Corrections to
 "On some analytic families of polarized algebraic varieties"

T. Matsusaka

Due to circumstances beyond the control of the author, his proof-readings could not be taken into account in his paper with the above title. Here mathematically important corrections are grouped together in (I) and some other corrections are grouped in (II). We will not attempt to make corrections on broken formulas.
(I)

p. 276 Line 6-Line 7

Omit "in the smallest algebraic variety containing it"

p. 288 Line 12

The following additional statement should be included in Lemma 5: "Moreover, $\mathfrak{p}(A, \mathfrak{a}(X))$ and $\mathfrak{p}\left(\left(A, O_{A}\right), \mathfrak{a}(X)\right)$ have the same smallest field of definition."

p. 293 Line 4 from the bottom-Line 2 from the bottom

"which proves- $\operatorname{dim} X \leqq \operatorname{dim} \tilde{V}$ " should be replaced by " U can be so chosen that the inverse image of \tilde{v} by $x \rightarrow \tilde{v}$ is a subset of the set of points which are congruent to $x \bmod G$. Hence dim $X=\operatorname{dim} \tilde{V} . "$
p. 299 Line 13
"subvariety of" should be replaced by "subvariety V of"
p. 303 Line 25 -Line 26

The sentence should be corrected as follows:
"Let Γ be the graph of Π and set $\Pi^{-1}(\Lambda)=p r_{12}\left[\Gamma .\left(F \times W^{*} \times \Lambda\right)\right]$ "
p. 304 Line 21
" S is irreducible" should be changed to
" $S \times w *^{\prime}$ is a component of the intersection."
p. 309 Line 3
(c) should start with " $U=\varphi^{-1}(F)$ and when \cdots "
(II)

Page	e Line	Original	Correction
279	15	form	is
279	14	R	\mathfrak{R}
279	21	R^{\prime}	\mathfrak{R}^{\prime}
279	22	R^{\prime}	"
280	1	R^{\prime}	"
283	2	$\left(f_{0}\left(x_{0}, y_{0}\right), \cdots, f_{N}\left(x_{0}, y_{0}\right)\right)$	$\left(f_{0}\left(x_{0}, v_{0}\right), \cdots, f_{N}\left(x_{0}, v_{0}\right)\right)$
284	15	define	defines
284	15	belongings	belonging
284	34	When Y is a positive cycle in a projective space. We..	When Y is a positive cycle in a projective space, we
296	1	U is simple of V	U is simple on V
296	13	$g^{r}+\cdots+e_{r}(h)$	$g^{r}+\cdots+e_{r}(h)=0$
299	15	admissible relation	admissible equivalence relation
303	19	π	Π
303	20	(identify, π)	(identity, π)
303	30	$E\left(b_{0}\right)$	$E\left(b_{0}\right) \times \mu *(y)$
304	20	Z-closure	K-closure
307	18	λ	Λ
310	7	morphism	rational map
310	13	$E\left(u^{\prime}\right)$	$E(u)$
310	21	and	an
310	27	$\overline{\mathfrak{F}}$	\mathfrak{F}
310	29-30	$A^{a} \sim B^{\text {a }}$	$\widetilde{A}^{\infty} \sim \widetilde{B}^{\text {c }}$
311	4	\widetilde{F}	$\tilde{\mathfrak{F}}$
311	8	$E(n)$	$E(u)$
311	10	$\mathfrak{F}^{\text {w }}$	$F^{\text {a }}$
311	11	using (ii), we get	using (M) and (ii), we get $A^{\infty} \sim A$ and
311	12-13	From $\cdots A^{\infty} \sim A$.	Omit this sentence.
311	20	varieties	variety

