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By a ring, we mean throughout this paper a commitative ring
with identity. By a module over a ring, we mean a unitary one.
Let A be a subring of a ring R such that R is a finite A-module.
It is well known that if A is a noetherian ring then R is a noetherian
ring. The purpose of this paper is to prove the converse of this fact.
Namely, we shall prove.

Theorem. Let A be a subring of a noetherian ving R such
that R is a finite A-module. Then A is noetherian.

Before proving the theorem, we state some preliminary results:

Lemma. Let A be a subring of a noethervian ring R. If R
is a free A-module, then A is noetherian.

Proof. 1f I is an ideal of A, then IRNA=1, from which the
assertion follows obviously.

Theorem of Cohen.® A ring is noetherian if and only every
prime ideal of the ring has a finite basis.

Proof of the theorem. Using induction argument on the number
of generators of R over A, we may assume that R=A[x] with an x
in R. For ideals I of R different from R, we consider A’=A4/(INA4)

1) See, for instance, Nagata, Local rings, John Wiley, New York (1962).
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and R'=R/I. Then R’ is a finite A’-module. We are to prove that
all the A’ are noetherian. We use induction argument on the large-
ness of I, and we may asuume that if /#0, then A’ is noetherian,
and have only to show that A is noetherian. Let X be an in-
determinate and consider the A-homomorphism ¢: A[{X]—R such
that ¢ X=2x. Let @y X"+ a,X" '+ ---+a, be an element of the kernel K
of ¢ of the lowest degree. Then A[a,x] is a free A-module. Therefore,
by Lemma above, we have only to show that A[a,x] is noetherian.
Thus we may assume that @, x= A, and J={easAlaxs A} is not
the zero ideal. Set J*= {es A|ax"= A for every n}. Since R is a finite
A-module, J*+#0 if a, is not nilpotent. In view of the theorem of
Cohen, let p be an arbitrary prime ideal of A and we have only to
show that p has finite basis.

Case 1. Assume that p( J*+#0. Let a be @ non-zero element of
pMJ*. Since R is integral over A, we have pR(MNA=p (lying over
theorem®), whence p2aeR. Then by our induction assumption, A/aR
is noetherian, which shows that p has a finite basis modulo aR.
Since aR=iztax'A, we see that p has a finite basis.

Case 2. Assume that p(J/*=0, J*+0. By our induction assump-
tion, A/J* is noetherian, whence (p+J*)/J* has a finite basis. Since
pNJ*=0, we have (p+J*)/J*=p/(PNJ*)=p and we see that p
has a finite basis.

Case 3. Assume now that @, is nilpotent. We may assume that
4;=0. Set I,=a,RMNA. Then A/I, is noetherian and I,Cp. a,R
is a finite A/I,-module, whence it is a noetherian module as an A-
module. Therefore its submodule I, has a finite basis. Thus p has
a finite basis.

Thus every prime ideal of A has a finite basis and we complete
the proof.

Added on September 11, 1968. The writer has seen that our
theorem was proved by P. M. Eakin Jr. (The converse to a well known
theorem on noetherian rings, Math. Ann. 177 (1968) pp. 278-282).
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The writer dare publish this article beause he beoclieves that the
present proof is simpler than Eakin’s.
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