J. Math. Kyoto Univ.
8-2 (1968) 199-213

On the differentiation of De Rham
cohomology classes with respect
to parameters

By
Nicholas M. Katz and Tadao Opa

(Communicated by Professor Nagata, April 19, 1968)

Introduction.

Let X and S be smooth schemes over a field k£, and let z: X—S
be a smooth k-morphism. We are concerned with constructing a
canonical integrable connection, the “Gauss-Manin connection”, on
the relative De Rham cohomology sheaves 45:(X/S).

In his 1966/67 Harvard Seminar, Mumford defined this connection
by means of a certain connecting homomorphism. We noticed that this
connecting homomorphism was the differential d, between certain E,
terms of a spectral sequence. This observation implied immediately
the integrability of the connection, and the existence, when S is
affine, of a “Leray spectral sequence” for the De Rham cohomology.

We begin by explaining the formalism of connections. We then
recall the notion of relative De Rham cohomology sheaves, construct
the Gauss-Manin connection, and prove its fundamental properties.
Next, we “explicitly” calculate the connection, and show that it
agrees with the original definition given by Manin [5], and later ex-
tended by Katz (4). We conclude by giving the “Leray spectral

sequence” when S is affine.

1. Connections.

Let S be a smooth scheme over the field %, and let € be a quasi-
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coherent sheaf of Os-modules. A connection on € is a homomorphism
p of abelian sheaves

0: E— Qé/k@@f;

such that
ey o(fe)=fole) +df Qe,

where f and e are sections of Os and & respectively over an open
subset of S, and df denotes the image of f under the canonical ex-
terior differentiation d: Os— 25,.

A connection p may be extended to a homomorphism of abelian
sheaves

0i: Qélk@Ose_)gg;kl ®058
by
(2) p:(0®e)=do@e+ (—1)'w/\o(e)

where w and e are sections of 25, and & respectively over an open
subset of S, and where o /\ p(¢) denotes the image of w@p(e) un-
der the canonical map

Qg/k®05<gé/k®05'g)_’ggﬁl@@sg
sending 0 Q@@ e to (0 Av)Re.

The curvature K of the connection p is the Oslinear map K
=p00: E—25,Q0sE. One easily verifies that

pirop(0@e)=w /\ K(e),

where » and e are sections of 2%, and & respectively over an open
subset of S.

The connection p is called integrable if K=0. An integrable
connection p on € thus gives rise to a complex

0 01 02
(3) 0—)8—)‘{2;/‘@058——»!}%“@058—)...

which we will denote simply by 25, &€ when there is no confusion.
Let Der,(Os) denote the sheaf of germs of k-derivations of Os
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into itself. We note for later use that Der,(Os) is naturally a sheaf
of k-Lie algebras, while, as Os-module, it is isomorphic to Hompe (25,
Os).

Let £&nd, (&) denote the sheaf of germs of k-linear endomorphi-
sms of £. We note that €xrd,(€) also carries the structure of sheaf
of k-Lie algebras, as well as that of Osmodule.

Now fix a connection p on &; p gives rise to an Oglinear map-
ping

Der,(Os) ——End,(E)

sending D to 5, where D is the composite

p®1
e 2,022 0@ 0 e =¢.

Notice that
4) D(fe)=D(f)e+fD(e)

whenever D, f and e are sections of Der,(Os), Os and € respectively
over an open subset of S. Conversely, because S is smooth over &,
any Ogslinear mapping Der,(Os) >End,(€) satisfying (4) arises from
a unique connection p.

The connection p is integrable precisely when the mapping
Der,(Os)—End,(E) is also a Lie-algebra homomorphism. This can
be seen by using the well known fact that for D, and D, in Der,(Os),
we have [D,, D, — [Dy, D] = (D: AD;)(K), where the right hand
side is the composite map

K D,\D, 1
8—>.Q§/,,®058( /\ ——)® '*@s@@sg-":’g.

2. Relative De Rham cohomology.

Let n: X—S be a smooth k-morphism of smooth A-schemes.
The relative De Rham cohomology sheaf 4,:(X/S) is, by definition,
the quasi-coherent sheaf of graded anticommutative algebras on S de-
fined by
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H3(X/S) = Roms(R/5)

where 2x;s denotes the complex of S-differentials on X, and Rz is
the g-th hyperderived functor of my.
We now describe a canonical integrable connection 1= 1(X/S, q)
on each cohomology sheaf H:(X/S), the “Gauss-Manin connection.”
We recall that, because = is smooth, the sequence

5) 0—n*(25p) = Q% — 2i;s—0
is exact. The complex 2%, admits a canonical filtration
(6) Qip=F°(2%) DF'(Qxp) DF*(Qxp) D+,
where

Fi=F'(Qx,) =image [2x5i @ o, (25,) —> 2] .

Because the sheaves 2%, and 25, on X and S respectively are local-
ly free, the exactness of (5) allows us to conclude that the associa-
ted graded objects of this filtration are given by

gri=gr'(Qx) =F'/F"=n*(25,) ® 0,25
Consider the functor R°zry, from the category of complexes of
abelian sheaves on X to the category of abelian sheaves on S. The
derived functors of Rz, are R‘my. Applying the spectral sequence
of a finitely filtered object [EGA, O, 13.6.4] to 2%, we obtain

a spectral sequence abutting to (the associated graded object with
respect to the filtration of) Rmy(2x,), while

) Ett= Ry (gr") = R 'my (n* (28) Q, 2xi5")
= Remy (n* (25) @ 9, 2x15) = 2@ o Rmx (2x;s)
= :-Qg/k ® Osﬂfm (X/S )

We get the isomorphism in the equality above, because 2%, is local-
ly free and because the differential in the complex =*(25:,)& o, 21/
is 771(Os)-linear.

Since the filtration on 2%, is compatible with the exterior pro-
duct, i.e. FIAF/C F* and since the sequence of functors Rz, is
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multiplicative, it follows that this spectral sequence has a product
structure. Explicitly there are pairings, for each p, ¢q, ', ¢’ and »

E);.a X Ef/.q/_>E€+A’.q+a’

sending (e, ¢’) to e-¢’ where e and ¢’ are sections of E?and E?
respectively, over an open subset of S. This pairing satisfies

e e = <_ 1>(I’+0)(ﬁ/+q/)e/ e
and
d,(e-e’) =d'<e) e+ (_l)pﬂe,dr(e/).

(This product is most easily constructed by means of the canonical
flasque resolution, generalizing the procedure for the construction of
cup product in Godement [2]).

In particular, let us consider the E, terms. Since d, has bide-
gree (1,0), we obtain, for every ¢, the complex E;? which is ex-
plicitly

0.¢ 1,q
O%ﬂén(X/S)iﬂé/&@@sﬂZR(X/S)d—1>32§,k®0sﬂ{2’m(X/S)~--

For ¢=0, the complex E;° is 25,@ o Hbe(X/S), with the differen-

tial ds, &1, where ds;, denotes the exterior differentiation in £s,, and

so we may regard %2s, as a subcomplex of E;°. Thus if » and e

are sections of £5,, (which is contained in £{°) and of E¥'=%3,(X/S)

respectively over an open subset of S, we have

(8 P(w-e)=dow-e+(—1)w-d¥e.

This shows that di: Ipx(X/S)— 5. ® 0 I8(X/S) is a connection
on J3:(X/S), and that the di* are deduced from d¥¢ canonically
according to the rule (2). The curvature is thus di*-d{*=0, and
so d¥* is an integrable connection.

Further, letting e, and e,/ be sections of H3:(X/S) and J(%:(X/S)
respectively, over an open subset of S, we have

C)) Ay (e, e) =di(e,) -er+ (— 1), di* (e,).

We may now define the Gauss-Manin connection I on the rela-
tive De Rham cohomology sheaf #3:(X/S) to be d.
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Theorem 1. Let n: X—S be a smooth k-morphism of smooth
k-schemes. There exists a canonical integrable connection
O=10(X/S,q) on the relative De Rham cohomology group
I5:(X/S). I is compatible with the cup product in the sense that

(10) H(e-e)=H(e)-&'+(—1)%- (&),

where e and ¢ are sections of Hix(X/S) and Iy (X/S) respec-
tively over an open subset of S.

As explained earlier, /I gives a homomorphism of sheaves of
k-Lie algebras

Der(Os)— End, (I (X/S))
sending D to D, such that
(11) D(e-¢)=D(e)-¢'+e-D(e’)
(12) D(f)=D(f),

where D, e, ¢’ and f are sections of Der,(Os), Hie(X/S), IHp(X/S)
and Os (which is contained in J{3:(X/S)) respectively, over an open
subset of S.

The formula (11) expresses that each D is a k-derivation of
the sheaf of Osalgebras Hpx(X/S). (The formula (11) differs from
(10) by a sign, because, in defining D, the term 2%, appears on the
extreme left.)

3. “Explicit” calculation of the connection.

Reduction.
The calculation rests on the general fact that, in the spectral
sequence of a filtered object, the differential

dbe: Eto= Ry (gr) —E{= RV, (grH)

is the connecting homomorphism of the functors Rz, for the exact

sequence
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13) 0—-grtt*>Fr/F*— gyt —(,

Because the sheaves Rz, (F/F7) are the sheaves associated to the
presheaves on S

Vi—H'(z"(V), Fi/Fi |z (V)),

it suffices to explicate the connecting homomorphism on these pre-
sheaves, indeed on the sections of the presheaves over arbitrarily
small affine open subsets of S (since we are ultimately concerned
with the mapping induced on the associated sheaves).

For the remainder of this section, then, we will assume that S
is affine, and that 2}, is free, and explicate the connection on global
sections:

I Ts( I (X/S)) = H (X, g7r°) =25, Q's( Hp(X/S))
=H"*"'(X, gr').

The problem is thus reduced to computing the connecting
homomorphism of the functors H‘(X, ?) for the exact sequence

(13).

Cech calculation of the H (X, Fi/F?)

Let (L7, d) be any complex of abelian sheaves on X, such that
each [? is quasi-coherent (such as F‘/F7). Fix an affine open cov-
ering U= {U;} of X; we define a double complex

C(U, L= 5 €U, L7

as follows: C¢(U, .L*) is the set of alternating g-cochains g with
values in .7 i.e. to each (¢+1)-tuple, 4,<<i,---<<i,, B assigns a sec-
tion B(4y,+++,%,) of .L* over UM ---MU;i,. The two differentials are

d: C"(U, ,f’)—)C"(U, _L‘pﬂ)
defined by
(dB) (iOv Tty iﬂ) :d(B(iO» Tt ill))

and
o: C(U, LHH—-C (U, L
defined by
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~

OF) Gy i) = (=P B (=18, oy By -+ ).
These satisfy the relations
d*=0, 8*=0, do+od=0.
We define the associated single complex
K (L)=2 K"(LD),

where K" (L) = > C(U, .L*), whose differential is d+4. Then the
hypercohomolog;+g;oup H'(X, L") is the g-th cohomology group of
the complex K'(['). (EGA 1II, 6.2.2) (Remark: the statement in
EGA 111, 6.2.2. remains valid even if d is not Ox-linear.)

Since the covering U is affine, we obtain exact sequences of

complexes of abelian groups

(14) 0K (F)—-K (F)—>K(gr’)—0

(15) 0—-K'(gr)—K (F°/F)—K ' (gr’)—0.

The connecting homomorphism of the functors H?(X, ?) for (13) is
that arising from (15).

Local calculations.

Fix a basis {ds;, :-,ds,} of 2i:, and cover X by affine open
sets U, such that £}, admits a basis of the form {ds,, -, ds,,
dx%, -+, dx%}. The canonical filtration on £5, is given by

Fi(@x.) = <¥<l_d3i1 N Ndsi; N\ 2xpi.

0 0 0 0 .
Denote by (-2 ) v 2,2, 2 )
enote by iv» 35, r os. ) oxe Py the basis of

Der,(Oy,) dual to {ds,, -+, ds,, dx&, -, dx} ie.

[l ) o=as

l ‘l""(a%f) (x5)=0

and
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[ _
J W(si) =0

| o2 =

ox¥
This determines a decomposition of the exterior differentiation dx in
Ly

(16) dx=d$ +d%;s
defined by

a5 (ho) = 9 (1) ()ds, o
and

d515(ho) =3} 50 (W) da o,
i=1 x,‘

where % is in Oy,, and o represents a monomial in the ds; and dx%.
Notice that d%, d%s and dx mutually commute.

Define ¢o: Lu,s—> Lo
by
?a(pdxis(8) N+ Ndxis(g5)) =1d%s(g0) N\ \Nd%s(&y).

We omit the proofs of Lemmas 1 through 5.
Lemma 1. ¢, splits the exact sequence of Oy -modules
0—F*(Luass) = Luaip—>L0.s—>0
and ¢q.odxis=d%s°¢q.
Define ¢: C(U, 2%s)—C«(U, 2%
by
(@B) (G, *++, 1) =i (B(o, *++, 20)),
where 1,<<---<<2,.
Lemma 2. ¢ splits the exact sequence of abelian groups
0—-K' (FY)—-K ' (F)—=K(gr")—0.
Define J: C(U, 2%5)—C (U, 2%)
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by
(]B) (iO y % iﬂ—l) = (_1)p+1(¢io_¢i1) (B(il y °°% iﬂ-l))v

where 7, <-++ <li,.
By Lemma 2, we have J(K'(gr®)) cK'(FY).

Lemma 3. dp—ei=]-
Define the total Lie derivative with respect to S

Ls: C(U, 2%,)—C*(U, 945
by
Ls(B) (Gy, *++, 1,) =d (B0, -+, 1,)), Where 4,<<---<i,. Notice that
Ls(K*(F))CK (F™*).
Combining Lemma 1 and (16), we obtain
Lemma 4. dxop=Lscp+ podys.

Combining Lemmas 3 and 4, we find

Lemma 5. (dx+8)op=Lsop+ J+po(dx;s+06)

mod. F!
K (F) — K'(gr")
®
Lsoo+] ldx+5 ldxls"‘b‘
KV+I<F1)_>KI+I(F0)mM1Kr+1(g’,0)
Thus the connecting homomorphism for the exact sequence (14)
is induced by the map (of abelian groups)

Lsop+]: K'(gr)—K°(F").

Define, for each U,, the total interior product with respect to
S I*: 'an/k_) ‘anlk
by
4
I“(/«tdgx /\ /\dgp) =ﬂi2=1dg1 A /\ dg;_l/\d?(g;) /\dgin /\ /\dgp

1S3~ D S 51 ) (@) ds, Ndgi /- g g

When p=0, we put I*=0. Notice I*(F°)cC F.
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Define 2: C?(U, 2%)—C (U, 2%1)
by
('{B> (io; R iq+1) = <_1)P(I;°_Ii‘>3(i1, B Z.4+1>-
Notice that 1(K(F))cC K (F™*).

Lemma 6. lcp=j] mod. K '(F?).

Proof. Let peC(U, 2%s). Fix (4o, *++, i,41) and let 0o =B, -,
1,41). We must show that (—1)*(I*°—I") (¢;,(0)) =(—1)"*"(¢;,—@:,)
(0) mod. F?

By linearity, we may suppose ¢;(0)=p dg,/\---/\dg,. Then

@in(0) = pd3s(g0) N\ Nd3s(g»)

=p(dgi—ds(g))/N\ - /\(dg,—d2(gs)
ﬁ .
=pdgi \-- N\ dgp_gl#d& N Ndgids(g) Ndgim N\
N dg,+terms in FZ,
Thus ¢;,(0)=¢;,(0) —I"¢;(0) mod. F? and [y, =0. QED.

Thus the connecting homomorphism of (15) is induced by the

map of abelian groups

K (gr) 2K (F)2" 2k (P ™ k- (gr).
mod. F!

Because ¢ is a section of K (F°) — K-'(gr’), and
(Ls+ ) (K (FY))cCK (F*), this connecting homomorphism is
deduced from Ls+2 by passage to quotients, i.e.

K (gr)=K"(F") /K (FY25 K (FY /K (F) =K (gr).

An elementary computation shows

Lemma 7. Ls+21 commutes with the total differential dx—+3o
of K'(F*)=K"'(2x;).

Theorem 2. When S is affine, with 2i, free, there exists a
map of complexes of degree 1
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K (g 22 K (gr)

which yields, upon passage to cohomology, the Gauss-Manin con-
nection 1(X/S): Ior(X/S)— 24 R o, Ior(X/S).

Remark. This was the original definition of the connection.
(cf. Manin (5) and Katz (4)).

4. The Leray spectral sequence for De
Rham cohomology.

As before let #: X—S be a smooth k-morphism of smooth k-
schemes. It was conjectured by Grothendieck ([(3], Footnote (13))
that there is a “Leray spectral sequence”

El=H*(S, .Q'sn.@@s bx(X/S))==Hx" (X/k).

Here .Qg;,,,®OSL4[Z~,R(X/S) is the complex of sheaves on S deduced
from the Gauss-Manin connection on H2:(X/S) as in (3). H*(S,?)
is the p-th hyperderived functor R’I's of the global section functor
I's, and finally H%%(X/k) is the De Rham cohomology group of
X/k, ie.

Hi(X/B)=H*" (X, 2x) =Ry (2%,).

In this section, we prove the existence of such a spectral se-
quence in the special case when S is affine. The technique is sim-
ilar to that used in the previous section.

The desired spectral sequence is that of the finitely filtered ob-
ject 2%, (filtered as in (6)), but now with respect to the derived
functors of R°I'x. This abuts to (the associated graded object with
respect to the filtration) of RT'x(2x,) = Hi:(X/k), so it remains to
compute the E, term.

The E, term is

E{.q = Rﬁ+arx<g7p) — Rﬂql"x (W*g§1k® OrQX_Ig)
= R"I“x (ﬂ*.lek@Ox.Q;(/s) .

Lemma 8. Ry (71:*!2§/,,®0XQ}(,S) =Fs(Rq71.'* (n*.Qsp/k®0x.Q;(/s>).
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Proof. The factorization R°I'x=TI'soR’rmy yields a spectral se-

quence of composition
Ej*=RTsoR'ny=—>R""I'x.

Because the complex n*2%,&p,2x;s consists of quasi-coherent Ox-
modules, and its differential is z'(Os)-linear, the Osmodules
Ry (n* 2%, @ o, 2xs) are quasi-coherent, and hence, S being affine,

=0 for a+0, and R”I“x(n*.Qél,,@OxQ;,s)%Eé"”=PSR”7r*(rc*!2§,,,®
Ox82%)s) . QED.

Thus we get
Efe=rs(Riny(w* 2%, & 9,2x15))
=Ts(2Q oI5 (X/S))
the global sections of the E; term in (7). Further the d, of this
spectral sequence
d1: T's(28, Q) o Hse(X/S)) = Ts (255 Q 9 A2 (X/S))

is obtained by applying I's to the d; of the spectral sequence (7),
ie. d,=rs(11).
Thus we get

Ef*=H’ (the complex I's(2s4& o, Hsx(X/S)), I's(11)).

Lemma 9. E;"”=R’Fs(.Qélp@Oscﬂ%R(X/s))-

Proof. The factorization R°I's= H'oIs yields a spectral sequence
of composition

Eg,b= HaoRbPS:Ra+bI—vs.

Because S is affine and 25,Q oI5 (X/S) is a complex of quasi-
coherent Os-modules, E5*=0 for b+0, and so RTs(25: @ o A (X/
S))=H(I's(2s:Q0sIH5:(X/S)).

Thus we have proven

Theorem 3. There exist a Leray spectral sequence of De
Rham cohomology when S is affine.



212 Nicholas M. Katz and Tadao Oda

Corollary. When S is an affine curve, the Leray spectral
sequence reduces to the long exact sequence

R 0 @ 0 HE (X)) — Hon(X/B)—Hia(X/S) >
—>9§/k® OSH;;R(X/S) -

In particular, if X is so small that 2},=0ds, and %

€ Der,(Os) is the derivation dual to ds, we have short exact sequences

a7 0—=Hw(X/S)/-2 (H5(X/S))—Hss(X/B)—

QH{;R(X/S)BIBS—)O,
where H§:(X/S)?? is the subset of elements killed by gs- .
Remarks.

(i) In the Leray spectral sequence, the term E2? is the module of
rational solutions of the Picard-Fuchs equations in H3:(X/S).
(ii) Recent investigations by Dwork of one-parameter families of
hypersurfaces employ the p-adic analytic analogue of (17). (Dwork
an.

(Added in proof.) P. Deligne has pointed out that Theorem 3
is valid without assuming the base S to be affine. To prove this fact
we have to use filtered double complexes.
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