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In the papers [1] and [2], R. W. Gilmer and J. Ohm studied
some properties of a domain in which primary ideals are valuation
ideals. In Gilmer’ls paper [2], a special type of such domains
was called an S-domain, and the connection between the notions
“QD)SY(D)” and “D is an S-domain” was investigated, where
Q(D) and (D) are the families of all primary ideals and of all
valuation ideals in a domain D respectively.®

In this paper, we investigate some related problems.

We use the notations and terminology in [1] and [2]. In
particular, C denotes proper containment and C denotes contain-
ment.

An ideal M of an integral domain D is said to be an S-ideal
provided: (a) M is prime, (b) the set of M-primary ideals is
linearly ordered by set theoretic inclusion, (c) the intersection of
all M-primary ideals is a prime ideal p in D and (d) p contains
each prime ideal properly contained in M. An integral domain
D is said to be an S-domain if each prime ideal of D is an S-
ideal.

A prime ideal p of a commutative ring R is said to be branched
if there exists a p-primary ideal q such that q+p. Otherwise we
say p is unbranched.

If v is a valuation of a field K and x, y elements in K, v(x)3-
v(y) means that v(x)>wv(y") for any positive integer .

* The paper [2] contained some errors, as are corrected by Gilmer in his second
paper [6].
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The writer wishes to express his thanks to Professor M.
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suggestion on the present subject.

§1. Preliminary results

We recall that two valuation rings o, and o, (or corresponding
valuations », and »,) of the same field K are independent if one
of the following equivalent conditions 1)-5) is satisfied. (cf. Bourbaki
[3], Zariski-Samuel [5])

1) There is no valuation ring of K which is non-trivial and
contains both o, and o,.

2) oo, ]=K.

3) If p is a common prime ideal of o, and o,, then p=(0).

4) There is no inclusion relation between any non-zero prime
ideal of o, and any of those of o,.

5) The maximal ideal of o, does not contain any non-zero
prime ideal of o,.

We first consider two independent valuation rings o, and o,
of the same field K having common residue field £ contained in
0,No,.

Let M, be the maximal ideal of o, and let v; be the valua-
tion of K corresponding to o;, for i=1,2. Sef o=0,N0,, N,=WM,;No,
M=NNR, =M, NM, and D=k M]=k+M.

Then the following are well known. (cf. Nagata [4], Bourbaki
3D

(a) M, and N, are only maximal ideals of o.

(b) o0;=og; for i=1,2.

(c) If R is a quasi-local domain such that oc Rc K, then R
is a valuation ring of K containing one and only one of o,’s.

(d) If ® is a non-zero prime ideal of o, then ® N, and
0p20; for one and only one i. And in this case ®o; is the only
prime ideal of o; (j=1,2) lying over @®.

(e) For arbitrary non-zero ideals a; of o; (i=1, 2), it holds
that (a,No)+(a,No)=o.
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ProroSITION 1. (1) D is a quasi-local domain with maximal
ideal M, and Mo,=M, for i=1,2.

(2) If a;+(0) are v;—ideals of Di.e. aq;0,ND=q; (i=1,2), then
a,+a,=M.

(3) In particular there is no inclusion relation between non-
maximal non-zero v,-ideals of D and non-maximal non-zevo v,-ideals
of D.

Proor. (1) It is obvious that Mo, =M;. While it is also
evident that M is maximal in D. We have only to snow that I
is the totality of non-units in D. If x&D—MM, x=c+y for some
non-zero c€k and yeM. Hence x'co. Consequently x '=c!
—c (yxYek+M=D. (2) By the remark (e) above we have
(a,0,N0)+(a,0,No)=0. Hence M =(a,0, N o)W+ (a,0,N o) M (a,0, M)
+(a,0,NM)=a,+a,. Opposite inclusion is obvious. q.e.d.

PROPOSITION 2. If p is a non-maximal non-zero prime ideal
of D, Dy is a valuation ring of K containing one and only one of
o;’s.

PrOOF. Since p is non-maximal, there exists an element
ceM—p. Then cocIMc D, hence oCDy. Now our assertion is
obvious by the remark (c) above.

COROLLARY. Amny non-maximal prime ideal p of D is an S-
ideal, and p-primary ideals are valuation ideals.

LEMMA 1. o is integral over D. (In fact o is the integral
closure of D in K.)

Proor. For any x o, there exist «,, @,k such that x —a;eN;,
i=1,2. Then (x—a)(x—a,)eM, which shows that x is integral
over D.

PROPOSITION 2. Amny prime ideal p of D is the contraction to
D of a prime ideal B of o, or of 0,. Moreover if p is non-maximal
and non-zero in D, one and only one prime ideal B of o, or v, lies
over . On the other hand, if b is maximal i.e. p=IN, then WM, and
WM, are the only prime ideals of o; lyinp over p.
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Proor. The first half is obvious by the integral dependence
of o over D and remark (d) above. As to the latter half, we see
that if @ is a prime ideal of o and if p=+(0) or M, ® N D=y if and
only if ®o,_p is maximal. On the other hand o,_y=Djp, because
Dy is a valuation ring. Hence only one prime ideal ® =pDpNo
of o can lie over p. If p=IM it is obvious that N, and N, are
only prime ideals of o lying over p. Now our assertion follows
immediately from one-one correspondence between prime ideals of
o and prime ideals of o;’s. (Remark (d) above.)

By this and Proposition 1, (3) we can immediately deduce the
following

CoROLLARY. (1) If both I, and M, are of height >1, then
non-maximal non-zero prime ideals of D are classified into two non-
empty classes n, and n,. wn; consists of the contractions to D of
such prime ideals of vo;. Prime ideals in each =n; are linearly
ordered, and there is no inclusion relation between members of
and members of w,.

(2) If ome of WM’s is of height 1, then the prime ideals of D
are linearly ordered.

LEMMA 2. If a is an ideal of o, then a=avo,Nao,. (Bourbaki
[3]1, Exercices, §7, 3).)

Proor. For an arbitrary yeao, Nao, we shall show that yea.
Since yeao;, there exist the elements «,, a,=a such that »,(y)>
vi(a;) for i=1,2. If v(a,)>v(a,), then v;,(y)>v.(a,) for i=1,2. Con-
sequently yea,0Ca. Thus we may assume v,(a,)<v,(a,) and at
the same time v,(a,)<v,a,). Then we see at once v;(a,+a,)<v:(y)
for i=1,2. Hence y=(a,+a,)0Sa. q.ed.

PROPOSITION 4. Let a be a non-zero ideal of D (a%D).

(1) If a is a valuation ideal, then a is a v,~ideal for some i
(1=1, 2); more precisely, ao;ND=a and ao,=IN; for j=*i.

(2) a is a valuation ideal of D if and only if ao=a (i.e. a is
a common ideal of D and o) and ao;=WM, for at least one j (j=1, 2).

Proor. (1) Let R be a valuation ring such that RoD and
aRND=a. Then R contains some o;, hence ao;ND=a. If this is
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the case, by Proposition 1. (2), we see M= (ao; N D)+ (ao,N D)=
a+(ao;ND)=ao;ND. Consequently ao,2Mo,=M, ie. ao,=M,.

(2) Necessity: If a=ao;N D, then a=ao;NM. Consequently
a is an ideal of o. Sufficiency: By Lemma 2 and hypothesis, we
see a=ao;Nao;=ao; NM,;=ao; N D for i%j. Hence a is a valuation
ideal. q.e.d.

COROLLARY. If both M, and W, are branched, there exists an
M-primary ideal of D which cannot be a valuation ideal. Hence
QD)YE=CV(D).

PrOOF. By assumption there exist IM;-primary ideals q; such
that q,+M,; (/=1,2). Then ideal q=q,Nq, of D cannot be a valua-
tion ideal, for it holds that qo;Sq,cM; for i=1,2.

Now we shall show that every M-primary ideal is a valuation
ideal if one of M,’s is unbranched.

LEMMA 3. If 1=e¢,+e, for some e;eN;=TM;No, then we have
o0=D+ek=D+e,k.

PrOOF. Let x be an arbitrary element in 0. Then there exist
elements a, bk such that x—ac®M, and x—a—bsN,. Since
(x—a—b)(1—e)=(x—a—>ble,csNN, =M, it follows that x—(a+bd)
—(x—a)e,+be,eM. While (x—a)e, also belongs to M, hence
xek+M+ek=D+ek. Thus we have proved that o=D-+ek.
Consequently D+ek=D+(1—e,)k=D+e¢k=n0.

Now let M, be unbranched and q an M-primary ideal in D.
Then q contains an M-primary ideal g which is also an ideal
of o. Since M, is unbranched it follows that qRo,=M,, hence
qM =qMo,N M, =(qWMo,No)ND. Thus there exists the canonical
injection map ¢ : D/qM—0/(qMWo,N o).

We shall prove that @ is an onto isomorphism. For this
purpose we have only to show that any element in o is congruent
to an element in D modulo ¢Mo,No. However, the element ¢, in
Lemma 3 can be chosen in qMo,No, because (qMo,N0)+N, =0o.
Hence our assertion is obvious by Lemma 3.

Thus we have proved that the injection @ : D/qIt—0/(q2Ro,N 0)
is a surjective isomorphism. Consequently there exists an N,-
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primary ideal Q of o corresponding to q. Then it follows that
QN D=q, hence Qo,ND=q. Therefore q is a valuation ideal.
Thus we have just proved the following

PROPOSITION 5. If one of WM’s is unbranched, then every -
primary ideal of D is a valuation ideal, hence Q(D)=CV(D).

PROPOSITION 6. If one of WM/s is unbranchel and the other is
branched, then the maximal ideal M of D is branced and W cannot
be an S-ideal. Hence D is not an S-domain.

Proor. Let 9, be unbranched, M, branched and let B, be
the intersection of all M,~primary ideals of v,. Set p,=P,ND. It
is obvious by the proof of Proposition 5 that every M-primary
ideal of D is the contraction to D of some I, -primary ideal of
p,. Hence M is branched and p, coincides with the intersection
of all M-primary ideals of D. However since M, is unbranched
there exists a non-maximal non-zero prime ideal 3, of o,. Then
prime ideal {,ND of D is not contained in p, by Corollary to
Proposition 3. (Only when M, is of height 1, 3, N D contains p,=(0).
If otherwise P,N D does not contain §B,, too.) Therefore M cannot
be an S-ideal.

Now we shall consider the remaining case: both W, and I,
are unbranched.

ProOPOSITION 7. If both WM, and M, are unbranched, then M
is also unbranched in D and D is an S-domain.

Proor. Let q be an arbitrary M-primary ideal of D. Then
q contains qM, which is an ideal of o and M-primary in D, con-
sequently qUt=9M by Lemma 2. Therefore q=M, and M is surely
unbranched.

§2. Some related questions.

First we notice the following

PRrROPOSITION 8. Let D be an S-domain.
(@) If p is a prime ideal in D, tnen Dy and D/p are also S-
domains.
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(b) If pcCIM are prime ideals such that M /p is of finite height
n, then Dgy/pDgy is a valuation ring of rank n.

PROOF. (a) is obvious. To prove (b), we may assume that D
is a quasilocal S-domain with maximal ideal M of finite height
n and p=(0). Then what we shall show is that D is a valuation
ring of rank #n. However this is obvious by Theorem 3.6 in [2].

q.ed.

If E is a valuation ring with maximal ideal M and D* is a
valuation ring of the residue field of E, then we know that the
full inverse image D of D* under the canonical homomorphism
E—E/M is also a valution ring, so called the composite of E and

D*,

Now we pose a question: Let E be a quasi-local S-domain
with maximal ideal MM, D* an S-domain contained in E/M and
let D be the full inverse image of D* under the canonical homo-
morphism E—E/M. Is D also an S-domain?

We shall investigate this problem step by step.

(1°) If a is an ideal of D such that a£WM, then aDM.

Proor. There exists an element aca—9I. Then a'€E,
hence a-"McMcD. Consequently McaD<a.

(2°) If p is a prime ideal of D such that pCI, then b is also
a prime ideal of E and Dy=E,.

Proor. It is easy to show that DyDE. Then if we set ® =
pDyNE, it holds that Dy=E;, and ® =pDpN E=pDpN D=p.

(8°) If b is a prime ideal of D such that =R, then b is an
S-ideal.

Proor. By (1°) it follows that either pcI or poOM. If
pcM, then Dy=FEp is an S-domain. Hence p is an S-ideal. If
pOIN, then all p-primary ideals contain M by (1°). Thus b is
an S-ideal in D if and only if p/M is so in D/M=D*. q.e.d.

4°) If WM is unbranched in E, then M is also unbranched in
D. Hence D is an S-domain.
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Proor. Let q be an M-primary ideal in D. Then qM is an
M-primary ideal in E, consequently qWt=9. Hence q="N.

Thus we have seen if M is unbranched in E the problem is
solved affirmatively (without any restriction on D¥).

Now we consider the case I is branched.

(5°) Let M be branched in E and v be the intersection of all
M-primary ideals in E. Then b is also the intersection of all M-

primary ideals in D and p is the largest prime ideal in D properly
contained in M.

Proor. Let b’ be the intersection of all M-primary ideals in
D. Then it is obvious that p’Cp. However any M-primary ideal
q in D contains M-primary ideal M in E, hence p’=p. In par-
ticular p is prime in D, since it is prime in E. Let b, be a prime
ideal in D such that p,ck. Then, by (2°), b, is a prime ideal in
E, hence p,Cp because E is an S-domain. q.e.d.

From this we obtain the next criterion.

(6°) Let M be branched in E. Then W is an S—ideal in D
if and only if the quotient field of D* coincides with E[IN.

ProOF. Let p be as in (5°). Then the results in (5°) tell us
that I is an S-ideal in D if and only if (i) M-primary ideals in
D are linearly ordered. However since any R-primary ideals in
D contains p and pDgp=p, (i) is equivalent to say that (ii) Dgy/p
is a valuation ring of rank 1. But (ii) is equivalent to (iii) Dgy/p
=E/p, because E/p is a valuation ring of rank 1 and Dgy/p and
E/p have the same quotient field Dy/pDy. While obviously (iii)
is equivalent to Dgy=EFE, and this is equivalent to say that the
quotient field Dgyp /M of D* coincide with E/IR.
Thus we have proved the following

THEOREM 1. Let E be a quasi-local S-domain with the maximal
ideal M and D* an S-domain contained in E/I. Let D be the full
inverse image of D* under the canonical homomorphism E—E M.

(I) If M is unbranched in E, then D is an S-domain and M
is also unbranched in D.

(L) If WM is branched in E, then D is an S-domain if and
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only if E/M is the quotient field of D*. Moreover, in this case,
M is also branched in D.

(III) In particular, if E[IN is the quotient field of D¥*, then
D is always an S-domain and E=Dgy.

Remark. The examples in [1], §5 and in [2], §3 are the
speciacl cases of (I).

Now we consider the next question: When an S-domain D
is given, is it possible to find E and D* as above?

If this is possible, then we can always find a prime ideal WM
of D such that D is the composite (in the above sense) of Dsyp and
D/M. In fact if M is the maximal ideal of E, M is necessarily
a prime ideal of D, Dgy is a quasi-local sub-S-domain of E and
D*¥*=D/M is an S-domain contained in Dgy/9M. Thus D is the
composite of Dgp and D/IN. '

However if this is the case it must hold that MR=MDygy, and
conversely. Hence we obtained the next lemma.

LEMMA 4. The following are equivalent conditions on an S-
domain D.

(@) There exist a non-trivial (i.e. not being a field) quasi-local
S-domain E with the maximal ideal W which contains D as a
subring, and an S-domain D* contained in the rvesidue field E |
such that D coincides with the full inverse image of D* under the
canonical homomorphism E—E .

~(b) There exists a non-zero prime ideal W in D such that D
is the full inverse image of D/t under the canonical homomorphisms
Dyp—Dyp /M Dgy,.

(c) There exists a non-zero prime ideal M in D such that
W =MDgy,.

Of course this occurs if D is quasi-local and M is maximal.
We shall exclude such a trivial case.

Then the problem is restated as follows: When D is an S-
domain which is properly contained in a non-triuial S-domain with
the same quotient field, is it possible to find a non-zero prime
ideal M in D such that DcDgp and M=MDgy ?
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The answer is negative. We shall construct a conterexample.

Example 1. Let k be a field and let x,,x,,--, x,, -~ be
algebraically independent elements over k, and set K=F(x,, x,,
s, X,, ). Let v, be a valuation of K/k with value group
ZOZD--DZD--+ (direct sum of countably many copies of addi-
tive group of integers) endowed the usual lexicographic ordering
such that

1) vl(Cxlnle”Z'“x,”r) = (nl’ Nyy ooy N, O» 0’ "‘) >
where cek—(0), n,€Z and n;=0.
i) v, (3 Mi(x)) = min {o,(M(x))} ,
where M,(x)'s are monomials in k[ x,, x,, -, x,,, -] .

Then it holds that v,(x,)&v,(%,)8 - - Sv,(%,)5+".

Next we define another valuation v, of K/k. Set y,=x,, y.=2x,
and y;,=x; for each i>3. We consider the valuation v, of K=k
(¥, ¥25**yYu, +++) over k defined exactly in the same way as v,
taking y;’s in place of x;s. Then we have v,(x,)5v,(x,)3v,(x,)5-
e 80 (2,) 5.

Now it is obvious that v, and v, are independent and have the
same residue field k. Let 9, be the maximal ideal of the valua-
tion ring o; of v;, for i=1,2. Set D=F[M] (M=, NM,). Since
both M, and M, are unbranched, D is a quasi-local S-domain by
Proposition 7 in §1, and D is properly contained in S-domains o,
and o,. However for any non-zero non-maximal prime ideal p of
D, pDy is not identical with p. For, if p=pDy, then p is a prime
ideal in one of o,s by Proposition 2 in §1. But p is contained
in both M, and M,, which contradicts with the independency of
o, and o,.

Remark. This example also shows that the prime ideals of
a quasi-local S-domain are not always linearly ordered.

We shall say an S-domain D is non-composite if it cannot be
the composite of some non-trivial quasi-local S-domain E which
properly contains D and some S-domain D* contained in the re-
sidue field E/9M where I is the maximal ideal of E.
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A quasi-local S-domain D is non-composite if and only if there
is no prime ideal p in D, except zero and maximal, such that
p="pDy.

Above example shows that a non-composite quasi-local S-
domain need not be a valuation ring of rank 1 (i.e. maximal sub-
ring of its quotient field).

In this aspect we set up the next

Question (A). What sort of ring is a non-composite quasi-
local S-domain?
We can consider another extreme case.

Question (B). Let D be a quasi-local S-domain such that
every prime ideal p satisfies pDy=p (i.e. D is the composite of Dy
and D/p for every prime ideal p of D). What sort of ring is D?

In connection (B), we notice that the prime ideals of D must
be linearly ordered by the result (1°) in this section. Furthermore
a quasi-local S-domain which satisfies the condition in (B) is not
always a valuation ring. The first example in [1], §5 offers an
example.

Finally we add remarks on some questions related to Lemma
3.3in[2]. This lemma asserts that a quasi-local domain in which
the primary ideals are lineary ordered is an S-domain.

We pose a question: When D is a quasi-local domain such
that the prime ideals in D are linearly ordered, is D an S-domain?
However we can easily construct a quasi-local domain D in which
the prime ideals are linearly ordered and Q(D)<CV(D). Thus the
answer is negative.

Now we consider the next question: Is D an S-domain, when
D is a quasi-local domain in which the prime ideals are linearly
ordered and Q(D)=CV(D)?

But this is also false. We shall give a counterexample.

Example 2. Let K=k (x,,%,,-*,%,,+) and v, be as in Ex-
ample 1. We shall define a valuation v, of rank 1 of K/k Let
o, <a,<-<a,<:- be an increasing sequence of rationally in-
dependent positive real numbers. We define the values of v, on
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k[x,, x,, -+, x,, -~ ] as follows:

i) v(cx, 2,20 x,"r) = ma, +n0,+ - +n,a,,
where c€k—(0), n,€Z and n;=0.
i) 0,(30 Mi(%)) = min {o,(M(2))},
where M;(x)’s are the monomials in k[x,, x,, ---].

This v, can be uniquely extended to the valuation of K/k with
values in the ordered group of real numbers. Hence v, is of rank
1.

It is obvious that v, and v, are independent and have the same
residue field k. Let 9; be the maximal ideal of the valuation
ring o; of v;, i=1,2. Set D=F[IM] (M=, NM,). Then it holds
that Q(D)C V(D) by Proposition 5 in § 1, but D is not an S-domain
by Proposition 6 in § 1, since R, is unbranched and M, is branched.

However, since (0) and M are the only prime ideals which are
the contraction to D of the primes in po,, prime ideals in D are
linearly ordered. (cf. Corollary to Proposition 3 in §1.)

Remark. In this example (more generally, in the case W, is
unbranched and M, is of height 1) the intersection of M-primary
ideals in D is the zero ideal. Nevertheless, there exist infinitely
many prime ideals properly between (0) and 9 (cf. the comment

at the end of §2 in [1]).

Kansai University
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