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Introduction.

Let G be a connected semisimple Lie group. A general method
to construct representations o f G  is to induce, in a sense, represen-
tations o f some subgroups of G .  In particular, all finite-dimensional
irreducible representations of G  are obtained by inducing one-dimen-
sional representations of a certain subgroup. But the situation is not
so simple in the case of infinite-dimensional representations. Concern-
ing this problem, F. Bruhat obtained a criterion for irreducibility of
some induced representations of G in [1]. The purpose of the present
paper is to give a formula which expresses the characters o f such
induced representations of G  on Hilbert spaces that has been treated
by F. Bruhat, by means of the characters of the original represen-
tations. Our principal result is Theorem 2 in §5, which gives this
formula. This formula generalizes analogous ones for very particular
cases considered in [2] , [3] , and [4(c)]. In the opinion of the author,
this formula has an important significance for such problems to
establish the Plancherel formula for G, to obtain the characters of
all (quasi-simple) irreducible representations o f G  on Hilbert spaces,
and to exhaust all invariant eigendistributions of all Laplace operators
on G  (see for example [5(a), (b), (c)] ).

As an application of our result, the characters o f  all unitary
irreducible representations of GL(3, R) and SL (3 , R ) can be calculated
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explicitely by using the result [10] o f I. Ya. Vakhutinskii (see the
last note in §5).

Also, in the forth coming paper [4(d)] , we obtain the explicite
form of the Plancherel formula for S U (p ,q )  by using the result of
this paper (Theorem 2) and the result o f [4(c), §10] on the explicite

form o f th e characters o f  irreducible unitary square-integrable re-
presentations o f S u(p , q). 1 )

Section 1 is devoted to construct induced representations T `  of

some representations L  of a certain subgroup S , o f G  in such a form
that are convenient for our purpose. In th is section, some elementary
facts are stated without proofs for the sake o f brevity, but the reader
can find their prcofs in another papers cited in places. In Section 2,
we study a sufficient condition for the existence of the characters of
the representations L  and T L . In  Section 3, we prove an integral
formula on G which is essential to calculate explicitely the character
o f  T `  in Section 5. Let x ( g )  be an indefinitely differentiable func-
tion on G which vanishes outside a compact set and put

TL ,x(g)dg

where d g  is  a Haar measure on G . T hen T  is a summable operator
under certain conditions on S ,  and L  (fo r  th e  definition, see §2).
The principal result in Section 4 is  to  express the trace Sp( T `)  of

by means of an integral on G  containing x  and the character r
of L  (Theorem 1 ).  In other words, the character n  o f TL is expressed
as a distribution on G defined from r. To prove Theorem 1, we must

verify the following fact. L e t  T  be a sum  m able integral operator
on a Hilbert space o f  all square-integrable functions on a certain
locally euclidian measure space {II, d,u} . Then the trace Sp( T )  of
T  is expressed as

Sp(T)— u K (u,u)dp(u),

1 )  su (p , q )  is  a  real form  o f  S L (p +q ; C )  consisting o f a ll g e S L (p +q ; C )
which fulfill that g*Ig=1, where /  is a diagonal matrix whose p diagonal elements
are 1  and the other q  elements are — 1, and g * = t .
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where K  is  the integral kernel o f T  and d p  i s  the measure on U.
T he la s t  h a lf  of Section 4  is devoted to prove this fact in more
general form than necessary at the tim e. In  Section  5 ,  assuming
some additional conditions on S , and L , we rewrite the expression of
Sp( TL) in  Theorem 1  in more simpler form and thus we obtain our
principal result, a simple formula expressing the character i t o f  TL
by means of the character r  of L  (Theorem 2 ) .  In the last note of
the section, the essential points o f th e  proof o f  our formula are
summalized.

The formulas (4 . 12 ) in  Theorem 1  and  (5 . 9 )  in  Theorem 2
which express 7 r by means of r  may hold for invariant eigendistribu-
tior s on the groups S1 and G .  T hat i s ,  i f  w e  tak e  an y  invariant
eiger distribution r  on S , of all Laplace operators on it and define a dis-
tribution 7r on G by the formula (4. 12) or the one (5 . 9 ) .  Then, under
some appropriate conditions on ,31 ,  I r  may be well-defined and give
an  invariant eigendistribution on G  o f a l l  Laplace operators on it.
In  [5 (c ), §7 ] , we prove this fact and use it to  o b ta in  a  complete
system of linearly independent invariant eigendistributions on G of all
Laplace operators, for G= S U(p, q) (p ,  q> 1).

The author expresses his hearty thanks to Professor H. Yoshizawa
for h is k ind advices and to Dr. N. Tatsuuma and M r. S . Andô for
their aids to prepare the manuscript.

Short summary of the results o f  this paper has been published
in  [5 (e)].

§ 1 .  Some induced representations.

1. Let G  b e  a  simply connected semisimple L ie group whose
Lie algebra is denoted by g o . Let go =Po + fo b e  a Cartan decomposi-
tion of go, where as usual fo denotes a maximal compact subalgebra.
Let IA ,  P, and f  be the complexifications of go, Po, and fo respectively.
Then =p+ f. Let co be the center of to and put ro = [fo, fo]. Then
fo ro +  co and f = r+ c' where f ' and c ' are the complexifications of 4
and c'o respective ly . L et K , K ',  and D  b e  the analytic subgroups
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corresponding to fo, ro, and co respective ly . Let b,T b e  a  maximal
abelian subalgebra of IN, and let bo=b;- +w - be a Cartal su'oalgebra of
go where W. c fo. Let b, fj, and b+ be the complexifications of 00, b,T,
and w- resp. Now let d be the set of all roots of g with respect to

(simply of {g, b} ). For every a E d ,  let e c,  be a non-zero element
of g such that

[h, ea ] =  a (h )e a  ( h b )

and put go,— CeOE w here C  is  the field of complex numbers. Denote
by B  the Killing from of g, and for every a E d , let ha . be a  unique
element o f b  such  that B (h „ , h) = a ( h )  ( h E b ) .  Put b * =  R h a

aE-4

where R  is  the field of real num bers. Then b*—k- + V-1 b (1- and
every root of {g, b} is real valued on b*.

Fix an ordering in the dual space of tj a n d  choose an ordering
in the dual space of b* in such a way that an element A of the dual
space of b* is  positive whenever its restriction ;1 on b c7 i s  positive.
Let P  be the set of a ll positive roots of {g, b} with respect to this
ordering in the dual space of b* and let Q  b e  the set of a l l  a E P

whose restrictions on bO-  are not identically zero. Put rt g c ,  a n d
aEQ

no (- Igo . Let N  and H -  b e  the analytic subgroups o f G  corres-
ponding respectively to n o and b,T. Then G = N H - K  is so called
Iwasawa decomposition of G .  The mapping (n, h, u)--).nhu ( n  N ,
he  H, uE K) is  an homeomorphism of N x H -  x K onto G[12, Ch. VI,
§3 ]. Let M  be the centralizer of b5- in  K ,  that is, the subgroup of
K  consisting o f all elements tt K  such that Ad u(h ) =h (hEN - ).
Then P = N II - M  is  a closed subgroup of G.

Now let us f ix  a non-zero element ho E  b . Let P ' be the set
o f a l l  a E  P  such  that a(h o) = 0 .  Let N b e  the subalgebra of
orthogonal to P ' ,  i.e., the set of a ll h E b c7 fulfilling a (h )= 0  ( a E P ' ) .

Let P "  denote the set of all P  not identically zero on b .  Then
evidently P= P U P " .  Let S be the centralizer of in G . Let
be the orthogonal complement of b'o in  bo w ith  respect to the Killing
form B  of go. Put
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(q.+g-.)+
c c e P I

a n d  0 = f - 1flo. Then i s  the centralizer o f b'o in  Wo and the L ie
algebra of S .  It is reductive and bo n go is a Cartan subalgebra
of it. P u t  a n d  l e t  4  b e  th e  center of is spanned
over C by Itc„, eOE , and e_c, (cyE , P'), and 4 is the orthogonal complement
o f {hOE , ceE P ' }  in t  w i t h  respect to B . ')  It is easily proved that

='nfI0Db'o' and 4r)g 0 Db'o .

Let b" be the complexification of ' and put

in'=b+-Fb"+ ( @ a + @ -a)

and In —nt'f- 1 go . T h e n  nfo is reductive and N- --Fb'o' i s  i t s  Cartan
a c t , /

subalgebra. Clearly m'o c  a n d b'o+ m'o . P ut n ' = E a . , » g .  and
oo. Then rro is nilpotent and %, cnro . Let M ", H ', and

N ' b e  the analytic subgroups corresponding respectively to m'o,
and n'o . They a re  closed in  G .  And N 'H ', IFM ", and N 'IPM "
are  closed subgroups o f G .  Let E  b e  the centralizer o f  H ' in  K
and put M '= E M " .  Then [3 (e ) ,  Corollary 3 of Lemma
2 6 ]. I f  G  is complex semisimple, M ' and S  are connected [3(e),
Lemma 2 7 ]. Put r'=N 'S=N 'H'M '. This is  a  closed subgroup of
G  and N ' is  normal in V '.  The connected component of the identity
element of S  (r ' resp.) is  S °=H 'M " resp.). Let Z
be the center of G . Then M '1M "(D nZ )r is  fin ite . In fact, this is
discrete and isomorphic to 8/En M "(D n z ) , hence compact (because
K /D n Z  is compact [3 (e ) ] ) .

Let S , be a  subgroup of S  such that so(Dnz)csics. Then
there exists a  subgroup M , o f M  fulfilling M "(D n Z )c M i c M '
and S 1 =H 'M 1 . Put r i = N 'S ,. A s G =N H - K  and T"° D NH - , we
obtain that G=r i K , that is, every element g e G  may be expressed
as g=ru u K ) .  If g  has two expressions g =ru =r'u ', there
exists an element E E E l  = mi n K  such that 1=1-E, because

2 )  A  detailed proof of the facts stated here can be found in  [1 , pp. 199-201].
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2 .  Now let u s summalize some elementary results on invariant
measures on groups and on homogeneous spaces. Put p = 2- 1  E a  and

aE P

p' =2 - 1  E a .  For g E G , le t h ( g )  be a unique element of k7 such that
aE Pr

g E N  e x p ( h ( g ) ) K . Define

(1.1)0 ( g )  =exp { (2 p -2 p ') (h (  g )))

Tithe element ho is regular, p' is zero on bcT and therefore 2 p -2 p '

on bcT. Put

9G (g)=ex pf 2p(h(g))).

A s N ' is  normal in T " , Ad r  makes n' invariant for any rE
Denote by Ad„ , r  the restriction of Ad r  on n', considered as a complex
linear transformation.

Lemma 1.1. F o r  any element r r',  ( 3 .- ) = det (Adri
, (r) I. I f

g = r• u  ( rE r ',u E K ) ,  then f 3 (g )= ( r ) .  M oreover ( rg ) =f 3 ( r) ( g )
(r Er", g E G ).

Pro o f . P u t SS= r'FIK =M ' fl K .  r '  h a s  a  decomposition r'
If r=nhE ( n E N ,h E H - , EE ) Adr = Adn•Ad h• Ad E. For

an y  xen , adx  is nilpotent on re. T h erefo re  fo r any n E N , Ad n
i s  unipotent on n'. Hence det (Ad„ , n) = 1 .  For an y  E A d E  is

a  unitary transformation of g w ith  respect to  the positive definite
inner product B (x ,72y ) (x, y G g), where 72 i s  th e  conjugation o f g
associated with the subalgebra f o + V —1 Po. Adn

, E is also unitary,

therefore I det (Ada ' E )  I =1 . Recalling that re =  g a , and P= P U P " ,
a e P rr

we obtain that for hE 1-1- , letting log h  bcT be as  usual,

det (Ad„ , h)=r1 riogh)=_
e x p  { 2 p  —  2 p

,
)  ( l o g  h ) }  .

, 

This proves the first assertion. The 2nd is evident from the definition
of (3. The 3rd is  an immediate consequence of the 1st.

Lemma 1.2. L e t  ri=N 'S , be as before.
( 1 )  Let d n  (n E N ')  and ds (sE S D  be Haar m easures on N ' and
S ,  respectively. T h e n  d ,r=d n d s , d ir=i9 - 1 ( r) d n d s ,  w here r=n s



Induced representations of sem isim ple Lie groups 319

( n  N ',  s E S ,) ,  are respectively a rig h t invariant measure and a
le f t invariant measure on r 1 .

( 2 )  d,(2- - 1 )=49- 1 (r)d ,r, d i(rro )=r(ro )d ir (2 - , 2-o r i ) •

P ro o f . This is easy.
For u E K  and g E G , le t  ug— nth'ut (n 'E N , h 'E H - , u 'E K ).

Then we put n' =n(ug), ht =h(ug), and u '=u -g .  Let u--->u* (uEK)
be the natural mapping of K  onto K * — K /D n Z . The coset (ug) *

depends only on u*, therefore it may be denoted as  u*g. Let Co (K )
b e  the set of all continuous functions on K  which vanish outside
some compact sets. Let du* be the normalized Haar measure on K*
such that Ç d u * = 1 .  Then there exists a  Haar measure du on KK.
such that for any fE  Co (K ),

f (1,1) du .-= {E.Dnz.f(zu)}  du*.
K K *

Lemma 1. 3. Let d n  and d h  be Haar measures on N  and H -

respectively.
(1) dg=e - 2 1 )( '0gh) d nd hd u— W (g)dn dh du , w here g =n h u  (n E N ,
h E H - , u E K ) , is  a Haar m easure on G.
(2) d(ug- )=M u g )d u , d (u * g )= G (ug)du* (g E  G, u e K ) .

P ro o f . This is well known [3(a), §12].
L e t  -->E* be the natural mapping of S i onto Ei =S171/DnZ, and

le t d e  be the normalized Haar measure on E; such that de=1 ,st
and dE be the Haar measure on Ei  defined by

f(E) de = {E.EDnz AzE)} d e  ( fE  Co (ED).

There exists an invariant measure dii on ki= ,!-7, AK =  E n K  * which
fulfills that

K
f (u) d u =P 1 .7  f (E u)d$ (f e  C 0 (K ),17=E 1 u)K, s,

and

F(u*)du* ---- c l a S  F ( e u * ) d e  ( F E C o (K *), a = riPu*).
K

*
Z i St
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Let f i g  denote the element of k , containing ug, where u  is  an
representative of a. Then is  a transformation on k,.

Lemma 1.4. d ( e ig ) =( u g ) d e i  ( u e K , g  G ,  û = 2 1 u).

Pro o f . A s r,= N H - s , ,  r i \G is isomorphic to ,\ K . Let
d n  and d h  be Haar measures on N  and H -  respectively. Then by
Lemma 1. 3,

d g = (h )d n  d h  d u  (g = nhu)

is  a Haar measure on G, and d i r  =  - 1 (h )dn dh dE r i ,  ne N ,
he  H - , s i )  is  a  left invariant measure on r 1 .  A s is easily seen,

c f ( g ) d g =  i.c.idet r i f (ru )d ,r  (fE C o (G)).

I f  ug o = r'u -g o ( u K , g E G ) ,  th en  ,e(ug 0 ) = (r '). Therefore
using Lemma 1. 2,

Gf ( g )d g = Gf (g g o )d g — det r i f (rugo)dir

'CL T i

= ,.‘3 ( t ig o )d e i r i f ( r u g o ) d i r .
K ,

Putting 7(a) = r i f ( r u ) d i r  (f e  C o (G ), u e  K ), we obtain that

i r ( a ) d a =  R ag o W u g o ) du .

T h is m eans that d(111 0 ) =  (ug o )d it ,  because th e  functions 7 on

( f E C 0 (G ) )  are sufficiently many. Q.E.D.
A s is seen from Lemmas 1. 3 and 1. 4,

, , ,, G (ug)du*  =1 , L ,A (ug)du*=1 (g E G).

More generally we obtain th e  following lemma, not used in the
following.

Lemma 1. 5. G(U.)dE* • (g) (g G).

Pro o f . Any fE C 0 ( k )  may be considered as a function on K*
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fulfilling f (eu * )=f (u * )  (E* ,  E K * ) .  For any g E G,

L* f(u * )3G(ug -1 )du *

= f(12) 1 , * oc(e-ug - ')d v id a,

where u  and $ are representatives of u* and $* respectively. On the
other hand,

e f(u * -,--g)du * —
z i f(eig-.)da =

z , f (a ) (u g -1 )da.

H e n c e  *OG(Eug- l ) d e = f3(ug - 1 ). This proves the lemma.

3. A representation U of G on a Hilbert space E  is  a homomor-
phism o f  G into the group of continuous invertible operators
on E  such that (g,a)--.11,,a (g e G , ae  E ) is  a  continuous mapping
of G x E  into E .  The last condition is equivalent to that g—>Ug a  is
a  continuous mapping o f G into E  for any a e E .  U  is said to be
irreducible if  there exists no closed invariant subspace different from
{0} and E.

Let L  be a  representation of S , on a Hilbert space E  such that
L =À (z )1 E  fo r a l l  z e D n Z ,  where A i s  a homomorphism of D n Z
into C  and 1 E  i s  the identity operator on E .  Let us construct canoni-
cally an induced representation TL of G  from L .  First we study a
Hilbert space L ( K )  on which TL  is  rea lized . For an y  u e K ,  let
r ( u )  be an element of c, determined uniquely by exp( — r( u ) ) u  Ki.
There exists uniquely two real-valued linear functionals id and I/ on
co such that

2(z)=e(v+ 'xr(')) ( z e D n Z ) .

Hence 1A(z)j= er( , »  ( z e D n Z ) .  T he correspondence $--->e—( r( EDI,
(ee ,s ',)  i s  a  representation of E i  on  E  and this is equivalent to a
unitary o n e . In  fac t, E--.-e- ( " ') 1 (E))L i s  a  representation o f El  ,
w h ich  is tr iv ia l o n  D n Z .  And hence it may be considered as  a
representation of the compact group Z . Therefore it is equivalent
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to a unitary representation of E t. This proves our assertion.
L e t i  b e  the set of all functions f  with values in E  which fulfill

the following two conditions:

( a )  f (Eu)=.1.4f (u) for any u  K  and

( h )  f  is  (strongly) continuous.

Denote the inner product o f E  b y  ( a ,  b )  ( a ,b E E ) .  I f  f ,  f i eW ,
(f (z u ) , f i( z u ) )= f ( u ) ,  f i(u ))= ev ( r( ')) ( f ( u ) ,  f i ( u ) )  ( z  D nz,
uE K ) .  Therefore e- 2 P(r( “))(f (u), f i (u ) )  may be considered as a func-
tion on K * .  Introduce in i a positive definite inner product

< f ,f i> = L  ( f (u ) , f i(u ))e - 2 P(r("))du*.

Then we obtain a Hilbert space L ( K )  by completing w i t h  respect
to the norm

11f11-V <f, f>  (fEW ).

Lemma 1 .  6 .  L (K )  c o n s is ts  o f  all f u n c tio n s  f  on K  with
values in E  f ulf illing  the follow ing three conditions:

( a )  f (Eu)=L Ef (u) fo r  any  uEK ,
( b ' )  ( f (u ) , a ) is m easurable on K  fo r  any  aE E ,

(c) (f (u ), f (u ))e - 2 9 OE(‘'))clu*< + . . .

Of course, w e must iden tif y  tw o  f unc tions f i and f ,  i f  f i (u)
=f 2(u) fo r  alm ost all u.

First note that the integral in (c) has a sence, because the func-
tion (  f (u ), f (u )) is measurable on K  from (b ') , and

( f(zu) , f (zu)) e'vOE ( ') ) (  f (u ) f ( u ) )  ( z  G D nz).
Let p= v + V  — 1 . Then as is explained above, we can define

L 'e=e - "( 1 . ( 4 ) ) LE E * =(D rIZ )) .
Let %* be the set of all functions ç on K * with values in E  such that

( a )  v (eu*)=L 'ev (u*) w e  u*E K *), and

((3) 0 .  is continuous on K*.

Let us complete %* with respect to the norm
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1 1 2=  j , * (ço(u*) ço(u*))dui .

Then we obtain a Hilbert space .L .' ( K * ) .  The mapping f—>v(u*)
= e- g(f(' )) f(u) of t  o n to  W* is an isomorphism, because eP-("" )) I =ev(roo)
(u e K )  and hence 11f11—IIA. Therefore the above lemma is equi-
valent to the following one.

Lemma 1. 6'. a (K*) consists o f  all functions on K* ful-
filling the following three conditions: (a ) ,

( 9 ' )  (v(u*), a ) is measurable on K* for every aEE, and

(7-) * (v(u*),ço(u*))du *< -4- co.

The norm of ço is the square root of the above integral.

P ro o f. F irst let us remark that Wu*), ço(u*)) is measurable
from ( ' ) .  Let St be the Hilbert space obtained from the set of all
functions ço on K *  with values in E  verifying and (r ), by intro-
ducing in i t  the inner product

<ço, AIP>= , , * (v(u * ), kk(u* ))du *.

For any E * El', the mapping

: —ç" (u'') y9(E*u*) — L'E*  v (u * ) (u *  K * )

of St into itself is continuous. Therefore the intersection gL o f  all
(E*GEt), i s  a  closed subspace of Put

(PQ) ( u *) L:;1q,Wu*) (vESI, u*EK*).•ai

Then P  is  a continuous mapping of St onto A , .  Let 0  be the set
of all continuous functions on K * with values in E .  As 8  i s  dense
in St, PO is dense in S I , .  On the other hand, P = t * .  A n d  Sti

consists o f all functions (p fulfilling ( a ' ) ,  ( ' ) ,  and (r ) ,  where (a ')

says that

( a ' )  for every E*EE,P, (p(E*u*)=Li*v(u*) for almost all U .
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Therefore it rests only to prove that for every function yo fulfilling
(d ) ,  (ii"), and (r ) ,  there exists a  function (0 which fulfills ( a ) ,  ( j '),
( r ) ,  and 0 (u *)= v (u * ) fo r a lm ost a ll U. T h e r e  e x is t s  fo r any
such (9 a  subset A  of K * such that the complement of A  in  K * is
of measure zero, and for any u*E A , yo(e*u*)= L'ev(u*) for almost
a ll E . T hen  y9($*u*)= L'eço(u*) if  u*E A and e*u*E A . Put g e u * )
=L 'ev (u*) i f  u*E A  and $*ESEP, and 0(u*) =0  if  u *E  E tA . Then
"O. is well-defined and th is  is  a  function looked for. Q.E.D.

As is suggested above, the mapping

f --->v(u*)=e - "( r( ') ) f (u )

of .1 ( K )  onto 1, - '( K * ) is  an isomorphism.
Now let us define a  representation T ` of G on L l '(K ) .  Extend

the representation L  of S, to that of the group P i = N'S i  by putting
Ln=1E for a ll n E N '.  For any f e L ( K )  and g e G ,  put

(1. 2) ( r g ' f )(u)=,e 1 "(ug)L.c.,,,,N g ,f(ukr).

A s is easily seen, if  u g — ru ' ( re r i ,  u 'e K ) ,

(1. 3) (Tigi)(11)= 9 1 "(r)L7.1 .(u 1 ).

L et u s prove that g - ->T g ' ( g E G )  defines actually a  represen-
tation on L t (K ) .  Denote by f '  the function at the right hand side
of (1 . 2 ). We see easily that f '  fulfills (a) and (b ') .  Therefore let
us check the condition ( c ) .  Denote the norm in  .1- ( K )  ( E  resp.)

by II • • E resp.) and let C(ug) denote n (u g )h (u g ) . Then

!If' II' Lgo,g)f(uk.)111 (ug)e - 2 v( P( '»du*.

T he element C(ug) = n(ug)h(ug) depends continuously on  (u, g)
e K x  G, and may be considered as a function of (u*, g) e K* x G . Let
V be a compact subset of G . Then th e  se t { C (ug); ueK , gE  V}
is  compact in N H - . Therefore it follows from the continuity of L
that

s u p  Lso,g) = Mv < + 00.uEK,gEV
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Similarly e"- - r( u) +F( . , ) ) ( u g ) j i ( u g )  may be considered as a continuous
function on K* x G .  Therefore

sup fe2 ( - r( " (ug), 1 (ug )}  N  v  ‹ +  0
.E K , g E V

Hence if  g E V,

II f '112 <m v f(u)111 e- gro-D,9G(u g) du*

= Mv 4,,,11 f(u)111e- 2 Kro, »du*

m„ N v11 f 112

Therefore f 'E L ( K ) ,  and  I TI i f  g E V.
Moreover it follows from (1.3) that Tzg. T . , 7 '; „, for any g, g' EG

(note that (3 (E) 1  for any
Hence it remains only to prove the continuity of T L .  For a fixed

f E  1 ,.(K ) and a given e> 0, choose an element f ,  of `,4 such that
!if  —AII<e. It follows from the continuity of L  that for every fixed
uE K,

f ,(u) —  fi(u)II1=11 2 (u Lg.c.g)f i(u,g) — f,(u)112.

tends to zero as g  e .
On the other hand, let V be a compact neighbourhood of e  in  G,

then if  g E V  and u E K ,

11 g  ii(u )  — fi(u)Ille- 2 K"") )

<(1114)1, - F 1) sup {Ilfi(u)111c2 v( r( . ) ) } < +

Because f i (u )Ille - " ( ' ( ") )  may be considered as  a  continuous function
on K * .  Thus the integrand in the right hand side of

TV ; — fill= e ll TVi(u) — fi(u)11 2Ec- 2 Kr ( ") ) clu*

is uniformly bounded fo r  g E V  and converges pointwise to  zero
as g--->e. Applying Lebesgue's theorem, we obtain that II TV; — f1 Il
—.0 as g—> e. Hence there exists a neighbourhood V, of e, contained
in  V , such that J 7 gz' if < e  if  g E  V . T h u s  if  g E
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II f  II <II T I;(1 . — f1)11+Ii r j 1  - f1 + II f  f  ! K  ( -t/ 111, \ + 2 ) .

This proves that T gLf--->f as g - - e  and moreover g --. T i  is  a  conti-
nuous mapping of G  into . L ( K ) .  The proof o f the lemma is now
completed.

R em ark . The representation L  i s  an  induced representation
of L  in the sence o f  [1 , p. 134] (note t h a t  (E) =1 for any $EED•

By the isometry f  v (u * )  = e - P- ( "'D f (u) of .W K )  onto a  (K*) ,
the representation TL in is transformed into another one Um.L
in  a ( K * ) .  Here (Pp` is defined as

(1. 4) (  /»;.`g2)(u*)=e4" ( 'g)- ""))i_ill2 (ug).1,“,,v(u*Kr)

( v E  (K * ) , g  E G  , u E  K ) ,

where r ( g )  i s  a  un ique element o f  c ,  such  that g exp (— r(g ))
E N H - K '.  In  short, T L  and LI"'" are  unitary equivalent to each
other.

Lemma 1. 7. L e t L i ( j= 1 ,  2 )  be a  representation o f  S ,  on
a H ilbert space E i  such that f o r  every  z E D n Z ,  L  i s  a  scalar
m ultiple of  the identity operator 1EJ. I f  a n d  a r e  equivalent,
T L  and TL 2 a re  also equivalent.

Pro o f . Let v. ; (  j= 1 , 2 )  be the linear functional on c, associated
with D .  Let A  be an isomorphism of E 1 on to  E '  such that L1,- -
A - 1 L24 ( s E S , ) .  Put A I  =a  an d  111-1 1 = b .  Then

(ab) - 1 1V ,I<IL !1 <ab iL ! I  ( sE S O ,
and therefore

(ab) - lev2( r( '" < e ' " ) ) <abe . 2( , ( =»

for any zEDF1Z. Hence vi  = v 2 . Denote it by v.
Let ,q/1 (  j= 1 , 2 )  denote a ( K ) .  If f E .g li ,  the function R u )

=A ( f ( u ) )  on K  with values in E ',  fulfills (a) and ( b ' ) .  Moreover

II II' Ru)1112 e- "(r("))du*

II f e-2P(r("))du* = a'llIf II'
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H ence ?EA ', and the mapping : f— .7 of A l into A ' is bounded
and IX I < a .  Similarly we can define a continuous mapping (k i )
of SO into A '.  Each of these operators is the inverse of the other.
And moreover

T i; =(X ) - 1 7 T  X  ( g  G ) .

This proves the lemma.

4. I f  g b e  a  representation o f G  on a H ilbert space,
g_(.1 ,_1 )*  is also  a  representation of G  on the sam e space. This
representation is denoted by O.

Lemma 1. 8. I f  L  is unitary , 7 '  is  also  un itary . In  general
( T 9  is equivalent to  T 'a.

P ro o f .  Suppcse that L  is not necessarily unitary. As is men-
tioned earlier, there exists a representation e q u iv a le n t  to  L  such
that ev- Kr ( E " L  is  un itary  fo r any $es i . Therefore taking into ac-
count Lemma 1. 7, we can suppose from the beginning that e L E

is unitary for any EE-3 1 . If so, ( T' Y unitary equivalent to TL.

For any f i, f2 E put F ( u )  (f i(u), f2(u)) • e' .  Then
F (E u )=F (u )  (E E E I , u E K ) ,  and therefore F  may be considered as
a function on k 1 . H ence

<f1, f 2 (u ))e --2 K r( .))d u *  (0 =u (D n Z ))

f 2(u))e - 2 Kr( ") )dzi (u= Thu).
K i

Let us calculate ( T g̀ -i)* for any gE G .

< f  ( P ;r i)* f2>=<T ig. ,  f2>
_ _ ( i1 2 ( u g -1)L ç (g .f 2 ( u ) ) e _ 2 v ( r o , , , d a .

Ki

Lto,g-,,f2(u )) 112(u g --1)e -2vcro.Dda.
K,

Put uk- - 1  = v ,  n ( u g ') = n ,  and h ( u g ') = h ,  then u g '= n h v  and
hence v g= ( n h ) ' u .  Therefore C(vg) = (nh) - 1  = (C(ug 1 )) - 1 ,

(v g )=3 - 1 (11)=3"(ug - i), u=v gr, and d ( tg )=[(v g )d D .
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Hence

( T - L )
* f2>= (f1(v) , (Lz:(

1, g ) )* f2(vg)),3 1 1 2 ( v g ) e - 2 v( rcv(g) ) do.
K i

The function

f '  ( v )  e - - 2 " ( '' ) - 1 . ( ') ) 1 1 2 (vg) f,“„ g )  f2  (vi)

is  an element of I ( K ) .  In fact, if v g = r 'v ' (r 'E  Pi, v 'E K ) ,

e - 2 L-
g.( v 3'2 ( 4 .) 'f2 (y').

B ecause ri= N H - E1 ,= ( 4 ') * = e - 2 c r , ) ) . LE fo r  a n y  EGE, i ,  and

f2 (E tt )= 4 f2 (u ) (EE uE K ) .  Therefore f' (Ev) L E  (v ) .

Thus we obtain that for f . 1 , . ( K ) ,

( T g'-i)*  f(u ) e - 2 "(r r( ")V 1 2 ( u g )  <(„ f ( u g )  .

Consider the mapping f  1 ( u )  =  e ' v c r ( ") )  f ( u ) .  This is  an isometry of
.1, ( K )  onto f f ( K ) .  In fact

RE0=e--v("EDL 4R u)=(4-i)*R u)=1",R u)
and

Ilf112 e ll R u) il e 2 v(r (')) du* .

The real-valued linear functional on co associated with is exactly
—v. Therefore the above integral is equal to the square of the norm
of f  in LY,- ( K ) .  By this isometry f  ( T L z - i ) *  is transformed into
T .  T h is  means that (T L )" is unitary equivalent to T's-.

It fo llow s from  these arguments th a t TL is  u n ita ry  i f  L  is
un itary . T hus the lemma is completely proved.

Remark. In  th is  section, w e  f ix  a Cartan decompositiom go
= t o + p , and a maximal abelian subalgebra 5,7 of po . But this does not
restrict the generality of our discussion. In fact, the following facts
are well known. (1 )  Let go =ro+p'o=ro'+pO' be two Cartan decomposi-
tion o f g o .  Then there exists an element of the adjoint group G*
o f go which transforms V° o n to  ro'  and V, onto p'0'  resp. ( 2 )  Let

go—fo+Po be a Cartan decomposition o f qo . And let b'o , b'o' be two
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maximal abelian subalgebras of po . Then there exists an element of

the analytic subgroup o f G* corresponding to fo which transforms

bo' onto bo". The proof of these fact is found for instance in [7, PP.
377-381].

§ 2 .  The existence of the characters.

Let A  be a bounded operator on a separable Hilbert space St.
A  is  ca lled  summable i f  fo r  a  complete orthonormal system  (or

simply "basis") vs, vs, v s , ••• of SI,

(2. 1) E  (Av g , v3 )I <+0.Q.,,,=1

I f  A is  summable, the condition (2. 1) holds for any basis
of SI, and the value

+

E(Av„ v,)

does not depend on the choice of the basis o f S t .  This value is
called the trace of A  and denoted by S p (A ). I f  B 1 , B , be bounded
operators on SI, B i AB, is also summable [4(b), p . 2 3 7 ].

Let G b e  a connected semisimple Lie group and T  a represen-
tation o f G  on a Hilbert space SI. L e t  C (G ) b e  the set of all
indefinitely differentiable functions on G which vanish outside some
compact sets. For any x G Cs- (G),

x(g)Tgdg
G

is  a bounded operator on SI.
Let D b e  the set of all equivalent classes of finite-dimensional

irreducible representations of K . For 2e..2, let 4 1 (2 )  be the set of
all vectors v G A  such  th at {To ); uE K } spans a finite-dimensional
vector space on which T. (u e  K ) operate as a multiple of a represen-
tation o f c la s s  D. L e t  d (2 )  b e  the dimension of g .  A  vector
V E cgi is called differentiable under T  if f ( g ) = T g v is  an indefinitely
(strongly) differentiable function on G with values in cgt. Let S r
denote the set of all differentiable vectors of S t. Then ,q1-  is  invariant
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under 7 ; for any g G G , and under T „  for any element y  of the
envelopping algebra U(A) of A.

T  is called permissible if 7 -1., i s  the scalar multiple of the unit
operator on S i for any z e D r I Z .  T  is called quasi-simple if it is
(1 ) permissible and ( 2 )  Tv=ce (z )V  ( z E 8 ,  V E S I — ) ,  where 3 is  the
center o f (IGO, a  is  a homomorphism of 3 into C  and is called the
infinitesimal character o f T.

Lemma 2.1. (Harish-Chandra, [4(b) and (e)] )
Let T  be a permissible representation of  G on a Hilbert space

,41 which fulfills that
dim ,gi(0)<Nd(_0) 2

f o r every g  S2, where N  is  a constant independent of  .0. Then
f o r any  x E C (G ),  T , ,  i s  summable, and x -- S p (T )  is  a  distri-
bution in  th e  sence o f  L . S chw artz . If  T  i s  in addition quasi-
sim ple, denoting this distribution by n,

z n = a ( z ) n

f o r any  zE 3 .3 ) A nd n  is essentially  a  locally summable function
on G w hich is analy tic on the set of  all regular elem ents of  G.

This distribution n  is called the character o f T.
I f  T  is quasi-sim ple irreducible, it satisfies that dim  S l(g )

< N d (g ) 2 (.0 E s 2 ) [4(b ), Lemma 4] . A s  is proved in Appendix,
an  irreducible representation T  is quasi-simple if and o n ly  if
dim ,_ql(g )<  +  c ,0 fo r any g E  „Q. I f  T  is irreducible unitary repre-
sentation, it is quasi-simple [6] , and therefore has the property that
dim S l (g )< N d (g ) 2 GO E S2).

We keep to the notations of §1 . Let co be the set of all equi-
valent classes of irreducible finite-dimensional representations of S.
Let d(a ) be the dimension of 8G co. Now let L  be a representation

3 )  Every yE g  is identified with a right invariant differential operator on  G as

(y x )(g)=(d/dt)x (ex p(— ty )g)1c.0 (xEC ;)- (G ) ) .
Moreover any yE  U (g) may be identified with a differential operator on  G [9].
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of S , on a Hilbert space E .  For any SE co, let E (8 ) be the subspace
of E  analogous as S l( g )  under T.

In this section, we prove the following proposition.

Proposition 1. Suppose that L  f ulf ills the following two con-
ditions:

(1) L=A (z)1E (z E D n Z , 2 ( z )  C),
(2) dim E (8)<N d(8) 2 e  co) ,

where N  i s  a constant independent o f  8. T hen .L  i s  summable
f o r any  x E C r(S ,)  and L  has a character w hich is a distribution
on S 1 . Moreover r ;  is  summable f o r any  x E C ( G )  an d  TL has
a character, a distribution on G.

Considering the uriversal covering group o f G  if  necessary, it
may be assumed that G is simply connected. Let us first prove the
2nd assertion.

Lemma 2. 2. Suppose that L  f ulf ills the conditions (1 )  and
(2 ) in  the  proposition . T hen the  induced representation TL  is
permissible, and putting Ji=L - (K ), d im cgl(g )<N d(g) 2 f o r every

Pro o f . It is evident that TL is permissible. Now take a linear
functional on c, such that L '=e - g(r""))LE ( E 'HO may be considered
as a representation o f E P . To prove the lemma, it is convenient to
employ U '"  instead o f TL . Put g  ( K * ) .  For vE K  and ço G g  ,

Ut̀ ' L ço(u*) =e4(r(v))40(u*v*).

Therefore U.'=e U "  ( u E  K )  may be considered as a represen-
tation of K*:

U,,' “o(u*)= Ç9(u*v*) (u*, v*EK*, g9E9).

Let ,Q* (o.)* resp.) be the set of all equivalent classes of finite-dimen-
sional irreducible representaticns of K * (EP resp.). I f  g ( g ) *  {0}
fo r  g E .S 2 ,  taking any representation R  o f  c lass g ,
(v K )  may be considered as a representation of K * and determines
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a class g*E S2*. As d(g) = d(g*) and 9 . (g )  under LT" is ideltim l
with g ( 2 * )  under U ' (as vector spaces), it is safficielt to verify
that

dim g  (.0*)<N d(Y *) 2 ( 0 * E s ? ) .

I f  E (8 )*  {0} fo r 8E we can determ ine a  class 3* E a)* as
above. Decompose the representation L ' of EP into irreducible CD111-

p on en ts . L ' is equ ivalen t to  the direct sum  o f i t s  restriction on
E ( r) 's .  E ( e )  is expressed as a direct sum o f  irreducible com-
ponents E ,  (e ) ,  1 <j <(L ' : (To , where (L ' : a*) denotes the multi-
p lic ity  o f  a* contained in  L'. And (L ' : a* )<N d (e )  from  the
assumption. Let us recall the general theory o f induced represen-
tations of compact groups. Let b e  the induced representation
of the restriction of L ' on E i(r) . Then U' is equivalent to the
direct sum of

(rE  a)* and 1< j< (L ' : a*)).

I t  is  w e ll k n o w n  th a t ( : .g)*) = (.g)* : 8*) fo r  every g * ES2* .

Therefore
( :  g * ) =  E (L ' : a*)(g* : a*)<N E d(e)(g* : a*)

N d(g*).
5*E.,*

Hence d im g (2 * )< N d (2 * ) 2 . Q.E.D.

The 2nd assertion of Proposition 1  is  an immediate consequence
of Lemmas 2. 1 and 2. 2.

To prove the 1st assertion of the proposition, w e must slitely
generalise Lemma 2. 1. We can prove the following lemma.

Lemma 2. 3. Let G  be a (not necessary connected) Lie group
and T  a representation of  G on a Hilbert space  S t. Suppose that
there ex ists tw o closed subgroups K  and D, a continuous homomor-
phism  A of K  into C, and a constant N, which fulfill the following con-
ditions: (0 )  D is norm al in K , (1) K /D  is compact, (2 )  72,=2(z)1m
fo r  any  z E D , ( 3 )  dim .g i(g)<N d(g)z  fo r  any  equivalent class g
o f irreducible finite-dimensional representations  of K , where ,g1(g)
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is  the set of  all vectors in Ji w hich transform  under T . (tIEK )
ac c o rd in g  to  D . T h e n  T  is  summable f o r any  x C,7(G) and
x - .S p (T O  is  a distribution on G in the sence o f  L . Schwartz.

Pro o f . Put T := 2 (u ) - 1 7 ' . .  As T = ( u E K , D), T * may
be considered as a representation of K*----K /D . Let K o* be the con-
nected component o f  K * .  Then Ko*  i s  a  conneted reductive Lie
group and the index of K o* in K * is finite (say n ) .  Let 12* (52,;}' resP.)
be the set of all equivalent classes of irreducible finite-dimensional
representations of K * (K o* r e s p .) .  It follows from ( 3 )  th at for the
representation T* of K * on Si, dim ,q1(2*)<N d(D*) 2 for any 2E S 2*.

Consider the restriction of T * on K o*. Then we see that dimS1(2ô)
< n N d ( 2 n 2 for any E S2: . In fact, it follows from the theory of
induced representation of compact groups that any 21' E 12: is contained
in at most n  different classes of 12*, gP , •••, ( m < n ) ,  and

E [g7 : d(.07) =nd(g:).

Hence
/I?

dimJi(gn< E dim S 1(27)d(g7)' [g7 : g :]d ( g t )j=1

<N E d (  ) [g 7  : g t ]d ( g :) - - - n N d ( 2 4 T .
j=1

Applying Lemmas 5 , 6 , and 7  in  [4 (f)] to the restriction of T*
on Ko*, we know that Lemma 3  in  [4(b)] is also  true for it. And
the proof in  [4(b), pp. 241-245] of the existence of the character
is valid also for T  without any essential modification. Q.E.D.

Let us apply this lemma to the representation L  of S i . R eca ll
that S i  i s  a subgroup of G such that S ° ( D n Z ) c S i c S .  Therefore
E ° (D n Z )c s i c s ,  where i s  the connected component of e  in Z.
W e know that F24' n Z  i s  compact. For an y  zEDF1Z ,
=A (z)1E by assum ption. Let tz  be a  linear functional on co such
that eg( r w ) = 2 ( z ) ( z e D r1 Z ) .  Put

2(E) - - - - eg ( r " ) )  ( E

Then A is a  homomorphism of 2 i  in to  C .  Thus it becomes clear
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that Lemma 2. 3 is  applicable to the representation L  by taking Si ,
,  D n Z , and A  respectively as G, K , D , and A  in  the lemma.

Therefore Proposition 1 is now completely proved.
Let G be a reductive Lie group which is not necessarily connected

but fulfills that G =G° Z where G° i s  the connected component of e
in G and Z is  the center of G . Let go b e  the Lie algebra of G and

= [go, go]. Let gor = 0' + fo' be a Cartan decomposition of the semi-
simple Lie algebra , and let K ' b e  the analytic subgroup of G
corresponding to and K = K 'Z .  A  representation T  o f G  on a
Hilbert space J1  is  ca lled  strongly quasi-simple if it verifies the
following conditions:

(1) T z =2(z)1A . ( A ( z )  Z E Z ),

(2) dim 9L (..0)<N d(g) 2 f o r  any equivalent class . 0  o f irre-
ducible finite-dimensional representation of K , where N  is  a constant
independent of 2,

(3) T z v =a(z )v  (v E3l1 - , z ,3 ) , w h e re  3 is  the center of the
universal envelopping algebra of the complexification g  of go .

An element gE G  is called regular if the rank of Ad g is the max-
imum of those of Ad g ' ( g 'E G ) .  Then we have the following lemma.

Lemma 2. 4. The character o f  a  strongly  quasi-simple re-
presentation is essentially a locally summable function on G which
coincides with an analytic function on the set of regular elements
of G.

This is  an immediate consequence of Lemma 2. 1. In §5, this is
restated and applied to a representation L  of Si.

In the subsequent sections, we try to express the character of TL
by means of that o f L .  The most interesting case is the case where
the character o f L  i s  an invariant eigendistribution of a l l  Laplace
operators on S 1 . This is treated in §5.

§3 . Some integral formulas on a semisimple Lie group.

In this section, we establish some integral formulas which will
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be necessary in the later.
L e t G  be a  connected real semisimple Lie group with a Lie

algebra g o . Let bo b e  a Cartan subalgebra o f go and let H  be the
Cartan subgroup of G  corresponding to b e . H  is, by definition, the
centralizer in  G  o f bo, that is , H h  is equivalent to Ad h(h)
=h(hG1j 0 ) .  Let g  and b be the complexifications of go and be respec-
tively. Introduce an order in the set of roots of {g, b}  and let P
be the set of all positive roots of {g, b }. For any root ce, let ea  be
a non-zero element of g such that [h, ea ] =a(h) • e a  (h G b ) .  We see
easily that for every root a, there exists a character va o f  H  into C
such that

Ad h(e a )=72a (h )e a  ( h  G H ).

We obtain _ ( h )  = ( h ) 1 from the equality Ad h([e„, e_ a ] )= [e a ,e_a ].
Let g e G  and consider the polynomial of t ,  det(Ad g — 1+ tl),

where 1 denotes the unit operator on g. Let / = dim c  b  and let D (g )
denote the cofficient of t', Then for any h E H ,

(3. 1) D (h )= ri (72„(h)-1)(v_ a ( h ) - 1 )
a eP

—  II 72.(h) - 1 (72.(h) - 1) 2 .
a e P

D ( g ) =D ( g i) ,  i f  g =g - V g ig , for some g o G , and D ( g ) =D ( g - 1 ).
An element g E G  is  called regular if  D (g ) * 0 .  Let G" be the set
of all regular elements o f G .  Put HR = HFIGR. For any subset A
of H , let GA be the set of all elements of the form g - lh g  (gE G ,
hG AnHR).

Let H , be the center o f H  and ii the normalizer o f bo in  G,
and put WH= f l / H , .  H , contains Z  and the connected component
of the unit element o f H .  Hence WH is a finite group and this is
called the Weyl group of {G, H} . 4 ) Let g—)- -g  be the natural mapping
of G onto -0 = H A G . Define lig=g - 'h g  and consider the mapping

0  : (g , h ) , h ,

4 )  Let A  (B  resp.) be the set of all inner automorphisms o f G which leave H
(every element of H resp.) invariant. Then WH is canonically isomorphic to A/B.
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of 6><HR onto GH . As is seen  in the proof o f [4 (e ), Lemma 36,
p. 4881, W H  operates on G and H  respectively as follows. Let wE WH

and g o b e  an element of the coset w. Then

(0g=(g 0 g ) ,  i r= g o h g V  ( g E G , h E H ) .

Hence W I, operates on the left on G x  H i' as

(0(g, h)=((0g, l e )  ( -R EG, hE HR).

Now suppose th a t g - l h g = g '" h 'g ' (g , g 'E G , h , h 'E H R ) .  Then
h '=g o h g V  where g o = g 'g '.  The sets of fixed points in go o f Ad h
and Ad h ' are exactly b o . Therefore bo = Ad go (k )  and hence g ,E H.
Let w be the element of W H  containing g o .  Then h' =le  and g- ' = cog.
Thus we see that the quotient space W A ('>< H R ) may be identi-
fied with G H  by the mapping Ø.

Before studying 0 more closely, we shall make some comments.
Let g  b e  an arbitrary element of G .  Any element x  of g, may be
considered as an element of the tangent space of G  a t g  as follows:
for any function f  which is differentiable in a neighbourhood of g,

dx f =lim f (ex p(— tx )g),dt

where exp denotes the exponential mapping o f go in to  G . In this
manner x  defines a right invariant vector field on G which is denoted
b y  L . Let us denote the natural mapping g—).g.- o f  G onto b y  r.

Consider x  as an element of the tangent space o f G  a t g ,  then
(d7r), x  is  an element of the tangent space of G  a t  g = n ( g ) .  Let

grg o  b e  the transformation g --->ggo o f G. T h e n

(d it) , x  ( d 7 r )  g o  x

and (c1n)0g x  = (dn), (A d(h - 1 ) x) (h e  HO.

The function (dir) g x  ( g  E G ) on G  may be denoted by d n ( X ) . If
x 0 0 , then ( d i t ) 0 x 0.

Let d g , erg, and d h  b e  invariant measures on G, G, and H  re-
spectively, and let 72, and E be the right invariant differential forms
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Ona n d  H  corresponding respectively to d g , d k - ,  and d h .  Let
x„ x 2 , •••, z , be a basis of go  m o d e, an d  hi , h 2 ,  • • •  ,  hi be a basis of
bo . Then ( d n ) ,x i , (d7 r),x 2 , •••,(d7r) g x ,  i s  a base of the tangent
space o f G  a t  Kr. The value v g ( x i , x 1 , • • ,  x „  h , ,  • •  •  ,  h , )  does not
depend on g  and may be denoted by X79(1, . - 1 , 2 ,  • • . , 4 1 ,  . • . ,  4 1 ) •  Since
( 4 , 0 )io(d7r) g x = ( d n ) „ o x ,  the value

(dir),,c 2 , • • • , ( d i t ) g x r )

does not depend o n  g  an d  therefore may be denoted by 2((c/x)Xi,

(d7r)i 2 , ( d i r ) . i r ) , Let us denote also by I the (righ t) invariant
vector field on H  defined by h , in the analogous fashion. The value

h 2 ,  • • • ,  h , )  does not depend o n  h  and  may be denoted by
42, •••. fii). Now we claim the following fact.

Lemma 3. 1. S uppose that th e  measures d g ,  d g ,  an d  dh

satisfy that f o r any f  C o (G ),

(3.2)f ( g ) d g = f ( h g ) d h } d g ,
G G  k H p

where -g =  Ho g. T h en

(3 . 3 ) •••, 41,
— ((d 7 r)g i,••• ,(c h r) i'r)E (4 - 1,•••, k )

and vice versa.

P ro o f. Let e  be the identity element of G . It is sufficient for
us to prove that

72,(yi, .y2, • • • Y  yr, Z 1 ,  Z 2 ,  . • . ,  Z i )

= -2 ((c17r) y i ,  ( d 7 r) ,y 2 ,  • • • ,  ( c h r) ,y ,A ( z i ,  z 2 ,  •  « ,  z i )

for some basis y i ,  y2, •••, yr o f g 0  mod bo and some basis z1, z2, •••, x i

of bo . We know from [1 1 ,  § 4 4 ] that there exists a  basis y1, y , •••,

y„ of go m od l), a  basis z „ z2 , ••• , z i o f bo, and e >  0  which fulfill
the following conditions. Put

g ( t i ,t2 , • • • ,t , ,  s i ,  s 2 , • • • , sr)
---exp(— t1z1)•••exp(— t,zi)exp(— siyi)exp(— s2y2)•••exP(— sr.Y,-).
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And let W  be the set of all elements g (t, s ) , where t= (t 1 , t2, •••,ti)
and s= (.32, s2, • •• , sr), such that I t, I < e  for 1<  i < 1  and j s ;  < e  for
1 < j < r .  T hen  W  i s  a  neighbourhood o f  e  in  G  and fv n Ho
consists o f all elem ents g ( t ,  s )  such that I t, I < e  for 1 < i  < 3  and
s i  =s, = • • • = s, = O. Let U  b e  the set of all elem ents g ( t ,  s )  such
th a t t i  = t, = • • • = t, =  0  and I s, I < e  fo r  1 < j < r .  Then for every
g E  W , there ex ists a unique element tt U  su c h  th a t  wn Hog
=(  wnHou. In  th e  neighbourhood rr( W )=7 c (U )  o f  'e =H o in

w e can take the parameter s= (si, s2, ••-, s ,)  o f u  as the
co-ordinates of g = H og w ith  respect to some co-ordinate system of
0 .  Moreover the parameters ( t ,  s )  and t  in  W  and in Ho ri W  can
be taken as the co-ordinates with respect to some co-ordinate systems
on G and H o respectively.

W e see easily that as the elements of the tangent space of G
a t e,

Y, —(d (  d  
ds ;  ) 0 ' z ' dt, )0 ( 1 < j < r ,  1 < i < l ) ,

where the suffices 0  m ean that the derivations are considered at
( t ,  s ) = 0 .  Similarly as the elements of the tangent space o f Ho a t  e,

z,—
(  d d t 0

( 1 < i < l ) .

And by the definition of drc,

( d g ) *Y d d s ; ) 0 ( i < j < r )

as the elements of the tangent space of a t -e.
Now let dh = a(t) dtidt2• • •dt, ( h e  W ) and dg=p(s)ds1ds2••-ds,

( g E n ( W ) ) ,  where t  and s  i s  the co-ordinates o f h  and k resp.,
d ( t )  and p (s)  are positive continuous functions. Then it follows
from (3. 2) that

dg=0.(t)p(s)dt 1 dt 2 •-d t,d s 1 ds 2 •••ds, ( g  E  W),

where ( t , s )  is  the co-ordinates of g .  Therefore
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•••, y r , z ,, • • • ,  z ,) =a( 0 ) p ( 0 ) ,

-v r ((d 7 r) ,y i, ••  •  , (d r) r y ,) -= p (0 ) ,

and
M z i, • •• , z ,) =i(0).

This proves our assertion. Q.E.D.

Now let us assume the condition (3. 2) and hence (3 . 3). Then
reproducing the arguments of Harish-Chandra in [4(c), pp. 501-502

and p. 508] , we see that

(d0)1,,,,o(d7r) g  x, =Ad ( g - 1 )[A d(h) — 1] x ,

(d o ) i,,,1 2 =A d (g - 1 ) h  (hEbo).

Therefore for g  E G  and h E H R ,

(80 7))i,h((d2-c) g  x i, •• • , (d7r) g x r , h ,, • • • , h ,)

7?h -,-((d0)-i, h 0 (d 7 ) g  x i, • •• , (dO) o(dir) g x „ (d O )i,h h i , • ,  ( d O ) h i)

= ±  I D (h)172,i(x , , x 2 , • • • , x„ h 1 , h2, ••• , hi)
=  ±  I D (h )!-7 5 ((ch r),x i  , • • • , ( d n ) g  x r )E• h(hi, h2, • •• , 11,).

This proves that

(3.4) Cao ± I D (h)IC i,h

where i s  the differential form on G x  H R  corresponding to the
product measure d g d h .

The mapping 95 is everywhere regular because D ( h ) ± 0  for every
hE H R . Moreover we obtain the following integral formula essentially
due to Harish-Chandra.

Lemma 3. 2. Let dg, d g , and d h  be  invariant m easures on
G, G , and H respectiv ely  w hich fulf ill the condition (3 . 2 ). For
any  integrable function f  on GH,

(3 .5)f ( g ) d g - 4 d 4  f ( h g )  D ( h ) l  d hGH G II

w here iv , is the order o f  WI,.

Let A  be an open subset of H R , then GA is  open in G  because
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0  is everywhere regular. We obtain from (3. 4) and Lemma 3. 2 the
following result.

Lemma 3. 3. Let dg, dg, and dh be as in Lemma 3. 2. Let
A  be an open subset o f  H " and let f  a n d  be measurable func-

tions on G A  and A respectively  such that f (h g )q (h ) is integrable
on -6 x A . T hen

(3 .6)f ( h g ) v , ( h ) d h c l g =  f ( g ) E  go(h7)}  D (g )I - ldg,
G  A GA w EW

w here hg  i s  an elem ent o f  H "  such  that g= gV h ,g 0 f o r  some
g o c G  and the summation of v(14) runs over all wEW H such that

= e A. 5 )

A s an  immediate generalization o f  Lemma 3. 2, we obtain the
following integral form ula. Let H 1 , 11°, •••, I I ' be a maximal set of
Cartan subgroups of G such that each two of them are not mutually
conjugate to under any inner automorphism of G . Let w, be the order
of WH , and put C‘=.11 0̀ \G . Then for any integrable function f  on G,

(3 .7)S G f ( g ) d g =  E f(hg) ID(h)ldhdgE' H'

where in  i-th  term, g = H ò g E e ', and dh and dg—  are invariant meas-
ures on H ' and C° respectively which fulfill the analogous relations
a s  (3. 2).

Lemma 3. 3  can be easily generalized in  a  similar manner and
the generalized integral formula plays an important roll in §5.

Let G be a reductive Lie group which is not necessarily connected
but G =G °Z where G° and Z  are as in  the la s t  part of the preced-
ing section. We can easily prove that Lemmas 3. 2 and 3. 3 are also
valid  fo r G .  In  th is  case, H, W H, and D (h ) etc. may be defined
analogously. In §5, we apply this generalized Lem m a 3. 3 to our
group S ,  which is reductive and not necessarily connected.

5 )  Let h E H . Note that h and h o  may coincide for some coE  W it different from
the identity element, even i f  h is reguler. In  fact, let W ' be the subgroup H/Ho
o f  WH—R/Ho, then h=12 for any coE  W ' and hem,.



Induced representations of semisimple Lie groups 341

§ 4 .  Calculation of the characters (1st step).

In  th is section, we keep to the notations of § 1 .  Let us calculate
the character o f th e  induced representation TL . F irst o f a ll, we
remark the following fact. I f  two representations L  and L ' o f  S,
are equivalent, so are TL and T " ,  and hence they have the same
character. Therefore we can assume from the beginning that e- ”(r(E)).I,
is unitary for any $E El  ( s e e  §1).

As is proved easily, we can find a section U  in  K  o f ki-SEAK
w hich has the following properties ( 1 )  and (2 ). L e t 'Jr b e  the

mapping u--->fi o f  U  onto k 1 . Introduce on 11 by the mapping Jr

the measure d iz (u ) corresponding to the measure dei on "Z. Then
(1) the closure o f 11 in K  is  compact,

(2) U  has a finite subset U,, U„ • ••, Up such that U— U 1,7;  is
i =1

o f measure zero with respect to dp, each U , is  a submanifold o f K,
and the restriction of Jr on  U.  an isomorphism o f  U , with its
image in k , as analytic manifolds.

0 P

Fix once for all a such section U and put U= U U .  The mapping,-1
u) - - u  o f  .7 X it into K  is analytic. Conversely fo r  uE K , let

$ ( u )  and o ( u )  denote the unique elements o f  Eri  and 11 such that
u— E(u)(6(u), then the mapping u  W u ) , 15 (u )) o f K  onto E, X U  is
analytic on every point u  of the set S i  11, whose complement in K  is
o f measure zero with respect to du.

For any f, E

(4. 1) </e, f 1 > f , (u ))e

Fc* (L,e ( ) f (o (u ) ) , L E(. ) f i (o( u )) e -2, (rw ,,))+r(4,(„

) ) ) c l u *

—
u

( f ( u ) ,  f 1(u)e - 2 ' ( r ( ") ) dp(u).

Because du* = d(E (u)*)d  ke(o(u )) (u  K ), and by assumption e - v( r OE) ) L;
is unitary for any E .E71 .

Let L 2 (.1) be the Hilbert space consisting of all square-integrable
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functions on U  w ith  respect to  d p . Takc a  basis, i.e , a  tomplete
orthonormal system  {v,} 1 4 1 ‹ .. o f E , an d  a  o n e  {y,} o f L (U ).
Put

fi,(u)=e7"(çk')))Ç9,(0(u))140,,vi.

Lemma 4. 1. T he s e t  {f, J 11‹,, ; <0. i s  a  complete orthonormal
system o f  1 ,(K ).

Pro o f . Using (4. 1), we see that

<fu, f k i>= 11 (f ,;(74), fk i(u))e - 2 dp(u)

= i i ç o.,(u) ço,(u)dp(u) • (y „ v k) = (Lai , .

Now suppose that fE  L t (K )  is  orthogonal to all f , .  S in ce  f  fulfills
(a )  in  Lemma 1. 6,

<f, fo> R.* (f  (u), f . 3 (u ))e - 2 roo)du*

11 
(f (u ), v i ) e » 3 = 0 .

Therefore ( f (u ) , v,) =0 fo r  an y  i  and  a lm o st a ll u E U .  Hence
f (u ) =0  for almost all u E U . This means that f = 0  as an  element
of L l '( K ) .  Thus we obtained the lemma.

Let us fix once for a l l  a  Haar measure d g  on G .  Let L  be a
representation of S, fulfilling the conditions (1)  and (2 ) in  Proposi-
tion 1. For any x E C 7(G ), let us compute the trace of

T L = x (g )T f i  dg.
G

Put

fik>.
Then

E  la i,1< cx)

from  Proposition 1. O n the other hand, s in ce  T t f ,  is defined
originally in  th e  sence of convergence with respect to  the norm of
.a (K ) ,  we obtain
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fh> 
G

= x ( g ) < ig ' fT „ ,  f i k >dg.

And b y  (4. 1)

a o k =  G x ( g ) & ( T igii.i(u ) , f ik (u ) ) e - , (ro, » 4 ( u )}  dg

x (g )d g 1I2 (ug )(L . ( „,,f,„(u,g5.), f), (u ))
G

This double integral converges absolutely and therefore the order of
the integration may be changed. Hence

-(4. 2) a,, = 1.1 dp(u) x  (u-1 112 (g )(L - ( g ) f „(eg .) ,  f ,(u ) ) e - " ( r( “))dg.
G

Put g=nsv  (nG N ' , sE  S „ v E U ), then it follows from Lemma
1. 2 and the 1st equality in the proof of Lemma 1. 4 that

(4. 3) d g =-1 (s )d n d sd p (v ) ,

where d n  and d s  are  appropriate Haar measures on N ' and S1 re-
spectively. Taking into account that 19(g) = (s),

11x11><N'xS, 
x (u - 'nsv )(L sv i , v 1 )

e r ( `))go,(v)e ))ço,(u) [3- 1 1
'  (s)dndsdp(v )dp(u).

x (u - 'nsv )e ' ( " ' ) ) çoi (v)

c'OE( '") ) çok (u)dndp(v )dp(u).

a , k = s i x„(s)13 - " 2 (s)(1,8v ,, vpds.

Let fi be the closure o f U  in  K .  T his i s  compact from the
condition (1 ) on U .  Let B  b e  the support of x .  Then A —I.71B171- 1

is  compact and hence A fl F i  is  compact in T h e  mapping
(n, s)--->ns of N ' x  S i onto I "  is one-to-one regular everywhere. There-
fore there exist compact subsets B 1 and B , of N ' and S1 respectively
such that r ' 1 fl A c B 1 B 2 . If sl$ B  2  ,  X  j k ( S )

 = 0. A n d  it can be proved

Put

(4. 4)

Then

(4. 5)
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th at x ,, is indefinitely differentiable on S i . Hence x, k E C7(S i )  for
any j  and k .  Applying the 1st part of Proposition 1  to the represen-
tation ,e- ' 12 (s) L s  o f  S i  a n d  x,,, E  (S i), w e obtain  that for any j
and k,

(4. 6) E  au k  =  x il,(s)r i 2 (s)7(s)ds,
i=0

where r(s)  is  the character of L.
-Put bi k  E  auk, then

i =1

-
Sp( TD = b1 .

j= 1

T he integral (4 . 4 ) converges to  x i ,, in  th e  sence o f th e  ordinary
convergence in C7(S 1 )  an d  r 12 (s )r(s )  i s  a d istribution on S i .
Therefore

( 4 .  7 ) b  , 1 1 2(v, u, n)ev ( r ( - - 1 ) ) v,(y)çok(u)dndp(v)da(u),LIxUx1\
where

(v , u , n )= x (u - - insv),3- 1 1 2 (s )7 (s )d s  (v ,u E K , N ').

Note that 2  is  continuous in  (v, u, n) x  K  x  N ', and is equal to
zero if y, uG .11 and nEE Bi . Therefore the above integral (4 . 7) con-
verges absolutely and hence the following expression holds :

(4. 8) b,k=uxuK(u, Oçoi(v)g°1(u)6112(v)dit(u)

where

(4. 9) K ( u , v )  e r ( vu- ')) (v, u, n) dn.

Now consider the integral operator T  on L 1 (U) with the integral
kernel K (u, v ): for L 2 (11) ,

(4. 10) ( Tço) (u) 4 11f(u, v )(v )(11.2(v) (u U).

This operator T  is  summable, because

E  I ( vh) I E  I bik I <°°
j ,k = 1



Induced representations of sem isim ple Lie groups 345

where (  ,  )  denotes the inner product o f L 2 (11). Moreover

Sp(T) =Sp(

As U —U is  o f measure zero, L, (U) is isomorphic to L 2 (û), the

Hilbert space consisting o f all square-integrable functions on U with
respect to  the restriction of d t t  on  U. T herefo re  w e can  app ly
Lemma 4. 2 which will be proved in the following, to the operator

T  on L 2 (fi). Hence

Sp ( T ) = u)dp(u)=11K (u,u)dp(u).

And therefore

(4. 11) SP (T/.)
( u , u , n ) d n d p ( u ) .

I f  $E n—).n/ =E- inE and s — › =e - 1 .3 are  automorphism o f  N'
and S i  respectively and dn' = dn, ds' = ds. Moreover the distribution

( S ) T ( S )  on S1 is  invariant under any inner automorphism o f Si.
Therefore we obtain that for any

(u ,u ,n )d n= ±"(Eu, Eu,n)dn.

Thus we proved the following theorem.

Theorem 1. Suppose L  i s  a  representation o f  S i  f u lf illing
the conditions (1) and (2 ) in Proposition 1. T hen the characters
r  and 7 r  o f  L  and T `  respectiv ely  ex ist and 7 r  is ex pressed by
m eans of r  as f ollow s. Let dg, dn, and d s  be Haar m easures on
G, N ', and S i  respectiv ely  such that fo r  all x EC ,(G ),

x (nsu) 1 (s)dnds.
G IC, x

T hen for any  x C7(G),

(4.12)x ( g ) n ( g ) d g = S p ( T )
G

d n  x ( u - 1  n s u )r/ 2 (s)r(s)ds.
l e SI
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Now let us state Lemma 4 . 2 . A  measure space ( 0  ,  it )  is called
locally euclidian (o f p  dimensions) if it has a covering {UOE}O E E A  and
a one-to-one mapping 00E o f  UOE onto an open subset o f I t ' for every
aE A , such that the transformed measure o f dg by 00E on  oOE (U OE )  is
absolutely continuous with respect to  the usual Lebesgue measure.
That is, identifying UOE w ith  OOE (U OE)  by oOE ,

dit(m ) = Pa(x)dxidx2••• dx p (m EUOE)

where x= (x1, x2, • • • , x,) =0.(m) and pa  i s  non negative measurable
function on 0„(UOE). Such fam ily { (U ., 00 1f m e l t  is  ca lled  p-family
temporarily. A  locally euclidian measure dp is called continucus if
we can find a p-family fo r  which any POE is continuous and strictly
pcsitive on 0 (U ) . S u p p c s e  that a locally euclidian measure space

d p ) has a  p-fam ily consisting o f only countably many (U„ 0,)
(i > 1 ) .  T h en  tak in g  aw ay  frcm 9,31 a n  appropriate subset of
measure zero if necessary, we can introduce on 9)1 a structure of

separable C°-manifold (o r  locally euclidian topological space) of p
dimensions such that there exists a p-fam ily {(U:, çb)}, for which
every U : is  a co-ordinate neighbourhood and 0: gives the coordinates
of points of U .  I n  f a c t ,  l e t  U : b e  the inverse image b y  0 , of

i -1

th e  se t o f inner points of 0, (U, — U (J,). P u t 9)e= U U. :. T h e n
j 1 i 1

9J1-9,31' is  o f  measure zero w ith  respect to  dp. It is sufficient to
introduce on  9Y: a structure of C°-manifold o f p  dimensions by the
fam ily {(U:, ,  where 0 : i s  the restriction of 0 , o n  U : .  Let

dp) denote the Hilbert space o f all square-integrable functions
on 931 with respect to dg.

Now le t  d p  b e  a  continuous locally euclid ian measure on a

separable C°-manifold 9,J1 such  that the C°-structure i s  compatible

with dg in the sence above, that is, there exists a p-fam ily {(U,
for which every U, i s  a co-ordinate neighbourhood and 0, gives the

co-ordinates. (All weights A  are continuous and strictly  positive.)

Then we have the following lemma. Denote .1,2 (9N, dg) by A.
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Lemma 4. 2. Let T  be a summable operator on Si. T h e n  i t
is expressed by a continuous square-integrable kernel K (m ,m ') as

(4. 13) Tço(m )=-9j1K(m , m ')Ço(m ')dp(m ') (m  TR, ço E R )

and this integral converges absolutely fo r  every m  and ço. More-
over the function K (m ,m ) is integrable on 931 and the trace of
T  is given by

S p (T )  =  93,1K (m , m )d ,a (m ) .

,-1
Pro o f . Let (7 ; be the set of all inner points of U,— U U, and-

pu t ni u u;. Then 931— 9W is of
t=1

j ,  we can find a fam ily {0 t} t), of

that (1 )  each 0 2 i s  defind by

measure zero. Moreover for every
disjoint open subsets of U  su ch

(4.14) (1 < r < P ) ,

where (x1, x2, •••, x p ) is  the co-ordinates in  II; defined by and ak.,
b ;E R , (2 )  denoting the cicsure o f 0 ,  by 6„

=  U  Ok.
k=1

Assemble all such non-empty open sets over all j  and let them be
V,, .172, • • •. Put 931, = U V , th e n  n - n i  is  a ls o  o f measure zero.

i 1

Therefore restricting d12 o n  931,, S l is canonically isomorphic to
d,u). The latter is isomorphic to the direct sum  o f St,

L ,(V „ (1 <  j< 0 0 ) ,  where d1i1 i s  the restriction o f d i t  on V .
Consider S t, as a subspace o f  S i  and let P ,  b e the orthogonal

projection of ‘91 onto St,. T hen T =  i s  a l s o  a  summable

operator on SC, and
Oa

S p (T ) Sp (T ,),
,=2

where the sum is absolutely convergent. In fact, take a basis
for every S I , .  Then

Sp( T )T  =  ( 7  ;

{VII} i< 1  < 0 0



348 Takeshi Hirai

On the other hand, {e/}, / < -  is  a basis of SI. Therefore
—

E (Tço;, soli) I <

and
-

Sp(T )  E ( T , so)
j,1  =1

E(Tso;, ço0 = E  Sp( Ti ).

Put T „= P , T P , .  This i s  an operator o f J1 ,  into A, . Let us
identify every V, w ith  its  image in the co-ordinate space R .  The
following lemma is the main step of the proof of Lemma 4. 2. Let
ZP denote the P-times product of the set of all integers, Z.

Lemma 4. 3. For any  j  and k , T ,„ is ex pressed by  an conti-
nuous kernel K „(x ,y )  ( x  V ,  y E V , )  as

(4.15) T,, go(x) = .0 (P (Y )d ,u k (Y ) (x  EV), soE , q(k)•

M oreover for j =k ,

Sp ( T H ) = K 1 (x , x )dp f (x )

and

K , x )Ic IP.i(x )< E  I (Tsol, soli') I ,v,

w here fçoq1E 1, is  a certain basis of

P ro o f .  Suppose that is  the subset o f RP defined by (4. 14).
Put for 1= (1„ 12, •  , lp )  E

1 1 
çOji ( X )  -       expi2n V —1 / r

x , }
1 /p 1 ( x )  —1-1/N— a', bir—dr

where p ( x )  i s  the continuous and strictly positive function defined
by

d it i (x )  =  P i(x )d x id x ,• • • d x p .

Then {4  I E . P  is  a basis of A , .  Put
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ea =  (T „  ,  0 )  = ço0 •

W e know  that E  led < °°. On the other hand,

le,(x)1<[1 - 1 — m a x   i<
iiI2 1 

E V p i (X )

Therefore

K),(x, y) = j . „ (e,çpii(x)ça, (Y )

converges absolutely an d  uniformly o n  Vi  x V , a n d  hence K J ,  is
continuous. The expression (4. 15) is evident.

If j= k,

K E (x, x) = afil,0 (x )0 ,(x ).

Therefore

K i i (x, x)dp i (x) pall =Sp( TE )

and

K E (x, x)Idg i ( x )<  E  I a'11,1 VI(x)0 , (x) dp i (x )1,1,Ezp v;

<  E  I
E z P

This proves Lemma 4. 3.

L e t  u s  retu rn  to  th e  proof o f  Lemma 4. 2. P u t K '(m , m ')

=K ,,(x (m ), x (m / ) )  i f  mE V, an d  m 'E  V e where x (m )= (x i(m ),
x 2 (m ), • • •, xp(m)) i s  th e  co-ordinates o f  M  E  V , an d  x (m ')  is that
of m'E V ,. T h en  K ' is defined on TI,. x 9)7, and continuous. More-
over for any ÇoE L2(93-ti , dtt),

-
(4.13')T ( m )  =  E  K' (m, m')(9(ne)dit(m'),

i = i  V i

in  th e  sence of the convergence in L2(9 -N i, cl,u). T h e  function K'
can be extended to a  continuous function K  on Tt X U t. In fact, for
any 111,111 1 E n , there exists a  subset M  constructed analogously as
ffti such that m, m' G  T1 . L e t  K "  be the kernel defined analogously
a s  above o n  9..)1 X % .  Then K ' and K "  must be identical almost
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everywhere and therefore they coincide with each other on (M in % )
X minutD. This proves that K ' can be extended on a neighbour-
hood of (m, m') a s  a  continuous function. The extended function K
on o f  K ' is  the kernel looked fo r . K  is square-integrable because

I K (m, m')I 2 c1X m )d m (n e ) E I K ik(x Y) c pk(Y)972><Tt j , k = 1  V  j x V k

E  E  I e , I 2 <co.
j , k = 1 1 , 1 1 E x P

Moreover for any m En,

(4. 16) I K(rn, m') 12 dit(rn')<+ 00.

In fact, we can assume that mE V;  fo r some j. Then

IK(m, m')I 2 cip(m') =  E  I K .0(m, m91 2 4(1'1')
k = 1  V k

-

= E  E eufgoii(m)ç01,(m)

</WE E a,,,j <+ 00 .
k = 1 1 ,1 f ,1 E z P

From (4. 16), w e see  th at the integral (4. 13) converges absolutely
for any mETZ and çoEN.

Now

IK ( N, m) dp(m) I K E (x , x) I dp,(x )
1 = 1  V!

< E  E  ag,1<+ 00 .
1 ,1 / E x l,

Therefore the following integral is absolutely convergent.

m)d,a(m) K „(x, x)d,u,(x)

Sp(T ).
J= 1

Thus we now proved that

S p (T )=  9:11K(m, m)d,u(m). Q.E.D.
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R e m a rk . A n  operator T  on  a H ilbert space E  is  ca lled  of
Hilbert-Schmidt type if

CC

E  Te,I1 2 < +j=1

fo r  a  basis {e;} ,< ;< co o f E , where 'HI denotes th e  norm of E .  As
is well known, the product o f any two operators of Hilbert-Schmidt
type, is  summable.

§5 . Calculation of the characters (2nd step).

To obtain a more explicite formula for the character o f T `, we
must assume that S , and its representation L  fu lfill more stronger
conditions.

A s the readers may have been noticed, the assumption in  §§1, 2,
and 4 that G is simply connected is artificial. This one is  made only
to define well the functions r( g )  on G, i), J ,  and ,u on co . H ere w e
cast off this assumption as follows. Let Z , be the subgroup of Z nS ,
consisting of all elements z  such that L = 1 , .  Then as is easily seen,
T  = lm  for every z E Z1, where St denotes 1 , '( K ) .  Therefore L and
TL may be considered as  representations of the factor groups S 1 /Z1

and G /Z , respectively. Accordingly, their characters r and n  may be
considered as the distributions on these factor groups respectively.
For our pourpose, there exists no essential difference for considering
G/Z , and S i /Z , instead of G and S 1 . Hence in  th is section, we de-
note the factor groups G/Z , and S i /Z , again by G and S, respectively.
Moreover we denominate another notations as well, for instance, S/Z ,
is denoted again by S , and the notations L, TL, r, and n are preserved.
Then Theorem 1 in the preceding section remains valid for this case.

Let Zs, be the center o f S , and Bg the center of the universal
envelopping algebra of I n  this section, we assume that ( i )  S, =S °

Zsi

and S °(D n z ) csics, and (ii) L  is a strongly quasi-simple represen-
tation. By definition, L  is strongly quasi-simple if it verifies that

(1) 2(z)1E ( 2 ( z )  C, z eZ s,),
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(2) d im E (8 )< N d (o 2 ( ô E 0 ) ) ,  where N  is  a constant indepen-
dent of 8,

(3) L a =a ( z ) a  ( a ( z ) E C ,  a E E ` " ,  zEaq).

Then as is easily proved, the character o f L  fulfills that

z r=a(z )r (z 3 0 .

These conditions on S , and L  are stronger than the ones (1 ) and (2)

in Proposition 1.

Lemma 5 . 1 .  Under these assum ptions on S , and L , 7 ( s )  is
essentially  a  locally  sum m able f unction  o n  S ,  an d  th e  multiple
in tegral in the right hand side  of

(5.1)S p (  T ) d n  x ( u - insu) - 1 1 2 ( s ) r( s ) d s  ( i i= S i  u)
K i S ,

is absolutely  convergent.

P ro o f .  Let bo and Wo be as in § 1 . Put / =dim bo and l' =dim[.

Let A d s  denote the restriction on o f  A ds on q. And let  D ( s )
be the coefficient o f t ' ' '  of det(Ads— L+ th ), w here L  is the unit

operator on $'8. Then D ( s ) = D ( m )  i f  s = h m  (h G H', 112 .111').
We know the following two facts due to  Harish-Chandra: (1 )  the

function I W s ) ! - 1 /2 is integrable on any compact subset o f S i  [4 (e),
p . 5 0 4 ], (2 ) W s) P/2 1-(s) is  a function defined at least on the set

o f  all regular elem ents o f  Si, which is bounded on every compact

subset o f S i  [4 (d ) 6 , pp. 129-134, and 4(e), p. 477]. From these two
facts, the assertions of the lemma follow immediately.

Now let tj o , b or, 1), and k-  b e  as in  §1 . bo=b+  bi; is  a Cartan

subalgebra of Let l5=E5, b 2
0 , •••, W; be a maximal set of Cartan

subalgebras of such that each two o f which are not conjugate to
one another under any inner automorphism o f S i. E v ery  N contains

bo' ,  and is  a lso  a Cartan subalgebra of go because dim N=dim

6 )  Note that the correct definition of Cartan subgroups of a semisimple Lie
group is found in p. 556 of "Harish-Chandra, Some results on an invariant integral
on a semisimple Lie algebra, Ann. Math.. 80 (1964), pp. 551-593,"
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(We can choose every N  in  such a manner that N—binfo+wnpo
and Nnp a cN - [7, p. 383] ).

Let A ' ( H ' resp.) be the Cartan subgroup o f S ,  (G  resp.) cor-
responding to N . Then clearly 1 1 'n s 1 =  A '.  Moreover H 1 c S  because
any hE H i must commutes w ith all elem ents o f  N. Let 2T0 (14;
resp.) be the center of A ' (H ' resp.) Then I -Rrl S1= Hi;fl A' =1 -In ivo .
Put Z i =  H n 2 t .  Since Z i contains the connected component of the
identity element e  in  H  and Z n D ,  the indices p ,= [Hi; : Z '] and
q,= [A  : Z j] are finite, where [I-», : Z j] denotes the number of the

elements o f  HUZi. 7 ) I f  G  is complex semisimple, S  and Ht's are

connected [4 (e ), p. 482] , and moreover k = 1 .  Therefore S, =S and

A '  A'o = H' = I2T, hence p ,=q 1 =1 . Let SA' be the set of all elements
o f  S ,  which can be expressed as s - lh s  ( s e S „ he Ai n G R ) .  Then
S  n s A i =  i f  i # j ,  and S, n GR =US A i. And for any g e G , g 'S A igj=1
c

For every j  ( l <  j < k ) ,  let clih be a Haar measure on H ' and

let d''S  be a Haar measure on 5\ 1 =21.6\S1 such that

(5. 2) (s) d s Q (hs)d 'h  (çoeC o (S 0 ) ,
A

w h ere  = A 6 s. Apply (3. 5) to every term of the right hand side of

X  (W - 1  nS W ) ( .3 ) 7 ( S ) d S X  (11 - i n S V ) - 1 1 2  CO 2 GO CIS.
J=1 SA ,

Then (5. 1) becomes

(5. 3) Sp( 7'.;)
1 —E drz x (u 'n s - ll is u ) - '1 2 (h ) r(h ) I I (h ) Id 'h ,

1 =1  W  •  K 1N -S.' A'

where tv , is  the order of the Weyl group WAi o f  {S,, A '}  , becouse

(3- 1 / 2 ( s ' h s ) r ( s - lh s)-- ---r i 2 (h )r (h ) .

To rewrite (5. 3), we need the following lemma.

7 )  See [4 (e ), p. 481] and recall that K /D n Z  is compact.
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Lemma 5.2. I f  s S  f l  G R , the m a p p i n g n n ' n'sns - 1

( n N ' )  is one-to-one regular mapping o f N ' onto  itself . And

(5. 4) dn'= Idet (Ada' s—ln') I dn
= (s)1 11 2 1 I;o (s)1 - 1 1 2 ,g1 1 2 (s)dn,

where Ada's denotes the restriction of Ad s on n' and 1, , denotes
the identity  operator on n'.

Pro o f . A s  s  i s  an regular element of G , it is contained in a
Cartan subgroup 0  of G . Let 6, be the Lie algebra o f 0 ,  then its
complexification b i s  a Cartan subalgebra of g. As is easily seen,
6 D V. Therefore b c and hence Ad h(n ') C u ' for every hE 6. For
every root a  of {g, b} , let ea b e  a non-zero element of g such that
[h , ea ] =a(h )e a  ( h E - b ) .  Let R  be the set of all roots such that
ecc n'. Then n '= E  Cea . Let 0 be the conjugation of g  associated

a e R

with the real form g o . For a root a , let Oa be the root defined by

(Oa) (h ) = a(O h) (h  E 5).

Then R  i s  invariant under 0 because n' is  invariant under O. A n d
there ex ists a constant va  su c h  th a t  0ea =r a e g a  f o r  every root a.

Ir .! = 1  i f  Oa = a. Therefore E  eOE E  111 n go if and  o n ly  if
aER

rocY«=Yoo,(aE R ) .  Since the exponential mapping of no' is one-to-one
and onto N',

exp(E y oc e,,) N '
cr l?

if and only if va -y a = y o„ for every ae  R.

Let n, be the center o f n '.  Then there exists a non-empty sub-
set R , of R  such that

rii Cea
o te R ,

because i f  a ,  a ', and a +  a ' are roots of {g, f)}, [ e a , ea r] -  N a a , ea + a ,

where N a a ,  i s  a non-zero constant. Let n 2 b e  the inverse image of
the center of the quotient n'/n i  b y  the natural mapping of n ' onto
111n 1 . Then there exists a  subset R , o f R  such that RI fl R2=0
and
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n2 = E  C e .
a ER1UR2

Inductively, le t rth be the inverse image of the center o f n'in k_i  by

the natural mapping of III  onto u 7 n ,_ ,.  And let R , be a  subset of
R  such that R kfl (R, UR2U • • • U R k - 1 )  = 0  and

k=  E  E C e .
j=1 cteRj

Suppose that 1171-4_, is  abelian, then R = R 1U R 2 U  • • • U  R . L e t  u s
line up all roots in  R  in  such a  way that any cy .R , is placed in
the left of any a '  E R ,  if  i > j .  Fix one of such arrangement c ,  a z

• • •, a , and put

n(y ) = exp ( . . y,e a )

where y =  ( y „  y 2 ,  • • • ,  yp). I f  n (Y ")=n (Y )a(Y ')  and y '=  (y;, )4, •••
y ;) , then for l <  j< p ,

y i; =Y i+Y :i+ Pi(Yi, Y2, .•.,

where P , is a polynomial of ( 2 j - 2 )  variables [8, p. 82-83].

Since sE 11, there exist numbers a, such that Ad s (e ,)  = a, ea ,.
Then putting n = n (y )  and n' — n(y '), n ' = n'sns - 1  is expressed as

n(y ') =n(—  y )n(aiy i, a 2 y 2 , • •., apyp).
Therefore

Y ;= (ai — 1)yi
3, = (a, — 1 )y 2 +  P 311; ad i)

Y p= (ap - 1)Y p+ P p ( — y i, •••, •••, ap-iY.6-1)•

Since 0  is identity on go an d  G  is  a  connected Lie group with
Lie algebra go,

0 (Ad g (x )) = Ad g  (ex)

for any g E  G, x G g .  Especially 0(Ad s (e a ))  = Ad s (Bea )  and therefore
at = a, i f  a , = O a i . Let R ' be the set of all . f t R  such that 0a=a
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and let R "  be the set of all a E R  such that a < O a .  If aE R ' , fix a
number CIŒ such that 0; 2 =  .  Then oVy a  =y o,  and hence dc,ya=day a ,

i.e., da y a  is real. Moreover the number a , is real if  a i E R /
Introduce new variables z1, z2, •••, z ,  as fo llow s. Put

zi =cra , y ,  if  a i E R '  , z 1 = y„, if
and

z i  =  ( r a 1 ) -1 Ycci = Y a i if  0 ice,

Then the above transformation y  y '  is rewritten as

z 1 — (a , -1 )z ,

and
z';=(a1 -1 )z i4 -P:(z 1 , z „ ( 2 < i < P ) ,

where P :  is a polynomial of the variables z1, 2 2 ,  •  ' •  ,  z1_1. Put

z i =  1 + V —1 vi Vi E R )

fo r every tv, R " .  L e t u s  consider th e  exterior algebra over C
generated by dE,, d121 ,  and dz , (a, E R " ,  , E R ') .  Then we see easily

that

di, A dz  A •••Adz',, = n (a ;  — 1) dz i  A d z2 A ••• Adz5=1
hence

A (d z7 \d ;) A dz;----  ± n ( a , - 1 )  A (dz i A d z ) A d z .
a iE R I / a iE R , :7=1 a iE R , aiER,

This proves that the Jacobian of the transformation

, 72i ,  z i ) — > z ip  (ai E  R ", a; E R ')
P P

of these p  variables is equal to -± II (a, — 1) ( II (a i — I) is real).
P i=1 i=1

Since s  is regu lar, fl (a i - 1 )  0  an d  therefore th e  mapping
j =1

n--->n' is one-to-one regular mapping of N ' onto itself. And moreover

dn' = !II (a,— l ) 1dn.
:7=1

On the other hand, it is clear that
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II (a — 1)=det(A drt , s -
:7= 1

Moreover

( . 3 )  = , D (s)( W s ) ) - 1 =I I ( a 3 - 1 ) ( a 1' - 1 ) .
j=1 j=1

Therefore the lemma is now completely proved.
Applying this lemma to (5. 3), we obtain

(5.5) Sp( T1)
k

 '

Ç duÇ dn x(u-1n-1s-1lisnu)ID(h)D4(h)1112r(h)d'h
J = I  W j  K t

(g— ,,ts , a= F, i u ).

The measures ds, dn, and du have been taken in  such a fashion
that for any çoECo(G),

ç,a(g)dg=- dn (snu)dsG 
IV S i

dn ço(nsu W ( s ) d s .
IV' S i

Let dig' be an invariant measure on S2i = A ;\G  such that for ÇoE C ,(G ),

cp(g)d g A !(h g) d'h
G

Then it follows from (5. 2) that for any V reC o (520,

ij ( g ) d 'g = d n  Ik (sn u )d i -S  ( s .  =i t s , Ei u ).

Therefore (5. 5) becomes

(5.6)S p ( T )  — 1d i x (g 'h g )d (h )d 'h
j=1 74), 11'

where a(h)---1D(h) W h )1 1 1 2 1-(h) and g = A 4  for every J.
Let chi. ; b e  an invariant measure on e i= Z i \G  such that

ço(g)dg j e j c/vi ( k )  v (hg)dih
G

=q ;A i dv .,(g )  g 9 (h g )d ill.46

=1).7i i ch);(g) g ( h g ) d 'h  ( g — Z ig ,ç 9 E C 0 (G)).114
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Then for any IkE C0(..Q2), considering it a s  a  function on E ' a t  the
same time,

(5.7)* ( k ) d ,g — q T I S E ,* ( k ) d v ,( ,4 ,- ) .

Let be an invariant measure on X '  Ht,\G which fulfills

yo(g)dg= x , d1g L .o (h g )d ih  (k=114 -, (pEC,(G)).
G

Then for any *E  Co ( X ') ,

(5.8), k ( g ) d i -g —pri,*(k )d,,(k ).

It follows from (5. 7) and (5. 8) that

S p (T ) —   x(g-'12g)0-(h)clih,
7-0 W j q ,  x , A ,

where in the j-th term, kr
Apply Lemma 3. 3 to the above integral, then we obtain that

Sp( TD — P' x (g ) 1 D (g )1 - 1  { E  6(1,4)1 d g,w ,q, G o E G 1 1 i h A i

where a s  in  Lemma 3. 3, hg  i s  a n  element o f some H ' such that
g=gV h g g o f o r  some goEG  and the last summation runs over all
(.0E WH i such that kE ,4 1 , for every j.

Thus we arrived at the following theorem.

Theorem 2 .  Suppose that S, and L fulf ill the conditions stated
at  the beginning o f  th is  section. Let a n d  T C  be the characters
o f L  and TL respectively . Then fo r  any  gEGR,

(5.9)n ( g ) = 1 D ( g ) I - 1 1 2 {   E I W k )1 1 1 2 z- Chn}
,=1

k p
— E  E 1-(k )  

i i w i g ;I I  72.(k)1 - " 2 1120,(11) —11
a E R i

where R . the set of all positive roots (w ith respect to some
order) o f  {g, WI which are not identically  zero on
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P ro o f .  The 1st part of (5. 9) has been already proved. Let
us prove the 2nd pa rt. L et Q;  b e  the set of a l l  positive roots of
{g, bl} which are identically zero on I f  h e  11",

D ( h ) =  n  (72a (h) — 1)(7/ a (h)" — 1),
c c E Q IU R ,

I h ( h ) =  f i  (7,,,(h) — 1) (77.(h)" — 1).aGQ,
Hence

I D(h)1 - " 2 I D ( h )  I 1 '2 =  n 17).(h) - - 1 /2 I va(h) —11 }-'. Q.E.D.
aeR,

N ote. Let k J  (A0 be the normalizer of b i in G (in S 1 ). Then
W A ]=X i/A '„ and WH ,= k / H 6 .  The order o f WA i i s  w;  by

definition. The order of the subgroup W'=X.i1/6/HL -=- 2- 1-1/Z l o f WHi

is  wi g 3 . And the order o f .H-7,-47 is  p, times of that o f  WHi/ W'.

R em ark 1. Let B  be the support in S , of the distribution r.

Then that of i t  is contained in the closure o f U g 'B g .
gE G

Rem ark 2. Any two of the Cartan subgroups A ', A ', • • • , A ' of
S , are not conjugate to each other by any inner automorphism of S i .
But in the set of the Cartan subgroups H ', H ', •-•, o f G  there
may exist the ones which are conjugate to each other by inner auto-
morphisms of G . Suppose that H 1 , H ', •••, H d are conjugate to each
other, and for j >  d ,  H ' is not conjugate to H l .  Then G IP  

= G[12 - =  • • •

=GH ,  and  GH, n GH' = 0 fo r j>  d. Therefore i f  g G G ip, the first
summation in (5. 9) runs over at most on j =1, 2, •••, d  essentially.

Rem ark 3. I f  S  is  the product of its center and its connected
component o f e ,  then M c 1 -14 for any j. Therefore q, = 1 .  In par-
ticular, i f  G  is  a complex semisimple Lie group, then P ,  =q, =1, and
h * I r  for an y  he H, Li  and (DE  W 1 1  different from the identity
element (in this case, k =1, hence j =1).

Rem ark 4. For the universal covering group o f  S L (n , R)
(n> 3), we can find some examples for which p,>1  and q ,> 1  for
some j.
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Note. The conditions put on S , and L  at the beginning of this
section are sufficient for the deduction of the formula (5 . 9 ) but are
not necessarily indispensable. In fact, the essential conditions on S,
and L  for the deduction of the formula (5 . 9 ) are the followings.

( I ) S°(Dnz)cs i c s  and Lemma 3.2 is true for S , and any
o f its  Cartan subgroups, where we employ the same definition of
Cartan subgroup as in the case where S , is connected.

(II) L  fulfills that
(1) L,..,=2(z)1 E  ( R ( z ) E C ,  z E E  FIZ),
(2) dim E (a)<N d(a) 2 ( 8 E c o ) , where N  i s  a constan t in-

dependent of 8,
( 3 )  the character z- of L  is essentially a  function on Si which

is locally summable with respect to ds.
The connectedness o f G  i s  not indispensable for the deduction

of the formula (5. 9). In fact, let G be the group consisting of all
real n X n  matrices whose determinant is equal to 1  or — 1. For this
group, the form ula (5 . 9 ) is true i f  L  verifies the condition (II)
above. Because G has an analogous decomposition as that of Iwasawa
and Lemma 3. 3 is true for G, and any S , fulfills the condition (I)
above.

Appendix. We keep to the notations of §§1 and 2. Let T  be
a  representation of a connected semisimple Lie group G on a Banach
sp a ce  S . T  is called K-finite if  dim A (g )<0 .0  for all g E f l.

Lem m a. Suppose th at T  is  irre d u c ib le . T h e n  T  is  q u as i-
sim ple if and only  i f  T  is K-finite.

P ro o f .  T he necessity of the condition is  c lea r from  [4(b),
Theorem 4 ] .  Therefore it rests only to prove the sufficiency of the
condition.

(a )  L e t  u s  first prove that T  is permissible. Let a be the set
of all bounded operators A  which commute with all T g  ( g E G ) .  It
follows from the irreducibility o f T  that if A E t  an d  A * 0 ,  A  is
invertible and A - 1  &W. Moreover a is  a division algebra over C  in
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the natural fashion. Take one gE12 such that ,N ( .0 )*  {O}. Every
AEW makes S (2 )  invariant and A---).Al,gt(2) is a field-isomorphism
o f a into the set of a ll transformations on ,9{ ( .0 ) .  The latter is  of

finite dimensions over C .  Therefore a is also finite-dimensional over
C .  Hence a is isomorphic to C . T h is  m eans that any A E ÇA  is  a

scalar multiple of the unit operator 1 m . Thus T. i s  a scalar multiple

o f 1A- for any zE Z.
( b )  Replacing G  by its universal covering group i f  necessary,

we may assume that G  i s  simply connected. Let r(u ) (u  E K ) be as

in § 1 .  And let /2 be a linear functional on co such that T.,=eg(r(0 )1,41-
( z e D n z ) .  Then T.' =e ) ) T . may be considered as a represen-
tation o f K *= K / D n Z . Let Se be the set of all equivalent classes

o f  finite-dimensional irreducible representations o f  K*. For any
.0* E ,52* , let A (2 * ) be the analogous subspace as S t (2 ) .  Let d(2*)

be the dimension o f 2 *  and xz*(u*) (u *EK *) the character of 2*.
Define

Pz* = d(2*)L *X 
( u * )  T'* du*.

This is  a continuous projection of ,gt onto Jt(2*).
As is well known, St -  (see §2) is invariant under any T , (gE G )

and any T r  (x e U (g ) ) .  And it is dense in J-1. [1 ] .  Therefore Pz*St -

is contained in  i t -  and dense in ,N ( 2 * ) .  Hence Pz*1( - - ,N (2 * )
and S t (2 * )c i l - . Let Slo be the algebraic sum of a l l  4{(2 ) E S2) .
Then this is also the algebraic sum o f a ll S t(2 *) (2 *E s2*). There-
fore So c cgt- .

Jto i s  invariant under any Tx  (x  E  U (g )) . And the representation
x  T „  o f  U (q) on Ao is algebraically irreducible. In fact, it can be
easily shown that Theorem 1 6  in  [9 , p. 545] is  a lso  va lid  fo r our
case, although K  is not necessarily compact. Therefore we see as in
(a ) that

(1) L v = a ( x ) v  ( z e 8 ,  v e 9 { 0 )

where a  is  a homomorphism of 3 into C.
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( c )  Let us introduce in A -  the topology defined in [1, p. 115].
Then A -  becomes Fréchet space. T , (gE G ) defines a representation
o f G on A -  and every element o f  A -  is differentiable under this
representation [1, p. 1 1 5 1 . C o n s id e r  th e  representation u*
(u*E K *) on A -  and apply Lemma 4 o f [4 (f)] on  it. Then we see
that A , is  dense in St - . On the other hand, Tx  ( x  U ( g ) )  are all
continuous in cgl - . Therefore it follows from (1) that

(2) T r y  a ( z ) V  ( z E g ,  v E S - ).

This completes the proof of the sufficiency of the condition. Q.E.D.

N o te . L e t  T  be not necessarily irreducible. Suppcse that T is
permissible and K-finite. Then i f  T  h as  the property (1), it has
also  the property (2) and vice versa. In fact, (b )  and (c )  in the

above prcof are also valid for this case without any modification.
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