On the differentiation of De Rham cohomology classes with respect to parameters

By
Nicholas M．Katz and Tadao Oda
（Communicated by Professor Nagata，April 19，1968）

Introduction．

Let X and S be smooth schemes over a field k ，and let $\pi: X \rightarrow S$ be a smooth k－morphism．We are concerned with constructing a canonical integrable connection，the＂Gauss－Manin connection＂，on the relative De Rham cohomology sheaves $\mathcal{H}_{{ }_{D R}}(X / S)$ ．

In his 1966／67 Harvard Seminar，Mumford defined this connection by means of a certain connecting homomorphism．We noticed that this connecting homomorphism was the differential d_{1} between certain E_{1} terms of a spectral sequence．This observation implied immediately the integrability of the connection，and the existence，when S is affine，of a＂Leray spectral sequence＂for the De Rham cohomology．

We begin by explaining the formalism of connections．We then recall the notion of relative De Rham cohomology sheaves，construct the Gauss－Manin connection，and prove its fundamental properties． Next，we＂explicitly＂calculate the connection，and show that it agrees with the original definition given by Manin［5〕，and later ex－ tended by Katz 〔4〕．We conclude by giving the＂Leray spectral sequence＂when S is affine．

1．Connections．
Let S be a smooth scheme over the field k ，and let \mathcal{E} be a quasi－
coherent sheaf of \mathcal{O}_{s}-modules. A connection on \mathcal{E} is a homomorphism ρ of abelian sheaves

$$
\rho: \mathcal{E} \rightarrow \Omega_{s / k}^{1} \otimes_{\mathcal{O s}_{s}} \mathcal{E}
$$

such that

$$
\begin{equation*}
\rho(f e)=f \rho(e)+d f \otimes e, \tag{1}
\end{equation*}
$$

where f and e are sections of \mathcal{O}_{s} and \mathcal{E} respectively over an open subset of S, and $d f$ denotes the image of f under the canonical exterior differentiation $d: \mathcal{O}_{s} \rightarrow \Omega_{s / k}^{1}$.

A connection ρ may be extended to a homomorphism of abelian sheaves

$$
\rho_{i}: \Omega_{s / k}^{i} \otimes_{\mathcal{O}_{s}} \mathcal{E} \rightarrow \Omega_{s / k}^{i+1} \otimes_{\mathcal{O}_{s}} \mathcal{E}
$$

by

$$
\begin{equation*}
\rho_{i}(\omega \otimes e)=d \omega \otimes e+(-1)^{i} \omega \backslash \rho(e) \tag{2}
\end{equation*}
$$

where ω and e are sections of $\Omega_{s / k}^{i}$ and \mathcal{E} respectively over an open subset of S, and where $\omega \wedge \rho(e)$ denotes the image of $\omega \otimes \rho(e)$ under the canonical map

$$
\Omega_{s / k}^{i} \otimes_{\mathcal{O}_{s}}\left(\Omega_{s / k}^{1} \otimes_{\mathcal{O}_{s}} \mathcal{E}\right) \rightarrow \Omega_{s / k}^{i+1} \otimes_{\mathcal{O}_{s}} \mathcal{E}
$$

sending $\omega \otimes \tau \otimes e$ to $(\omega \backslash \tau) \otimes e$.
The curvature K of the connection ρ is the \mathcal{O}_{s}-linear map K $=\rho_{1} \rho \rho: \mathcal{E} \rightarrow \Omega_{S / \hbar}^{2} \otimes{\sigma_{s}} \mathcal{E}$. One easily verifies that

$$
\rho_{i+1} \circ \rho_{i}(\omega \otimes e)=\omega \bigwedge K(e),
$$

where ω and e are sections of $\Omega_{s / k}^{i}$ and \mathcal{E} respectively over an open subset of S.

The connection ρ is called integrable if $K=0$. An integrable connection ρ on \mathcal{E} thus gives rise to a complex

$$
\begin{equation*}
0 \rightarrow \mathcal{E} \xrightarrow{\rho} \Omega_{S_{k} / k}^{1} \otimes_{\mathcal{O}_{s}} \mathcal{E} \xrightarrow{\rho_{1}} \Omega_{S_{s / k}}^{2} \otimes_{\mathcal{O}_{s}} \mathcal{E} \xrightarrow{\rho_{2}} \cdots \tag{3}
\end{equation*}
$$

which we will denote simply by $\Omega_{s_{\mid k}} \otimes_{O_{s}} \mathcal{E}$ when there is no confusion.
Let $\operatorname{Der}_{k}\left(\mathcal{O}_{s}\right)$ denote the sheaf of germs of k-derivations of \mathcal{O}_{s}
into itself. We note for later use that $\operatorname{Der}_{k}\left(\mathcal{O}_{s}\right)$ is naturally a sheaf of k-Lie algebras, while, as \mathcal{O}_{s}-module, it is isomorphic to $\mathcal{H}^{\left(m_{\Theta_{s}}\right.}\left(\Omega_{S_{/ k}}^{1}\right.$, \mathcal{O}_{s}).

Let $\mathcal{E} n d_{k}(\mathcal{E})$ denote the sheaf of germs of k-linear endomorphisms of \mathcal{E}. We note that $\mathcal{E} n d_{k}(\mathcal{E})$ also carries the structure of sheaf of k-Lie algebras, as well as that of \mathcal{O}_{s}-module.

Now fix a connection ρ on $\mathcal{E} ; \rho$ gives rise to an \mathcal{O}_{s}-linear mapping

$$
\operatorname{Der}_{k}\left(\mathcal{O}_{s}\right) \longrightarrow \mathcal{E} n d_{k}(\mathcal{E})
$$

sending D to \widetilde{D}, where \widetilde{D} is the composite

$$
\mathcal{E} \xrightarrow{\rho} \Omega_{s / k}^{1} \otimes_{\mathcal{O}_{s}} \mathcal{E} \xrightarrow{D \otimes 1} \mathcal{O}_{s} \otimes_{\mathcal{O}_{s}} \mathcal{E} \cong \mathcal{E} .
$$

Notice that

$$
\begin{equation*}
\widetilde{D}(f e)=D(f) e+f \widetilde{D}(e) \tag{4}
\end{equation*}
$$

whenever D, f and e are sections of $\mathscr{D e r}_{k}\left(\mathcal{O}_{s}\right), \mathcal{O}_{s}$ and \mathcal{E} respectively over an open subset of S. Conversely, because S is smooth over k, any \mathcal{O}_{s}-linear mapping $\operatorname{Der}_{k}\left(\mathcal{O}_{s}\right) \rightarrow \mathcal{E} n d_{k}(\mathcal{E})$ satisfying (4) arises from a unique connection ρ.

The connection ρ is integrable precisely when the mapping $\operatorname{Der}_{k}\left(\mathcal{O}_{s}\right) \rightarrow \mathcal{E} n d_{k}(\mathcal{E})$ is also a Lie-algebra homomorphism. This can be seen by using the well known fact that for D_{1} and D_{2} in $\operatorname{Der}_{k}\left(\mathcal{O}_{s}\right)$, we have $\left[\widetilde{D}_{1}, \widetilde{D}_{2}\right]-\left[\widehat{D_{1}, D_{2}}\right]=\left(D_{1} \wedge D_{2}\right)(K)$, where the right hand side is the composite map

2. Relative De Rham cohomology.

Let $\pi: X \rightarrow S$ be a smooth k-morphism of smooth k-schemes. The relative De Rham cohomology sheaf $\mathscr{H}_{D R}(X / S)$ is, by definition, the quasi-coherent sheaf of graded anticommutative algebras on S defined by

$$
\mathscr{H}_{D_{R}}^{q}(X / S)=\boldsymbol{R}^{q} \pi_{*}\left(\Omega_{\dot{X} / S}\right)
$$

where $\Omega_{X / S}$ denotes the complex of S-differentials on X, and $\boldsymbol{R}^{q} \pi_{*}$ is the q-th hyperderived functor of π_{*}.

We now describe a canonical integrable connection $Д=Д(X / S, q)$ on each cohomology sheaf $\mathcal{H}_{D R}^{q}(X / S)$, the "Gauss-Manin connection."

We recall that, because π is smooth, the sequence

$$
\begin{equation*}
0 \rightarrow \pi^{*}\left(\Omega_{S / k}^{1}\right) \rightarrow \Omega_{X / k}^{1} \rightarrow \Omega_{X / S}^{1} \rightarrow 0 \tag{5}
\end{equation*}
$$

is exact. The complex $\Omega_{x_{\mid k}}$ admits a canonical filtration

$$
\begin{equation*}
\Omega_{X \mid k}^{\prime}=F^{0}\left(\Omega_{X \mid k}\right) \supset F^{1}\left(\Omega_{X / k}\right) \supset F^{2}\left(\Omega_{X \mid k}\right) \supset \cdots, \tag{6}
\end{equation*}
$$

where

$$
F^{i}=F^{i}\left(\Omega_{X / k}^{\prime}\right)=\text { image }\left[\Omega_{X / k}^{-i} \otimes_{\mathcal{O}_{X}} \pi^{*}\left(\Omega_{S / k}^{i}\right) \rightarrow \Omega_{X / k}^{\dot{*}}\right]
$$

Because the sheaves $\Omega_{X / k}^{i}$ and $\Omega_{S / k}^{i}$ on X and S respectively are locally free, the exactness of (5) allows us to conclude that the associated graded objects of this filtration are given by

$$
g r^{i}=g r^{i}\left(\Omega_{X / k}\right)=F^{i} / F^{i+1}=\pi^{*}\left(\Omega_{S / k}^{i}\right) \otimes_{\mathcal{O}_{X}} S_{X / S}^{-i}
$$

Consider the functor $\boldsymbol{R}^{0} \pi_{*}$ from the category of complexes of abelian sheaves on X to the category of abelian sheaves on S. The derived functors of $\boldsymbol{R}^{0} \pi_{*}$ are $\boldsymbol{R}^{q} \pi_{*}$. Applying the spectral sequence of a finitely filtered object $\left[E G A, O_{\text {III }}, 13.6 .4\right]$ to $\Omega_{X / k}$, we obtain a spectral sequence abutting to (the associated graded object with respect to the filtration of) $\boldsymbol{R}^{q} \pi_{*}\left(\Omega_{X / k}\right)$, while

$$
\begin{align*}
E_{1}^{p, q} & =\boldsymbol{R}^{p+q} \pi_{*}\left(g r^{p}\right)=\boldsymbol{R}^{p+q} \pi_{*}\left(\pi^{*}\left(\Omega_{S / k}^{p}\right) \otimes_{\mathcal{O X X}_{X}} \Omega_{X / S}^{-p}\right) \tag{7}\\
& =\boldsymbol{R}^{q} \pi_{*}\left(\pi^{*}\left(\Omega_{S / k}^{p}\right) \otimes_{\mathcal{O X}_{X}} \Omega_{X / S}\right) \cong \Omega_{S / k}^{s} \bigotimes_{\mathcal{O}_{S}} \boldsymbol{R}^{q} \pi_{*}\left(\Omega_{X / S}\right) \\
& =\Omega_{S / k}^{p} \otimes_{\mathcal{O}_{s}} \mathcal{H}_{D_{R}}^{p}(X / S)
\end{align*}
$$

We get the isomorphism in the equality above, because $\Omega_{S / k}^{p}$ is locally free and because the differential in the complex $\pi^{*}\left(\Omega_{s / k}^{p}\right) \otimes_{\mathcal{O}_{x}} \Omega_{\dot{X} / s}$ is $\pi^{-1}\left(\mathcal{O}_{s}\right)$-linear.

Since the filtration on $\Omega_{X / k}$ is compatible with the exterior product, i.e. $F^{i} \bigwedge F^{j} \subset F^{i+j}$, and since the sequence of functors $\boldsymbol{R}^{\boldsymbol{o}} \pi_{*}$ is
multiplicative, it follows that this spectral sequence has a product structure. Explicitly there are pairings, for each $p, q, p^{\prime}, q^{\prime}$ and r

$$
E_{r}^{p, q} \times E_{r}^{p^{\prime}, q^{\prime}} \rightarrow E_{r}^{p+p^{\prime}, q+q^{\prime}}
$$

sending (e, e^{\prime}) to $e \cdot e^{\prime}$ where e and e^{\prime} are sections of $E_{r}^{p, q}$ and $E_{r}^{p,, q^{\prime}}$ respectively, over an open subset of S. This pairing satisfies

$$
e \cdot e^{\prime}=(-1)^{(p+q)\left(p^{\prime}+q^{\prime}\right)} e^{\prime} \cdot e
$$

and

$$
d_{r}\left(e \cdot e^{\prime}\right)=d_{r}(e) \cdot e^{\prime}+(-1)^{p+q} e \cdot d_{r}\left(e^{\prime}\right) .
$$

(This product is most easily constructed by means of the canonical flasque resolution, generalizing the procedure for the construction of cup product in Godement [2]).

In particular, let us consider the E_{1} terms. Since d_{1} has bidegree (1,0), we obtain, for every q, the complex $E_{\mathrm{i}^{\prime q}}$, which is explicitly

$$
0 \rightarrow \mathscr{H}_{D R}^{q}(X / S) \xrightarrow{d_{1}^{0, q}} \Omega_{S / k}^{1} \otimes \vartheta_{s} \mathscr{H}_{D R}^{q}(X / S) \xrightarrow{d_{1}^{1, q}} \Omega_{S / k}^{2} \otimes_{O_{S}} \mathscr{H}_{D R}^{q}(X / S) \cdots
$$

For $q=0$, the complex $E_{i^{\prime}}{ }^{0}$ is $\Omega_{S / k} \otimes_{O_{s}} \mathcal{H}_{D R}^{0}(X / S)$, with the differential $d_{s / k} \otimes 1$, where $d_{s / k}$ denotes the exterior differentiation in $\Omega_{S / k}$, and so we may regard $\Omega_{s / k}$ as a subcomplex of $E_{1^{\prime}}{ }^{\circ}$. Thus if ω and e are sections of $\Omega_{S / k}^{i}$ (which is contained in $E_{1}^{i, 0}$) and of $E_{1}^{0, q}=\mathcal{H}_{D R}^{q}(X / S)$ respectively over an open subset of S, we have

$$
\begin{equation*}
d_{1}^{i, q}(\omega \cdot e)=d \omega \cdot e+(-1)^{i} \omega \cdot d_{1}^{0,9} e \tag{8}
\end{equation*}
$$

This shows that $d_{1}^{0, q}: \mathscr{H}_{D_{R}}(X / S) \rightarrow \Omega_{S / k}^{1} \bigotimes_{O_{S}} \mathcal{H}_{D R}^{q}(X / S)$ is a connection on $\mathscr{H}_{D_{R}}(X / S)$, and that the $d_{1}^{i, q}$ are deduced from $d_{1}^{0, q}$ canonically according to the rule (2). The curvature is thus $d_{1}^{1, q} \cdot d_{1}^{0, q}=0$, and so $d_{1}^{0, q}$ is an integrable connection.

Further, letting e_{q} and $e_{q^{\prime}}$ be sections of $\mathscr{H}_{D R}^{q}(X / S)$ and $\mathscr{H}_{D_{R}^{\prime}}^{q^{\prime}}(X / S)$ respectively, over an open subset of S, we have

$$
\begin{equation*}
d_{1}^{0, q+q^{\prime}}\left(e_{q} \cdot e_{q^{\prime}}\right)=d_{1}^{0, q}\left(e_{q}\right) \cdot e_{q^{\prime}}+(-1)^{q} e_{q} \cdot d_{1}^{0, q^{\prime}}\left(e_{q^{\prime}}\right) . \tag{9}
\end{equation*}
$$

We may now define the Gauss-Manin connection $Д$ on the relative De Rham cohomology sheaf $\mathscr{H}_{D R}^{q}(X / S)$ to be $d_{1}^{0, q}$.

Theorem 1. Let $\pi: X \rightarrow S$ be a smooth k-morphism of smooth k-schemes. There exists a canonical integrable connection Д $=$ Д $(X / S, q)$ on the relative De Rham cohomology group $\mathscr{H}_{D R}^{q}(X / S)$. Д is compatible with the cup product in the sense that

$$
\begin{equation*}
\text { Д(e } \left.e e^{\prime}\right)=\text { Д(e) } \cdot e^{\prime}+(-1)^{q} e \cdot \text { Д }\left(e^{\prime}\right), \tag{10}
\end{equation*}
$$

where e and e^{\prime} are sections of $\mathscr{H}_{D R}^{q}(X / S)$ and $\mathcal{H}_{D R}^{q^{\prime}}(X / S)$ respectively over an open subset of S.

As explained earlier, Д gives a homomorphism of sheaves of k-Lie algebras

$$
\operatorname{Der}_{k}\left(\mathcal{O}_{s}\right) \rightarrow \operatorname{End}_{k}\left(\mathcal{H}_{{ }_{D R}}(X / S)\right)
$$

sending D to \widetilde{D}, such that

$$
\begin{align*}
& \widetilde{D}\left(e \cdot e^{\prime}\right)=\widetilde{D}(e) \cdot e^{\prime}+e \cdot \widetilde{D}\left(e^{\prime}\right) \tag{11}\\
& \widetilde{D}(f)=D(f), \tag{12}
\end{align*}
$$

where D, e, e^{\prime} and f are sections of $\mathscr{D e r}_{k}\left(\mathcal{O}_{s}\right), \mathcal{H}_{D R}^{g_{R}}(X / S), \mathcal{H}_{D R}^{\prime}(X / S)$ and \mathcal{O}_{s} (which is contained in $\mathscr{H}_{D_{R}}^{0}(X / S)$) respectively, over an open subset of S.

The formula (11) expresses that each \widetilde{D} is a k-derivation of the sheaf of \mathcal{O}_{s}-algebras $\mathscr{H}_{D R}(X / S)$. (The formula (11) differs from (10) by a sign, because, in defining \widetilde{D}, the term $\Omega_{S / k}^{1}$ appears on the extreme left.)

3. "Explicit" calculation of the connection.

Reduction.

The calculation rests on the general fact that, in the spectral sequence of a filtered object, the differential

$$
d_{1}^{p, q}: E_{1}^{p, q}=\boldsymbol{R}^{p+q} \pi_{*}\left(g r^{p}\right) \rightarrow E_{1}^{p+1, q}=\boldsymbol{R}^{p+q+1} \pi_{*}\left(g r^{p+1}\right)
$$

is the connecting homomorphism of the functors $\boldsymbol{R}^{a} \pi_{*}$ for the exact sequence

$$
\begin{equation*}
0 \rightarrow g r^{p+1} \rightarrow F^{p} / F^{p+2} \rightarrow g r^{p} \rightarrow 0 . \tag{13}
\end{equation*}
$$

Because the sheaves $\boldsymbol{R}^{q} \pi_{*}\left(F^{i} / F^{j}\right)$ are the sheaves associated to the presheaves on S

$$
V \mapsto \boldsymbol{H}^{q}\left(\pi^{-1}(V), F^{i} / F^{j} \mid \pi^{-1}(V)\right),
$$

it suffices to explicate the connecting homomorphism on these presheaves, indeed on the sections of the presheaves over arbitrarily small affine open subsets of S (since we are ultimately concerned with the mapping induced on the associated sheaves).

For the remainder of this section, then, we will assume that S is affine, and that $\Omega_{S_{/ k}}^{1}$ is free, and explicate the connection on global sections:

$$
\begin{aligned}
\text { Д: } \Gamma_{s}\left(\mathcal{H}_{D R}^{q}(X / S)\right)=\boldsymbol{H}^{q}\left(X, g r^{0}\right) & \rightarrow \Omega_{S / k}^{1} \otimes \Gamma_{s}\left(\mathscr{H}_{D_{R}}^{q}(X / S)\right) \\
& =\boldsymbol{H}^{q+1}\left(X, g r^{1}\right) .
\end{aligned}
$$

The problem is thus reduced to computing the connecting homomorphism of the functors $H^{q}(X$, ?) for the exact sequence (13).

Cech calculation of the $\boldsymbol{H}^{q}\left(X, F^{i} / F^{j}\right)$
Let (\mathcal{L}, d) be any complex of abelian sheaves on X, such that each \mathcal{L}^{p} is quasi-coherent (such as F^{i} / F^{j}). Fix an affine open covering $\boldsymbol{U}=\left\{U_{i}\right\}$ of X; we define a double complex

$$
C \cdot\left(\boldsymbol{U}, \mathcal{L}^{\cdot}\right)=\sum_{p, q \geq 0} C^{q}\left(\boldsymbol{U}, \mathcal{L}^{p}\right)
$$

as follows: $C^{q}\left(\boldsymbol{U}, \mathcal{L}^{p}\right)$ is the set of alternating q-cochains β with values in \mathcal{L}^{q}, i.e. to each ($q+1$)-tuple, $i_{0}<i_{1} \cdots<i_{q}, \beta$ assigns a section $\beta\left(i_{0}, \cdots, i_{q}\right)$ of \mathcal{L}^{p} over $U_{i_{0}} \cap \cdots \cap U_{i_{q}}$. The two differentials are

$$
d: C^{q}\left(\boldsymbol{U}, \mathcal{L}^{p}\right) \rightarrow C^{q}\left(\boldsymbol{U}, \mathcal{L}^{p+1}\right)
$$

defined by

$$
(d \beta)\left(i_{0}, \cdots, i_{q}\right)=d\left(\beta\left(i_{0}, \cdots, i_{\varepsilon}\right)\right)
$$

and

$$
\delta: C^{q}\left(\boldsymbol{U}, \mathcal{L}^{p}\right) \rightarrow C^{q+1}\left(\boldsymbol{U}, \mathcal{L}^{p}\right)
$$

defined by

$$
(\delta \beta)\left(i_{0}, \cdots, i_{q+1}\right)=(-1)^{p} \sum_{j=0}^{q+1}(-1)^{j} \beta\left(i_{0}, \cdots, \hat{i}_{j}, \cdots, i_{q+1}\right) .
$$

These satisfy the relations

$$
d^{2}=0, \delta^{2}=0, d \delta+\delta d=0
$$

We define the associated single complex

$$
K \cdot(\mathcal{L} \cdot)=\sum_{n \geq 0} K^{n}\left(\mathcal{L}^{\cdot}\right),
$$

where $K^{n}\left(\mathcal{L}^{\cdot}\right)=\sum_{p+q=n} C^{q}\left(\boldsymbol{U}, \mathcal{L}^{p}\right)$, whose differential is $d+\delta$. Then the hypercohomology group $\boldsymbol{H}^{g}\left(X, \mathcal{L}^{\cdot}\right)$ is the q-th cohomology group of the complex $K^{\cdot}\left(\mathcal{L}^{\cdot}\right)$. ($E G A$ III, 6.2.2) (Remark: the statement in $E G A$ III, 6.2.2. remains valid even if d is not \mathcal{O}_{x}-linear.)

Since the covering \boldsymbol{U} is affine, we obtain exact sequences of complexes of abelian groups

$$
\begin{align*}
& 0 \rightarrow K^{\cdot}\left(F^{1}\right) \rightarrow K^{\cdot}\left(F^{0}\right) \rightarrow K^{\cdot}\left(g r^{0}\right) \rightarrow 0 \tag{14}\\
& 0 \rightarrow K^{\cdot}\left(g r^{1}\right) \rightarrow K^{\cdot}\left(F^{0} / F^{2}\right) \rightarrow K^{\cdot}\left(g r^{0}\right) \rightarrow 0 . \tag{15}
\end{align*}
$$

The connecting homomorphism of the functors $\boldsymbol{H}^{q}(X$, ?) for (13) is that arising from (15).

Local calculations.

Fix a basis $\left\{d s_{1}, \cdots, d s_{r}\right\}$ of $\Omega_{s / k}^{1}$, and cover X by affine open sets U_{α} such that $\Omega_{U_{\alpha} / k}^{1}$ admits a basis of the form $\left\{d s_{1}, \cdots, d s_{r}\right.$, $\left.d x_{1}^{\alpha}, \cdots, d x_{n}^{\alpha}\right\}$. The canonical filtration on $\Omega_{x_{\mid k}}$ is given by

$$
F^{j}\left(\Omega_{X \mid k}\right)=\sum_{i_{1}<\cdots<i_{j}} d s_{i_{1}} \wedge \cdots \wedge d s_{i_{j}} \wedge \Omega_{X \mid k}^{-j} .
$$

Denote by $\left\{\psi_{\alpha}\left(\frac{\partial}{\partial s_{1}}\right), \cdots, \psi_{\alpha}\left(\frac{\partial}{\partial s_{r}}\right), \frac{\partial}{\partial x_{1}^{\alpha}}, \cdots, \frac{\partial}{\partial x_{n}^{\alpha}}\right\}$ the basis of $\operatorname{Der}_{k}\left(\mathcal{O}_{U_{\alpha}}\right) d u a l$ to $\left\{d s_{1}, \cdots, d s_{r}, d x_{1}^{\alpha}, \cdots, d x_{n}^{\alpha}\right\}$ i.e.

$$
\left\{\begin{array}{l}
\psi_{\alpha}\left(\frac{\partial}{\partial s_{i}}\right)\left(s_{j}\right)=\delta_{i j} \\
\psi_{\alpha}\left(\frac{\partial}{\partial s_{i}}\right)\left(x_{j}^{\alpha}\right)=0
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial x_{i}^{\alpha}}\left(s_{j}\right)=0 \\
\frac{\partial}{\partial x_{i}^{\alpha}}\left(x_{j}^{\alpha}\right)=\delta_{i j} .
\end{array}\right.
$$

This determines a decomposition of the exterior differentiation d_{x} in $\Omega_{v_{\alpha} / k}$

$$
\begin{equation*}
d_{x}=d_{s}^{\alpha}+d_{x / s}^{\alpha} \tag{16}
\end{equation*}
$$

defined by

$$
d_{\varsigma}^{\alpha}(h \omega)=\sum_{i=1}^{r} \psi^{r}\left(\frac{\partial}{\partial s_{i}}\right)(h) d s_{j} \wedge \omega
$$

and

$$
d_{x_{/ s}}^{\alpha}(h \omega)=\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}^{\alpha}}(h) d x_{i}^{\alpha} \wedge \omega,
$$

where h is in $\mathcal{O}_{U_{\alpha}}$, and ω represents a monomial in the $d s_{i}$ and $d x_{j}^{\alpha}$. Notice that $d_{s}^{\alpha}, d_{x / s}^{\alpha}$ and d_{x} mutually commute.

Define $\varphi_{\alpha}: \Omega_{U_{\alpha} / S} \rightarrow \Omega_{U_{\alpha} / k}^{*}$
by

$$
\varphi_{\alpha}\left(\mu d_{X / S}\left(g_{1}\right) \wedge \cdots \wedge d_{X / S}\left(g_{p}\right)\right)=\mu d_{X / S}^{\alpha}\left(g_{1}\right) \wedge \cdots \wedge d_{X / S}^{\alpha}\left(g_{p}\right) .
$$

We omit the proofs of Lemmas 1 through 5 .
Lemma 1. φ_{α} splits the exact sequence of $\mathcal{O}_{U_{\alpha}}$-modules

$$
0 \rightarrow F^{1}\left(\Omega_{U \alpha / k}\right) \rightarrow \Omega_{U \alpha / k} \rightarrow \Omega_{U_{\alpha} / S} \rightarrow 0
$$

and $\varphi_{\alpha} \circ d_{X / S}=d_{X / S^{\circ}}^{\alpha} \varphi_{\alpha}$.

Define $\quad \varphi: C^{q}\left(\boldsymbol{U}, \Omega_{X / S}^{b}\right) \rightarrow C^{q}\left(\boldsymbol{U}, \Omega_{X \mid k}^{b}\right)$
by

$$
(\varphi \beta)\left(i_{0}, \cdots, i_{q}\right)=\varphi_{i 0}\left(\beta\left(i_{0}, \cdots, i_{q}\right)\right),
$$

where $i_{0}<\cdots<i_{q}$.
Lemma 2. φ splits the exact sequence of abelian groups

$$
0 \rightarrow K^{\cdot}\left(F^{1}\right) \rightarrow K^{\cdot}\left(F^{0}\right) \rightarrow K^{\cdot}\left(g r^{0}\right) \rightarrow 0 .
$$

Define $J: \quad C^{q}\left(\boldsymbol{U}, \Omega_{X / S}^{b}\right) \rightarrow C^{q+1}\left(\boldsymbol{U}, \Omega_{X / k}^{b}\right)$
by

$$
(J \beta)\left(i_{0}, \cdots, i_{q+1}\right)=(-1)^{p+1}\left(\varphi_{i_{0}}-\varphi_{i_{1}}\right)\left(\beta\left(i_{1}, \cdots, i_{q+1}\right)\right),
$$

where $i_{0}<\cdots<i_{q+1}$.
By Lemma 2, we have $J\left(\bar{K}^{\cdot}\left(g r^{0}\right)\right) \subset K^{\cdot}\left(F^{1}\right)$.
Lemma 3. $\delta \varphi-\varphi \delta=J$.
Define the total Lie derivative with respect to S

$$
L_{s}: C^{q}\left(\boldsymbol{U}, \Omega_{X / k}^{p}\right) \rightarrow C^{a}\left(\boldsymbol{U}, \Omega_{X / k}^{p+1}\right)
$$

by
$L_{s}(\beta)\left(i_{0}, \cdots, i_{q}\right)=d_{s}^{i_{0}}\left(\beta\left(i_{0}, \cdots, i_{q}\right)\right)$, where $i_{0}<\cdots<i_{q}$. Notice that $L_{s}\left(K^{\cdot}\left(F^{i}\right)\right) \subset K^{\cdot}\left(F^{i+1}\right)$.

Combining Lemma 1 and (16), we obtain
Lemma 4. $d_{x} \circ \varphi=L_{s} \circ \varphi+\varphi \circ d_{X / S}$.
Combining Lemmas 3 and 4, we find
Lemma 5. $\left(d_{x}+\delta\right) \circ \varphi=L_{s} \circ \varphi+J+\varphi \circ\left(d_{X / S}+\delta\right)$

$$
\begin{gathered}
K^{r}\left(F^{0}\right) \stackrel{\text { mod. } F^{1}}{\rightleftarrows} K_{\varphi}^{r}\left(g r^{0}\right) \\
L_{s^{\circ} \varphi}+J \\
K^{r+1}\left(F^{1}\right) \rightarrow K^{r+1}\left(F^{0}\right) \xrightarrow{\text { mod. } F^{1}}{ }_{\downarrow} K^{r+1}\left(g r^{0}\right)
\end{gathered}
$$

Thus the connecting homomorphism for the exact sequence (14) is induced by the map (of abelian groups)

$$
L_{s^{\circ}} \circ \varphi+J: \quad K \cdot\left(g r^{0}\right) \rightarrow K^{0}\left(F^{1}\right)
$$

Define, for each U_{α}, the total interior product with respect to S $I^{\alpha}: \quad \Omega_{U_{\alpha / k}}^{b} \rightarrow \Omega_{U_{\alpha / k}}^{b}$
by

$$
\begin{aligned}
I^{\alpha}\left(\mu d g_{1}\right. & \left.\wedge \cdots \wedge d g_{p}\right)=\mu \sum_{i=1}^{p} d g_{1} \wedge \cdots \wedge d g_{i-1} \wedge d_{S}^{\alpha}\left(g_{i}\right) \wedge d g_{i+1} \wedge \cdots \wedge d g_{p} \\
& =\mu \sum_{i=1}^{p}(-1)^{i-1} \sum_{j} \psi_{\alpha}\left(\frac{\partial}{\partial s_{j}}\right)\left(g_{i}\right) d s_{j} \wedge d g_{1} \wedge \cdots \wedge d g_{i} \wedge \cdots \wedge d g_{p}
\end{aligned}
$$

When $p=0$, we put $I^{\alpha}=0$. Notice $I^{\alpha}\left(F^{0}\right) \subset F^{1}$.

Define $\quad \lambda: C^{q}\left(\boldsymbol{U}, \Omega_{X / k}^{d}\right) \rightarrow C^{q+1}\left(\boldsymbol{U}, \Omega_{X \mid k}^{d}\right)$
by

$$
(\lambda \beta)\left(i_{0}, \cdots, i_{q+1}\right)=(-1)^{p}\left(I^{i_{0}}-I^{i_{1}}\right) \beta\left(i_{1}, \cdots, i_{q+1}\right) .
$$

Notice that $\lambda\left(K^{\cdot}\left(F^{i}\right)\right) \subset K^{\cdot}\left(F^{i+1}\right)$.
Lemma 6. $\lambda \circ \varphi \equiv J \bmod . K^{\cdot}\left(F^{2}\right)$.
Proof. Let $\beta \in C^{q}\left(\boldsymbol{U}, \Omega_{x / s}^{p}\right)$. Fix $\left(i_{0}, \cdots, i_{q+1}\right)$ and let $\omega=\beta\left(i_{1}, \cdots\right.$, $\left.i_{q+1}\right)$. We must show that $(-1)^{p}\left(I^{i 0}-I^{i 1}\right)\left(\varphi_{i_{1}}(\omega)\right) \equiv(-1)^{p+1}\left(\varphi_{i_{0}}-\varphi_{i_{1}}\right)$ $(\omega) \bmod . F^{2}$.

By linearity, we may suppose $\varphi_{i_{1}}(\omega)=\mu d g_{1} \wedge \cdots \wedge d g_{p}$. Then

$$
\begin{aligned}
\varphi_{i_{0}}(\omega)= & \mu d_{X / S}^{i_{0}}\left(g_{1}\right) \wedge \cdots \wedge d_{X / s}^{i_{i}}\left(g_{p}\right) \\
= & \mu\left(d g_{1}-d_{S}^{i_{0}}\left(g_{1}\right)\right) \wedge \cdots \wedge\left(d g_{p}-d_{S}^{i_{0}}\left(g_{p}\right)\right) \\
= & \mu d g_{1} \wedge \cdots \wedge d g_{p}-\sum_{j=1}^{p} \mu d g_{1} \wedge \cdots \wedge d g_{j-1} d_{S}^{i_{0}}\left(g_{j}\right) \wedge d g_{j+1} \wedge \cdots \\
& \wedge d g_{p}+\text { terms in } F^{2} .
\end{aligned}
$$

Thus $\varphi_{i_{0}}(\omega) \equiv \varphi_{i_{1}}(\omega)-I^{i_{0}} \varphi_{i_{1}}(\omega) \bmod . F^{2}$, and $I^{i_{1}} \varphi_{i_{1}}=0$.
QED.
Thus the connecting homomorphism of (15) is induced by the map of abelian groups

$$
K^{\cdot} \cdot\left(g r^{0}\right) \xrightarrow{\varphi} K^{\cdot}\left(F^{0}\right) \xrightarrow{L_{s}+\lambda} K^{\cdot}\left(F^{1}\right) \xrightarrow{\text { mod. } F^{2}} K^{\cdot}\left(g r^{1}\right) .
$$

Because φ is a section of $K^{\cdot}\left(F^{0}\right) \xrightarrow{\text { mod. } F^{1}} K^{\cdot}\left(g r^{0}\right)$, and $\left(L_{s}+\lambda\right)\left(K^{\cdot}\left(F^{1}\right)\right) \subset K^{\cdot}\left(F^{2}\right)$, this connecting homomorphism is deduced from $L_{s}+\lambda$ by passage to quotients, i.e.
$K \cdot\left(g r^{0}\right)=K \cdot\left(F^{0}\right) / K \cdot\left(F^{1}\right) \xrightarrow{L_{s}+\lambda} K^{\cdot}\left(F^{1}\right) / K \cdot\left(F^{2}\right)=K \cdot\left(g r^{1}\right)$.
An elementary computation shows
Lemma 7. $L_{s}+\lambda$ commutes with the total differential $d_{x}+\delta$ of $K \cdot\left(F^{0}\right)=K \cdot\left(\Omega_{X / k}\right)$.

Theorem 2. When S is affine, with $\Omega_{s / k}^{1}$ free, there exists a map of complexes of degree 1

$$
K^{\cdot}\left(g r^{0}\right) \xrightarrow{L_{s}+\lambda} K^{\cdot} \cdot\left(g r^{1}\right)
$$

which yields，upon passage to cohomology，the Gauss－Manin con－ nection $Д(X / S): \mathscr{H}_{D R}(X / S) \rightarrow \Omega_{S / k}^{1} \otimes_{\mathcal{O}_{s}} \mathcal{H}_{D R}(X / S)$ ．

Remark．This was the original definition of the connection． （cf．Manin 〔5〕 and Katz 〔4〕）．

4．The Leray spectral sequence for $D e$ Rham cohomology．

As before let $\pi: X \rightarrow S$ be a smooth k－morphism of smooth k－ schemes．It was conjectured by Grothendieck（［3〕，Footnote（13）） that there is a＂Leray spectral sequence＂

$$
E_{2}^{p, q}=\boldsymbol{H}^{p}\left(S, \Omega_{\dot{s / k}} \otimes_{\mathcal{O s}_{s}} \mathcal{H}_{D R}^{q}(X / S)\right) \Longrightarrow \mathrm{H}_{D R}^{p+q}(X / k) .
$$

Here $\Omega_{S_{l k}} \otimes_{\mathcal{O s}_{s}} \mathcal{H}_{D R}(X / S)$ is the complex of sheaves on S deduced from the Gauss－Manin connection on $\mathcal{H}_{D_{R}}(X / S)$ as in（3）．$\quad \boldsymbol{H}^{p}(S, ?)$ is the p－th hyperderived functor $\boldsymbol{R}^{p} \Gamma_{s}$ of the global section functor Γ_{s} ，and finally $H_{D R}^{p+q}(X / k)$ is the De Rham cohomology group of X / k ，i．e．

$$
H_{D R}^{p+q}(X / k)=\boldsymbol{H}^{p+q}\left(X, \Omega_{X / k}\right)=\boldsymbol{R}^{p+q} \Gamma_{X}\left(\Omega_{X / k}\right) .
$$

In this section，we prove the existence of such a spectral se－ quence in the special case when S is affine．The technique is sim－ ilar to that used in the previous section．

The desired spectral sequence is that of the finitely filtered ob－ ject $\Omega_{x / k}$（filtered as in（6）），but now with respect to the derived functors of $\boldsymbol{R}^{0} \Gamma_{X}$ ．This abuts to（the associated graded object with respect to the filtration）of $\boldsymbol{R}^{q} \Gamma_{X}\left(\Omega_{X / k}\right)=H_{D R}^{q}(X / k)$ ，so it remains to compute the E_{2} term．

The E_{1} term is

$$
\begin{aligned}
E_{1}^{p, q} & =\boldsymbol{R}^{p+q} \Gamma_{X}\left(g r^{p}\right)=\boldsymbol{R}^{p+q} \Gamma_{X}\left(\pi^{*} \Omega_{S / k}^{p} \otimes_{\left.\mathcal{O}_{X} S_{X / S}^{-p}\right)}\right. \\
& =\boldsymbol{R}^{q} \Gamma_{X}\left(\pi^{*} \Omega_{S / k}^{p} \otimes_{\mathcal{O}_{X}} S_{X / S}^{\dot{x}}\right) .
\end{aligned}
$$

Lemma 8．$\quad \boldsymbol{R}^{q} \Gamma_{X}\left(\pi^{*} \Omega_{S / k}^{p} \otimes_{\mathcal{O}_{X}} \Omega_{X / S}\right)=\Gamma_{S}\left(\boldsymbol{R}^{q} \pi_{*}\left(\pi^{*} \Omega_{S / k}^{p} \bigotimes_{\mathcal{O}_{X}} \Omega_{X / S}\right)\right)$ ．

Proof. The factorization $\boldsymbol{R}^{0} \Gamma_{x}=\Gamma_{s} \circ \boldsymbol{R}^{0} \pi_{*}$ yields a spectral sequence of composition

$$
E_{2}^{a, b}=R^{a} \Gamma_{\mathcal{S}} \circ \boldsymbol{R}^{b} \pi_{*} \Longrightarrow \boldsymbol{R}^{a+b} \Gamma_{X}
$$

Because the complex $\pi^{*} \Omega_{S / k}^{p} \otimes_{\mathcal{O}_{X}} \Omega_{X / S}$ consists of quasi-coherent \mathcal{O}_{X}. modules, and its differential is $\pi^{-1}\left(\mathcal{O}_{s}\right)$-linear, the \mathcal{O}_{s}-modules $\boldsymbol{R}^{b} \pi_{*}\left(\pi^{*} \Omega_{S / k}^{p} \bigotimes_{\mathcal{O X}_{X}} \Omega_{X / S}\right)$ are quasi-coherent, and hence, S being affine, $E_{2}^{a, b}=0$ for $a \neq 0$, and $\boldsymbol{R}^{b} \Gamma_{x}\left(\pi^{*} \Omega_{S / k}^{p} \otimes_{\mathcal{O}_{X}} \Omega_{X / S}\right) \cong E_{2}^{0, b}=\Gamma_{s} \boldsymbol{R}^{b} \pi_{*}\left(\pi^{*} \Omega_{S / k}^{p} \otimes\right.$ $\left.\mathcal{O}_{X} \Omega_{X / S}\right)$.

QED.
Thus we get

$$
\begin{aligned}
E_{1, q}^{p, q} & =\Gamma_{S}\left(\boldsymbol{R}^{q} \pi_{*}\left(\pi^{*} \Omega_{S / k}^{p} \otimes_{\mathcal{O X}_{X}} S_{X / S}\right)\right) \\
& \cong \Gamma_{s}\left(\Omega_{S / k}^{p} \otimes_{\mathcal{O}_{S}} \mathcal{H}_{D R}^{q}(X / S)\right)
\end{aligned}
$$

the global sections of the E_{1} term in (7). Further the d_{1} of this spectral sequence

$$
d_{1}^{p, q}: \Gamma_{s}\left(\Omega_{S_{l k}}^{p} \otimes_{\mathcal{O}_{s}} \mathcal{H}_{D R}^{q}(X / S)\right) \rightarrow \Gamma_{s}\left(\Omega_{S / k}^{p+1} \otimes_{\mathcal{O}_{S}} \mathcal{H}_{D R}^{q}(X / S)\right)
$$

is obtained by applying Γ_{s} to the d_{1} of the spectral sequence (7), i.e. $d_{1}=\Gamma_{s}$ (Д).

Thus we get
$E_{2}^{p, q}=H^{p} \quad\left(\right.$ the complex $\Gamma_{s}\left(\Omega_{S / k} \otimes_{\mathcal{O s}_{s}} \mathcal{H}_{D R}^{q}(X / S)\right), \Gamma_{s}($ Д $\left.)\right)$.
Lemma 9. $\quad E_{2}^{p, q}=\boldsymbol{R}^{p} \Gamma_{s}\left(\Omega_{s / k}^{\dot{s}} \otimes \mathcal{O}_{s} \mathcal{H}_{D R}^{q}(X / S)\right)$.
Proof. The factorization $\boldsymbol{R}^{0} \Gamma_{s}=H^{0} \circ \Gamma_{s}$ yields a spectral sequence of composition

$$
E_{2}^{a, b}=H^{a} \circ R^{b} \Gamma_{s} \Longrightarrow \boldsymbol{R}^{a+b} \Gamma_{s} .
$$

Because S is affine and $\Omega_{S / k} \otimes_{\mathcal{O s}_{S}} \mathcal{H}_{D R}^{q}(X / S)$ is a complex of quasicoherent \mathcal{O}_{s}-modules, $E_{2}^{a, b}=0$ for $b \neq 0$, and so $\boldsymbol{R}^{a} \Gamma_{s}\left(\Omega_{s / k} \otimes_{O_{s}} \mathcal{H}_{b R}^{o}(X /\right.$ $S))=H^{a}\left(\Gamma_{S}\left(\Omega_{S^{\prime} k} \otimes \mathcal{O}_{s} \mathcal{H}_{D R}^{q}(X / S)\right)\right.$.

Thus we have proven
Theorem 3. There exist a Leray spectral sequence of De Rham cohomology when S is affine.

Corollary. When S is an affine curve, the Leray spectral sequence reduces to the long exact sequence

$$
\begin{aligned}
\stackrel{\mathbb{M}}{\rightarrow} \Omega_{S / k}^{1} \otimes \sigma_{s} H_{D R}^{q-1}(X / S) \rightarrow H_{D R}^{q}(X / k) & \rightarrow H_{D R}^{q}(X / S) \xrightarrow{\mathbb{M}} \\
& \rightarrow \Omega_{S / k}^{1} \otimes_{O_{S}} H_{D R}^{q}(X / S) \rightarrow
\end{aligned}
$$

In particular, if X is so small that $\Omega_{s / k}^{1}=\mathcal{O}_{s} d s$, and $\frac{\partial}{\partial s}$ $\in \operatorname{Der}_{k}\left(\mathcal{O}_{s}\right)$ is the derivation dual to $d s$, we have short exact sequences

$$
\begin{align*}
0 \rightarrow H_{D R}^{q-1}(X / S) / \frac{\partial}{\partial s}\left(H_{D R}^{q-1}(X / S)\right) & \rightarrow H_{D R}^{q}(X / k) \rightarrow \tag{17}\\
& \rightarrow H_{D R}^{q}(X / S)^{\partial / \partial s} \rightarrow 0,
\end{align*}
$$

where $H_{D R}^{q}(X / S)^{\partial / \partial s}$ is the subset of elements killed by $\frac{\partial}{\partial s}$.

Remarks.

(i) In the Leray spectral sequence, the term $E_{2}^{0,9}$ is the module of rational solutions of the Picard-Fuchs equations in $H_{D R}^{q}(X / S)$.
(ii) Recent investigations by Dwork of one-parameter families of hypersurfaces employ the p-adic analytic analogue of (17). (Dwork〔1〕).
(Added in proof.) P. Deligne has pointed out that Theorem 3 is valid without assuming the base S to be affine. To prove this fact we have to use filtered double complexes.

Bibliography

[1] B. Dwork. On the Zeta Function of a Hypersurface V. to appear.
[2] R. Godement, Topologie Algébrique et Théorie des Faisceaux. Paris, Hermann. (1958).
[3] A. Grothendieck. On the De Rham Cohomology of Algebraic Varieties, Publ. Math. IHES 29 (1966).
[EGA] A. Grothendieck and J. Dieudonné, Élément de Géométrie Algébrique, Chap. III, Part 1, Publ. Math. IHES 11 (1961), Part 2, ibid. 17 (1963).
[4] N. M. Katz, On the Differential Equations Satisfied by Period Matrices, doctoral dissertation, Princeton Univ. 1966, to appear in Publ. Math. IHES.
[5] Ju. I. Manin, Algebraic Curves over Fields with Differentiation, Izv. Akad. Nauk SSSR, Ser. Mat. 22 (1958), 737-756; English translation, Amer. Math. Soc. Translations, (2), vol. 37, (1964) 59-78.
[6] Ju. I. Manin, On the Hasse-Witt Matrix of an Algebraic Curve, ibib. 25 (1961), 153-172; English translation, Amer. Math. Soc. Translations, (2) vol. 45, (1965), 245-264.
[7] Ju. I. Manin, Rational Points of Algebraic Curves over Function Fields, Izv. Akad. Nauk SSSR. Ser. Mat. 27 (1963), 1395-1440; English translation, Amer. Math. Soc. Translations, (2), vol. 50, (1966), 189-234.

Princeton University
and Nagoya University

