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P art I. Preliminaries

1. Let S  be a  locally noetherian prescheme and let G, X  be re-
spectively a  group prescheme over S , a  prescheme over S  on
which G  operates from the left, that is to say , there is a  S-
morphism a : G x X---> X such that th e  following diagrams are

s
commutative.

where ,u, (resp. e) is the multiplication (resp. the unit) of G .  Then
a  diagram

Gx 0-,
c

G x G x X  A X X G X X  --- - - -  Xs s  - -  s
nr23 p i-,
i_'

is a  (Sch/S)-groupoid. In particular, if G  is a  finite, locally free
group scheme over S , we have the next result for the admissibility
of the pre-equivalence relation (* ) (i.e. the existence of a geome-
tric quotient of X  by G.)

(*)

Proposition 1. (Grothendieck-Gabriel, E n .) L et G  be a finite,
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locally  f ree group schem e over S . S uppose  the  nex t condition is
satisf ied in  (* ):

For any  point XE X , the  se t 0-(G x x ) (i.e. th e  orbit o f  x ) is
contained in  an  affine open se t o f  X.

Then we have:
(i) There ex ists a  cokernel (Y , p )  o f  (0-, pr,) in (Sch IS), moreover
such a (Y , p )  i s  a  cokernel o f  (0-, pr,) in  th e  category o f  all the
ringed spaces.
(ii) The morphism (0-, pr,),: G x X--->Xx X is surjectiv e. From (i)

Y

and (ii), ( Y, p )  is a  geometric quotient of  X  by G , (the terminology
is  due to D. Mumford, [5].)
(iii) p  is integral, and  Y  is  affine i f  X  is  affine.
(iv) I f  (0-, pr,) is  a  closed immersion (then, w e call the  operation

faithful), then (a-, PO, : Gx X-->Xx X i s  an isomorphism, and
Y

p  is f inite, locally  f re e .  I f  th e  rank  of  G  over S i s  constant, the
rank  o f  X  ov er Y  is equal to the rank  o f  G  over S.

Remark. If there exists an affine morphism p ' : X--> Y ' such
that p ' • c = p ' . p r , ,  then the above condition is satisfied.

Corollary. In the situation of  Proposition 1, i f  G  operates
f aith f u lly  on X , (Y , p )  i s  a  universal geometric quotient, i.e. f or
any  morphism Y'---> Y, ( Y', py , ) i s  a  geometric quotient of  X x  Y '

Y

by G.

P roo f. From (i), (iv) of Proposition 1, we know that X x X - >
Y

G x X  i.e. if  we change the base from Y to X , X  becomes trivial

and that p : Y  is a  faithfully flat, quasi-compact morphism.
N ote that fo r  any morphism f : th e  morphism p y i
X x Y' —> Y' is also a  faithfully flat, quasi-compact morphism.

Y

We put X' = Xx Y', p '  = p - '  and a' = 0- y , . S ince p '  is affine, from
Y

th e  remark, we know th e  ex isten ce  o f a  geometric quotient
( Y", q') of X ' by G,

0- q/
G  X ' X' -->  Y " Y/ , q • q' = p' .

pr,
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Now, we extend the base Y' to X ' by a  morphism p' : Y',
then we have the following commutative diagram,

Gx X'

(G x X') x X'
S Y'

t
G x(Xx X)x Y'

S Y Y

t
G xG xX '

S S

X'

X '  X X/

Y'
t pr23

( X  X X) X Y'
Y Y

r t fir,
Gx X' X'

p u

Y'

T
X'

X'

where in the lower row, G operates on G x X ' through the multi-

plication o f G, therefore X ' is a geometric quotient of G>< X' by

G .  Therefore, (X', p " )  is a geometric quotient in the second row.
On the other hand, we have

P" = = : X' x X' - 
QAÇ' Y" x X ' g '-4. X '.

Y' Y'

Hence qx , : Y "x X' is isomorphism. Since p ' : X'->Y' is faith-

fully flat, quasi-compact, we have, Y "-› Y'. (cf. [2 ], Exp. VIII, Cor.
5. 4.) q.e.d.

2. We denote by Cf (S) the category of finite, locally free group
schemes over S .  Let GE Cf (S) and let X, Y be pre-schemes over
S such that G operates faithfully on X  and that Y is a geometric
quotient of X  by G .  In this situation, we will say formally that
a sequence GxXL->>.X-> Y is exact.

Let us fix a group scheme GE Cf (S) and a pre-scheme Y over
S, and denote by E(G , Y) the set of all pairs (x, p) of a pre-
scheme X  over S and a S-morphism p :  X->Y such that G><

X - > Y is exact.

Lemma 1. Let Y  be a pre-scheme of finite type over S, and
let (X, p), (X', p ')  be two elements of E(G , Y). Suppose there exists
a morphism f: X ->  X 'X' such that p '  f  p  and that f  commutes with
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the  operations of  G  on X  and X ', i.e. cr '• (G x f)= f•cr. Then f  is
an  isomorphism.

Proo f. It is immediate to see that the underlying topological
spaces of X and X ' is bijective under f ,  (cf. Lemma 1 of Part II).
We have only to show the isomorphism of Ox  and Os /. By virtue
o f Corollary to Proposition 1, we can suppose that Y=Spec(B),
X=Spec(A), Xi-Spec(A'), f=Spec(99), where B  is a noetherian
local ring, A , A ' are B-algebras which are free B-modules with
the same finite rank, and .99 is a homomorphism of B-algebras.
The image (p(A') of (p defines a closed image X " of f  in X ', and
it is easy to see that X " belongs also to E (G, Y) and that X ,

X ", X"-->X' are morphisms of G-pre-schemes. Therefore, we can
assume that (p is surjective or injective. Next we change the base
Y to Spec(B/m), m : the maximal ideal of B .  Then A'ImA',AlmA
are vector spaces of the same dimension over B/m. The same
argument as for Y=Spec(B) shows that A'ImA' 7.-->A1mA. If 95 is
injective, we have A-A'--FmA, and by Nakayama's lemma, we
have I f  95 is surjective, since A  is B-projective module,
A '  A e m, for some B-module M .  Since A' ImA'=, AlmA, we
have m M =M . Hence M = O . q.e.d.

Corollary. L et G, Y  be as in Lemma 1, and let X be an element

o f  E (G, Y ), GxX0 - X  Y .  I f  p has a section s (i.e. S-morphisms p
Pr,

Y , X  such that p • s= Y), then X  is isom orphic to G x Y.

Thus two elements (x, p), p ') of E.“G, Y) are isomorphic
if there exists a morphism f : X -> X ' such that p'•f=p and that
f  commutes with the operations of G  on X  and X '.  Then, this
defines an equivalence relation in E (G, Y ) by virtue of Lemma 1.
We denote by E s (G, Y) the quotient of Ek(G, Y )  by the above
equivalence relation.

Proposition 2. L et f :  Z , Y be a  S-morphism. W e associate
to any  elem ent X E E (G , Y )  an  elem ent X x Z  of  E (G, Z ), (well

Y

def ined). T hen this m apping def ines a  m apping f * :  E s (G, Y) ,

Es (G, Z).
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Proo f. W e omit the proof. q.e.d.

Proposition 3. Let Y  be a schem e over S  and let a: G-->I1
be a  homomorphism o f f inite, locally  free group schemes over S,
w hich satisfy  the condition:

( S ) :  the k ernel of  a: G-->H, i.e. K =Gx S  is locally  f ree.
i l

W e define an operation 0-' of G on Hx  X  by cri =(ui r T -(tax H ).pr„,

cr•pr„), w here IIH , T , o - , t  are respectively the multiplication of H,
the exchange of  tw o m em bers, the operation of G  on  X  and the
inverse morphism of G . T hen there ex ists a geometric quotient X'
o f  H x X  by  G on w hich H  operates faithfully  and w hich has Y

as a geometric quotient b y  H .  In particular, if H =G IK , X ' is
obtained as a geometric quotient of  X  by  K  (restricting the opera-
tion o f G  t o  K ) .  I f  a :  G-->I1 is  a  closed immersion, then  the
canonical m orphism  X - X ' is also a  closed immersion. In this
situation, a defines a m apping a* : Es (G, Y )->Es (H , Y).

P roo f. The proof consists of several steps.
(I) T he ex istence o f X .  W e will begin by showing that the
G on Hx  X  is faithful. The operation is decomposed as follows :

G x H x X  -= H x G x X H x G x G x X
H x a x G x

->
XT x X H x  A G IsX  X

H x H x G x X  
H x t x G x X

->H x H x G x X
(A H , H ) x ( c y , f )

H x H x X x X  
H x T x X

>H x X x H x X ,

a n d  a l l  morphisms except (H x ax G x X ) - (H x A G is x X )  are
closed im m ersions. Therefore, we h av e  only to prove that
(axG)• AG's is a closed immersion. Then by EGA, (I. 4. 2. 3.) and
(I. 4. 2. 4), the unit morphism S->I1 is a  closed immersion, hence
K->G is a closed immersion. In this case, using the condition (S),
there exists a  geometric quotient G IK  and a  is decomposed to
I3 .a':G ->G IK ->H . Here, is also a  closed immersion. Then

a'
we have (a x G)A G/s (8 x G) (a' x G)AG ts . Since (le x G) is a closed
immersion, we can assume that H =G IK . Then the base change
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G--> H, applied to a H-morphism x G Hx G  gives us
A G IS a x G

a  closed immersion, Kx G -4.GxG-->K xGxG-->GxG (formally,

(k, g)->(k, g , g)->(kg, g ) ) ,  which is equal to K
ix G (1i,G,Pr2)

G x G .  Since G-> H  is faithfully flat, quasi-compact, ( a x G)AGis
is  a  closed immersion, (cf. [2], Exp. VIII, Cor. 5. 5). Next,
H x X - - 4 - S x  Y  Y is affine and invariant with respect to the

s (7 1 ' x  P) s
operation 0-' of G on Hx X .  Therefore there exists a  geometric

quotient X' of Hx X  by G.

(II) H  operates faithfully on X .  The operation 0-" o f H  on X'
is defined from the next commutative diagram,

Hx Gx  Hx  X  i i  H x  H x  X  ---> H x  X'

(Gx ,uH xX )-(T x  Hx  X) pwx X

G x H x X H x X  — >  X' .

Consider the following commutative diagram, all objects consider-
ed naturally defined over Y,

H x G x H x X -4 -(G x H x X )x (G x H x X )

H x  H x  X  - -> (H x  X )x (H x  X)
Hx p'

Hx  X' — > X' x X'
Y

where it is easy to point out the morphisms. The base change
by a  faithfully flat, quasi-compact morphism p : X--.17  gives us
the following commutative diagram,

H x G x H x G x X -.(G x H x G x X )x (G x H x G x X )
11

H x H x G x X  - - -> (H x G x X )x (H x G x  X)

H x H x X (X' x X )x (X' x X)
1

Y X Y

Hx X' x X (H x  X )x (H x  X)
Y



H xG xH xX  - - 1 G x H x X Gx X
pr 2

X
PiAtrIx X 

a' pr„

H x H x X   H x X
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where we have used the fact that X  is an universal geometric
quotient to prove that X ' x X H  x  X .  It is easy to point out the

Y

morphisms o f th e  above diagram. Therefore (H x X')x X is
Y

isomorphic to (X ' x X') x X .  Hence an isomorphism H xX ':- ..X'x
Y Ys Y

Since Y  is a  scheme over S, a morphism X' x X'::> (X' x X') x
Y Y xY

( Y ,  yis) -> x (X' x X7 ) y . y ( YX Y ) is  a  closed immersion.

Therefore Hx x X ' is a closed immersion.

(III) Y  is a geometric quotient of X ' by Y. From the construc-
tion o f X ', we have an affine morphism p" : which is in-
variant with respect to the operation o f H  on X ' .  Therefore,
there exists a  geometric quotient ( Y', q): X ' -  Y '-  Y, q' • q = p' .q,

Consider the following commutative diagram,

I H x  p' P r 2 3 I
0 . / / I i l r

r 1 P
Hx X ' =_— _ -_.: X ' - - >  Y ' Y

, Pr,

Since we have q-p' -(pl i x X) = q • 0-" -(Hx p') q . p r,•(H x p ')
q. ppr 2 3 , there exists a morphism r :  X - e-Y ' such that q• p '  r. p,.
We have r•cr=r•pr, by the analogous argument, hence the existence
of a morphism r' : Y-->Y' such that r=r' • p. Now, it is easy to
show that q', r ' define the isomorphisms of Y' and Y.

(IV ) The proof of the second assertion can be done analogously.
For the third assertion, we have a commutative diagram.

0-

G xH xX

1P r i 2 P r " I 7t
1 1 •T • (tax  H)

Il

Gx H .2; H  — > H IG .
Pr,

q,
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From this diagram, we know the existence of a S-morphism
7r: X '-->H/G, where H IG  is a  geometric quotient of H  by G,
letting G  operate on H  from the right through t • a .  Consider
X = (X ', 71") x  (S, e), where e is the distinguished morphism induced

H/G

by the unit morphism of H .  X is a  closed subscheme o f  X'.
From the construction of X ', we know that i X -3•X ' is divided
by a canonical injection j :  X->X'. Using Lemma 1 of Part I, we
know immediately that X = 4 .  q.e.d.

Corollary. Let G be a commutative, f inite, locally  free group
schem e over S  and let Y be a scheme over S. T hen E s (G, Y ) is
endowed with a structure o f  an abelian group. For a morphism
f: Z--->Y , the m apping f* : Es (G, Y )->Es (G, Z ) is a homomorphism
of abelian g ro u p s. For a homomorphism a: G ->H  of commutative,
f inite, locally  free group schem es, the m orphism  a * : E s (G, Y )->
Es (H ,Y ) is also a homomorphism of abelian groups.

Proo f. Both the multiplication A G  and the inverse morphism
1 G  satisfy the condition (S). q.e.d.

Part II. M ain results

1. From now on, S  is a spectrum of an algebraically closed field
k of arbitrary characteristic. Let G be a finite group scheme over
k  and let X  be an element of E;(G, Y), where Y  is a prescheme
over k,

cr p
G x X = X - - > Y .

pr2

Since k  is perfect, (G x X)'red — Gred X X red  and since (Gr, Pr,): Gx X
, ( 0 - r e d  P r 2 ) : G r e d X X r e d — >X r e d X X „d— >X  X X  is a  closed immersion

is a closed immersion. Therefore G ,d operates faithfully on Xr, .
On the other hand, pr e d  is affine and invariant with respect to the
operation o f G r e d  on  X r , .  Hence the existence of a geometric
quotient (Y', p ' )  of X r e d  be G r e d ,

Grred P'
G r e d Yr

P"
X  X r e d Xred Y' - - >  ed p" Pred •k pr 2
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Then we have :

Lemma 1. In  th e  above situation, the m orphism  p "  i s  a
universal homeomorphism  (cf . [4 ], IV, 2. 4. 2), and the homomor-
phism  of structural sheaves attached to p" : 0 y r e d —>p(0 y ,) (which
w e call the comorphism of p "  f o r the abbreviation of notations) is
injective.

P ro o f. I t  is essentially included in the assertion (i) of Pro-
position 1, Part I. q.e.d.

Let a : F— >H, g: G— .11 be homomorphisms o f finite group
schemes over k  and let Y be a  reduced, irreducible scheme of
finite type over k  (i.e. an absolutely irreducible variety in the
classical sense). Let X  be an element of E 'k (F x G, Y) ; (F x G) x

H k

X  cr X —> Y, where the definition of a finite group scheme FxG is tri-
— p H

Pr 2

v ia l. Let p„ p 2 , p 3 be projections from F x G to F, G and H .  Consider
H

pF
X,— ( I )  1) *(

X
) X 2  =  ( P  2 )  * ( X )  and X ,—  (P2)*(X ); Fx X , X , — > Y ,

k p r 2
a G PG (711Gx X 2  Y, Hx X 3 X 3 —> Y . T h e n  w e  have (P3)*(X) =

k p r 2 pr,
a*(X .,) —  *(X 2). Therefore, an element (X „ X 2 )  is determined in
Ek (F, Y), , k ( x. y ) Ek (G, Y), associated to XE E k (F x G, Y ) .  We denote

this map by O.

Lemma 2. The notations are as abov e. T hen X i x X 2 * 0  and
X 1 x X , is an element of E k (Fx  G, Y).

1 3H

P ro o f. I t is easy to see that X, x X2 * 0 .  We define an opera-
1 3

tion cr' o f  F x G  on X 1 x X ,  as the composition of morphisms,
1 3

W e w ill
H k1 3 k CH >1 13) k

show that the operation a' is faithfull. In fact, the morphism
(0-' 2) : (F x G) x (X, x X2 ) (X ix X 2) x (X ,x X 2 ) is obtained by

H k 13 13 k1 3

composing the following morphisms, (F x G)x (X i x X2) 2 ").(F x X1)
H k 13

X  (G x  X ,) ( F  x  X i ) x  (G x  X ,) — > (X , x  X i ) x  (G  x  X 2) --)
(11 x13) k k (13 13) k k( 1 3 x 1 3 ) k

F  X  crG

(F x G) x (X ,x X 2 ) ( F  x  X 1 ) x  (G x X,) X ix  X 2 *
13
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(X, x X , )  x  (X2 x X2) --j; (Xi x X2) x (Xi X X2 ), where it is easy to
k CI 3 >1 X  3 ) k 13 k 13

point out the morphisms, (the second, (F x X i ) x  (G x X2 ), etc.)
k H, Pr 2) k

and where all morphisms are closed immersions. Hence, (0- ', Pr2)
is  a  closed immersion. Put p' =13,x PG: XIX X 2 - >  Y . Then p ' is

P g 13

affine and satisfies p' • 0-' = p'•pr,. Therefore we know the exis-
tence of a geometric quotient ( Y', q) of X, x X, by Fx G ,

1 3 I I

( *  )  ( F x G ) x ( X ,x  X 2) (X ix  X 2) Y ' Y  , q' • q p' .
It k1 3 13Pr2

The base change of the diagram (* )  by p : Y  gives us a
diagram,

711 x X ex(**) ( F x G ) x  ( F x G ) x  X = ,*  (Fx G )x  X -- ( Y ' x X ) X ,
H kY k p r 2 i l k Y

where we use the relation, (X, x X2) x (X, x X )  x  (X 2 x X)
1 3Y Y ( 1 3 x 1 ) y

Y

—> J a i  x  X i) x X } x {(X2x X2)x X }  (F x X )  x  (Gx  X )
Y I , ((X 3 V 3 )  ,<3 %) Y 12 k CH x 1 ) k

(Fx G )x  X  and where i s  the multiplication of F x G .  From (**),
k H

we know that q'x : Y ' x X Y  x  X .  Since p :  x --> Y  is a faithfully
Y

flat, quasi-compact morphism, we know that q' : Y. q.e.d.

Lemma 3. The notations are as in Lemma 2. We put the next
condition.

( T ) .  Let (resp. 77) be any element of E k (F, Y ) (resp. Ek (G, Y ))
such that a * ( ) = 0 * (77). Then we can find X „ X 2 , X, respectively
in the classes 77 and a * ( ) = B * (77), such that the canonical images
of  X, and X 2 in X 3 have non-empty intersection and that the images
o f  X, x X , in  Y  contains a  generic point o f  Y  over k.

1 3

Then we can define a  mapping : E k(F, Y )  x  Ek (G,Y ) ,

Ekoi, Y )

E  k ( F  x G , Y ) by 77) the class of (X ,x  X 2)  an d  kIf is a n  iso-
I i 13

m orphism , i.e. c13•T  =1, T • cl) =1.

P ro o f .  The proof consists o f several steps.
(I) I f  either a  or /3 is  epimorphic : Suppose a  is epimorphic.



Pro -representability of a functor 41

Take arbitrarily X „ X , in 72. (The same notations as in the
assumption ( T ) ) .  Then, as X,, we can choose a geometric quotient
(X i ! K, i,), where K  is  a  kernel of a .  Thus i,: X,-->X, is finite,
locally free, hence faithfully flat, quasi-compact and immediately
X, x X2 4 .  T h e  proof of the facts that the operation 0-' of F x G

on X, x X , is well defined, faithfull and that there exists a  geo-x,
metric quotient ( Y', q ) o f X 1 x X, by F x G  is analogous to the

1 3

proof in  Lemma 2. Thus we have a diagram,

( *  )  (F x G )x (X i x X2 ) = _ ( X 1 x X2 ) q  Y '  21). Y , q' • q p '  .
EL k 13

P ry

Note that i i = p ,x  PG: XIX X2 —.Y is faithfully flat, quasi-compact
P i t 13

because i1 : and PG: Y are also f.p.q.c. morphisms. To

show Y '  Y ,  w e  have only to change the base Y of (*) to X,x X2q
2.3

by p' : X, x It is immediate to see that the class of X,x  X .
13 13

is independent of the choice of X „ X 2  in E, 72.

(II) The homomorphisms a  and 13 are  decomposed a s  follows,

a: F—>F' —> H, : G  -->G ' H ,  where a', 13' are epimorphic and a",
/3" are monomorphic (hence, closed immersions). Therefore, by
virtue of ( I) , it  is easy to see that we have only to prove Lemma
3 in the case that a  and 13 are closed immersions.

(III) I f  both a  and 13  are closed immersions : Take X „ X 2 , X 3
as in the assumption (T ) .  Then canonical morphisms i 1 : X 1 —>X3

and i,: X 2 —>X3 a re  closed immersions. Therefore we can consider
that X , and X 2  are closed subschemes of X , .  Consider (X I ), red 7
( X 2 ) r e d  and (X 3 )'red  • ( X l ) r e d  and (X,), r e d  a re  closed subsets of the
algebraic set (X 31' r e d  and they have the same dimension as ( X 3 )red  •

Therefore (X)' r e d  and (X ) r e d  are the un ions of some irreducible
components of (X 31'red  • Since p ' :  x -, x X,—.Y is  propre and since

13

the image of p '  contains a  generic point y of Y over k, the image
of p' coincides with Y. F rom  the assumption, (X, n x 2 ) r e d  contains
a generic point of (X 3 )' r e d  over k, hence an irreducible component.
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Therefore (X, n x2) r e d  is  the union of some irreducible components
of ( X 3 ) r e d  • In fact, it is a lso  the union of some connected com-
ponents of (X0 red • Then the comorphism of p' : y — P fi ( o x  x )i 2

X 3

i s  injective. On the other hand, F x G  operates faithfully on

X ,X  X „ and p '  is  affine and invariant with respect to the operation
1 3

of F x G . Thus we know the existence of a geometric quotient

( Y', q),

( * ) ( F  x G ) x ( X i x X,) (X ix Y  , q/ • q = p' .
X3 X3

From the construction of Y', it is ev iden t that the comorphism
of q' : y - )1 (0  y ,)  is  injective.

(IV) For a n y  k-morphism T-->Y, w e k n o w  th a t (X3 x
Y

a * (X, x 13*(X 2x T) and that Y' x T  i s  a  geometric quotient
Y Y

of (X, x T )  x  (X, x T )  by F x G . Therefore, in the diagram ( * ) ,
Y (X3IX Y et

we can suppose, first Y is  affine, then Y is  a spectrum of a local
ring and then Y  is  a spectrum of a field K .  In the last case, it
is immediate to see that X, x X , is faithfully flat, quasi-compact

1 3

over Y . T hen the base change of (*) by p' : x,x .x, , Y  shows

that Suppose now Y  i s  a spectrum of a local ring (0  3,,
iljty )  o f some point y of the original Y .  Put (0 ,,  .Elly )--(B, )JO.
Then Y ' is  a spectrum of B-algebra B ' which is finite B-module
and B is a subalgebra of B ' by virtue of the fact that O y  contained
in q;E;( 0 4 ) .  From the fact that r® B lif f t -  YOB/M-----Spece (BIM),

we know that B/ ITZB' B OR, hence B' =B +931B/ . Therefore B' =B
by Nakayama's lemma, hence Y . T hus X ,x  X ,  E (F x  G, Y).

1 3

It is immediate to see that the class of X , x X, depends only on
1 3

the classes a n d  n.

(V) Put X I x X 2 = X .  Consider a morphism c F • r: F x X - - >X1,
1 3

where r  is  the projection F x (X, x X2)  to  Fx  X , .  Then o-F • r  is
k1 3

invariant with respect to the operation o f F x G  on F x X  which
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is defined in Proposition 3 of Part I. Therefore we have a mor-
phism :  (pr i )* (X )-->X , which is compatible with the operations
of F  and which makes the following diagram commutative,

G x (pr,) * (X ) (pr,)*(X) ---> Y

Ix

  

G x X, 4  X , Y .

Hence (pr i )* (X ) ;  X , .  The same argument for pr2 : F xG—>G shows

us (Pr2 )*(X) 4 2 q.e.d.

Lemma 4. T he notations are as in Lemma 3. The condition
o f  Lemma 3 is satisf ied in the following cases.

(i) Either a or S  is  epimorphic.
(ii)) Either F  or G  is  the unit group scheme Spec (k).
(iii) F, G, H are commutative.
(iv) F, G , H  are infinitesimal (i.e. whose affine rings are local.)

P roo f. (i) is trivial.
(ii) Suppose G —Spec (k). Then any element of the class 72 is

isomorphic to Y. Take X „ X 2 , X , arbitrarily in E, 72 and a * ( )—
14(77). Then i,: X 2---->X 3 is a section s : Y-->X, to p H . Take generic
points x„ x, of (X,),red and X , over k  such that x „ x 2 belong to
the same orbit by H r e d . (It is possible by virtue of Lemma 1.)
Then there exists an element h  of H„d such that x 1 —hx 2 ,  where
h  is k-rational. Now take )“— hX 2 in  .72, (it  corresponds to a
section h s ) .  These X „ X „ X , satisfy the condition ( T).

(iii) The analogous argument to (ii) is applicable in this case.
( i v )  Take X „ X „ X , arbitrarily in 72 and a * ( ). T h e n  X „

X 2 , X , satisfy the condition ( T). q.e.d.
We put the following notations :

C.7-(k)= the category of commutative finite group schemes over k.
C ( k ) =the category of finite group schemes whose affine rings
are local.

Then we have :

Theorem. Suppose Y  is an  irreducible variety over k. Then
we have :
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(i) I f  a :  F-4.G  is  a  monomorphism  o f f inite group schemes,
then the m ap of sets a * : E k (F,Y )-÷ E h (G, Y ) is  injective,

(ii) ) Let (1)-->K—>F--->G--->(1) be an exact sequence of finite group
a  13

schemes, i.e. K  is  a normal subgroup of F  and Then in
the sequence,

a* 13*E k (K , Y) — > E k (F, Y) Ek(G, Y) ,

if the image of an element 72 o f E k (F ,Y )  by  i3*  i s  trivial, then
there ex ists an element of E k(K ,Y )  such that a * ( ) -77.

(iii) A covariant f unctor G  -  - - E k(G, Y) f rom  the category  C (k )
into the category of abelian groups is strictly  pro-representable.

(iv) A covariant functor G --- ---Ek (G, Y) from  the category C ( k )
into the category of sets is strictly pro-representable.

P ro o f .  Use Lemma 3, Lemma 4 and Grothendieck's theorem
for the pro-representability, [3], n°195-06. q.e.d.

Rem ark. The results (i), (ii) of Theorem hold for Y  which
is a  connected, reduced scheme of finite type over k.

2. A s in  1 of Part II, S is a  spectrum of an algebraically closed
field k  of arbitrary characteristic and Y is a  reduced, irreducible
scheme of finite type over k. Let y be a  generic point of Y over
k and let X  be an element of E (G , Y), where G is a  finite group
scheme over k. Consider a fibre X y =  X x  k (y ). It is a principal

Y

homogeneous space under G defined over k (y ) .  Take a  geometric
point x  of X . ), and consider a pair (X, x )  (i.e. X  with the ponctua-
tion ). When we consider a  morphism o f such ponctuated pre-
schemes, we add the condition that the morphism preserves the
ponctuations. Then Lemma 1 of Part I holds for the case that
X  and X ' are ponctuated. We denote by E k (G ; Y , y) the quotient
set of E 'k(G, Y ) by the analogous equivalence relation to the one
which defines E k (G , Y ) .  Then Gre d operates on E k ( G ;Y ,y )  by
translating the ponctuations a n d  E k (G ;Y ,y )1G red is
canonically isomorphic to E k (G , Y ). N ote that when we construct
a * (X )  for a :  G -4 1 , we can endow a ( X )  with a  canonical ponc-
tuation i.e. the class of (1, x )  modulo G .  Then all results of Part
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I  and Lemma 1, Lemma 2 of P art II hold fo r the ponctuated
preschemes and for the morphisms of ponctuated preschemes. In
Lemma 3, the condition is naturally satisfied. T h e re fo re  for
homomorphisms of finite group schemes a: F--->I1 and : G-->H,
we have an isomorphism of sets,

Ek (Fx G  ; Y, y) Ek(F ; Y, y) x  E k (G; Y, y) .
E  k ( 1 1 0 ' Y )

Therefore, by virtue o f  Grothendieck's Theorem fo r  th e  pro-
representability, a covariant functor G  - - , -Ek (G ; Y, y )  from the
category of finite group schemes Cf (k ) to the category of sets is
strictly pro-representable.

Remark. If G belongs to C;•(k), Ek (G ; Y , y) E k (G, Y ) because

G r e d  operates trivially on E h (G ; Y , y ). Also, if G belongs to Cr(k ),
E k (G ; Y, y) = E k (G, Y ) because Gr e d  =Spec (k).

P a r t  I I I . Appendix.

1. As in Part II, S  will be a  spectrum of an algebraically closed
field k  of arbitrary characteristic. Let A  be an abelian variety
defined over k  and let G be a  finite, commutative group scheme
over k which operates faithfully on a connected, reduced prescheme
X  over k  and gives a  geometric quotient A,

p

kP r ,

In this Part, we will prove that X  is necessarily an abelian variety
and that p is  an  isogeny. This result is a  slight generalization
of the result of Lang-Serre on the non-ramified coverings of an
abelian variety, [9].

2. Since G is  commutative, G  is  a d irect product o f  a  reduced
subgroup scheme Gr e d  and an infinitesimal subgroup scheme G,n f ,
G =G ,•G , n f . . By the process of Proposition 3 of Part I, we have
an element X 'EE,f(G r e d , A ) and a diagram,
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G„d x X '---> A

where and where X ' is connected, reduced.
Then, noting that G ,-.----G(k)p and combining the results of Gro-
thendieck, [2], Exp. V, Prop. 2. 6 and Cor. 2. 4, we know p' :
is an étale covering of A .  And by the results, [2], Exp. I, Prop.
9. 2, Theorem 9. 5. (i) and [4 ], II, 6. 1. 10, p ' :  X '-->A  is  a  non-
ramified covering of A in the sense of Lang-Serre, [ 9 ] .  There-
fore, we know from Theorem of Lang-Serre, loc. cit. that X
is  an abelian variety and that p  is  a  separable isogeny. Now,

99

since Gi n f x .>X—>X' is exact, we can suppose from the first that
k  is  of positive characteristic p  and that G  is  an infinitesimal
commutative group scheme over k. On the other hand, by the
general theory of commutative group schemes, we know the
existence of a closed subgroup scheme G ' o f G  such that the
quotient G IG ' is a simple object in the category of commutative
group schemes, i.e. GIG' =a p  o r  ,up ,  cf. [1 0 ].  a p  (resp. ,up )  is
obtained as the kernel of the Frobenius endomorphism p  of the
additive (resp. multiplicative) group Ga  (resp. Gm ).(*) It is easy
to see that we have only to prove our result in the case that
G =a i ,  or A p . As above, a p  (resp. ,ap )  is a finite subgroup of Ga

(resp. Gm ). The process of Proposition 3 of Part I is here appli-
cable to obtain a principal fibre space X "  of the base A and of
the group Ga  (resp. Gm )  from X, here a principal fibre space is
the one in the sense of f.p.q.c. topology,

P 1415X  X X  - *  A
resp.

P"Ga x X" X" A Gmx X" - - - ; X" A

It is easy to see that a canonical injection i: X -->X " is  a closed
immersion, that X" is a connected, reduced, moreover that X" is an

( * )  The idea to embed a p  (resp. ,up) into G , (resp. G a )  and to use the results of
Rosenlicht and Serre was suggested by T, Oda,
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irreducible variety. Let be a generic point of A  over k , and
consider a fibre X '' =X "x k ( ). Then X't'  i s  a principal homo-

geneous space with respect to Ga  (or Gm )  defined over the field
k( ). Therefore Lemma for Theorem 10 of [7] shows us that
X ' has a k(0-rational point 77. By associating the point 77 to the
poin t , we have a rational section s  to p " , s: A --X " which is
regular at . Since A  is a commutative group variety, X " is  a
locally trivial principal fibre space of the base A  and of the group
Ga  (or Gm ) ,  i.e. the one in the sense of Zariski topology. Thus
X " belongs to one class o f I-P(A, O A )  (or f li(A , O ) ) .  From the
construction of X " ,  it is easy to see that the class o f X "  in
IR A , Q A )  (or I-11(A , O )) is annihilated by the multiplication by p,
the characteristic of the field k. From the Serre's book, [8], we
know that HAA, 0 A )=-Ext(A , G a ) and that {the torsion elements
of MA, OM} OE Ext (A, Gm ). Therefore in both cases, we can con-
sider that X " is a commutative group variety. Since i: X ->X " is
a closed immersion and since X  is propre over k , X  can be con-
sidered as a complete subvariety o f X "  of codimension 1 which
contains a unit element e  o f X " .  It is not difficult to see that
the algebraic group G(X ) which is generated by X  in X " is closed,
connected and complete. Hence G(X ) is an abelian sub-variety
of X " .  Since there is a  connected linear group Ga  (o r  Gm )  of
dimension 1 in X ", G (X ) is a closed subgroup of codimension 1
and contains X .  Hence G(X ) coincides with X .  Therefore X  is
an abelian variety. Thus we have :

Theorem . L et G be a commutative f inite group scheme ever an
algebraically  closed f ield k  o f  arbitrary  characteristic, an d  le t X
be a  connected, reduced k-prescheme over which G  operates faith-
f ully  and gives a  geometric quotient A ,

o- p
G x X .- - :X — >A .

k Pr,

T hen X  is an abelian variety  and p  is  an isogeny.

Kyoto University
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