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Introduction.

Let G be a connected semisimple Lie group. A general method
to construct representations of G is to induce, in a sense, represen-
tations of some subgroups of G. In particular, all finite-dimensional
irreducible representations of G are obtained by inducing one-dimen-
sional representations of a certain subgroup. But the situation is not
so simple in the case of infinite-dimensional representations. Concern-
ing this problem, F. Bruhat obtained a criterion for irreducibility of
some induced representations of G in [1]. The purpose of the present
paper is to give a formula which expresses the characters of such
induced representations of G on Hilbert spaces that has been treated
by F. Bruhat, by means of the characters of the original represen-
tations. Our principal result is Theorem 2 in §5, which gives this
formula. This formula generalizes analogous ones for very particular
cases considered in [2], [3], and [4(c)]. In the opinion of the author,
this formula has an important significance for such problems to
establish the Plancherel formula for G, to obtain the characters of
all (quasi-simple) irreducible representations of G on Hilbert spaces,
and to exhaust all invariant eigendistributions of all Laplace operators
on G (see for example [5(a), (b), (c)]).

As an application of our result, the characters of all unitary
irreducible representafions of GL(3, R) and SL(3, R) can be calculated
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explicitely by using the result [10] of I. Ya. Vakhutinskii (see the
last note in §5).

Also, in the forth coming paper [4(d)], we obtain the explicite
form of the Plancherel formula for SU(p, q¢) by using the result of
this paper (Theorem 2) and the result of [4(c), §10] on the explicite
form of the characters of irreducible unitary square-integrable re-
presentations of SU(p, ¢).”

Section 1 is devoted to comstruct induced representatiors T* of
some representations L of a certain subgroup S; of G in such a form
that are convenient for our purpcse. In this section, some elementary
facts are stated without prcofs for the sake of brevity, but the reader
can fird their prcofs in another papers cited in places. In Section 2,
we study a sufficient cordition for the existerce of the characters of
the representaticns L ard T In Section 3, we prove an integral
formula on G which is essential to calculate explicitely the character
of T* in Section 5. Let x(g) be an indefinitely differentiable func-
tion on G which vanishes outside a comract set and put

T£=SGT§x(g)dg

where dg is a Haar measure on G. Then T is a summable operator
under certain corditions on S; and L (for the definition, see §2).
The principal result in Section 4 is to express the trace Sp(T%) of
T: by means of an integral on G containing ¥ and the character
of L (Theorem 1). In other words, the character = of T*is expressed
as a distribution on G defined from r. To prove Theorem 1, we must
verify the following fact. Let T be a summable integral operator
on a Hilbert space of all square-integrable functions on a certain
locally euclidian measure space {11, du}. Then the trace Sp(7T) of
T is expressed as

Sp(T) = K, wyduu),

1) SU(p,q) is a real form of SL(p+q; C) consisting of all g&SL(p+gq; C)
which fulfill that g*Ig=1, where I is a diagonal matrix whose p diagonal elements
are 1 and the other ¢ elements are —1, and g*=tg.
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where K is the integral kernel of T and du is the measure on U.
The last half of Section 4 is devoted to prove this fact in more
general form than necessary at the time. In Section 5, assuming
scme additional conditions on S; and L, we rewrite the expression of
Sp(T%) in Theorem 1 in more simpler form and thus we obtain our
principal result, a simple formula expressing the character = of T*
by means of the character = of L (Theorem 2). In the last note of
the section, the essential pcints of the proof of our formula are
summalized.

The formulas (4.12) in Theorem 1 and (5.9) in Theorem 2
which express = by means of ¢ may hold for invariant eigendistribu-
tiors on the grours S; and G. That is, if we take any invariant
eigerdistribution r on S, of all Laplace operators on it and define a dis-
tribution = on G by the formula (4. 12) or the one (5.9). Then, under
some appropriate conditions on S;, = may be well-defined and give
an invariart eigendistribution on G of all Laplace operators on it.
In [5(c), §7], we prove this fact and use it to obtain a complete
system of linearly indeperdent invariant eigendistributions on G of all
Laplace operators, for G=SU(p, q¢) (p, ¢>1).

The author expresses his hearty thanks to Professor H. Yoshizawa
for his kind advices and to Dr. N. Tatsuuma and Mr. S. Andd for
their aids to prepare the manuscript.

Short summary of the results of this paper has been published

in [5(e)].

§1. Some induced representations.

1. Let G be a simply connected semisimple Lie group whose
Lie algebra is denoted by g,. Let g,=p,+f, be a Cartan decomposi-
tion of g,, where as usual f, denotes a maximal compact subalgebra.
Let g, p, and t be the complexifications of g,, p,, and f, respectively.
Then g=p+t. Let ¢, be the center of f, and put f;= [f,, t,]. Then
t,=t+c, and t=t'+c¢ where ' and ¢’ are the complexifications of £
and c¢; respectively. Let K, K’, and D be the analytic subgroups
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corresponding to f,, f;, and ¢, respectively. Let H; be a maximal
abelian subalgebra of p,, and let §, =55 + b5 be a Cartaa subalgebra of
g, where hr Cf,. Let b, b, and §* be the complexifications of §,, b7,
and §5 resp. Now let 4 be the set of all roots of g with respect to
b (simply of {g,H}). For every a= 4, let e, be a non-zero element
of g such that

[h, e.] =a(h)e. (hEDh)

and put g.=Ce, where C is the field of complex numbers. Denote
by B the Killing from of g, and for every a«= 4, let h, be a unique
element of § such that B(h., h)=a(h) (h€}). Put D*ZOEARh“
where R is the field of real numbers. Then H*=8H;+1/—1 5§ and
every root of {g, 0} is real valued on H*

Fix an ordering in the dual space of §; and choose an ordering
in the dual space of §* in such a way that an element A of the dual
space of H* is positive whenever its restriction 2 on By is positive.
Let P be the set of all positive roots of {g, )} with respect to this
ordering in the dual space of §* and let @ be the set of all a= P
whose restrictions on §; are not identically zero. Put nzgoga and
me=n{1g,. Let N and H~- be the analytic subgroups of G corres-
ponding respectively to 1, and §;. Then G=NH K is so called
Iwasawa decomposition of G. The mapping (%, &, u)—>nhu (ne N,
he H,ue K) is an homeomorphism of NX H-X K onto G[12, Ch. VI,
§3]. Let M be the centralizer of 7 in K, that is, the subgroup of
K consisting of all elements #= K such that Adu(h)=h (hEb;).
Then '=NH-M is a closed subgroup of G.

Now let us fix a non-zero element h,=h;. Let P’ be the set
of all a= P such that a(h,)=0. Let by be the subalgebra of §y
orthogonal to P’, i.e., the set of all heb; fulfilling a(h) =0 (s P’).
Let P’ denote the set of all «= P not identically zero on §;. Then
evidently P=P’|JP”. Let S be the centralizer of ), in G. Let b

be the orthogonal complement of §; in §, with respect to the Killing
form B of g,. "Put
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8= .,Ep,(g“ + g-a) + f)

.and 8,=8(g,. Then &, is the centralizer of B, in g, and the Lie
algebra of S. It is reductive and §,=HMg, is a Cartan subalgebra
of it. Put 8=[3,8] and let ¢; be the center of 8. & is spanned
over C by h,, e., and e_, (< P’), and ¢; is the orthogonal complement
of {h,, a= P’} in ) with respect to B.® It is easily proved that
8=8'NgoDh" and czMgo D ho.

Let §”” be the complexification of §; and put

m'=h"+5§"+ Epgga+ G-o)

and my=n’'M9g,. Then ny is reductive and by +5§, is its Cartan
subalgebra. Clearly myC8, and 8,=§o+my. Put n'=>,crg. and
ny=n'Mg,. Then ng is nilpotent and [8,, ng] Cny. Let M’°, H’, and
N’ be the analytic subgroups corresponding respectively to i, B,
and ng. They are closed in G. And N'H’, H'M’°, and N'H' M’
are closed subgroups of G. Let 5 be the centralizer of H’ in K
and put M’'=2M". Then S=H'M’ [3(e), Corollary 3 of Lemma
26]. If G is complex semisimple, M’ and S are connected [3(e),
Lemma 27]. Put I"=N’S=N'H’'M’. This is a closed subgroup of
G and N’ is normal in I". The connected component of the identity
element of S (I’ resp.) is S°=H'M" (r'*=N'H’'M"° resp.). Let Z
be the center of G. Then M’/M’°(D(\Z)'is finite. In fact, this is
discrete and .isomorphic to 5/EN\M’°(D(NZ), hence compact (because
K/DNZ is compact [3(e)]).

Let S; be a subgroup of S such that S°(DNZ)cS,cS. Then
there exists a subgroup M, of M fulfilling M*(DNZ)cM,cM’
and S;=H'M,. Put ''=N’'S,. As G=NH K and IM>NH", we
obtain that G=TI", K, that is, every element g=G may be expressed
as g=yu (y€I',us K). If g has two expressions g=yru=7"u’, there
exists an element ¢=5,=M; K such that y=7£, u'=£"u, because
z2,=r,NK.

© + 2) A detailed proof of the facts stated here can be found in [1, pp. 199-201].
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2. Now let us summalize some elementary results on invariant
measures on groups and on homogeneous spaces. Put p=2"">la and
aEeP

o/ =2 }"_.P'a. For g=G, let h(g) be a unique element of b5 such that
g= Nexp(h(g))K. Define

1.1 B(g) =exp{(20—20") (h(£))}.

If the element h, is regular, o’ is zero on §; and therefore 2p—2p"=2p
on h;. Put

B:(g)=exp{2o(h(g))}.

As N’ is normal in IV, Ad y makes 1’ invariant for any y&I”.
Denote by Ad,’y the restriction of Ady on 1/, considered as a complex
linear transformation.

Lemma 1.1. For any element y=1’, () = |det (Adw (1) |. If

g=ru (yEI',ucK), then B(g) =B8(y). Moreover p(yg) =B(1)B(L)
(rer, g EG)

Proof. Put E=r"NK=M'NK. T’ has a decomposition I’
=NH-2. If y=nht meN,he H ,¢=5), Ady=Adn-Adh-Ad¢. For
any x€n, adx is nilpotent on n’. Therefore for any nE N, Adn
is unipotent on n’. Hence det (Adyn)=1. For any é=5, Ad¢ is
a unitary transformation of g with respect to the positive definite
inner product B(x,7y) (x,yeg), where 7 is the conjugation of g
associated with the subalgebra f,+1 —1p,. Ady¢ is also unitary,
therefore |det (Ad,¢)|=1. Recalling that n’ =a2 Ga, and P=P'JP”,

(3244

we obtain that for e H-, letting logheh; be as usual,
det (Ady h) = 1'£ e8P —exp {20—20') (logh)}.
4= 244
This proves the first assertion. The 2nd is evident from the definition
of 8. The 3rd is an immediate consequence of the 1st.

Lemma 1.2. Let I',=N'S, be as before.
(1) Let dn (neN’) and ds (s€S,) be Haar measures on N' and
S: respectively. Then d,r=dnds, d,y=8"(y)dnds, where y=ns
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(ne N', s€S,), are respectively a right invariant measure and a
left invariant measure on TI';.
2) d.G)=p7"(Md,r, di(Gr)=6"G)dir (r, nET).

Proof. This is easy.

For uc K and g=G, let ug=w'h’'s’ WeN, YeH, WweK).
Then we put #’=n(ug), '=h(ug), and #'=ug. Let u—u* (ucK)
be the natural mapping of K onto K*=K/DNZ. The coset (ug)*
depends only on #*, therefore it may be denoted as #*g. Let C,(K)
be the set of all continuous functions on K which vanish outside
some compact sets. Let du* be the normalized Haar measure on K*
such that SK*du*=1. Then there exists a Haar measure du on K
such that for any feC,(XK),

SKf(u)duz SK* {ZzeDan(zu)} du*.

Lemma 1.3. Let dn and dh be Haar measuves on N and H-
respectively.
(1) dg=e**"dndhdu=p:;'(g)dndhdu, where g=nhu (neN,
he H,ueK), is a Haar measure on G.
(2) d(ug)=p(ug)du, d(u*g)=ps(ug)du* (g€G, ucK).

Proof. This is well known [3(a), §12].

Let é—£* be the natural mapping of &, onto 5f=5,/DNZ, and
let dé* be the normalized Haar measure on 5 such that S dex=1,

5%
and d¢ be the Haar measure on 5, defined by

[, 7@de={_ (Scmerenae (recia.

There exists an invariant measure d# on E1=51\K =58F\K* which
fulfills that

SK FCu)du =S dzZS

£ )

lf(eu)df (fECD(K), a=5u)
and

S F(u*)du*=g,dzzg F(eruyde* (FeCy(K*), a—5u®).
k* I3 &¥
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Let #g denote the element of K, containing #g, where # is an
representative of #. Then #—idg is a transformation on 12’1.
Lemma 1.4. d(ig)=p(ug)di (uckK, geG, i=5.u).

Proof. As ry=NH-5,, I''\G is isomorphic to K.=5\K. Let
dn and dh be Haar measures on N and H~ respectively. Then by
Lemma 1.3,

dg=p:'(h)dndhdu (g=nhu)

is a Haar measure on G, and d,y=g:'(h)dndhds (y=nhtsr,, ne N,
he H-, ¢=5,) is a left invariant measure on I';. As is easily seen,

{ rpag={_ad rawar recion,

If ug,=rug, (uckK,geG), then B(ug,) =p(;y'). Therefore
using Lemma 1. 2,

{rrag={ reenag=\_aal rGugoas
=Skldﬁgn FGr'ugodiy
-\ sugnaal, rGugodr
Putting (@)= f(rdir (FEC.(G), wEK), we obtain that
{, Fda={_fagosugnda

This means that d(ag,) =p(ug.)dd, because the functions 7 on
K ( feC(G)) are sufficiently many. Q.E.D.
As is seen from Lemmas 1.3 and 1.4,

| sewpraw =1, | sapraw—1 (g<6).

More generally we obtain the following lemma, not used in the
following.

Lemma 1.5. |_s.(c0)ds*—5(2) (2€6).

:Prit;of. Any fe C,(K,) may be considered as a function on K*
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fulfilling f(&*u*) =f(u*) (¢*e5f, u*€K*). For any g=G,
{ sarmaw =\ s pugaur

:Saf (@) {SE;‘BG(W{‘) de*} da,

where # and & are representatives of #* and ¢* respectively. On the
other hand,

{arman={_ramda=\_ rasweaa.
Hence S:*BG(Eug“)dE*=B(ug”‘). This proves the lemma.

3. A representation U of G on a Hilbert space E is a homomor-
phism g—U, of G into the group of continuous invertible operators
on E such that (g,a)—U,a (g=G, asE) is a continuous mapping
of GXE into E. The last condition is equivalent to that g—U,a is
a continuous mapping of G into E for any acE. U is said to be
irreducible if there exists no closed invariant subspace different from
{0} and E.

Let L be a representation of S; on a Hilbert space E such that
L.=1(2)1; for all ze DN Z, where A is a homomorphism of DN Z
into € and 1 is the identity operator on E. Let us construct canoni-
cally an induced representation 7 of G from L. First we study a
Hilbert space L;(K) on which T* is realized. For any uc K, let
r'(#) be an element of ¢, determined uniquely by exp(—I'(#))ucs K’.
There exists uniquely two real-valued linear functionals v and ./ on
¢, such that

i(2) =T (ze DNZ).

Hence [i(z)|=e"“» (z& DN Z). The correspondence &—e¢ "L,
(¢e5,) is a ‘representation of 5, on E and this is equivalent to a
unitary one. In fact, &—e VT, is a representation of =,
which is trivial on D Z. And hence it may be considered as a
representation of the compact group £f. Therefore it is equivalent
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to a unitary representation of 5f. This proves our assertion.
Let U be the set of all functions f with values in E which fulfill
the following two conditions:

(a) f(Cu)=L:;f(u) for any u= K and £ 5,,

(b) fis (strongly) continuous.
Denote the inner product of E by (a,b) (a,bsE). If f, fie¥,
(f(zw), fi(zu)) = (L.f(u), L.f1(u)) =e*">(f(u), f1(w)) (z€DNZ,

ucs K). Therefore e ?““>( f(u), f1(#)) may be considered as a func-
tion on K*. Introduce in 2 a positive definite inner product

o=\ . fueredus,

Then we obtain a Hilbert space L;(K) by completing 2 with respect
to the norm

IAl=v<f F> (fEW.
Lemma 1.6. L;(K) consists of all functions f on K with
values in E fulfilling the following three conditions:
@) f(eu)=L:f(u) for any ucK, ¢€5,,
M) (f(w), a) is measurable on K for any a<E,
© .o, raerednr<to,
Of course, we must identify two functions f, and f. if fi(u)
=f,(u) for almost all u.
First note that the integral in (c) has a sence, because the func-
tion (f(u), f(#)) is measurable on K from (b’), and
(f(zw), f(zu)) =e*">(f(w), f(w)) (z€DNZ).
Let u=v+1v —1,. Then as is explained above, we can define
Lix=e "L, (¢€5,,=¢(DNZ)).
Let UA* be the set of all functions ¢ on K* with values in E such that
(o) o(&*u*)=Lxo(u*) (¢*€ 5T, u*€K*), and
(B) ¢ is continuous on K*.

Let us complete A* with respect to the norm
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lol = {§Cow, o yau} ™

Then we obtain a Hilbert space L:'(K*). The mapping f—¢(u*)
=™ f(y) of A onto A* is an isomorphism, because || =" ">
(ueK) and hence | f||=|l¢l. Therefore the above lemma is equi-
valent to the following one.

Lemma 1.6'. L' (K*) consists of all functions on K* ful-
filling the following three conditions: (a),

(8) (o(u*), @) is measurable on K* for every acE, and
() |, o), o)) duwr<+oo.
The norm of ¢ is the square voot of the above integral.

Proof. First let us remark that (¢(u*), o(u*)) is measurable
from (5). Let 4 be the Hilbert space obtained from the set of all
functions ¢ on K* with values in E verifying (8') and (+), by intro-
ducing in it the inner product

=\ Gon), pn)dur
For any &*< 5, the mapping
A o— o' (u*) =p(8*u*) — Lxo(u*) (u*e K*)

of 4 into itself is continuous. Therefore the intersection #; of all
A (0) (e*eE5Y), is a closed subspace of 4. Put

Py =\ Lioeruds (pedt, ure K9,

Then P is a continuous mapping of 4 onto J;. Let B be the set
of all continuous functions on K* with values in E. As 9B is dense
in H, P8 is dense in ;. On the other hand, PB=A*. And H,
.consists of all functions ¢ fulfilling (a’), (8'), and (y), where (a)
says that

(&) for every &*e5¥, o(¢*u*) = Lixo(u*) for almost all wu*,
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Therefore it rests only to prove that for every function ¢ fulfilling
(a’), (B'), and (y), there exists a function ¢ which fulfills («), (8),
(), and ¢(u*)=¢(u*) for almost all u* There exists for any
such ¢ a subset A of K* such that the complement of A4 in K* is
of measure zero, and for any u*c A, ¢(&¢*u*)=Lxep(u*) for almost
all ¢*, Then ¢(&*u*) =Lixp(u*) if u*€ A and *u*c A. Put $(&u*)
=Lxo(u*) if u*€ A and e*e5¥, and ¢(u*) =0 if u*¢5¢A. Then
¢ is well-defined and this is a function looked for. Q.E.D.

As is suggested above, the mapping
F=o(u*) =" f(u)

of L:(K) onto Li'(K*) is an isomorphism.

Now let us define a representation 7% of G on L;(K). Extend
the representation L of S, to that of the group I''=N’S, by putting
L,=1; for all neN’. For any feLi(K) and g€G, put

(1.2) (T2 f)(u) =5""(ug) Lucugwcusr f (4 Z).
As is easily seen, if ug=yu’ (yer,, ' eK),
(1.3) (Tef) ) =p"() Ly f(u").

Let us prove that g—T. (g=G) defines actually a represen-
tation on L;(K). Denote by f’ the function at the right hand side
of (1.2). We see easily that f’ fulfills (a) and (b’). Therefore let
.us check the condition (¢). Denote the norm in Li(K) (E resp.)
by [l (|[-]lz resp.) and let £(ug) denote n(ug)h(ug). Then

1715 = I Lo f @) 36 Cugde e dur,

The element ¢(ug)=n(ug)h(ug) depends continuously on (u, g)
€ K X G, and may be considered as a function of (u#*, g)K*XG. Let
V be a compact subset of G. Then the set {¢(ug); uckK, gV}
is compact in NH-. Therefore it follows from the continuity of L
that

sup Vl Loy =My <<+ oo.

seK, g€



Induced representations of se’nii'simple Lie groups 325

Similarly e " “g(ug) s (ug) 'may be considered as a continuous
function on K*XG. Therefore

sup (e D(ug) s (ug)}y = Ny <+ oo.

usK,ge

Hence if g€V,
|FF<M N lpe Do (ug) dur

= MVNVSK*” F(w) |3 e qy*
= MVNV“fHZ

Therefore f'eLi(K), and | T:|<(M,N,)'* if g V.

Moreover it follows from (1.3) that T:T%=T*%, for any g,g’'€G
(note that g(¢)=1 for any é€5).

Hence it remains only to prove the continuity of T* For a fixed
feLi(K) and a given ¢>>0, choose an element f; of A such that
| f—fill<<e. It follows from the continuity of L that for every fixed
uek,

| T5 f1 () — i)z =116"*(1g) Locur [ (uZ) — fr () |
tends to zero as g—e.

On the other hand, let V be a compact neighbourhood of ¢ in G,
then if gV and ue K,

| T () — fr(w) || 2 e re»
<(MVNV+ 1) %li}(){”fl(u)“%e-—w(r(,,))}<+oo.

Because || f1(#)|ze "> may be considered as a continuous function
on K* Thus the integrand in the right hand side of

” Téfl —.fl”2 = SK*” Tf,fl (u) —f1 (u) ”i_e—zv(r(u))du*

is uniformly bounded for ge& V and converges pointwise to zero
as g—e. Applying Lebesgue’s theorem, we obtain that || T%f,—fill
—0 as g—e. Hence there exists a neighbourhood Ve of e, contained
in V, such that ||T:fi—fill<<e if g€ Ve. Thus if g= Ve,
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1T =AIITS =N+ Tefi— fill + Il /i = FII<e(v' My Ny +2).

This proves that T%f—f as g—e and moreover g— 715 f is a conti-
nuous mapping of G into L;(K). The proof of the lemma is now

completed.

Remark. The representation 7* is an induced representation
of L in the sence of [1, p. 134] (note that 5(¢)=1 for any £ 5,).

By the isometry f—¢(u*)=e*"“>f(u) of L;(K) onto L;'(K*),
the representation 7' in L;(K) is transformed into another one U**
in LY(K*). Here U* is defined as

(1.4 (Uite) (u¥) =e "0 "5 (ug) Licug o (u*g)

(e Li'(K*), g6, ucsK),
where I'(g) is a unique element of ¢, such that gexp(—1(g))
eNH-K’. In short, T* and U*' are unitary equivalent to each
other.

Lemma 1.7. Let L' (j=1,2) be a representation of S, on
a Hilbert space E’ such that for every zeDNZ, L is a scalar
multiple of the identity operator 1z. If L' and L* are equivalent,
T* and T* are also equivalent.

Proof. Let v; (j=1, 2) be the linear functional on ¢, associated
with L/. Let A be an isomorphism of E! onto E® such that L'=
A?'L}A (s€8,). Put |Al=a and |A| =b. Then

(@) LI L <ab| L] (s€S)),
and therefore

(ab)—l eVg(r(z)) < el'l(ru)) < abe”z(r(z))
for any z& D Z. Hence v,=v.. Denote it by ».

Let JU (j=1,2) denote L¥(K). If fEJi', the function f(x)
=A(f(#)) on K with values in E?, fulfills (a) and (b’). Moreover

”?”2:SK*Hﬂu)][*sze—zvcrcu))du*
<@ Il e du = -
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Hence ;‘\Ejlz, and the mapping A4 f—»? of ' into 9* is bounded
and I;‘lv |<a. Similarly we can define a continuous mapping (Z’l)
of J* into H'. Each of these operators is the inverse of the other.
And moreover

T =) TP A (g€6).

This proves the lemma.

4. If g—>U, be a representation of G on a Hilbert space,
g—(U,1)* is also a representation of G on the same space. This
representation is denoted by U.

Lemma 1.8. If L is unitary, T" is also unitary. In general
(T is equivalent to T

Proof. Suprcse that L is not necessarily unitary. As is men-
tioned earlier, there exists a representation L' equivalent to L such
that e[l is unitary ‘for any ¢€5,. Therefore taking into ac-
count Lemma 1.7, we can suppose from the beginning that e[
is unitary for any ¢€5,. If so, (T1)Y is unitary equivalent to T~

For any fi, f.€ Li(K), put F(u) =(fi(n), fo(u))-e ">, Then
F(¢u)=F(u) (¢€&,,u= K), and therefore F may be considered as

a function on IZ. Hence
Sfo fr= SK*(fl(u), fe(u))e ™" du*  (u*=u(DNZ))
(. (@, reerdn =z,

Let us calculate (7T:-:)* for any g€G.
<fly (Tl;'l)*f2> :<T§_1f1’ f2>
=Sr< (B"*(ug™) Lo [r(ug™), fo(u))e > “>di

=\ (fiug™), Liwes fu))8 ugetrerda.

Put ug'=v, n(ug™)=n, and h(ug™)=h, then ug'=nhv and
hence vg=(nh)u. Therefore {(vg)=mh)=((ug™))7?,

B(vg) =p"(h)=p'(ug™), u=vg, a=>0g, and d(9g) =p(vg)dd.
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Hence
S (T 1 =\ (£, (Lato) Fuo@)8  ogde-smrsonds,
The function

[ () = D-roge (g Lo £, (V)

is an element of L;(K). In fact, if vg=7yv (Yeri, veK),

) ng wp (Vg = e e [:/ (V).

Because I''=NH-=,, L: =(Li)*=e"DL; for any £€5,, and
fo(eu)=L:f.(u) (¢€5,,ucK). Therefore f'(¢v) =L:f' (v).
Thus we obtain that for fe L;(K),

(TE)* f(u) = e @R () Lo FCUT).

Consider the mapping f— fzu)ze‘z"(’(“” f(u). This is an isometry of
Li:(K) onto LE(K). In fact

S )

Fleu) =e O L, fu) = (LE)* () = Le flu)

and
”f”z:SK*”ﬂu)“:;ezv(rcu))du*.

The real-valued linear functional on ¢, associated with Lis exactly
—y. Therefore the above integral is equal to the square of the norm
of fin ILX(K). By this isometry f —>}’: (T:i-)* is transformed into
TE. This means that (7%)  is unitary equivalent to T™

It follows from these arguments that 7% is unitary if L is
unitary. Thus the lemma is completely proved.

Remark. In this section, we fix a Cartan decompositiom @,
=ft,+ P, and a maximal abelian subalgebra §; of p,. But this does not
restrict the generality of our discussion. In fact, the following facts
are well known. (1) Let g,=f;+ps=*, +p; be two Cartan decomposi-
tion of g,. Then there exists an element of the adjoint group G*
of g, which transforms f;, onto f; and p; onto Py resp. (2) -Let
go=1t+Pp, be a Cartan decomposition of g,. And let bg, §i be two
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maximal abelian subalgebras of p,. Then there exists an element of
the analytic subgroup of G* corresponding to f, which transforms

H; onto Hy. The proof of these fact is found for instance in [7, pp.
377-381].

§2. The existence of the characters.

Let A be a bounded operator on a separable Hilbert space 4.
A is called summable if for a complete orthonormal system (or
simply “basis”) vy, 0., U3, --- of Y,

en 3 1(4vy, v) | <o,

If A is summable, the condition (2.1) holds for any basis {;}1gics=
of Y, and the value

S (Av,, )

does not depend on the choice of the basis of 4. This value is
called the trace of A and denoted by Sp(A). If B,, B, be bounded
operators on J, B, AB, is also summable [4(b), p. 237].

Let G be a connected semisimple Lie group and T a represen-
tation of G on a Hilbert space H. Let Ciy(G) be the set of all
indefinitely differentiable functions on G which vanish outside some
compact sets. For any x€C;(G),

T.-{ 2(&) T dg
is a bounded operator on 4.

Let 2 be the set of all equivalent classes of finite-dimensional
irreducible representations of K. For 98, let (D) be the set of
all vectors veH such that {T.,v; u K} spans a finite-dimensional
vector space on which 7, (#€ K) operate as a multiple of a represen-
tation of class 9. Let d(9) be the dimension of 9. A vector
ve 4 is called differentiable under 7 if f(g)=T,v is an indefinitely
(strongly) differentiable function on G with values in H. Let H~
denote the set of all differentiable vectors of #. Then 4~ is invariant
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under 7, for any g&G, and under 7, for any element y of the
envelopping algebra U(g) of g.

T is called permissible if 7. is the scalar multiple of the unit
operator on H for any ze D Z. T is called quasi-simple if it is
(1) permissible and (2) T.v=a(z)v (z€3, vEeH™), where 3 is the
center of U(g), a is a homomorphism of 8 into € and is called the
infinitesimal character of 7.

Lemma 2.1. (Harish-Chandra, [4(b) and (e)])
Let T be a permissible representation of G on a Hilbert space
I which fulfills that
dim A(D)<Nd(D)*?

for every DeQ, where N is a constant independent of 9. Then
for any x€Cy(G), T, is summable, and x—Sp(T.) is a distri-
bution in the sence of L. Schwartz. If T is in addition quasi-
simple, denoting this distribution by =,

sr=a(s)n

for any z€ 8> And = is essentially a locally summable function
on G which is analytic on the set of all regular elements of G.

This distribution = is called the character of 7.

If T is quasi-simple irreducible, it satisfies that dim (D)
<Nd(D)* (D) [4(b), Lemma 4]. As is proved in Appendix,
an irreducible representation 7T is quasi-simple if and only if
dim H(D)<<+oo for any D=Q. If T is irreducible unitary repre-
sentation, it is quasi-simple [6], and therefore has the property that
dim H(D)< Nd(D)* (Deg).

We keep to the notations of §1. Let @ be the set of all equi-
valent classes of irreducible finite-dimensional representations of =;.
Let d(8) be the dimension of =®. Now let L be a representation

3) Every y&g is identified with a right invariant differential operator on G as
(yx)(g)=(d/dt)x(exp(—ty)g)|t=0 (xECT(G)).
Moreover any yEU(g) may be identified with a differential operator on G [9].
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of S, on a Hilbert space E. For any 6w, let E(3) be the subspace
of E analogous as (D) under T.

In this section, we prove the following proposition.

Proposition 1. Suppose that L fulfills the following two con-
ditions:

1) L.=1(2)1; (ze DN Z, 2(2)eC),

(2) dimE@G)<Nd():* (bew),
where N is a constant independent of 6. Then L. is summable
for any x=C;(S,) and L has a character which is a distribution
on S,. Moreover T% is summable for any xCy(G) and T* has
a character, a distribution on G.

Corsidering the uriversal covering group of G if necessary, it
may be assumed that G is simply connected. Let us first prove the
2rd assertion.

Lemma 2.2. Suppose that L fulfills the conditions (1) and
(2) in the proposition. Then the induced representation T*' is
permissible, and putting H=L;(K), dim A(D)<Nd(D)* for every
De .

Proof. 1t is evident that T* is permissible. Now take a linear
functional x on ¢, such that Li=¢™“L; (¢ 5,) may be considered
as a representation of Zf. To prove the lemma, it is convenient to
employ U** instead of T: Put F=LY(K*). For v€K and o=,

U#.L¢(u*) — eu("(v))¢<u*v*)_

Therefore Uy=e¢ ™" (u=K) may be considered as a represen-
tation of K*:

Usvo(u*) =p(u*v*) (u*, v*e K*, o F).

Let &* (w* resp.) be the set of all equivalent classes of finite-dimen-
sional irreducible representaticns of K* (&5 resp.). If F(9)+ {0}
for 9=, taking any representation R of class 9, v-—se R,
(ve K) may be considered as a representation of K* and determines
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aclass 9*€e*. As d(D)=d(9*) and F(I) under U*“* is identizal
with F(9*) under U’ (as vector spaces), it is safficient to verify
that

dim F (D) NA(D*)* (D g%).

If £(3)#{0} for é€w, we can determine a class d*Ew* as
above. Decompose the representation L’ of Zf into irreducible com-
ponents. L’ is equivalent to the direct sum of its restriction on
E(0*)’s. E(6*) is expressed as a direct sum of irreducible com-
ponents E’(6%), 1< j<(L':6*), where (L' :6*) denotes the multi-
plicity of 6* contained in L. And (L' :6*)<Nd(*) from the
assumption. Let us recall the general theory of induced represen-
tations of compact groups. Let V’%* be the induced representation
of the restriction of L’ on E/(6*). Then U’ is equivalent to the
direct sum of

Vi# (*co* and 1<j<(L':6%)).

It is well known that (V7% : @*)=(9*:6*) for every D*ego*
Therefore
U’ : 9% =8*Z *(L’ 10 (D 6*)<N§£Z£i(6*)(.@* : 0%)
= Nd(D*).
Hence dim & (9%) < Nd(9D*)2. Q.E.D.

The 2nd assertion of Proposition 1 is an immediate consequence
of Lemmas 2.1 and 2. 2.

To prove the 1st assertion of the proposition, we must slitely
generalise Lemma 2.1. We can prove the following lemma.

Lemma 2.3. Let G be a (not necessary connected) Lie group
and T a representation of G on a Hilbert space 9. Suppose that
there exists two closed subgroups K and D, a continuous homomor-
phism rof K into C, and a constant N, which fulfill the following con-
ditions: (0) D is normal in K, (1) K/D is compact, (2) T.=1(z2)14
for any zeD, (3) dim A(D)NA(D)? for any equivalent class D
of irreducible finite-dimensional representations of K, where H(D)
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is the set of all vectors in Y which transform under T, (ucK)
according to D. Then T, is summable for any x=C7(G) and
x—Sp(T.) is a distribution on G in the sence of L. Schwartz.

Proof. Put T¥=i1(u)"'Tu. As TX=TF (ucK, z€D), T* may
be considered as a representation of K*=K/D. Let K be the con-
nected component of K* Then K is a conneted reductive Lie
group and the index of K in K* is finite (say n). Let 2% (2F resp.)
be the set of all equivalent classes of irreducible finite-dimensional
representations of K* (K resp.). It follows from (3) that for the
representation 7* of K* on , dim H(D*)< Nd(D*)* for any *< 2*,
Consider the restriction of 7% on K,*. Then we see that dim H(DF)
<uNd(D¥)* for any D QF. In fact, it follows from the theory of
induced representation of compact groups that any 9f €2 is contained
in at most # different classes of 9%, Q%F, D¥, .-, D¥ (m<n), and

Hence

dim J( D)< S dim H(DHA( D) [DF : DE)d(Dy)

j=1

<N

s

[
-

d D) Dy : Di1d(Dg) =nNd(Ds)*.

Applying Lemmas 5, 6, and 7 in [4(f)] to the restriction of T*
on K, we know that Lemma 3 in [4(b)] is also true for it. And
the proof in [4(b), pp. 241-245] of the existence of the character

is valid also for T without any essential modification. Q.E.D.

Let us apply this lemma to the representation L of S;. Recall
that S; is a subgroup of G such that S°(DNZ)cS,cS. Therefore
E(DNZ)cEs,C &, where 5° is the connected component of ¢ in Z.
We know that £f=5,/D(Z is compact. For any zeDNZ, L.
=2(2)1; by assumption. Let x be a linear functional on ¢, such
that e =3(2)(ze DN Z). Put

A(§) =e "D (¢eE)).

Then 1 is a homomorphism of Z; into €. Thus it becomes clear
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that Lemma 2. 3 is applicable to the representation L by taking S,,
Z,, DNZ, and 1 respectively as G, K, D, and 4 in the lemma.
Therefore Proposition 1 is now completely proved.

Let G be a reductive Lie group which is not necessarily connected
but fulfills that G=G°Z where G° is the connected component of e
in G and Z is the center of G. Let g, be the Lie algebra of G and
o= [ao, Go]. Let go=po+ 1 be a Cartan decomposition of the semi-
simple Lie algebra g;, and let K’ be the analytic subgroup of G
corresponding to ¥, and K=K’Z. A representation T of G on a
Hilbert space 4 is called strongly quasi-simple if it verifies the
following conditions:

1) T.=i1(2)1lg ()ecC, ze2),

(2) dimHD)< Nd(D)* for any equivalent class 9 of irre-
ducible finite-dimensional representation of K, where N is a constant
independent of 9,

@B) T.v=alz)v (veH~, z=3), where B is the center of the
universal envelopping algebra of the complexification g of g,.

An element g=G is called regular if the rank of Ad g is the max-
imum of those of Adg’ (g’G). Then we have the following lemma.

Lemma 2.4. The character of a strongly quasi-simple re-
Dresentation is essentially a locally summable function on G which

coincides with an analytic function on the set of regular elements
of G.

This is an immediate consequence of Lemma 2.1. In §5, this is
restated and applied to a representation L of S;.

In the subsequent sections, we try to express the character of Tt
by means of that of L. The most interesting case is the case where
the character of L is an invariant eigendistribution of all Laplace
operators on S;. This is treated in $5.

§3. Some integral formulas on a semisimple Lie group.

In this section, we establish some integral formulas which will
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be necessary in the later.

Let G be a connected real semisimple Lie group with a Lie
algebra g,. Let Y, be a Cartan subalgebra of g, and let H be the
Cartan subgroup of G corresponding to Y),. H is, by definition, the
centralizer in G of §,, that is, H>h is equivalent to Adh(h)
=h(h€Y,). Let g and §) be the complexifications of g, and §), respec-
tively. Introduce an order in the set of roots of {g, b} and let P
be the set of all positive roots of {g, §}. For any root «, let e, be
a non-zero element of g such that [k, e.] =a(h) -e. (hE}h). We see
easily that for every root «, there exists a character 7, of H into C
such that

Ad h(es) =7.(h)e. (h€H).

We obtain p-(%) =%.(#)~" from the equality Ad 2([eq, e-o]) =[ex,€—c].

Let g=G and consider the polynomial of #, det(Adg—1+1¢1),
where 1 denotes the unit operator on g. Let /=dim¢H and let D(g)
denote the cofficient of #, Then for any k€ H,

3.1 D) = T (7a(B) = 1) Gr-a (1) — 1)
= (W) Gra () ~ 1)

D(g)=D(gy), if g=g7'g:8, for some g,=G, and D(g)=D(g™).
An element g=G is called regular if D(g)+#0. Let G® be the set
of all regular elements of G. Put H*=H(G® For any subset A4
of H, let G4 be the set of all elements of the form g-hg (g<G,
he AN HR).

Let H, be the center of H and H the normalizer of b, in G,
and put Wn=ﬁ/Ho. H, contains Z and the connected component
of the unit element of H. Hence W, is a finite group and this is
called the Weyl group of {G, H}.* Let g—g be the natural mapping
of G onto G=H,\G. Define h*=g'hg and consider the mapping

6: (g h)—>he

4) Let A (Bresp.) be the set of all inner automorphisms of G which leave H
(every element of H resp.) invariant. Then Wy is canonically isomorphic to A/B.
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of GX H® onto Gy. As is seen in the proof of [4(e), Lemma 36,
p. 488], Wy operates on G and H respectively as follows. Let o Wy
and g, be an element of the coset w. Then

0wg=(g.8), h"*=g.hg:' (g€G, he H).

Hence Wy operates on the left on Gx H® as
o(g, h)=(0g, h*) (g=G, he H).

Now suppose that ghg=g"'Wg’ (g, g'€G, h, Y= H?). Then
W =g.hgi* where go=g’g™". The sets of fixed points in g, of AdA
and Ad/4’ are exactly §,. Therefore §,=Adg, (§,) and hence goeﬁ
Let o be the element of W, containing g,. Then #'=h* and g’'=o0g.
Thus we see that the quotient space W,\(Gx H®) may be identi-
fied with G, by the mapping ¢.

Before studying ¢ more closely, we shall make some comments.
Let g be an arbitrary element of G. Any element x of g, may be
considered as an element of the tangent space of G at g as follows:
for any function f which is differentiable in a neighbourhood of g,

xf =lim & fexp(~tx)g),

where exp denotes the exponential mapping of g, into G. In this
manner x defines a right invariant vector field on G which is denoted
by £ Let us denote the natural mapping g—g of G onto G by =.
Consider x as an element of the tangent space of G at g, then
(dn),x is an element of the tangent space of G at g=n=(g). Let
<Jrs, be the transformation g—gg, of G. Then

(d"l/’xo)io(d”)gx = (dﬂ)uox
and (dr)sgx=(dn), (Ad(h")x) (he Hy).
The function (dn),x (g=G) on G may be denoted by dz(&). If
x<Y,, then (dn),x=0.

Let dg, dg, and dh be invariant measures on G, G, and H re-
spectively, and let %, 7, and & be the right invariant differential forms
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on G, G, and H corresponding respectively to dg, dg, and dh. Let
Xi, X5, ***, X, be a basis of g, mod §, and h,, h,, ---, h, be a basis of
b,. Then (dr);x:, (dn)sx., -+, (dn),x, is a base of the tangent
space of G at g The value »,(x,, i, -+, x,, hy, =--, b)) does not
depend on g and may be denoted by »(%:, %, ‘-, %,, ki, -+, h,). Since
(dyrey)z0(dr) o x = (dr) g4, %, the value

7:((dn)ex:, (dm)exy, -, (dm)ex,)

does not depend on g and therefore may be denoted by %((drn)Z,
(dr)#,, ---, (dr)&,), Let us denote also by h. the (right) invariant
vector field on H defined by h; in the analogous fashion. The value
&, (hy, h,, ---, h;) does not depend on % and may be denoted by

¢(hy, hy, -+, h)). Now we claim the following fact.

Lemma 3.1. Suppose that the measures dg, dg, and dh
satisfy that for any feC,(G),

3.2) {s@ag={ {|, ranganaz,
where g=H,g. Then

(3' 3) 7.’(51, Tty ir: ’;‘1: Tt E’)
=5<(d77)£1x ) (dn)fr)s(’:l) ) ’:;l)

and vice versa.

Proof. Let e be the identity element of G. It is sufficient for
us to prove that

ﬂe(yly y2) T yry Z1, By, ", zl)
:7_7;((dn)eylx (dn)ey2: ) (dn)eyr)ée(zlx B, *t0, zl)
for some basis yi, y., ***, ¥, of g, mod §, and some basis z,, z,, -, 3,
of §,. We know from [11, §44] that there exists a basis ¥, y., -,
¥, of g, mod b,, a basis z,, 2., -+, z, of §,, and ¢>0 which fulfill
the following conditions. Put
g(tI’ t2: St tl; Sl,- Sz, **°, S,)
=eXp(—#151)--exp(—¢,5)exp(—s; ¥1)exp(—S:y:) - -exp(—S,y,).
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And let W be the set of all elements g(¢, s), where t=(¢,, t,, -+, t,)
and s=(si, S., ***, S,), such that |#;|<<e for 1<i<! and |s;|<<e for
1<j<r. Then W is a neighbourhood of e¢ in G and WNH,
consists of all elements g(#,s) such that |#,|<<e for 1<i<{! and
S;=8,=+-=5,=0. Let U be the set of all elements g(¢, s) such
that ¢,=¢,=--=¢=0 and |s;|<<e for 1<j<{». Then for every
g< W, there exists a unique element #= U such that WNH,g
=(WNH)u. In the neighbourhood z(W)=#(U) of é=H, in
G=H\G, we can take the parameter s=(s;, S, -, s,) of # as the
co-ordinates of §=H,g with respect to some co-ordinate system of
G. Moreover the parameters (¢, s) and ¢ in W and in H,N W can
be taken as the co-ordinates with respect to some co-ordinate systems
on G and H, respectively.

We see easily that as the elements of the tangent space of G
at e,

r=(h), m= (),  a<i<ri<i<o,

where the suffices 0 mean that the derivations are considered at
(¢, s)=0. Similarly as the elements of the tangent space of H, at e,

z,~=<£—i—)o a<i<D.

And by the definition of dr,
@m.y=(4),  G<i<n

as the elements of the tangent space of G at e.

Now let dh=o(t)dt dt,---dt, (he W) and dg=p(s)ds,ds,---ds,
(ge=(W)), where t and s is the co-ordinates of # and g resp.,
o(t) and p(s) are positive continuous functions. Then it follows
from (3.2) that

dg=o(t)p(s)dt,dt,--dt,ds,ds, --ds, (ge W),

where (¢, s) is the co-ordinates of g. Therefore
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ﬂe(yl,- HP) yn By, "0y zl) :6(0>p(0)’

7—7a((d7r)ey1) ttty (dn)eyr) :p(o))
and

5‘:(51; "t Z/) :d(O).
This proves our assertion. Q.E.D.
Now let us assume the condition (3.2) and hence (3.3). Then
reproducing the arguments of Harish-Chandra in [4(c), pp. 501-502
and p. 508], we see that
(d¢)z.ho(dn),x;=Ad(g™) [Ad(h) —1]«x;
(d¢)zh=Ad(gHh (hED)).
Therefore for g=G and he HE,

(0 n)z.4((dn)gxs, -+, (dn)ex,, by, -+, h)
=i ((dp)zso(dn)gxs, -+, (d@)zao(dn)ex,, (d)zshs, -+, (d)z.shs)
=+ |D(h) | mz(x,, x5, +-+, x,, by, hs, -+, b))
=+ [ D) |7((dr)g s, -+, ()%, )64(hy, b, -, h).
This proves that
(3.4 (8¢ n)zn=* DRz
where ¢ is the differential form on Gx H?* corresponding to the
product measure dgdh.

The mapping ¢ is everywhere regular because D(%)+#0 for every
he HF. Moreover we obtain the following integral formula essentially
due to Harish-Chandra.

Lemma 3.2. Let dg, dg, and dh be invariant measures on
G, G, and H respectively which fulfill the condition (3.2). For
any integrable function f on Gy,

@5 wl feag={ dz ry 1D an
where wy is the order of Wy.

Let A be an open subset of H? then G, is open in G because
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¢ is everywhere regular. We obtain from (3.4) and Lemma 3.2 the

following result.

Lemma 3.3. Let dg, dg, and dh be as in Lemma 3.2. Let
A be an open subset of H*® and let f and ¢ be measurable func-

tions on Ga and A respectively such that f(h*)e(h) is integrable
on GXA. Then
@.e [ roemandz={ ro| = otm}ipe)dz,

wEW g, e

wheve h, is an element of HF such that g=gi'h,g, for some
2.€G and the summation of ¢(h2) runs over all we Wy such that
he=_(h)°€A>

As an immediate generalization of Lemma 3.2, we obtain the
following integral formula. Let H', H? ---, H' be a maximal set of
Cartan subgroups of G such that each two of them are not mutually
conjugate to under any inner automorphism of G. Let w; be the order
of Wy and put &= H{\G. Then for any integrable function f on G,
an  \ rode=zu( [ roiipwdnag
where in i-th term, g=Hi;g=&’, and dh and dg are invariant meas-
ures on H' and &' respectively which fulfill the analogous relations
as (3.2).

Lemma 3.3 can be easily generalized in a similar manner and
the generalized integral formula plays an important roll in $5.

Let G be a reductive Lie group which is not necessarily connected
but G=G°Z where G° and Z are as in the last part of the preced-
ing section. We can easily prove that Lemmas 3.2 and 3. 3 are also
valid for G. In this case, H, Wy, and D(%) etc. may be defined
analogously. In §5, we apply this generalized Lemma 3.3 to our
group S; which is reductive and not necessarily connected.

5) Let heH. Note that 2 and k® may coincide for some o& Wy different from
the identity element, even if & is reguler. In fact, let W’ be the subgroup H/H,

of Wﬂ=ﬁ/Ho, then A=h® for any o€ W’ and hEHo.
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$4. Calculation of the characters (1st step).

In this section, we keep to the notations of §1. Let us calculate
the character of the induced representation 7% First of all, we
remark the following fact. If two representations L and L’ of S,
are equivalent, so are 7% and 7%, and hence they have the same
character. Therefore we can assume from the beginning that e[,
is unitary for any £ 5, (see §1).

As is proved easily, we can find a section U in K of IZzE’l\K
which has the following properties (1) and (2). Let + be the
mapping #—# of U onto I?l. Introduce on U by the mapping
the measure du(#) corresponding to the measure di on K,. Then

(1) the closure of U in K is compact,

(2) WU has a finite subset U,, U,, ---, U, such that II—CJIU,. is
of measure zero with respect to du, each U, is a submanifolc'l_of K,
and the restriction of + on U, is an isomorphism of U, with its
image in Ia as analytic manifolds.

Fix once for all a such section 1l and put ﬁ= Lj U,. The mapping
(&, u)—£u of =x1 into K is analytic. Conve,r_slely for ue K, let
&(u) and ¢(u) denote the unique elements of =, and U such that
u=¢&(u)¢(u), then the mapping u—(&(u), ¢(#)) of K onto &x1U is
analytic on every point # of the set 5, lci, whose complement in K is
of measure zero with respect to du.

For any f, fie Li(K),

Y o fo=\ (P, i) dus
= Leor @), Lo fiauyeseeormaon gy
= Su(f W), fr(w)e " dpu(u).

Because du*=d(é(u)*)du(¢(u)) (uE K ), and by assumption e’ L,
is unitary for any é€&;.

Let L,(11) be the Hilbert space consisting of all square-integrable
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functions on U with respect to du. Take a basis, i.e, a complete

orthonormal system {v;}:<;<. of E, and a one {p;}i<,c. of L., ().
Put

Sii(u) =" %0, (¢ (1)) Lecwr v: -
Lemma 4.1. The set {f;}i<ijce iS @ complete orthonormal

system of L;(K).

Proof. Using (4.1), we see that
o Fud = (@), Fuw))e " uCar)
ORI EORCIAET R

Now suppose that f& L;(K) is orthogonal to all f;;. Since f fulfills
(a) in Lemma 1.6,

ot ZSK*(f(u), fii(u)) e e gk
- Su(ﬂ”) , 1) g, (u)du(u) =0.

Therefore (f(u#), v;)=0 for any ¢ and almost all #€U. Hence
f(u)=0 for almest all #U. This means that f=0 as an element
of L:(K). Thus we obtained the lemma.

Let us fix once for all a Haar measure dg on G. Let L be a
representation of S, fulfilling the conditions (1) and (2) in Proposi-
tion 1. For any x=Cy(G), let us compute the trace of

Tizg 2(@) Thdg.
Put

A= < Tifm f,k>
Then

P laijk] oo
ij,k=1

from Proposition 1. On the other hand, since 7:f;; is defined

originally in the sence of convergence with respect to the norm of
L:(K), we obtain



Induced representations of semisimple Lie groups 343

(T fud =\ 2(@)Tio Firde.
And by (4.1)

an={ 2@ [ (Ti1.00, u@)edu) g
{ xrde| 57 e) (Lo i), Fu@)Ie ™ dutan).

This double integral converges absolutely and therefore the order of
the integration may be changed. Hence

(4.2)  aau= Sudu(u) Scx(u"g)ﬁ”z(g) (Leor f1:(eB), fu(u))e >V d g.

Put g=nsv (neN’, s€8,, vell), then it follows from Lemma
1.2 and the 1st equality in the proof of Lemma 1.4 that

(4.3) dg=F"'(s)dndsdu(v),

where d»n and ds are appropriate Haar measures on N’ and S, re-
spectively. Taking into account that g(g)=p(s),
— -1
a""_g11><11><N’x51x(u nsv) (Levi, v.)
e Do, (v)e o, (u) g (s)dnds du(v)du(u).
Put

@H =\

-1 w(F@))
uXuxN,x(u nsv)e 0;(v)

ey (Wdndp(v)du(n).
Then

(4.5) Qi = Ss xjk(s>ﬁ_llz(s) (Lsv;, v.)ds.

Let U be the closure of U in K. This is compact from the
condition (1) on U. Let B be the support of x. Then A=UBU!
is compact and hence ANr; is compact in I';=N’S;. The mapping
(n, s)—>ns of N’X S, onto I', is one-to-one regular everywhere. There-
fore there exist compact subsets B, and B; of N’ and S, respectively
such that ryNAcB,B,. If s&B;, x,(s)=0. And it can be proved



344 Takeshi Hirai

that x, is indefinitely differentiable on S;. Hence x,,=C;(S,) for
any j and k. Applying the 1st part of Proposition 1 to the represen-
tation B7*(s)Ls of S; and x,C{(S,), we obtain that for any j
and £k,

.6 £t 2u(D6(De()ds,

where t(s) is the character of L.
Put bijZd;jk, then
i=1

Sp(T% =336,

The integral (4.4) converges to %, in the sence of the ordinary
convergence in Cg(S;) and g V%(s)c(s) is a distribution on S;.

Therefore
4.7 b"":Suxux NE@ 1) e (0) o (u) dndp(v) dp(u),
where

(v, u,n) =SS x(unsv) V2 (s)c(s)ds (v,ucsK,neN’).

Note that £ is continuous in (v,u%, )= KX KX N’, and is equal to
zero if v, €U and ne& B,. Therefore the above integral (4.7) con-
verges absolutely and hence the following expression holds:

4.8) I (RO OPADLAOLAD:
where
(4.9 K, 0) = 2(0,u,m)dn

Now consider the integral operator T on L,(11) with the integral
kernel K(u,v): for o= L,(11),

@100 (T =\ K 0e@du@) @sw.

This operator 7T is summable, because

3 (Tos o) | =3 [bal <o0



Induced representations of semisimple Lie groups 345

where ( , ) denotes the inner product of L,(11). Moreover
Sp(T) =Sp(T%).

As U—1 is of measure zero, L,(11) is isomorphic to Lg(ﬁ), the
Hilbert space consisting of all square-integrable functions on 1 with
respect to the restriction of du on i Therefore we can apply
Lemma 4.2 which will be proved in the following, to the operator

T on LZ(ﬁ). Hence

Sp(T) = SﬁK(u, w)du(u) =SHK(u, wdu(n).

And therefore

(4.11) Sp(T5 =S 2Cu, u, n)ydn du(u).

UXN’

If e85, n—-n'=£&'nf and s—s =&'s& are automorphism of N’
and S, respectively and dn'=dn, ds’=ds. Moreover the distribution
5% (s)z(s) on S, is invariant under any inner automorphism of S,.
Therefore we obtain that for any € 5,,

[ 2 uman={ zcu e man.

Thus we proved the following theorem.

Theorem 1. Suppose L is a representation of S, fulfilling
the conditions (1) and (2) in Proposition 1. Then the characters
v and = of L and T* respectively exist and = is expressed by
means of < as follows. Let dg, dn, and ds be Haar measures on
G, N’, and S, respectively such that for all x=C,(G),

Scx( g)dgzgk daSN, _x(nsu) (s)dnds.
Then for any x=C5(G),
@12y | 2(n(edg=sp(TH

- Skldlzgwdngslx (unsu) 37"*(s)=(s)ds.
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Now let us state Lemma 4. 2. A measure space (I, du) is called
locally euclidian (of p dimensions) if it has a covering {U,}.cs and
a one-to-one mapping ¢. of U, onto an open subset of R’ for every
a€ A, such that the transformed measure of du by ¢, on ¢.(U,) is
absolutely continuous with respect to the usual Lebesgue measure.
That is, identifying U, with ¢.(U,) by é«,

du(m) =p,(x)dx,dx,--dx, (meU,)

where x= (%, %, ***, x,) =¢o(m) and p, is non negative measurable
function on ¢«(U.). Such family {(U,, ¢o)}aca is called p-family
temporarily. A locally euclidian measure du is called continucus if
we can find a pfamily for which any p, is continuous and strictly
pesitive on ¢.(U,). Suppcse that a locally euclidian measure space
(M, du) has a p-family corsisting of only countably many (U, ¢;)
(i>1). Trken taking away frcm 9t an appropriate subset of
measure zero if necessary, we can introduce on 9% a structure of
separable C°’-manifold (or locally euclidian topological space) of p
dimensions such that there exists a p-family {(U}, ¢.)}; . for which
every U! is a co-ordirate neighbourhocd and ¢; gives the coordinates
of points of U!. In fact, let U; be the inverse image by ¢; of
the set of inner points of ¢"(Uf_:.gl U). Put 9)2'=£J1U !. Then
M—M is of measure zero with respect to dp It is sufficient to
introcduce on M a structure of C°’-manifold of p dimensions by the
family {(U;, ¢:)}:s1, wkere ¢; is the restriction of ¢, on U;. Let
L,(9M, du) denote the Hilbert space of all sguare-integrable functions
on I with respect to du.

Now let du be a continuous locally euclidian measure on a
separable C°manifold 9 such that the C°structure is compatible
with du in the sence above, that is, there exists a u-family {(U,, ¢:)}:5:
for which every U. is a co-ordinate neighbourhood and ¢, gives the
co-ordinates. (All weights p;, are continuous and strictly positive.)
Then we have the following lemma. Denote L.(9, dz) by 4.
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Lemma 4.2. Let T be a summable operator on H. Then it
is expressed by a continuous squarve-integrable kernel K(m,m’) as

@13 Totm) =\ KOn, m)e(m)du(m)  (mem, o)

and this integral converges absolutely for every m and ¢. More-
over the function K(m,m) is integrable on Y and the trace of
T is given by

Sp(T) :SWK(m, mydu(m).

j-1
Proof. Let Uj be the set of all inner points of U;—JU, and
oo i=1
put M'=UU;. Then M— WM is of measure zero. Moreover for every
=1

7, we can find a family {O.},s, of disjoint open subsets of U; such
that (1) each O, is defind by

(4.14) a<<x,<bi QA<r<p),

where (%, x», -*-, x,) is the co-ordinates in U] defined by ¢; and a’,
b= R, (2) denoting the clcsure of O, by O,,

U;=J0..
k=1
Assemble all such non-empty open sets over all j and let them be

V., V., ---. Put ‘Jﬁlzi@l V,, then IM—IM, is also of measure zero.
Therefore restricting dg on M, H is canonically isomorphic to
L,(My, du). The latter is isomorphic to the direct sum of ;=
L,(V;, dp;) (1<j<<oo), where dp; is the restriction of dyx on V.

Consider {; as a subspace of ¥ and let P; be the orthogonal
projection of H onto ;. Then T,=P,TP; is also a summable

operator on ¥; and
Sp(T) =2Sp(T)),

where the sum is absolutely convergent. In fact, take a basis {¢i}1</cw
for every ;. Then

Sp(T) =33 (Tool, o) = (T, o).
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On the other hand, {¢{}i<; /<. is a basis of 4. Therefore

1 (Toh o) | <o
and

Sp(T) =>(Tel, ¢b)

1

M FMR
EMs

> (Tl ¢h) = Z‘. Sp(T)).

i
-

j

Put T,,=P,TP,. This is an operator of 4, into #;. Let us
identify every V; with its image in the co-ordinate space R?. The
following lemma is the main step of the proof of Lemma 4.2. Let
Z’ denote the p-times product of the set of all integers, Z.

Lemma 4.3. For any j and k, T; is expressed by an conti-
nuous kernel K;(x,y) (x€V,,yeV,) as

415 Tup®) =\ K@ 0e(0du(s) @V, pedl).
Moreover for j=Ek,

Sp(T;;) = SV.Kii(x: x)du;(x)

and
[ 18,0 1dnm< 5 (Tet ot
where {¢}} ez 1S a certain basis of Y.

Proof. Suppose that V; is the subset of R’ defined by (4. 14).
Put for 1=, ,, -, 1,)EZ?,

, 1 2 1 { X, — a,}
i(x) = Im—— 22V —11,
s Vo) v bi—a " bi—al

where p;(x) is the continuous and strictly positive function defined
by
dp;(x) =p;(x)dx,dx,--dx,.

Then {¢i}ic.» is a basis of #;. Put
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aih= (Tjk(07/ s ‘P;) = (T‘/”;’» fPD

We know that 3 |aif,/|<Cee. On the other hand,
1,itezr

. » X -2 1
‘¢?(x)]<[gl(bi—ai)] rfle%x/p.(x) = M;<<oco.

Therefore

Kau(x,3) =, 5 _altrol()65(9)

converges absolutely and uniformly on V;X V, and hence K, is
continuous. The expression (4.15) is evident.

1

~

If j—k,
K2, 2) = 3 a0l ().
Therefore
[, K Ddn -z ati=sp(T.
and
[, 1,0 1an < 3 el || 1600 dao
< 3 latl.

This proves Lemma 4. 3.

Let us return to the proof of Lemma 4.2. Put K’'(m, m’)
=K, (x(m), x(m")) if meV, and m'€V,, where x(m)=(x,(m),
x,(m), -+, x,(m)) is the co-ordinates of me V; and x(m’) is that
of m'e€V,. Then K’ is defined on 9% X 9%, and continuous. More-
over for any o< L,(I,, dn),

@13) T =5 K m)e(m)duim),

in the sence of the convergence in L*(I., du). The function K’
can be extended to a continuous function K on M X Pt. In fact, for
any m, m’ €9, there exists a subset IM; constructed analogously as
M, such that m, m =IM;. Let K” be the kernel defined analogously
as above on PuXPy. Then K’ and K” must be identical almost
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everywhere and therefore they coincide with each other on (90t M We)
X (WM, N PMy). This proves that K’ can be extended on a neighbour-
hood of (m, m’) as a continuous function. The extended function K
on M of K’ is the kernel looked for. K is square-integrable because

Vapscan EOm ) 1dam dum) =5 | K, ) i) ()

oo

=3 3 lalh|*<<oe.
jk=11,1Tez?
Moreover for any me IR,
(4.16) (g EOm, ) 2 du(my <+ oo,

In fact, we can assume that m< V; for some j. Then

Vapl KOy 12dimy =5\ [ Kuom, w0 2o

= Z E Pd{fl/ aﬁul cpf(m)(o{/ (m)

k=11,11l"ez

<M122 E } a{fn a{Ik[II I <+ oo,

k=101 111czp

From (4.16), we see that the integral (4.13) converges absolutely
for any me MM and o= 4.
Now

(ap KOy 1du(m) =53 1K, (2, 03 1)
<3 S lathl<+oe.

j=11,itezt

Therefore the following integral is absolutely convergent.
Vg Om myduem) =5 K., 2, %)
=3 Sp(T).
Thus we now proved that

Sp(T) :gwmm, m)du(m). QED.
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Remark. An operator T on a Hilbert space E is called of
Hilbert-Schmidt type if

il | Te,|P<+ oo

for a basis {e;}icjc. of E, where ||-| denotes the norm of E. As
is well known, the product of any two operators of Hilbert-Schmidt

type, is summable.

§5. Calculation of the characters (2nd step).

To obtain a more explicite formula for the character of T, we
must assume that S; and its representation L fulfill more stronger
conditions.

As the readers may have been noticed, the assumption in §§1, 2,
and 4 that G is simply connected is artificial. This one is made only
to define well the functions I'(g) on G, v, v/, and u« on ¢,. Here we
cast off this assumption as follows. Let Z; be the subgroup of ZNS,
consisting of all elements z such that L.=1;. Then as is easily seen,
T:=14 for every z€Z,, where 4 denotes L;(K). Therefore L and
T* may be considered as representations of the factor groups S,/Z;
and G/Z, respectively. Accordingly, their characters r and = may be
considered as the distributions on these factor groups respectively.
For our pourpose, there exists no essential difference for considering
G/Z, and S./Z, instead of G and S,. Hence in this section, we de-
note the factor groups G/Z; and S,/Z, again by G and S, respectively.
Moreover we denominate another notations as well, for instance, S/Z;
is denoted again by S, and the notations L, T*, r, and = are preserved.
Then Theorem 1 in the preceding section remains valid for this case.

Let Zs, be the center of S; and 8s the center of the universal
envelopping algebra of 8. In this section, we assume that (i) S,=S5°Z;,
and S°(DNZ)cS,cS, and (ii) L is a strongly quasi-simple represen-
tation. By definition, L is strongly quasi-simple if it verifies that

1) L=12)1l: Q@EC, ze2s),
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(2) dimE@)<Nd()® (lcw), where N is a constant indepen-
dent of 4,

(3) L.a=a(z)a (a(z)eC, acsE~, z=33).
Then as is easily proved, the character r of L fulfills that

zr=a(z)r (zESE).

These conditions on S, and L are stronger than the ones (1) and (2)
in Proposition 1.

Lemma 5.1. Under these assumptions on S, and L, «(s) is
essentially a locally summable function on S, and the multiple
integral in the right hand side of

(5.1) Sp(Ti)=SkldzZSN,dnSSlx(u“‘nsu}ﬁ“’z(s)r(s)ds (F=Eu)

is absolutely convergent.

Proof. Let b, and b; be as in §1. Put /=dim}, and I/ =dim by.
Let Adss denote the restriction on 8 of Ads on g. And let Ds(s)
be the coefficient of #~ of det(Ads—1s+£13), where 1z is the unit
operator on 8. Then Ds(s)=Ds(m) if s=hm (heH, meM’).
We know the following two facts due to Harish-Chandra: (1) the
function |Ds(s) |~ is integrable on any compact subset of S; [4(e),
p. 504], (2) |Ds(s)|"*z(s) is a function defined at least on the set
of all regular elements of S;, which is bounded on every compact
subset of S, [4(d)®, pp. 129-134, and 4(e), p. 477]. From these two
facts, the assertions of the lemma follow immediately.

Now let b,, %o, b, and H; be as in §1. H=07+Hs is a Cartan
subalgebra of &. Let §i=0,, b, ---, b§ be a maximal set of Cartan
subalgebras of 8, such that each two of which are not conjugate to
one another under any inner automorphism of S;. Every b} contains

by, and is also a Cartan subalgebra of g, because dimYi=dimb,.

6) Note that the correct definition of Cartan subgroups of a semisimple Lie
group is found in p. 556 of “Harish-Chandra, Some results on an invariant integral
on a semisimple Lie algebra, Ann. Math., 80 (1964), pp. 551-593,”
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(We can choose every §) in such a manner that Hi=5HiNt+HiNp,
and HiNp.Chs [7, p. 383]).

Let A’ (H’ resp.) be the Cartan subgroup of S; (G resp.) cor-
responding to 5. Then clearly H'(NS;=A’. Moreover H’CS because
any h€ H’ must commutes with all elements of §;. Let Aj (Hj
resp.) be the center of A’ (H’ resp.) Then HiNS,=H)NA'=H|NA}.
Put Z'=HjN Aj. Since Z’ contains the connected component of the
identity element e in H and ZMND, the indices p,=[H}: Z/] and
q;=[Aj: Z’] are finite, where [Hj : Z/] denotes the number of the
elements of H{/Z’™ 1If G is complex semisimple, S and H’’s are
connected [4(e), p. 482], and moreover k=1. Therefore S;=S and
A*'=A}=H'=H;, hence p,=q,=1. Let Su/ be the set of all elements
of S, which can be expressed as s7'is (s€S,, he AN G*). Then
S4#MNSai=¢ if 157, and S,OG‘*:C_JISAJ'. And for any g=G, g7'Ssig
CGyi. "

For every j (1<j< k), let d’h be a Haar measure on H’ and

let d’s be a Haar measure on §’=A{;\S, such that
62\ eas={ as{ othran ecs,

where $=Ajs. Apply (3.5) to every term of the right hand side of
k

> S x (u'nsu) B~ 1*(s)z(s)ds.

S x(u'nsu) V2 (s)c(s)ds=
S1 i=1JS
Then (5.1) becomes

(5.3) Sp(T2)

k
:Z 1
ji=1 i

w

. aal anl_as\ xqurnsnsuysea=an 1 Dsiny 1 aom,

where w; is the order of the Weyl group W, of {S,, A’}, becouse
B2 (shs)c (s hs) =2 (h) < (h).

To rewrite (5.3), we need the following lemma.

7) See [4(e), p. 481] and recall that K/DNZ is compact.
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Lemma 5.2. If seSNG*? the mapping n—n'=n"'sns
(neN') is one-to-one regular mapping of N’ onto itself. And

(5.4) dn’=|det(Adws—1v)|dn
=|D(s)|"*| Da(s) | *"*"*(s)dn,

wherve Adw's denotes the restviction of Ads on v’ and ly denotes
the identity operator on n'.

Proof. As s is an regular element of G, it is contained in a
Cartan subgroup I:I\ of G. Let 50 be the Lie algebra of I?, then its
complexification f) is a Cartan subalgebra of g. As is easily seen,
f)Df)’. Therefore BC@, and hence Adh(n’)Cr’ for every heﬁ. For
every root a of {g, 5}, let e, be a non-zero element of g such that
[k, e.] =a(h)e, (hEB). Let R be the set of all roots such that
e.n’. Then n’:aZERCea. Let 6 be the conjugation of g associated

with the real form g,. For a root a, let fa be the root defined by
(6) (h) =a(oh) (hED).

Then R is invariant under ¢ because 1’ is invariant under 6. And
there exists a constant 7, such that fe,=rt.es, for every root a.
|t =1 if 6a=a. Therefore a%yaeaen(,=n’ﬂgo if and only if
T Yo =Ys« (@aER). Since the exponential mapping of 1y is one-to-one
and onto N/,

exp(2 yaea) €N’

if and only if r,J.=s, for every ac=R.
Let n, be the center of . Then there exists a non-empty sub-
set R, of R such that
m =2, Ce,

P
because if @, &/, and a+a’ are roots of {g, b}, [es, €x’] = Naa’€ria’
where N, is a non-zero constant. Let 1, be the inverse image of
the center of the quotient n’/n, by the natural mapping of n’ onto
n’/n;. Then there exists a subset R, of R such that R,NR,=¢

and
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e :aengchea )
Inductively, let 1, be the inverse image of the center of n’/m,; by
the natural mapping of 1’ onto n’/n,,. And let R, be a subset of
R such that R.N(R,UR,U---UR,,)=¢ and

k
m,=>, >, Ce,.

i=1 a€Rj

Suppose that n’/n,_; is abelian, then R=R,UR.U---UR,. Let us
line up all roots in R in such a way that any «€R; is placed in
the left of any o’ R; if 1>>j. Fix one of such arrangement a;, a.,

-+, a, and put
b
n(y) =exp<j2‘.=1 y;ea,->

where y=(y1, Y2, =, ¥»). If n(y”")=n(y)n(y’) and y = (y1, ys, -,
¥5), then for 1<j<p,

Vi =3+ Pi(y1, Y2, o0, Yicts Y1, Y5, 00, Yic1)

where P; is a polynomial of (2j—2) variables [8, p. 82-83].
Since sef/f, there exist numbers @; such that Ads(e.;) =a;e;.

Then putting #=#n(y) and #'=n(y’), ' =n"'snus™' is expressed as

n(y)=n(—y)n(a:yi, @:¥z, -+, @)
Therefore

yi=(a;— 1)y,
y2=(a:—1)y:+ P.(—y1; a1y1)

....................................

....................................

Yo=(a,—1)y,+ Po(—Y1, =y —Yp1; @Y1, p1 Y1)

Since ¢ is identity on @, and G is a connected Lie group with
Lie algebra g,
0(Ad g (x))=Ad g (6x)
for any g€G, x=g. Especially 6(Ad s (e,)) =Ad s (fe,) and therefore
a;=a; if a;=6a;. Let R’ be the set of all ac R such that fa=a«
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and let R” be the set of all a€ R such that a<<6a. If a= R/, fix a
number g, such that o;*=7,. Then 6;2J.=2Y, and hence Y= 04 Ya,
ie., 6., is real. Moreover the number a; is real if o, R’.

Introduce new variables z,, z., -, 2, as follows. Put

Z:=00;Ya; If ;€ER', 2;=Y, if , €R",

and

z:=(t0,) " Wa, =Vo,=2; if 67'as=a,ER".
Then the above transformation y—3’ is rewritten as

zi=(a:— 1z
and
Z;:(ai_l)zi_'_f,i,(zl’ Zs, *tt, Zio1) (2<Z<p),

where P! is a polynomial of the variables z;, z., -+, z;-1. Put
Zi=$i+1/_177i (5,', 7ER)

for every «,€R’. Let us consider the exterior algebra over C
generated by dé¢;, dy;, and dz; (;=R”, a;=R’). Then we see easily
that

dzij\dzi\ -+ Nz =T (a,~1) dzi/\dz. )\ \dz,
hence