proof. Except the cases k—2(2p+1)(p—1)=-1, —2, -3,
—4, the above results for m>>3 are obtained directly from Corollary

~Tam-1+2c20+ Hp-1-3 (STt P) = {

Tam—1+2(2p+7)(p-1)—2 (St p)=~ {

‘6. 4, the case m=3 they are computed from the case m=4 by use
of (5.1) and (6. 4) and for the case m =2 they are computed by use
of (2.5), (2.7) and Lemma 2.6. Remark that in the computation
it appears only two non-vanishing V(m, k): V(2(2p+1)(p—1)
-3, P)=V(@22p+1)(p—1)—-2, p+1)=~Z,. Then the remaining
.cases are computed from the stable cases by use of Proposition 6. 3.
The details are left to the reader. q. e. d.

Remark. 1t seems there is no reason to stop the computation
.at the above range’of k. In fact one can compute up to k<<6p*—10
in which case mm-144(S™':p) of m>3 are in meta-stable ranges.
For example unstable elements of the fourth type appear in the
groups mum-niepenc-n-s(S™ 11 p), 2p+1>m=>p+1.

Theorem 7.6. (i) Theorem 7.4 holds for the case p=3 and
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2(p+2)(p—1)—1=4p(p—1)—5<k<4p(p—1) —1(=23).

(i1

TTym—1+23 (sm-l .

TTam—1+24 (Szm—l :
7fzm—1+z5(szm—l .

TT2m—1426 <szm-1 :

Tam-r1420 (ST

Tam-1428(S™" 711 3

(i)

Tam-1420(S™™ 712

Tam-1430(S*" 71

Tam—1431 (S*™71:

Tam-142 (S™" 712

3)

-
-

-z
o-f "
-l

o+ Zs
Zs+2Z,

3+ Zs

for
for

for
for

for
for

for
for

for
for

for

for
for
for
for

m=2 and for T=>m>4.
4>m>=>2 and for m>T7,
m=2,
m>2,
m=>5,
m=5.

m=>5,

m+=5 and m>2,
m=2,

8>m>2,

m=2 and for m=>8,
5>m>2,

m=2 and for m>5,
m=2,

m=>2,

Proof. The proof of (i) is same as that of Theorem 7.4. The
proof of (ii) is also similar to that of Theorem 7.5. Look at the
last assertion of Theorem 7.4 and the results of Theorem 7.5 and

put p=3, then some of them are overlapped and by making the

direct sums of these overlapping groups the results of (ii) are

obtained.

The essential difference occurs in the cases of (iii).

The first diffrence is the appearance of a new generator 5} of
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the stable group (#5:3)=~ Z;. The second difference is the existence
of non-vanishing V(k, m):V(31,4), V(32,6) and V(33,7) which
are isomorphic to Z; and generated by @Q*(8) =I'81(17), @*(auf) =
I'(@,(29)06,(31)) and Q°(ay) =I'ay(35) respectively.

To simplify the notations we put z;(S":3) =#7. The groups =?
in (iii) are computed easily by use of (2.5), (2.7) and Lemma 2.6.
Some meta-stable groups of (iii) are determined by Corollary 6.4.
Then it remains the following groups: =i, rim-iss for m=3,4, 5,
and =¥7i,~ for m=3,4,5, 6.

By (6.4), n4(Q;:3) is generated by @‘(a;). By Lemma 6.1,
Q*(as) is an image of H®p,, hence p.Q*'(as) =0 by the exactness
of (5.1). Then we have an exact sequence 0— 73— rl—mss(Q%:3) =0
by (5.1) and (6.4). Thus nl=~n~Z;.

Also we have an exact sequence

D (@) D T 20,
where nly~Zs+Z; and ns(Q3:3) is generated by &*(a;) and Q*(5Y).
By Lemma 6.1, H®p,Q*(a;) = + Q*(a) Ens(@3:3). S*:7ll—>7 is an
isomorphism since these groups are isomorphic to Z,+Z; and S™
maps these groups onto (#3;:3)~Z,+Z,; by Lemma 7.3. Then it
follows from the exactness of (2.5) and from (2.7) that =3, (@Q3:3)
~Zy+Zs and Q*(ai) is a generator. Thus p.Q*(a;) generates a
direct factor isomorphic to Z;. Next consider p,&*(5%). Since
my~Z; and S=B}(5)=p#0, S*:n%—r) is a monomorphism. From
the exactness of (5.1) it follows that H®:nly—>ms(Q3:3) is an
epimorphism. Let r be an element of =i such that H®yr=Q*(3,)
Ems(€3:3). By use of (2.6) and (1.3), (ii) we have Q*(8) =
Q°(B1) °B:1(25) = H®yopi(25) = H® (704:(28)). It follows that p,Q°(5})
=pH®(305,(28)) =0. Then the result =i~Z;-+Z, follows from
the exactness of *).

We have exact sequences

_ .82 H®
30 (Q313) 25ty s mli s (QP (B} —0,
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b S? H® b
T3 (Q; : 3) _*’ﬂ.zxs—’ 7‘:30—’7137 (Q; : 3) _*’,

where 7:(Q5:3) =0, @ () and @*(a,) generate ms(Q3:3) and 7w (Q}:
3) respectively. By Lemma 6.1, H®p,-images of @*(5) and @*(ay)
do not vanish. It follows that nls=~nl, nle~Z;+ Sl and =k/S%S%
=~Z;. The elements as(2m—1), m=3, 4, 5, generate direct factors
of these groups isomorphic to Zs. Thus =i has at least 9 elements.
In the exact sequénce

a0 ( (Qg H 3) — i T

ra~Z; and 7o(@3:3)~Z,. It follows then nl~niy~ni~Z;+ Z;.
From the above discussion and from (6.4) we see that in the

€xact sequences
S’ 2m+ H® m— b2 ™m—

ﬂgx:}+32'_’>7f§m+}+82_)7f2m+30 (Qg 1: p) —*>7r§m-}+3l
P4 are monomorphisms for m>>3. Thus S* are epimorphisms for
m>3. Then in order to prove the last assertion of the theorem it
is sufficient to prove z3;=0. By use of the exactness of (2.5) we
have directly m:(Q3:3) =0. Thus =3, =S%3. The result nh~Z, is
verified from an exact sequence

4

i ma—> mgs—> 13 = 0.
‘The group =3 is isomorphic to Z;. By use of Proposition 6.3 we
see that S=:n3— (n3:3) is an epimorphism. Let 5,(9) be an element
of =% such that S=B.(9) =B,. By (2.11), (ii) there exists an element
& of 73 such that S%=S(a,(6)°5,(9)). Then S“e=a;8,#0. Thus e is
a generator of =3. By (2.13), =3 is generated by G(e) =ay(3)0Se.
Since a;(5)°a;(8) Ex =0, we have S*(a1(3)oe) =ai(5)cay(8)°B,(11)
=0. Thus z%=S%3,=0. This completes the proof of the theorem.

Kyoto University
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