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As is well known, some of the special functions, which are
important in applied mathematics, are intimately connected with
the theory of unitary representations of Lie groups (see Vilenkin
[6]).

For example, Gegenbauer polynomials and Bessel functions
are the spherical functions of the rotation group and the motion
group of Euclidian space, respectively, and various formulae con-
cerning these functions can be derived group-theoretically. But,
for the group-theoretical treatment of some special functions, for
example Hermite polynomials, it is not convenient to restrict our
consideration to finite dimensional group.

In connection with this, the following is interesting.
From the integral representations of Gegenbauer polynomial

and Hermite polynomial :

C7(x) — F(2P+1)r(P+1/2) r
71. l! r (2 p ) r (p )  - l 'x +  iV i - -  t2 )P - 1 dt ( 1 )

H,(x ) —  ( x +  1 - t2z ) e dt

we see that

lim 1!   =  H i (x) .
p

This relation suggests us the connection between Hermite
polynomials and infinite dimensional rotation group 0(00).

In fact, Y. Umemura has shown that Hermite polynomials are

( 2 )

(  
3

 )
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eigen-functions of infinite dimensional Laplacian, i.e., 0(00)-invari-
ant differential operator of the second order (in this sense Hermite
polynomials may be called the spherical functions of 0(00)) and,
on this standpoint, has given a new interpretation of (2) and (3)
(see, Umemura [3] and Umemura-Kono [2]).

The purpose of the present paper is to show that Hermite
polynomials appear also as the spherical functions o f  infinite
dimensional motion group Goo and to prove the fundamental pro-
perties of Hermite polynomials from the viewpoint of the repre-
sentation theory of

In  §1 we shall briefly review some facts concerning Gaussian
measures on infinite dimensional vector space. In  § 2  we shall
construct a  series o f  irreducible unitary representations of Gco,
which are called o f  class 1. In  § 3  some formulae involving
Hermite polynomials (addition formula, differential equation, rec-
curence formula etc.) will be derived. '

The auther wishes to express his thanks to Prof. H. Yoshizawa
for his kind advice.

§  1 .  Gaussian measures

Here we summarize fundamental results about infinite dimen-
sional Gaussian measures (for details, see Umemura [1 ]).

Let 43 be a (infinite dimensional) real nuclear space and (p, 0)
be a continuous inner product on (1). We denote by H  the com-
pletion of (13. with respect to this inner product. Then

cI)c  H c (V  is the dual space of c1).

Gaussian measure with variance c (c> 0) is, by definition, the
probability measure on (V, 0), such that

ci v i2
e -  2  = e"'Dd,u, c ( f) ,

where 0 is the Borel field on (1)', which is generated by cylinder
sets of V .  The existence and uniqueness o f such a  measure is
assured by the theorem of Minlos.

Let 17).„ ••• , 9::.„1. b e  an orthonormal system o f  (D. Then,
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g)i ( f ) = f )  ( i  = 1, ••• , n )  a r e  mutually independent Gaussian
random variables on (43', 0, A c )  with mean 0 and variance c.

Therefore,

1 0 ,F ( P i ( f ) , . . . ,P . ( f ) ) 4 c ( f )

e _112xc112  d x i . . .G 1-
 7,7.) " x , i ) dx „.

We denote by 0=0(09) the group of all linear isometries of
H which induce homeomorphisms of (D. Identifying u  with u* - ',
we can regard 0 as a transformation group of 43'• Then,

1) is 0-invariant;
2) IL is 0-ergodic, that is, any 0-invariant 0-measurable func-

tion is constant almost everywhere ;
3) I f  p, is 0-orgodic, then A= A,

measure) ;
4) g c  is  (I3-quasi invariant, i.e. for

by A ( X ) = , u c (X +9 9 )  (X E 0 ) is
respect to Ac  and

fo r  some c  o r  = 5  (delta

p E c l )  the measure defined
absolutely continuous with

C ( c" f )  11012

2c
d e c

§ 2. Some irreducible unitary representations of G .

Let G_ be the group of all motions of (13', i.e. G_= { (u, 99) ;
uE0, p E c r.} .  By definition, (u1, 931)(u2, 99 2)=(u1u2, 931+ ui(P2).

Then G_ can be regarded as a transformation group of 43' by
( u ,  P ) f  =u f  + 99 .

Now, we construct representations of G in  k.),= L2 (43', Ac )  in
the following way.
For F E , ,

let (U ;F ) ( f )  = e  
9c2f, ) lis412 F  ( f  ( ? )

if g =  q ,, ( 1 )
= F(u - lf ) i f  g = u 0 . ( 2 )

For g= (u, 99), let U ; =

It is easy to see that ( U ,  ) c )  is  a  unitary representation
of G . by the rotation invariance (§1 , 1 )) and translation quasi-
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invariance (§1, 4)) of pc .
This representation is an infinite dimensional analogue to the

quasi-regular representation of Gm  (m-dimensional motion group).
But, contrary to the case of Gm ,  U ; is an irreducible representa-
tion of G.

In order to prove this fact, we need the so-called Fourier-
Wiener transform, which is defined as follows.

Let P ( x „ • • • ,x )  be a polynomial in n  variables. We call the
functional ) =P(4)1(f), •• • , çon(f)) (Pi, • •• 99. E .213 )  a  poly-
nomial function on O .  Then,

( P ) ( f ) = L ,P ( N fT ( 1 3 1(1.1)+i99 1 (f), V 2 . 99 .( .0 + i9 9 . ( f ) ) 4 , ( . 0

is called the Fourier-Wiener transform of P.
We denote by TR the totality of polynomial functions on cIY.
It is known that maps IY1 onto and

I P (f )1 2 d t t , ( f  ) L ,I P ( f )1 2 d ( f )  •

Therefore, can be extended to an isometry of..Î;), onto
(see, [4]).

L e m m a . W e def ine a  unitary  representation of  Go.. as follow s:

(17 G ) ( f ) =  e G ( f)  , ( 3 )
(17 G )( f)  =  G (u - l f ) f o r  GETI. ( 4 )

Then, V; .

P ro o f .  For FETI,

( U F ) ( f ) =  e  1e 21, 1 + i f ) F(\/ - 2-  f i + if  +  )d (f1)
1Ho2 _1 _

=  e -  4 c e  2c9 (  1 1  9  ' f )  F( \/ f 1  i f -) 6 7 -2 f 1 ) - - 4 7‘ 114'112 ditc(A)

r
= f  +  )c 1-1,(f

= (17 fp F ) ( f )  •

( 11 F )  ( f ) F('\/ 2 it -  ifi+  it r if)d / L ,(fi)

F(N/ 2 f i+  iu - l f ) d t t e ( f i )  = ( V . F  ) ( f )  .
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R em ark . (V :, c )  is equivalent to ( V,' ,
Using this Lemma, we can show the irreducibility of U;.
Let A be a bounded operator in which commutes with V.

We denote by B  the set of all bounded measurable functions on
(13' and we p u t M p F = P F  for p B .  T h e n , by (3 ), A M p = M p A
for all pEB.
Therefore, A= Mg  f o r  some q  E B . By (4), q ( f )  is  0-invariant
and is constant almost everywhere, by th e  0-ergodicity o f p,,
(§1 , 2 )). Therefore, we conclude that A = constant operator, which
implies the irreducibility of V .  B eing unitary-equivarent to V:,
U ; is also irreducible.

Above, we see that in there exists an invariant vector with
respect to 0(00) which is unique up to constant factors. Such
representations are called of class 1.

Now, suppose that U ; is unitary-equivalent to U;', i.e. there
exists an isometry of onto s u c h  th a t  T - 1 U;' T = u;. T hen ,
T -1  is  0-invariant and by the uniqueness, T.1= X fo r some X
(I X I = 1 ) .  Therefore,

= (U 1) = (U '1 ,1, 1) = , for a ll 99E k).

Consequently, c= c'.

R em ark. For any 0-invariant measure A  on cry, we can con-
struct a  cyclic unitary representation of G : V g  o n  k),,,=1,2 (.:31Y, t h)
a s  above. I f  ( Vg , is irreducible, then tt is 0-ergodic. Let
(Tg , be an irreducible unitary representation of class 1. Then,
there exists f o Ek ), such that T uf o=f o, Ifol I —1 for all u 0(00).

Put h(99) = (1;f0, fo) f o r  (p Ecti

A s  h(99) is  a  continuous positive pefinite function on  c13 and
h(0)=1, by the theorem of Minlos, there exists a unique probability
measure A  on (1)', such that

h(99) = L e"'''D dtt(f ).

Then, it is easy to see that ( T g , ) is unitary -equivarent to ( Vg , ,t),),
which implies that A  is 0-ergodic. Therefore p, = p,, fo r some
c>0  or p, = •3  (§ 1 , 3)).
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Thus, we have proved the following

Th eorem . {(Ueg , k ),), 0<c <D o}  is th e  com plete system  of
non-triv ial irreducible unitary  representations of  class 1.

§ 3. Spherical functions

In this section, we consider only the case of c =1.
By definition, (Ug , F) is  a spherical function of G for FE , .

At first, we consider the case where F  is  a polynomial function.
Let 99„ •••, 99k  b e  an orthonormal system of O . T hen  for F ( f ) =
(01, f)

f

' ( 0 k ,  f ) k ,

(U„,1, F) — e - 1 14  .çe ( 9 ,2! )

e  4  
ko1121 a 1 9

e  2 2 a x  ]J=
a; 1 2

N./ 2 7 t c's i=1N/2rt

where we put yo= a ; (//J +a,p, (0, 0 J )=0, 11011=1.j=1
On the other hand,

( -2 i )   e x2 e _ t2 +2it x t" dt — (-1)n ex 2  d n  e ' =  H ( x )
dx

(Hermite polynomial of degree n). Therefore
a2 k ak2 1

(U9 1, F) = e e
H

j i

8

1 H i(99, 0 .1))
.1= •-1 ( — N  /  2  i ) i  \  2.\/2/ ,

because, ai = (97, ski) and a 2 +a 3 =  1 0 1 2 •j=1
In the same way

(17,1, F)  = L e - - L2 ( , , f ) , ( f r i . . . 0 , ( f ) ak d p .( f )

a x ,x 2,1 k 1 a ix i  i– x i 2

—  e  2 2  a X  n  e 2 2  X 3 i aX i

N/27r i=1-\/27z. - 0 0

a 2 k aj2
( v

1

2  on  J H  j (  2 y61-!_)
119112 k 1

= e -  8  pi   N /  2 H n i (929.7,p

° 1 (f Sbk(f)n*dp,(f)

( 1 )

( 2 )
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Later, we shall use both (1) and (2).

Rem ark. As polynomial functions are dense in s.Tt, and

( U, 1, F .)— (U g l ,  F) I n ,

we see that any spherical function is uniformly approximated on
G by linear combinations of (1).

1 .  Generating functions

Here, we give other examples o f  spherical functions. For
F i ( f )  e - 2 ito (i) (11011 = 1), we have

hF 1(99 )  =  (V ,1 , e -  vTitsb(.))

1   f -
 e 4  ax  e _ , itx x2 1 0. b _y2

u L4 2 X e  2 e  2 d y
\/271- V 27r -.0

_11012 _ t 2 _ .  (S,$b) t
=e  8  e 2 •

On the other hand, as

lim [ E  - - e x  dx  =  0 ,- x2 "  x k
k= 1 k !

we have
1

li m  H  E  -0 (•)n -e(•)li  =0 .
n !

Therefore,

hF1(9)) Ê çb))
n !  n \ /  2  /  •

From (3) and (4) we have

( 3 )

( 4 )

e -t2+2tx -t-:-H„(x) .
n=0 n ! ( 5  )

Sim ilarly, for F 2( f ) = f  2 ( f ) ( I t  <1, {01, 02 }
 

is  orthonormal),
we have

11012

hF 2  (99) = (1 —t2) e  8  
e x p 2t (q) , 0 1)(p, 02 ) — [(99, 01 )2 + (99, t,b2 )2 1 t2

8 (1— t 2 )

:to (—n t!)n ( 174, 1 , shi( • )" 02( • ) )

t n
  H  n (  (g), ,)*

\
(1,2) _NO 2

n! 2" \ 2 -\ /  2 / 2 l e 8
( 6 )



8 Akio Orihara

a 2For F,(f)=exp have

( 7 )

2 ( 1 + a 2 )
 0 (f ) 2 ,  we

hF 3(99 )  =  ( 1 +  a 2)- C -  e - efY
( —1)n  a2 n H 2 .  ( ((p,

'=() 22 n n ! (1  + a2 )" \ 2 Y  2

From  (6 )  and (7 ) , w e obtain the following formulae :

(

(

8 )

9 )

(1 —  t 2 Y 1 2  t " l i n (X)// n (Y)e 2 t X - V - 1( 27 2 ) t 2 Ê
n=0 n!2 '

a 2 ne -a2x2 ( - 1 ) n
21 / 2 n ( x )  .

5(= i0  2 2nn !  ( 1 +  a 2y1+1/ 

( 5 ) ,  ( 8 )  and ( 9 )  are  th e  genera ting  functions of Hermite poly-
nomials.

2. Addition formula
L et {p „  ••• , p m }  b e  an o r th o n o r m a l system  of 43 and put

P —
2 V 2  2 x k p h , = a ',Pk (11,,b11= 1) •8=1 8=1

Then, b y  (2),

( 17,1, On ) =  ( —  2  0- n  c x 2  1-1,2(a, x,+ • • • +a„x„) (x 2 = 4).
On the other hand,

( V,1, On) = n!E ••• ( V ,  p l i  • • •  p 4 " 9
• "  in !

=  E
n !  all ••• ( —\/ 2i) - e 2H i k (x k ) .

11 ! • • • 8=1

Therefore w e obtain the addition formula for Hermite  po ly -
nomials:

n !  H n (a l x,+ • +  a„ x„) =  E
! •• • i,„!

w h e re  a?+ • • • + 4 = 1 .

•• a4-111 1 (x 0 ) ••• Hi m (x„,) ,

3. Let 99, P i ,  P 2 b e  as a b o v e . Then, f o r  x i
—  x2—

Y  2

(1 /4 , 997'• 993) = e- X2 ( —\/ - i) - 2 n/I n ( A ) 2
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If we put P I  P 2 - 0 '  99 ' ±_9_92  —  0,
V 2 V 2

then (p':• 993 ( 02

2

çb'2) " , 11011=11011=1, (sa, ç')=0.

Therefore,

(1 4 1 7  9,7.99,
)

2 1 n ( 14 12 o 2k02.-2,0(nk ) (  1)k

21ne _x2(± o ( n k ) (  i ) k fi- t 0 2'))112 .-2 1 , (  (1\ 2/  02))

A s H
2 h

(  
(
2
99
.■/

çb2)) — 1 1
2 k ( o )

—  - 1
)

k ( 2 k )  a n d  (P, 0)=-- — 2V2x,k!
we have

x1 (7e) (2k)1k !  H ,k ( x )  •

4. D ifferential equation and reccurence formula
By Stone's theorem, for pEc13, there exist self-adjoint opera-

tors s u c h  t h a t  U,=exp itA „, V „=ex p  itB ,. For FE  Z(A)
(domain of A), or F (B ), we have

F) = (U ,1 , A v F )  o r  1  c± (V „1 , F) = (V x 4,1, 13„F).i dx i dx

On the other hand, it is easy to see that

a
= 6 -

9 9
—  —

2 9 9 (• ) 1.B =

Therefore we have

1   d
V  8 i  d x

( V_,, , 50") = — —
1

1) ( V _ v --,--,1, pn+ 1 )
2

1   d  1 1  1e- x2H ( ) —
V  8 i d x ( —  V 2 i) " n'x e-x 2H  (x )

2 ( —  V - 2- ir ' + ' '

Consequently,

d
—

d x
[e 1 1- x 2 (x )] = — e- x 2 1 1 .+i(x ),

Or H n + i(X )—  2x 11„(x)+11',(x) = 0.( 1 0 )
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1  d 1 1 d  x2 •2) H(U,/ - x ,1, 99") n(tx)
.\/ 8 I dx -V 8 i(-- \/2 i)"  d x e

1 1 
-\,/ 8 i 2x H.(iX)± il-L(iX)] e-x2

=  i r -   1  (u 1, pn+ 1 ) + n (U v --8-x ,1, cp" - 1 ) ]
L 2
1 1

2 i  ( _ \ / _i ) n + i e  '11„+,(ix)+ n i x2 u
V -2- iyz-1 r"

Consequently,

— 2x H„(ix)+ iHn (ix ) = if" n(— -\/ 2 ON/ 8 H_1(ix)
Or, 2x 11„(x)+ Hn(x) = [1.+1(x)+ 4n 11,, „(x) (11)

From (10) and (11)

H (X ) = 2n H„,(x) . (12)

Combining (10) and (12) we obtain

H„+ ,(x)— 2x H„(x) + 2n Hn _1(x ) = 0 (reccurence formula),
H:(x)— 2x 11(x) + 2n 11(x) = 0 (differential equation).

5. Some formulae involving Bessel functions

Let Om  b e  the subspace o f (I), spanned by an  orthonormal
system 1.99„ •••, 99,n ). in  01).

Put Gm  = f gE G  ; g f  = f ,f o r  a n y  fE C ,I
where

(13̀,'„ { f ; f )  =  0 ,  1  j  m }  (the annihilator of Om ).

Gm  is isomorphic to the motion group of n-dimensional Eucli-
dean space. By restricting Vg  to  Gm ,  we obtain the following :

For gEG,n  and F=F((q)„ f ), •••, (pm , f )

27rm/2,
( 7,1 , F) —  

( 2 ) ' 12 ( m )  
<T

p

g  1, F(r, •)> rrn' e - r2/2 dr ,
7

2 /
where T g  i s  the irreducible unitary representation of Gm  defined
as follows :

F o r  f  EL 2(S' ) ,  Tr f(w) = f(k - 1  (0) if g =  k  SO(m ) ,
= e - i(''(R.'"f(w) if g  x  E R " ' ;



Hermite polynomials and infinite dimensional motion g ro u p  11

<f , h > = f (w )h (w )d a))  (d a)  is the uniform measure on Sm- 1 );
sm- i

F(r, (.0)= F(x „ •-•, x „,)  ((r, w) is the polar coordinate of (x„ • • • ,

1) For m =2, we have

= —1  

Ç
T

e _, c o s  (4- 6) e - intp do
27z.

= e  1 "' ( -  f „(rR) , g = (R , 0) , (13)
Therefore

( V_ )= ( - v  i) 'e " " 2 HA P, 4h)), p =  x cos tp i + x sin tiP2

= cosn 0> rn+1 c r 2/2 dr g =  ( -  N/  x  cos t ,  - x  sin t)
0

1 n= ( 2 •
0 <V  1 , e ""-  210> rn+, e-r2/2

le= 0  \ k )

By (13),

<TV 2 1, e 1 "- 2 k)°> = ( - 1)k in _2k(V  2 r x) e -  
i(,=- 2h)t

Therefore we obtain

H ( x  cost) = e 2 E 1 k (n) e iC2k- tO t 5
0

.rn 2
k 
(rx -")r" e- r2 1 4

2n + 1  k=-0 k 

Similarly

( V_ v T ,1, 997993) = (- V - 2- 0 - 2fle-  ice' 12 B -n (( 9 , , 9)) H „((q),

= <T g 1, sin"20> en+1 e- r2 1 2

2" 0

k  . °- ( - 1)k ( n ) ç -  <T r
g

 12 1
'

"" - .e 2k)20 > e t ' e - r2 1 2 dr
(4t)" k=0

Therefore
1(  1 )k  (nk ) e ok-2.)it

(2i)" k=°
H„(x  cos t) H n (x sin t)

e - r212 drX 0  J2n -41,(V  2 rx ) r 2, , ,

2) For m = 3 ,  we have

< T Rg 1 ,  /3 , ( c o s  O ) > =
2'tchp e _iRx (cost c o s  0+sin t sin 0 cos s.,) r",(cos 0) sine dO

47-t 0 0

— A/2R% 0 1 13  ,(cos t)J i+ ,12 (Rx) , (14)
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where g= (x cos t, x  sin t, O).
Therefore

( V_ ../ Q 1, 99 ) = (— \/ 2i)  e-  99112w(9 ) ,=
N /   i)-  n  e' 2 11„(x cos t)

27 r=  —  < T g
1 2 1  COS n  (9> rn+2 r 2 1 2 dr (*)

By (14) and the formula

cosh 61 VH 1 +2n— 4k
2n+' n

k!
m_ k ) P  , k (cos 19)

N / 7 -,  n! in cf 1 + 2 n - 4 k  
(*) ( 1)k  P„_ 2 k (COS t)

2 n + 1  k = 0  k n —2

x
0

1 I n - 2 k + 1 / 2 (  2 rx)rn+2 e-  '2/2 dr
.\/ .\/ r  

In  th e  same w ay, we can obtain analogous formulae for
arbitrary m.
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