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As is well known, some of the special functions, which are
important in applied mathematics, are intimately connected with
the theory of unitary representations of Lie groups (see Vilenkin
[6D.

For example, Gegenbauer polynomials and Bessel functions
are the spherical functions of the rotation group and the motion
group of Euclidian space, respectively, and various formulae con-
cerning these functions can be derived group-theoretically. But,
for the group-theoretical treatment of some special functions, for
example Hermite polynomials, it is not convenient to restrict our
consideration to finite dimensional group.

In connection with this, the following is interesting.

From the integral representations of Gegenbauer polynomial

and Hermite polynomial :

oy DCp+1DT(p+1/2) ( . SA\ (1 42\po1
Crt) = S_l(x+z\/1—xt) A—-1dt (1)
Hy(x) = \/L’; Sl(x+it)’e"2dt, (2)

we see that

I3
. o A 1 _
lim 21572 C( ) = B (3)
This relation suggests us the connection between Hermite
polynomials and infinite dimensional rotation group 0(oo).
In fact, Y. Umemura has shown that Hermite polynomials are
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eigen-functions of infinite dimensional Laplacian, i.e., 0(eo)-invari-
ant differential operator of the second order (in this sense Hermite
polynomials may be called the spherical functions of 0(e<)) and,
on this standpoint, has given a new interpretation of (2) and (3)
(see, Umemura [3] and Umemura-Kono [2]).

The purpose of the present paper is to show that Hermite
polynomials appear also as the spherical functions of infinite
dimensional motion group G., and to prove the fundamental pro-
perties of Hermite polynomials from the viewpoint of the repre-
sentation theory of G...

In §1 we shall briefly review some facts concerning Gaussian
measures on infinite dimensional vector space. In §2 we shall
construct a series of irreducible unitary representations of G..,
which are called of class 1. In §3 some formulae involving
Hermite polynomials (addition formula, differential equation, rec-
curence formula etc.) will be derived.

The auther wishes to express his thanks to Prof. H. Yoshizawa
for his kind advice.

§1. Gaussian measures

Here we summarize fundamental results about infinite dimen-
sional Gaussian measures (for details, see Umemura [17).

Let @ be a (infinite dimensional) real nuclear space and (@, ¢)
be a continuous inner product on ®. We denote by H the com-
pletion of ® with respect to this inner product. Then

®cCcHcCd®' (@ is the dual space of ®).

Gaussian measure with variance ¢ (¢>0) is, by definition, the
probability measure on (&', ®B), such that

_cllpli?

e = e rrdulr),

where B is the Borel field on @, which is generated by cylinder
sets of @®’. The existence and uniqueness of such a measure is
assured by the theorem of Minlos.

Let {®,, -, »,} be an orthonormal system of &. Then,
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o(f)=(p;, f) (i=1, ---, n) are mutually independent Gaussian
random variables on (®’, B, r.) with mean 0 and variance c.
Therefore,

[, F@(f) - )

= (__1_—_)”5 F(x,, -, x )e‘%cl—lzdx - dx, .
Vare) Jail o v
We denote by 0=0(co) the group of all linear isometries of
H which induce homeomorphisms of ®. Identifying # with u*™,
we can regard O as a transformation group of ®’. Then,

1) u. is O-invariant;

2) p,. is O-ergodic, that is, any O-invariant B-measurable func-
tion is constant almost everywhere ;

3) If p is O-orgodic, then u=pu, for some ¢ or =5 (delta
measure) ;

4) p, is ®-quasi invariant, i.e. for p=® the measure defined
by p.o(X)=p(X+e) (XB) is absolutely continuous with
respect to u, and

M = e‘%ﬁ‘”%-g
du.

§2. Some irreducible unitary representations of G,

Let G.. be the group of all motions of @', i.e. G.= {(&, ®);
ue0, p=®}. By definition, (u,, ¢,)(%,, @,)=(uu,, P, + u,p,).

Then G.. can be regarded as a transformation group of &’ by
(@, P)f=uf+o.

Now, we construct representations of G in 9,=L*(®’, p.) in
the following way.

For Fe9,,
) llell?
let (UF)f) = e %% F(f+g) if g=gp, (1)
= F(u'f) if g=uc0. (2)
For g=(u, ), let U;= UU;.

It is easy to see that (U:, ,) is a unitary representation
of G.. by the rotation invariance (§1, 1)) and translation quasi-
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invariance (81, 4)) of ..

This representation is an infinite dimensional analogue to the
quasi-regular representation of G,, (m-dimensional motion group).
But, contrary to the case of G,,, U] is an irreducible representa-
tion of G.

In order to prove this fact, we need the so-called Fourier-
Wiener transform, which is defined as follows.

Let P(x,, -+, x,) be a polynomial in » variables. We call the
functional Py, ...e,(f)=P(@(f), -, @) @1, =, puED) a poly-
nomial function on ®. Then,

(%P)(f) = SQ,P(\/—§¢1(f1)+z¢1(f)’ Tt \/—2_¢n(f1)+l¢n(f))dﬂ'c(f1)

is called the Fourier-Wiener transform of P.
We denote by M the totality of polynomial functions on &’.
It is known that ¥ maps M onto W and

[ 1P 1) = | I8P dndh).

Therefore, ¥ can be extended to an isometry of 9, onto 9,
(see, [4D).

Lemma. We define a unitary representation of G.. as follows:

(VEG)(f) = e =D G(F), (3)
(ViG)(f) = Gwf)  for GER. (4)
Then, Ve — QUF .

Proof. For FeR,
S (e m T P T i+ ) dud £)

BULF)(f) = ¢ e
—e¢ i Se‘i‘“ VER-pHD P() D foif)eVE 0T dy ()
= o= (P2 f+iNdnd )
= (ViSF)(f).

SULF)(f) = (P20 fit in ) dp £)

~ [P/ 2 fiin Hdudf) = (ViBFI().
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Remark. (V¢, D,) is equivalent to (V3}, D).

Using this Lemma, we can show the irreducibility of U¢.

Let A be a bounded operator in ., which commutes with V¢.

We denote by B the set of all bounded measurable functions on
@’ and we put M,F=pF for pe€B. Then, by (3), AM,=M,A
for all p=B.
Therefore, A=M, for some g=B. By (4), ¢(f) is O-invariant
and is constant almost everywhere, by the O-ergodicity of u,
(81, 2)). Therefore, we conclude that A=constant operator, which
implies the irreducibility of V;. Being unitary-equivarent to Vg,
U: is also irreducible.

Above, we see that in O, there exists an invariant vector with
respect to O(oc) which is unique up to constant factors. Such
representations are called of class 1.

Now, suppose that U is unitary-equivalent to UZ’, i.e. there
exists an isometry of 9, onto 9. such that T-'U¢'T=U:. Then,
T-1 is O-invariant and by the uniqueness, 7-1=X for some A
(In]=1). Therefore,

lleoll? llell?

e s = (Usl,1) = (U1, 1) =e & , for all 9.
Consequently, c¢=c'.

Remark. For any O-invariant measure p on &’, we can con-
struct a cyclic unitary representation of G: V, on 9.=L*(®’, )
as above. If (V,, $,) is irreducible, then x is O-ergodic. Let
(T,, ) be an irreducible unitary representation of class 1. Then,
there exists f,€9, such that T,f,=f,, ||fil|=1 for all #u=0(c0).

Put o) = (Tofs, o) for ped@

As h(p) is a continuous positive pefinite function on & and
h(0)=1, by the theorem of Minlos, there exists a unique probability
measure g on &, such that

wp) = | errucr).

Then, it is easy to see that (7, ») is unitary-equivarent to (V,, 9,),
which implies that p is O-ergodic. Therefore p=pu, for some
¢>0 or =38 (§1, 3)).
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Thus, we have proved the following

Theorem. {(U:, 9.), 0<c< =} is the complete system of
non-trivial irreducible unitary representations of class 1.

§3. Spherical functions

In this section, we consider only the case of ¢=1.

By definition, (U,, F') is a spherical function of G for Fe9.
At first, we consider the case where F is a polynomial function.
Let o,, -+, @, be an orthonormal system of ®. Then for F(f)=
oy S (P, S5,

oIl o)
(UL, F) = e 5 (520 oo gul £ f)
_|_l_“_2 - x——x 1 -~ ij_lxz, ¥
=¢ i\/lz_”s_we ) dxl:ll\/ ”S e 2H T i dx
k
where we put @= J}_;lajgb,-—kasb, (¢, =0, llgll=1.

On the other hand,

—o0

( 21) —t242itx 9 — (—1)* x2£ -x2
NG S_we t*dt = (—1)%e dxe H,(x)

(Hermite polynomial of degree #). Therefore

_ %2 : —é' 1 4
(le, F) —e ;'1;11 ( \/?i)"'Hﬂj<12\/7)
_ 1 (@, ¢y)
=t (—V 29)% H"j< 2\/5) (1)

because, a;=(p, ¢,) and a’+ Zla§=[|<7’“2-
P

In the same way

(Vel, F) = Sle-%@’“ DU o e )

T =1 V(4 —o00
@k ap 1 a
= s8fle & —— Hn<— 7—)
=N ) ANV
L 1 (¢,¢))
=e¢ 8 II H,,.<— 14 2
i=1(— \/21)” 7 2V 2/- (2)
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Later, we shall use both (1) and (2).
Remark. As polynomial functions are dense in R, and
|(Ug1’ Fn)—(Uglv F)I éIIFn_F“ ’

we see that any spherical function is uniformly approximated on
G by linear combinations of (1).

1. Generating functions

Here, we give other examples of spherical functions. For
F(f)=e V2t (|l¢||=1), we have

he (@) = (V,1, e~ V2i4()

o —iax : ~x—z
=——_—_S e 7% eV e 2dx

T

On the other hand, as

lim S:e_%[kﬁ:_{ %l;—e"]zdx =0,

Nnyrco

we have

lim |33 L) — ()l =0

N> =0y !
Therefore,

B A A (X))

he@) = "% S H (-22) (4)

From (3) and (4) we have
e t24+2tx __ z n(x) (5)
n=0Q n

Similarly, for F,(f)=e 00 (|t <1, {¢,, ¢} is orthonormal),
we have

hp (@) = (1—#)%e %expzl‘(fp, ) (@, ¢2)8(1[(¢£2 ;/, Y+ (@, g8

= S W1, 4,610

" n!
- Bt (e (-8R ©
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For F,(f)=exp ¢(f), we have

2(1+ 2)

PO _a?
(@) = Ut ayte Vo T

— - (—1)” o (¢)’ ‘)b) -%—
Eomaraprt=(ag)e . O

From (6) and (7), we obtain the following formulae :

2txy— (x2+y2)12 (1 tz)xfz n
- = Z

e o (%) HA(9) (8)

2 (e gy (9)

2y | (1+a2)n+1/2

(5), (8) and (9) are the generating functions of Hermite poly-
nomials.

2. Addition formula
Let {®,, ', ®,,} be an orthonormal system of & and put
p=-2/Z X mpe, $= Dawps (9l = 1),
Then, by (2),
(Vol, ) = (-~ V2" “Hy@x+ anx,) (6 = 3 ad).
On the other hand,
Vol = 5 Mg aln (Ve gl i)

iy heeetig=n ’1! ces tn!

! N m
= = n o abeatn (—/Zi) e ™ T H, (1)
it i =1 l'll eos im! k=1

Therefore we obtain the addition formula for Hermite poly-
nomials :

! X
Hn(a1x1+"' +anxn) = 2 _La{ o avri},'"Hil(xl) Him(xm) )

J T im=n 21! ves lm!

where ai+:--4+a2=1.

3. Let @, ¢, @, be as above. Then, for xl—xz—TZ—

(Vol, giogh) = (v Ziy "Ho( o)
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If t Pi1— ;r Pt P, ,
we pu V2 =4 e ¢
then <p’;-¢;=(¢ ‘2¢ ) gl =Ig11=1, (¢, ¢)=0.
Therefore,

noon\ __ 12 12} 1,2n-2 (AYERELY
<V¢1,¢1-¢2>——2;§<V¢1,w¢ (7)1

As sz(— 3&%2) Hy = (~ D" and (p, )= —2v/ 2%,
we have |

4. Differential equation and reccurence formula
By Stone’s theorem, for ¢ =®, there exist self-adjoint opera-

tors A,, B,, such that U,=exp itA,, V,,=expitB,. For FED(A)
(domain of A), or FE®(B), we have

L4 (UL, F) = (Ual, 4F) or L 9(V,1, F) = (V.u, B,F).
i dx i dx
On the other hand, it is easy to see that

. 0 1 . 1
iA, = 5;——2—¢<->, iB, = —%w).

Therefore we have

D~ graa Vvl 97) = = (Vovinl o)

_ 1 d 1 a2 11 L

A I e A A T eave b
Consequently,

L [ H#)] = — ¢ Hy(®),
X

or H,, (x)—2xH, (x)+H)x) = 0. 10)
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1 1 a o
(U\/Sx‘P]- P ) \/?Z(—\/fl)” ,,(zx)

[—2x H,(ix)+iH,(ix)]e ™

8i(—V20) v 219)"
(Usssel, o) 4 n(Uszel, 977 |

1 _IZ
T2 (V2

Consequently,

—2x H,(ix)+iH,(ix) = iH,,(ix)—n(—+/ 21/ 8 H,_(ix)
or, 2xH (x)+H,(x) = H,.(x)+4n H,_(x) (11)

From (10) and (11)
Hn(x) = ann—l(x) . (12)
Combining (10) and (12) we obtain

-,

1
2

n+1(ix) + n—i-e- x2 n—l(ix) .

(=v 2!

H, (x)-2xH,(x)+2nH,_(x) = 0 (reccurence formula),
H(x)—2xH(x)+2nH,(x) = 0 (differential equation).

5. Some formulae involving Bessel functions
Let ®,, be the subspace of @, spanned by an orthonormal
system {p,, -, @,,} in D.
Put G, =1{geG; gf =1, for any fedl},
where
={fed; (p;, f) =0, 1=j=m} (the annihilator of @,,).
G,, is isomorphic to the motion group of n-dimensional Eucli-

dean space. By restricting V, to G,,, we obtain the following :
For gEGm and F:F((¢1> f)) Tty (¢m’ -f)E;'Ut

1 2 e - r/2 m—1 ,—-r2/2
WP—Z;"—)SO<T/1’F<%°>>r e rdr,
2

where T, is the irreducible unitary representation of G, defined
as follows:
For feL*S™"), TFf(w)=f(k'w) if g=keSO(m),
=g iHRIf()  if g=xER"™;

(V,1, F) =
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<f, h> = Ssm—lf(“’)md“’) (dw is the uniform measure on S™7%);
F(r, w)= F(x,, -+, %,») ((r, ») is the polar coordinate of (x,, ***, %,,)).
1) For m=2, we have

<T§1’ ey = zl” S" e-ichog(q:—O)e-;nq,dsb

-

! =e ,'ne(_ i)”]n(rR) ’ 8= (R) 0) ’ (13)
Therefore

(Vovgel, @) =(—\/20) "¢ """ H,(p, ¢,)), @=2xc0stp,+ % sin tp,
= Sw<T;/21, cos"@>r*tie " ?dy, g=(—+/8xcost, —\/ 8xsint)
0

= L () [ <y e ey,
By (13),
(TP, @m0 — (=107 o 2 7)™

Therefore we obtain

Hgeeosh= e 1S3 p(f)ecr o (77, e .

27+ i =0
Similarly
( V_ V?‘Pl’ ¢711¢"2L) = (_ \/?i)—zne- 1e! len((¢) ¢1)) Hn((¢7 (pz))
1 Sw T, sin"20> r*"*e="*dr

T2
Therefore
H,(xcost)H,(xsint) = L SV(—1)* (") CHh-2mit
(24)" =0 k

X Ton-wl Zr) e
[
2) For m=3, we have

27 T
<T§1, P,(COS 0)>:4:-I-_S d¢ S e—in(costcos f+sin ¢ sin @ cos p) PI(COSQ) sind df
T Yo 0

- \/ srz(— ) Pilcos )] (Rx), (14)
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where g=(xcost?, xsint 0).
Therefore

(Vovzel, @)= (—+/20) "e" """ H (@, ¢,)) =(—/24) "¢ *H,(x cos t)
= V—% S:< T7°1, cos™ 6> r**2e~"*dr . (%)
By (14) and the formula
VT 14204k

cos*f = n! P, _,.(cos@),
on+1 =, <i _ )
kT > +m—k
#) = EDSY 14Zn=dk  gyup(cost)

2" S r(%m—k)

X SO \/%W_]n—zk+1/2(\/_2_rx) r*tie " dy .

In the same way, we can obtain analogous formulae for
arbitrary m.
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