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Part I. Preliminaries

1. Let S be a locally noetherian prescheme and let G, X be re-
spectively a group prescheme over S, a prescheme over S on
which G operates from the left, that is to say, there is a S-
morphism o : G§<X — X such that the following diagrams are

commutative.
GXO' eXX
G>S<G>S<X—-> G><SX S§<X———’ G>S<X
lﬂvXX 10‘ \ lo’
GXX—O-—* X ) X ]

where p (resp. e) is the multiplication (resp. the unit) of G. Then
a diagram

Gxo
D —

x X RN
(*) GXGxXH*"2CGxX—=7 X
s 5 —_— s

D7y pr,

—_—
is a (Sch/S)-groupoid. In particular, if G is a finite, locally free
group scheme over S, we have the next result for the admissibility
of the pre-equivalence relation (x) (i.e. the existence of a geome-
tric quotient of X by G.)

Proposition 1. (Grothendieck-Gabriel, [1].) Let G be a finite,
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locally free group scheme over S. Suppose the next condition is
satisfied in (x):
For any point x€ X, the set o(Gx x) (i.e. the orbit of x) is
contained in an affine open set of X.
Then we have :
(i) There exists a cokernel (Y, p) of (o, pr,) in (Sch/S), moreover
such a (Y, p) is a cokernel of (o, pr,) in the category of all the
ringed spaces.
(ii) The morphism (o, pr,)y: G o X—-X ;<X is surjective. From (i)
and (ii), (Y, p) is a geometric quotient of X by G, (the terminology
is due to D. Mumford, |5].)
(iii) p is integral, and Y is affine if X is affine.
@iv) If (o, pr,) is a closed immersion (then, we call the operation
o faithful), then (o, p7,)y: G§< X-X ;<X is an isomorphism, and

p is finite, locally free. If the rank of G over S is constant, the
rank of X over Y is equal to the rank of G over S.

Remark. If there exists an affine morphism p’: X—Y’ such
that p’-c=p’-pr,, then the above condition is satisfied.

Corollary. In the situation of Proposition 1, if G operates
Sfaithfully on X, (Y, p) is a wuniversal geomelric quotient, i.e. for
any morphism Y'—Y, (Y, py’) is a geometric quotient of Xx Y’

Y
by G.
Proof. From (i), (iv) of Proposition 1, we know that X x X=
Y
G>S<X i.e. if we change the base from Y to X, X becomes trivial

and that p: X—Y is a faithfully flat, quasi-compact morphism.

Note that for any morphism f: Y'— Y, the morphism py:

XxY' —-Y is also a faithfully flat, quasi-compact morphism.
Y

We put X’=X;< Y, p’=py and ¢'=0oy. Since p’ is affine, from
the remark, we know the existence of a geometric quotient
(Y”, q") of X' by G,

o’ 4 q
G§<X/—p—)X/ Y// Y/, q.q/:p/.
r2
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Now, we extend the base Y’ to X’ by a morphism p': X'—Y,
then we have the following commutative diagram,

o p/
G>§X’ J— X — Y
T P”z T p// Tp/
(G§<X’)§X’ — X’;</X’ — X
IT IT D72 “
G>S<(X;<X);<Y’:(X><X)>< Y — X
&) U1 7, |

G§<G§<X’ — GxX — X,

S

where in the lower row, G operates on Gx X’ through the multi-
N
plication of G, therefore X’ is a geometric quotient of G o X by

G. Therefore, (X, p”") is a geometric quotient in the second row.
On the other hand, we have

p// — plxl — qX/'q,X/ X/XX/ Y//X X/ X/

Hence gx: Y”><X’—>X’ is isomorphism. Since p’: X’— Y is faith-

fully flat, quasi- compact we have, Y”—> Y. (cf. [2], Exp. VIII, Cor.
5.4.) 7 qed.

2. We denote by C.(S) the category of finite, locally free group
schemes over S. Let GeCLS) and let X, Y be pre-schemes over
S such that G operates faithfully on X and that Y is a geometric
quotient of X by G. In this situation, we will say formally that
a sequence G>S§X2X—>Y is exact.

Let us fix a group scheme G&C/(S) and a pre-scheme Y over

S, and denote by E4G, Y) the set of all pairs (X, p) of a pre-
scheme X over S and a S-morphism p: X—Y such that G§<X =3

X—Y is exact.

Lemma 1. Let Y be a pre-scheme of finite type over S, and
let (X, p), (X', p') be two elements of EXG, Y). Suppose there exists
a morphism f: X— X' such that p'-f=p and that f commutes with
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the operations of G on X and X', ie. o' (GXf)=f-a. Then f is
an isomorphism.

Proof. It is immediate to see that the underlying topological
spaces of X and X’ is bijective under f, (cf. Lemma 1 of Part II).
We have only to show the isomorphism of Oy and Oys. By virtue
of Corollary to Proposition 1, we can suppose that Y =Spec(B),
X=Spec(A4), X’=Spec(A’), f=Spec(p), where B is a noetherian
local ring, A, A’ are B-algebras which are free B-modules with
the same finite rank, and ¢ is a homomorphism of B-algebras.
The image @(A") of @ defines a closed image X" of f in X’, and
it is easy to see that X" belongs also to E4G, Y) and that X—
X", X”—X  are morphisms of G-pre-schemes. Therefore, we can
assume that ¢ is surjective or injective. Next we change the base
Y to Spec(B/m), m : the maximal ideal of B. Then A’/mA’, A/mA
are vector spaces of the same dimension over B/m. The same
argument as for Y=Spec(B) shows that A’/mA’:A/mA. If ¢ is
injective, we have A=A'+mA, and by Nakayama’s lemma, we
have A’SA. If ¢ is surjective, since A is B-projective module,
A =AD M, for some B-module M. Since A’'/mA = A/mA, we
have mM=M. Hence M=0. q.e.d.

Corollary. Let G, Y be as in Lemma 1, and let X be an element

of E4{G, Y), G>§XEX ;’ Y. If p has a section s (i.e. S-morphism
br,
Y—X such that p-s=Y), then X is isomorphic to G>S< Y.

Thus two elements (X, p), (X, p’) of E4G, Y) are isomorphic
if there exists a morphism f: X—X  such that p’-f=p and that
f commutes with the operations of G on X and X’. Then, this
defines an equivalence relation in E4(G, Y) by virtue of Lemma 1.
We denote by Es(G, Y) the quotient of E4G, Y) by the above
equivalence relation.

Proposition 2. Let f: Z—Y be a S-morphism. We associate
to any element X E4LG,Y) an element X >1§Z of EXG, Z), (well
defined). Then this mapping defines a mapping f*: Es(G, Y)—
Es(G, Z).
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Proof. We omit the proof. q.e.d.

Proposition 3. Let Y be a scheme over S and let a: G—H
be a homomorphism of finite, locally free group schemes over S,
which satisfy the condition :

(S): the kernel of a:G—H, ie. K=GxS is locally free.
H

We define an operation o’ of G on H§< X by o'=(ug1-(cax H)«pr,,

a-pry), where uy, T, o, ¢ are rvespectively the multiplication of H,
the exchange of two members, the operation of G on X and the
inverse morphism of G. Then there exists a geometric quotient X'
of H >S<X by G on which H operates faithfully and which has Y
as a geometvic quotient by H. In particular, if H=G|K, X' is
obtained as a geometric quotient of X by K (restricting the opera-
tion of G to K). If a: G—H is a closed immersion, then the
canonical morphism X— X' is also a closed immersion. In this
situation, a defines a mapping ay: Es(G, Y)—>Es(H, Y).
Proof. The proof consists of several steps.

(I) The existence of X. We will begin by showing that the
Gon H >S<X is faithful. The operation is decomposed as follows :

HxGxGx X

GxHxX—5>HxGxX —
% x X XX Hx Agisx X HxaxGx X
HxHxGxX————>HxHXGxX —>
Hx:xGx X XEXE o H) X (0, X)
HxHxXxX HxXxHxX,
XXX

and all morphisms except (HxaxGxX):(HXAgsxX) are
closed immersions. Therefore, we have only to prove that
(axG)+Ags is a closed immersion. Then by EGA, (I.4.2.3.) and
(1. 4. 2. 4), the unit morphism S—H is a closed immersion, hence
K—G is a closed immersion. In this case, using the condition (S),
there exists a geometric quotient G/K and « is decomposed to
B-a’:GzG/K}—éH. Here, B is also a closed immersion. Then

we have (X G)Ag;s=(BxG)(a’XG)Ags. Since (8xG) is a closed
immersion, we can assume that H=G/K. Then the base change
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Gﬁ H, applied to a H-morphism G——>GxG ——> Hx G gives us
G/S axG
a closed immersion, KX GSGxG—-KxGxG—->GxG (formally,
H

(k, g)—(k, g, g)—(kg, g)), which is equal to KxG—>GxG ——
X G (#’G) prz)

GxG. Since G— H is faithfully flat, quasi-compact, (axG)Ag/s
a
is a closed immersion, (cf. [2], Exp. VIII, Cor. 5.5). Next,

Hx X(—SS x Y3Y is affine and invariant with respect to the
s 7T X

operation ¢’ of G on H X X. Therefore there exists a geometric
quotient X’ of Hx X by G.
S

(II) H operates faithfully on X. The operation ¢” of H on X’
is defined from the next commutative diagram,

HxGxHxX —3 HxHxX —> H><X’

(GX/.LHXX) (rx Hx X) l paX X Ea"
| r
GxHxX —3 HxX p—» X
Consider the following commutative diagram, all objects consider-
ed naturally defined over Y,

HxGxHxX— (Gx Hx X)x(Gx Hx X)
Y

HxHxX —> (HxX)i(HxX)
[ Hxp i
HxX — X’>}§X’
where it is easy to point out the morphisms. The base change
by a faithfully flat, quasi-compact morphism p: X—Y gives us
the following commutative diagram,

HxGx}{xGxX»(G><H><G><X)><(G><H><G><X)
p. 4
v !
HxHxGxX —> (HxGxX)X(HxGxX)
X
!
HxHxX —— (X'x X)x(X'xX)
Y X Y

| 0
H><X’>;X (H><X)>;(H><X) ,
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where we have used the fact that X is an universal geometric
quotient to prove that X’x XS Hx X. It is easy to point out the
Y

morphisms of the above diagram. Therefore (Hx X')xX is
Y
isomorphic to (X’ x X)x X. Hence an isomorphism Hx X’ X' x X'.
Y Y S Y

Since Y is a scheme over S, a morphism X’'x X' 5 (X'xX') x
Y YxY
(Y,Ay,s)—>X’><X’z(X’>S<X’)YXY(Y>< Y) is a closed immersion.

Therefore Hx X’—X’x X’ is a closed immersion.
S S

(III) Y is a geometric quotient of X’ by Y. From the construc-
tion of X', we have an affine morphism p”: X’—Y which is in-
variant with respect to the operation of H on X’. Therefore,
there exists a geometric quotient (Y7, g): X’? Y’—q; Y, ¢-qg=7p.

Consider the following commutative diagram,

HxGxHxX —3 GxHxX —— GxX

| ey Ul el

HxHxX — HxX —— X

lep’p:’,i |# '/lf’

HxX —— X — Y *3Y

a pr, q q ’

Since we have ¢-p -(ugxX)=q-c"-(Hxp') =q-pr,o(Hxp') =
q-p'pr.,, there exists a morphism 7: X—Y’ such that g-p'=r-p,.
We have ».o =7r-pr, by the analogous argument, hence the existence
of a morphism 7' : Y=Y’ such that r=7"-p. Now, it is easy to
show that ¢/, 7’ define the isomorphisms of Y’ and Y.

(IV) The proof of the second assertion can be done analogously.
For the third assertion, we have a commutative diagram.

o’ I
GxHxX ——3 HxX— X
lprlz prza l 7[
w7 (eax H) v
GxH——H —H/G.
pr,
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From this diagram, we know the existence of a S-morphism
w: X'—>H|G, where H/G is a geometric quotient of H by G,
letting G operate on H from the right through :.a. Consider
X=(Xx, n)H>/<G (S, e), where ¢ is the distinguished morphism induced

by the unit morphism of H. X is a closed subscheme of X'.
From the construction of X’, we know that 7/: X—X’ is divided
by a canonical injection j: X—X’. Using Lemma 1 of Part I, we
know immediately that X=X. q.e.d.

Corollary. Let G be a commutative, finite, locally free group
scheme over S and let Y be a scheme over S. Then Es(G,Y) is
endowed with a structure of an abelian group. For a morphism
f:1Z=Y, the mapping f*: Es(G, Y)—>Es(G, Z) is a homomorphism
of abelian groups. For a homomorphism o :G—H of commutative,
finite, locally free group schemes, the morphism ay: Es(G, Y)—
Es(H,Y) is also a homomorphism of abelian groups.

Proof. Both the multiplication u; and the inverse morphism
1 satisfy the condition (S). q.ed.

Part II. Main results

1. From now on, S is a spectrum of an algebraically closed field
k of arbitrary characteristic. Let G be a finite group scheme over
k and let X be an element of E(G, Y), where Y is a prescheme
over k,

b4

ag
GxX—3X—Y.
pr,

Since k is perfect, (G X X);eq =Grea X Xreq» and since (o, p7,) : GX X
k k k
—Xx X is a closed immersion, (o e, 87;): Grea X Xieg = Xiea X Xyea
k k k

is a closed immersion. Therefore G,., operates faithfully on X,.,.
On the other hand, p,, is affine and invariant with respect to the
operation of G, on X,,. Hence the existence of a geometric
quotient (Y7, p’) of X,.., be G4,

red

O red pl ’7
[—— ’ 24 /7
Gred >:~ Xred — Xred Y > Yred ’ ﬁ 'p - pred .

br,
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Then we have:

Lemma 1. In the above situation, the morphism p” is a
universal homeomorphism (cf. [4], 1V, 2.4.2), and the homomor-
phism of structural sheaves attached to p" : Oy,.qa—p%(Oyr) (which
we call the comorphism of p”’ for the abbreviation of notations) is
injective.

Proof. It is essentially included in the assertion (i) of Pro-
position 1, Part L qg.ed.

Let a: F—H, 8: G—H be homomorphisms of finite group
schemes over k£ and let Y be a reduced, irreducible scheme of
finite type over k (i.e. an absolutely irreducible variety in the
classical sense). Let X be an element of Ej (F><G Y); (F ><G)><

X o X —p> Y, where the definition of a finite group scheme F ><G is tri-

P"z
vial. Let p,, p,, p, be projections from F X Gto F,Gand H. Consider

= (WX), X=(B)u(X) and X, = (pu(X); FxX, S X2,

br,
GxijX&Y HstjX&'Y Then we have (p,)(X)=
k p?’z p7’3
aW(X,)=PBx(X;). Therefore, an element (X,, X,) is determined in
EJF,Y) (>< Y)E,,(G, Y), associated to XeE (FxG, Y). We denote
Hy(H, b7 4

this map by &.
Lemma 2. The notations are as above. Then X, x X,%+¢ and
X, x X, is an element of E(FxG,Y). e
Xg H
Proof. It is easy to see that X, X X,4¢. We define an opera-
X3

tion ¢’ of FﬁG on X‘?éXZ as the composition of morphisms,
: opX0og

(FxG)x (X, x X)) = (FxX) x (GxX) —> X,xX,. We will
" k X3 k (Il:Xa) k X,

show that the operation o’ is faithfull. In fact, the morphism

(¢’ pr,) : (F ><G)>< (X, >< X) — (X, ><X)>< (X, ><X2) is obtained by

composing the followmg morphlsms (F X G) >< (X, >< Xz) S(F >< X))
X (GxX)—»(FxX) X (G><X)—>(X><X) >< (G><X)—>

(E:Xa) X3xX3
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(X, xX) x (X,xX,)S(X,xX,)x(X,xX,), where it is easy to
k (Xgx X3) k X3 k X3

k
point out the morphisms, (the second, (Fx X,) X (GxJX,), etc.)
k Cmbry) ok
and where all morphisms are closed immersions. Hence, (o’, p7,)
is a closed immersion. Put p'=pzXps: X, x X,—Y. Then p is
bg X3
affine and satisfies p’-¢’=p’-pr,. Therefore we know the exis-
tence of a geometric quotient (Y7, ¢) of X1><X2 by FXG,
H

(%) (F><G)><(X xX)—'"(X ><X)———-> Y’——» Y, ¢-gq=p.
s br,

The base change of the diagram (x) by p: X—Y gives us a

diagram,

w' x X
(%) (F><G)><(F><G)><X . (F><G)><X—>(Y’><X)——>X
177’2

where we use the relation, (X,xX,)x X3S (X,xX) x (X,xX)
Xa Y Y (XS;X) Y
S{X,xX)xX} %X {XLxX)xX}S(FxX) x (GxX)5
v x, (N ;(rxa);ax) ¥ x, k X k
(F>< G) >< X and where p’ is the multiplication of F X G. From (xx),
we know that g%: Y’><X —>Y><X Since p: X—>Y is a faithfully
flat, quasi-compact morphlsm, we know that ¢’: Y’3Y. qed.

Lemma 3. The notations are as in Lemma 2. We put the next
condition.

(T). Let E (vesp. n) be any element of E(F, Y) (resp. E{(G, Y))
such that a(£)=0B4(n). Then we can find X,, X,, X, respectively
in the classes £, and ay(£)=By(n), such that the canonical images
of X, and X, in X, have non-empty intersection and that the images
of Xl?éX2 in Y contains a generic point of Y over k.

Thaen we can define a mapping V. E(F, Y)E (x )E,,(G, Y)—
WL Y
E(FxG)Y) by (§,n) ~— the class of (X,xX,) and ¥ is an iso-
" X3
morphism, ie. ©- V=1, ¥.-d=1,

Proof. The proof consists of several steps.
(I) If either a or B is epimorphic: Suppose « is epimorphic.
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Take arbitrarily X,, X, in & ». (The same notations as in the
assumption (7). Then, as X,, we can choose a geometric quotient
(X,/K, i,), where K is a kernel of a. Thus i, : X,—X, is finite,
locally free, hence faithfully flat, quasi-compact and immediately
X, ><X +¢. The proof of the facts that the operation ¢’ of F><G

on X ><X is well defined, faithfull and that there exists a geo-
metrlc quot1ent (Y, q) of X, ><X by F><G is analogous to the

proof in Lemma 2. Thus we have a dlagram

(%) (F><G)><(X XX)'_’(X ><X)——> Y’——-»Y qg-q=p".
T pr,

Note that p'=pr 1>’< pe: X, x X,—Y is faithfully flat, quasi-compact
H X3
because 7,: X,— X, and p;: X,—Y are also f.p.q.c. morphisms. To

show Y’:';Y, we have only to change the base Y of (%) to X, x X,
q X3

by p': X,x X,—Y. Itisimmediate to see that the class of X,x X,
X3 X3
is independent of the choice of X,, X, in &, »

1n The homomorphisms « and B are decomposed as follows,
a// 4 44

a: F—»F’—>H B GEG’&H where a’, 8’ are epimorphic and a”

B’ are monomorphic (hence, closed immersions). Therefore, by

virtue of (I), it is easy to see that we have only to prove Lemma

3 in the case that « and B are closed immersions.

(III) If both « and B are closed immersions: Take X,, X,, X,
as in the assumption (T). Then canonical morphisms i, : X,—X,
and i,: X,—X, are closed immersions. Therefore we can consider
that X, and X, are closed subschemes of X,. Consider (X)),
(Xrea a0d (Xreq- (X)rea and (X)), are closed subsets of the
algebraic set (X,),..; and they have the same dimension as (X,),.q.
Therefore (X))..q and (X),.s are the unions of some irreducible

components of (X,).q. Since p': X, x X,—Y is propre and since
X3
the image of p’ contains a generic point y of Y over k, the image

of p’ coincides with Y. From the assumption, (X,N X,),.qs contains
a generic point of (X,),.q over k, hence an irreducible component.
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Therefore (X,N X,)..q is the union of some irreducible components

of (X,),eqa. In fact, it is also the union of some connected com-

ponents of (X,)..q- Then the comorphism of p’: Oy»p;(OXI; X5)
3

is injective. On the other hand, F ><G operates faithfully on
X, ><X2, and p’ is affine and invariant w1th respect to the operation

of F ><G Thus we know the existence of a geometric quotient

(Y ,q),
(#) FXOXXXX) =3 XxX)——>v Loy, ¢q=1.
y/s k X3 X3
From the construction of Y’, it is evident that the comorphism
of ¢’ : Oy—>q4(Oy) is injective.
(IV) For any k-morphism 7T—Y, we know that (X,x7)=
Y
(XX T)=B4(X,x T) and that Y'X T is a geometric quotient
Y Y
of (X,x T)( xT(sz T) by FxG. Therefore, in the diagram (x),
Y Xy x T ¥ o
we can suppose, first Y is affine, then Y is a spectrum of a local

ring and then Y is a spectrum of a field K. In the last case, it
is immediate to see that X, x X, is faithfully flat, quasi-compact
X3

over Y. Then the base change of (¥) by p': X,xX,—Y shows
X3

that YY3Y. Suppose now Y is a spectrum of a local ring ©,,
M,) of some point y of the original Y. Put (O,, M,)=(B, M).
Then Y’ is a spectrum of B-algebra B’ which is finite B-module
and B is a subalgebra of B’ by virtue of the fact that ©, contained
in ¢4(0y/). From the fact that Y'®@B/M=YRB /M =Spece (B/MN),
B B
we know that B’/SRB’S B/, hence B'=B+MB’. Therefore B'=B
by Nakayama’s lemma, hence Y’;Y Thus X, ><X ek ,,(FXG Y).
It is immediate to see that the class of X, ><X depends only on
the classes g and 7.

(V) Put X, xX,=X. Consider a morphism o¢z.7: FxX—X,,
X3 k
where 7 is the projection Fx(X,XX,) to FXxX,. Then oper is
& Xy 3

invariant with respect to the operation of FxXG on FxX which
H
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is defined in Proposition 3 of Part I. Therefore we have a mor-
phism A : (p7,)«(X)—X, which is compatible with the operations
of F and which makes the following diagram commutative,
G x (prl)*(X) _ (pr1)*(X) -Y
[exx |

GxX, = X, —Y.

A
Hence (p7)4«(X)> X,. The same argument for pr,: Fx G—G shows
a
us (prz)*(X):;Xz q.e.d.

Lemma 4. The notations are as in Lemma 3. The condition
of Lemma 3 is satisfied in the following cases.
(i) Either a or B is epimorphic.
(ii) Either F or G is the unit group scheme Spec (k).
(iii) F, G, H are commutative.
(iv) F, G, H are infinitesimal (i.e. whose affine rings are local.)

Proof. (i) is trivial.

(ii) Suppose G=Spec (k). Then any element of the class 7 is
isomorphic to Y. Take X,, X,, X, arbitrarily in £, 7 and ay(§)=
Bx(n). Then i,: X,—X; is a section s: Y—X, to pg. Take generic
points x,, x, of (X,)..q and X, over k such that x,, x, belong to
the same orbit by H,.,. (It is possible by virtue of Lemma 1.)
Then there exists an element % of H,, such that x,=#hx,, where
h is k-rational. Now take X;=#iX, in 7%, (it corresponds to a
section #s). These X, X,, X, satisfy the condition (7).

(iii) The analogous argument to (ii) is applicable in this case.

(iv) Take X,, X,, X, arbitrarily in & » and au(¥). Then X,
X,, X, satisfy the condition (7). q.e.d.

We put the following notations :
Ci(k)=the category of commutative finite group schemes over k.

Cif(k)=the category of finite group schemes whose affine rings
are local.

Then we have:

Theorem. Suppose Y is an irreducible variety over k. Then
we have :
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(i) If a: F—>G is a monomorphism of finite group schemes,
then the map of sets ay: EYF, Y)—>EyG,Y) is injective,
(ii) Let (1)—>K(—X>F'—8>G—>(1) be an exact sequence of finite group

schemes, ie. K is a normal subgroup of F and G=F|K, Then in
the sequence,

EAK, V)25 B(F, V) 25 546, 1),

if the image of an element v of EWF,Y) by By is trivial, then
there exists an element £ of E(K,Y) such that ay(E)=n.
(iii) A covariant functor G--—E G, Y) from the category Ci(k)
into the category of abelian groups is strictly pro-representable.
(iv) A covariant functor G~—E G, Y) from the category C*(k)
into the category of sets is strictly pro-representable.

Proof. Use Lemma 3, Lemma 4 and Grothendieck’s theorem
for the pro-representability, [3], n°195-06. q.e.d.

Remark. The results (i), (ii) of Theorem hold for Y which
is a connected, reduced scheme of finite type over k.

2. As in 1 of Part II, S is a spectrum of an algebraically closed
field k£ of arbitrary characteristic and Y is a reduced, irreducible
scheme of finite type over k. Let y be a generic point of Y over
k and let X be an element of E}(G, Y), where G is a finite group
scheme over k. Consider a fibre X,=X X k(y). It is a principal

homogeneous space under G defined over k(y). Take a geometric
point x of X, and consider a pair (X, x) (i.e. X with the ponctua-
tion). When we consider a morphism of such ponctuated pre-
schemes, we add the condition that the morphism preserves the
ponctuations. Then Lemma 1 of Part I holds for the case that
X and X’ are ponctuated. We denote by ELG; Y, y) the quotient
set of E4(G, Y) by the analogous equivalence relation to the one
which defines E, G, Y). Then G,., operates on E,G; Y, y) by
translating the ponctuations x———gx, and E.G; Y, y)/G., is
canonically isomorphic to E.(G, Y). Note that when we construct
a4 (X) for a: G—H, we can endow a(X) with a canonical ponc-
tuation i.e. the class of (1, x) modulo G. Then all results of Part
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I and Lemma 1, Lemma 2 of Part II hold for the ponctuated
preschemes and for the morphisms of ponctuated preschemes. In
Lemma 3, the condition is naturally satisfied. Therefore for
homomorphisms of finite group schemes «: F—H and B:G—H,
we have an isomorphism of sets,

E(FxG;Y,9)—5E(F;Y,y) x EJG;Y,y).
s HyCH;Y, 9D

Therefore, by virtue of Grothendieck’s Theorem for the pro-
representability, a covariant functor G————E,G; Y, y) from the
category of finite group schemes C.(k) to the category of sets is
strictly pro-representable.

Remark. If G belongs to Ci(k), ExG ; Y, »)SELG, Y) because
G,.q operates trivially on E,(G; Y, »). Also, if G belongs to CF(k),
EJ(G;Y, y»)=ELG, Y) because G,,,=Spec (k).

Part III. Appendix.

1. As in Part II, S will be a spectrum of an algebraically closed
field %k of arbitrary characteristic. Let A be an abelian variety
defined over k and let G be a finite, commutative group scheme
over k which operates faithfully on a connected, reduced prescheme
X over k and gives a geometric quotient A,

g
exx——=x-2,4,

oopr
In this Part, we will prove that X is necessarily an abelian variety
and that p is an isogeny. This result is a slight generalization
of the result of Lang-Serre on the non-ramified coverings of an
abelian variety, [9].

2. Since G is commutative, G is a direct product of a reduced
subgroup scheme G, and an infinitesimal subgroup scheme G,
G=G,4-G,;. By the process of Proposition 3 of Part I, we have
an element X' E/(G.4, A) and a diagram,
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GfX:,’X—LA
b el

G XX "33 X'—> A
k

where X'=G,,x X/G=X/G,,; and where X’ is connected, reduced.
Then, noting that G,.,=G(k), and combining the results of Gro-
thendieck, [2], Exp. V, Prop. 2. 6 and Cor. 2. 4, we know p': X'—A
is an étale covering of A. And by the results, [2], Exp. I, Prop.
9.2, Theorem 9.5.(i) and [4], II, 6.1.10, p’: X’—A is a non-
ramified covering of A in the sense of Lang-Serre, [9]. There-
fore, we know from Theorem of Lang-Serre, loc. cit. that X
is an abelian variety and that p is a separable isogeny. Now,

since Ginfo::XgX’ is exact, we can suppose from the first that
k is of positive characteristic p and that G is an infinitesimal
commutative group scheme over k. On the other hand, by the
general theory of commutative group schemes, we know the
existence of a closed subgroup scheme G’ of G such that the
quotient G/G’ is a simple object in the category of commutative
group schemes, ie. G/G’'=a, or p,, cf. [10]. «a, (resp. u,) is
obtained as the kernel of the Frobenius endomorphism p of the
additive (resp. multiplicative) group G, (resp. G,).*® It is easy
to see that we have only to prove our result in the case that
G=a, or p,. As above, a, (resp. u,) is a finite subgroup of G,
(resp. G,,). The process of Proposition 3 of Part I is here appli-
cable to obtain a principal fibre space X" of the base A and of
the group G, (resp. G,,) from X, here a principal fibre space is
the one in the sense of f.p.q.c. topology,

a,xX T3 X —p—+A ppX XT3 X i)A
I = A E
44 4 p// 1) ——> 7. p//
G,xX'—3X'— A G, xX'—3X'—>A.

It is easy to see that a canonical injection i: X—X” is a closed
immersion, that X’ is a connected, reduced, moreover that X" is an

(%) The idea to embed «ap (resp. up) into G, (resp. G,) and to use the results of
Rosenlicht and Serre was suggested by T, Oda,
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irreducible variety. Let & be a generic point of A over k, and
consider a fibre X{/=X"xk(£). Then X{ is a principal homo-
P

geneous space with respect to G, (or G,,) defined over the field
k(¢). Therefore Lemma for Theorem 10 of [7] shows us that
X{ has a k(£)-rational point ». By associating the point % to the
point £ we have a rational section s to p”, s: A-—»X" which is
regular at £. Since A is a commutative group variety, X" is a
locally trivial principal fibre space of the base A and of the group
G, (or G,), ie. the one in the sense of Zariski topology. Thus
X" belongs to one class of H'(A, 0,) (or H'(A, 0%)). From the
construction of X”, it is easy to see that the class of X” in
HY(A, 0,) (or H*(A, ©%)) is annihilated by the multiplication by p,
the characteristic of the field .. From the Serre’s book, [8], we
know that H'(A, 0,)=Ext(A4, G,) and that {the torsion elements
of H'(A, 0%)} cExt(A, G,,). Therefore in both cases, we can con-
sider that X” is a commutative group variety. Since i{: X—X" is
a closed immersion and since X is propre over k, X can be con-
sidered as a complete subvariety of X” of codimension 1 which
contains a unit element ¢ of X’. It is not difficult to see that
the algebraic group G(X) which is generated by X in X"’ is closed,
connected and complete. Hence G(X) is an abelian sub-variety
of X”. Since there is a connected linear group G, (or G,,) of
dimension 1 in X”, G(X) is a closed subgroup of codimension 1
and contains X. Hence G(X) coincides with X. Therefore X is
an abelian variety. Thus we have:

Theorem. Let G be a commutative finite group scheme ever an
algebraically closed field k of arbitrary characteristic, and let X
be a connected, reduced k-prescheme over which G operates faith-
Sully and gives a geometric quotient A,

i b
GxX—3X—A.
Foopr,

Then X is an abelian variely and p is an isogeny.

Kyoto University



(1]

[2]
[3]

[4]
[5]
[6]
L7]

L8]
[9]

[10]

Masayoshi Miyanishi

BIBLIOGRAPHY

M. Demazure et A. Grothendieck, S.G.A.D. 1963/64, Exposés II, IV, V, VI, VII,
VIII, X. Mimeographed notes of IL.H.E.S.

A. Grothendieck, S.G.A., 1961 Mimeographed note of LH.E.S.

A. Grothendieck, Fondements de la géométrie algébrique (extraits du Sémi-
naire Bourbaki 1957-1962). Paris, 1962,

A. Grothendieck et J. Dieudonné, Eléments de Géométrie Algébrique, Chap. I,
II, IV2, Publ. Math. de LH.ES.

D. Mumford, Geometric Invariant Theory, Ergebnisse Math., Bd. 24, Springer
Verlag, 1965.

M. Miyanishi, La pro-représentabilité d’un foncteur sur la catégorie des groupes
formels artiniens, C.R. Acad. Sc. Paris, t. 262, 1966.

M. Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Maths., 78,
1956, 401-443.

J.-P.-Serre, Groupes algébriques et corps de classes, Hermann, Paris, 1959,

S. Lang et J.-P.-Serre, Sur les revétements non-ramifiés des variétés algébri-
ques, Amer. J. Maths,, 79, 1957, 319-330.

F. Oort, Commutative group schemes, Lecture Notes in Maths.,, N°15, Springer
Verlag, 1966,



