Branching Markov processes III

By
Nobuyuki Ikeda, Masao Nagasawa and Shinzo Watanabe

(Received October 2, 1968)

The numbering of chapters in this paper continues the numbering in the first two parts, pp. 233-278 and pp. 365-410, volume 8 of this journal. Reference such as [2] are to the list at the end of the first part.

Contents
Part III
Chapter IV Branching semi-groups
§4.1 Fundamental system, M-equation and S-equation
§4.2 Construction of branching semi-group through M-equation
§4.3 S-equation
§4.4 Construction of a branching semi-group through S-equation
§4.5 Backward and forward equations
§4. 6 Number of particles and related equations
Chapter V Transformations of branching Markov processes
§5.1 Multiplicative functionals of branching type
§5.2 Examples
§5.3 Construction of a multiplicative functional of branching type
§5.4 Transformation of drift
§5.5 Another transformation
Part I (pp. 233-278 of volume 8)
Chapter 0 Preliminaries
§0.1 Markov processes

N. Ikeda, M. Nagasawa, S. Watanabe

§0.2 Symmetric product spaces and their direct sum

Chapter 1 Branching Markov processes

§1.1 Definitions
§1.2 Fundamental theorem
§1. 3 M -equation and S-equation

Part II (pp. 365-410 of volume 8)

Chapter II Construction of a Markov process by piecing out
§2.1 Construction
§2.2 Proof of theorems
Chapter III Construction of branching Markov processes
§3.1 Direct products and symmetric direct products of a Markov process
§3.2 Direct sum of X_{n}^{*} and \widetilde{X}_{n}
§3.3 Construction of an instantaneous distribution
§3.4 Construction of an (X^{0}, π)-branching Markov process
§3.5 Examples

IV. Branching semi-groups

The definition of a branching Markov process was introduced in Chapter I: it is a Markov process on $\widehat{\boldsymbol{S}}$ whose semi-group satisfies (1.2). We shall say that non-negative contraction semi-group \boldsymbol{T}_{t} on $\boldsymbol{B}(\widehat{\boldsymbol{S}})$ with the property (1.2) has the branching property or, simply, that it is a branching semi-group. Therefore, the study of branching processes is, as a problem in analysis, the study of branching semi-groups. In §1.3 we have introduced two fundamental equations for a branching semi-group; M-equation and S-equation. The M equation is a usual renewal type integral equation for a semi-group (the so called Desiré-Andrés equation or the first passage time relation applied to the first splitting time τ). When we look at the M-equation on S only, then, by virtue of the branching property, we have non-linear integral equation, which we have called the S-equation.

In this chapter we shall give these equations independent of the branching Markov processes only in terms of the fundamental system (T_{0}^{t}, K, π): T_{t}^{0} and K are defined through (4.2) and (4.3) from a Markov process X^{0} on S, and π is a substochastic kernel on $S \times \boldsymbol{S}$ such that $\pi(x, S)=0$ for every $x \in S$. Given an M-equation, we shall construct its solutions according to Moyal [33] and show that the minimal solution of the M-equation defines a branching semi-group. This will give another analytical method of constructing an (X^{0}, π)branching Markov process from a given X^{0} and π. Also, one can construct an (X^{0}, π)-branching Markov process through the solutions of the S-equation: we shall first construct the solutions of the S equation by the usual method of successive approximation and then define a branching semi-group from these solutions. In §4.5, we shall discuss the theory of infinitesimal generators of a branching semi-group under certain regularity assumptions on the fundamental system. As a consequence, we shall have two types of differential equations, the backward equation, which is a semi-linear evolution equation, and the forward equation, which is a system of linear evolution equations involving functional derivatives. In §4.6, the equations related to the number of particles will be discussed.

§4. 1. Fundamental system, M-equation and S-equation

Let $X^{0}=\left\{x_{t}^{0}, P_{x}^{0}, \mathscr{B}_{t}^{0}, \zeta^{0}\right\}$ be a right continuous strong Markov process on $S \cup\{\Delta\}$, with Δ as the terminal point such that $\overline{\mathcal{G}}_{t+0}^{0}=\mathscr{B}_{t}^{0}$. Throughout this chapter we assume that (i)

$$
\begin{equation*}
P_{x}^{0}\left[x_{\zeta^{0}}^{0} \text { exists, } \zeta^{0}<\infty\right]=P_{x}^{0}\left[\zeta^{0}<\infty\right] \tag{4.1}
\end{equation*}
$$

for every x and
(ii) $\quad P_{x}^{0}\left[\zeta^{0}=s\right]=0 \quad$ for every $x \in S$ and $s \geq 0$.

Define a semi-group T_{t}^{0} on $\boldsymbol{B}(S)$ and a kernel $K(x ; d t d y)$ on $S \times([0, \infty) \times S)$ by

$$
\begin{equation*}
T_{t}^{0} f(x)=E_{x}^{0}\left[f\left(x_{t}^{0}\right) ; t<\zeta^{0}\right] \tag{4.2}
\end{equation*}
$$

$$
\begin{equation*}
K(x ; d t d y)=P_{x}^{0}\left[\zeta^{0} \in d t, x_{5^{0}}^{0} \in d y\right] . \tag{4.3}
\end{equation*}
$$

Then we have clearly

$$
\begin{align*}
& \int_{0}^{t} \int_{s} K(x ; d r d y) f(y)+T_{t}^{0}\left[\int_{0}^{s} \int_{s} K(\cdot ; d r d y) f(y)\right] \tag{4.4}\\
= & \int_{0}^{t+s} \int_{s} K(x ; d r d y) f(y)
\end{align*}
$$

and

$$
\begin{equation*}
T_{t}^{0} 1(x)+\int_{0}^{t} \int_{s} K(x ; d r d y)=1 \tag{4.5}
\end{equation*}
$$

Let $\pi(x, d \boldsymbol{y})$ be a substochastic kernel ${ }^{1)}$ on $S \times S$ such that $\pi(x, S)=0$ for every x.

Definition 4.1. We shall call $\left(T_{t}^{0}, K, \pi\right)$ a fundamental system (defined by X^{0} and π). When this system is defined by a branching Markov process \boldsymbol{X}, i.e., when X^{0} is the non-branching part ${ }^{2)}$ of \boldsymbol{X} and π is the branching law ${ }^{3)}$ of \boldsymbol{X}, we shall call (T_{t}^{0}, K, π) the fundamental system of the branching Markov process \boldsymbol{X}.

A class of fundamental systems we shall consider quite often in the future is the following: let $X=\left\{x_{t}, P_{x}, \mathscr{B}_{t}\right\}$ be a conservative right continuous strong Markov process on S such that $\overline{\mathcal{B}}_{t+0}=\mathscr{B}_{t}$ and T_{t} be its semi-group; $T_{t} f(x)=E_{x}\left[f\left(x_{t}\right)\right], f \in \boldsymbol{B}(S)$. Let k be a non-negative measurable function and $X^{0}=\left\{x_{t}^{0}, P_{x}^{0}, \zeta^{0}\right\}$ be $e^{-\int_{0}^{t_{k}\left(x_{s}\right) d s} .}$ subprocess of X, (cf. Definition 0.8).

Definition 4.2. When the process X^{0} which defines $\left(T_{t}^{0}, K\right)$ is given as above we shall call $\left(T_{t}^{0}, K, \pi\right)$ the fundamental system determined by $[X, k, \pi]$.

When (T_{t}^{0}, K, π) is determined by $[X, k, \pi]$, then T_{t}^{0} and K are given by

[^0]\[

$$
\begin{align*}
& T_{t}^{0} f(x)=E_{x}\left[e^{-\int_{0}^{t_{k\left(x_{s}\right)} d s}} f\left(x_{t}\right)\right] \tag{4.6}\\
& \int_{0}^{t} \int^{0} K(x ; d s d y) f(y)=E_{x}\left[\int_{0}^{t} e^{-\int_{0}^{s} s_{k\left(x_{y}\right) d u}} k\left(x_{s}\right) f\left(x_{s}\right) d s\right] \\
= & \int_{0}^{t} T_{s}^{0}(k f)(x) d s .
\end{align*}
$$
\]

(cf. [37]).
Given a fundamental system, we shall define kernels $\boldsymbol{T}_{t}^{0}(\boldsymbol{x}, d \boldsymbol{y})$ and $\psi(\boldsymbol{x} ; d t d \boldsymbol{y}), \boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{S}, t \in[0, \infty)$, by

$$
\begin{equation*}
\left.\boldsymbol{T}_{t}^{0} \widehat{f(x)}\left(\equiv \int_{\hat{S}} \boldsymbol{T}_{t}^{0}(\boldsymbol{x}, d \boldsymbol{y}) \widehat{f(} \boldsymbol{y}\right)\right)=\widehat{T_{t}^{0} f(\boldsymbol{x})}, \quad f \in \boldsymbol{C}^{*}(S)^{+} \tag{4.8}
\end{equation*}
$$

and

$$
\begin{align*}
& \int_{0}^{t} \int_{\hat{s}} \psi(\boldsymbol{x} ; d s d \boldsymbol{y}) \widehat{f(s, y)} \tag{4.9}\\
= & \int_{0}^{t}\left\langle T_{s}^{0} f(s, \cdot) \mid \int_{s} K(\cdot ; d s d z) F(z ; f(s, \cdot))\right\rangle(\boldsymbol{x}),{ }^{4)} \\
& \quad f \in \boldsymbol{C}^{*}([0, \infty) \times S)^{+},
\end{align*}
$$

where we put

$$
\begin{equation*}
F(x ; g)=\int_{\widehat{s}} \pi(x, d y) \widehat{g}(y), \quad g \in \overline{\boldsymbol{B}^{*}(S)} . \tag{4.10}
\end{equation*}
$$

\boldsymbol{T}_{t}^{0} and ψ are well defined by virtue of Lemma 0.3 . It is clear that \boldsymbol{T}_{t}^{0} defines, for each $n=1,2, \cdots$, a semi-group on $\boldsymbol{B}\left(S^{n}\right)$.

Theoren 4.1. When $\left(T_{t}^{0}, K, \pi\right)$ is the fundamental system of a branching Markov process $\boldsymbol{X}^{5)} \boldsymbol{T}_{t}^{0}$ and ψ coincide with \boldsymbol{T}_{t}^{0} and ψ defined by

$$
\begin{aligned}
& \boldsymbol{T}_{t}^{0} f(\boldsymbol{x})=\boldsymbol{E}_{\boldsymbol{x}}\left[f\left(\boldsymbol{X}_{t}\right) ; t<\tau\right] \quad \text { and } \\
& \psi(\boldsymbol{x} ; d s d \boldsymbol{y})=\boldsymbol{P}_{\boldsymbol{x}}\left[\tau \in d s, \boldsymbol{X}_{\tau} \in d \boldsymbol{y}\right] .
\end{aligned}
$$

Proof. Looking at the relation

$$
\boldsymbol{P}_{x}\left[\tau \leq t, \boldsymbol{X}_{\tau} \in d \boldsymbol{y}\right]=\int_{0}^{t} \int_{s} K(x ; d s d z) \pi(z, d \boldsymbol{y})
$$

[^1]We remark also that $T_{s}^{n} f(s, \cdot)(x)=\int_{s} f(s, y) T_{s}^{n}(x, d y)$.
5) We assume that \boldsymbol{X} possesses the branching law.
which is a direct consequence of the definition of the branching law, the assertion follows at once from the fact that \boldsymbol{X} has the property B. III by Theorem 1.3.

Lemma 4.1. For a given fundamental system $\left(T_{t}^{0}, K, \pi\right)$ the above \boldsymbol{T}_{t}^{0} and ψ satisfy

$$
\begin{equation*}
\boldsymbol{T}_{t}^{0} 1(\boldsymbol{x})+\psi(\boldsymbol{x} ;[0, t] \times \boldsymbol{S}) \leq 1 \tag{4.11}
\end{equation*}
$$

and

$$
\begin{align*}
& \int_{0}^{t} \int_{S} \psi(\boldsymbol{x} ; d r d \boldsymbol{y}) f(\boldsymbol{y})+\boldsymbol{T}_{t}^{0}\left[\int_{0}^{s} \int_{S} \psi(\cdot ; d r d \boldsymbol{y}) f(\boldsymbol{y})\right](\boldsymbol{x}) \tag{4.12}\\
= & \int_{0}^{t+s} \int_{S} \psi(\boldsymbol{x} ; d r d \boldsymbol{y}) f(\boldsymbol{y}), \quad f \in \boldsymbol{B}(\boldsymbol{S}) .
\end{align*}
$$

Proof. Since $F(x ; 1) \leq 1$ for every $x \in S$,

$$
\psi(\boldsymbol{x} ;[0, t] \times \boldsymbol{S}) \leq \int_{0}^{t}\left\langle T_{s}^{0} 1 \mid \int_{s} K(\cdot ; d r d z)\right\rangle(\boldsymbol{x}) .
$$

But

$$
T_{t}^{0} 1(x)+\int_{0}^{t} \int_{s} K(x ; d r d z) \equiv 1
$$

and hence

$$
\int_{S} K(x ; d r d z)=-d_{r}\left(T_{r}^{0} 1(x)\right)
$$

Therefore

$$
\begin{aligned}
& \int_{0}^{t}\left\langle T_{t}^{0} 1 \mid \int_{s} K(\cdot ; d r d z)\right\rangle=\int_{0}^{t}\left\langle T_{r}^{0} 1 \mid-d_{r}\left(T_{r}^{0} 1\right)\right\rangle \\
= & \int_{0}^{t}-d_{r}\left(\widehat{T_{r}^{0}} 1\right)=1-\widehat{T_{t}^{0}} 1=1-T_{t}^{0} 1,
\end{aligned}
$$

which proves (4.11). Next we have

$$
\begin{gathered}
\int_{0}^{t+s} \int_{S} \psi(\boldsymbol{x} ; d r d \boldsymbol{y}) \hat{g}(\boldsymbol{y})=\int_{0}^{t} \int_{s} \psi(\boldsymbol{x} ; d r d \boldsymbol{y}) \hat{g}(\boldsymbol{y}) \\
+\int_{t}^{t+s}\left\langle T_{r}^{0} g \mid \int_{s} K(\cdot ; d r d z) F(z ; g)\right\rangle(\boldsymbol{x}),
\end{gathered}
$$

and by (4.4) the second term of the right hand side is equal to

$$
\begin{aligned}
& \int_{0}^{s}\left\langle T_{r+t}^{0} g \mid \int_{s} K(\cdot ; d r+t, d z) F(z ; g)\right\rangle(\boldsymbol{x}) \\
= & \int_{0}^{s}\left\langle T_{t}^{0} T_{r}^{0} g \mid \int_{s} T_{t}^{0} K(\cdot ; d r d z) F(z ; g)\right\rangle(\boldsymbol{x})
\end{aligned}
$$

$$
\begin{aligned}
& =\boldsymbol{T}_{t}^{0} \int_{0}^{s}\left\langle T_{r}^{0} g \mid \int_{s} K(\cdot ; d r d z) F(z ; g)\right\rangle(\boldsymbol{x})^{6)} \\
& =\boldsymbol{T}_{t}^{0}\left[\int_{0}^{s} \int_{s} \psi(\cdot ; d r d \boldsymbol{y}) \hat{g}(\boldsymbol{y})\right](\boldsymbol{x}) .
\end{aligned}
$$

This proves (4.12) if f is of the form $\hat{g}, g \in \boldsymbol{C}^{*}(S)$. By virtue of Lemma 0.2 , (4.12) holds for every $f \in \boldsymbol{B}(\boldsymbol{S})$.

Example 4.1. When $S=\{a\}$, (cf. Examples 0.1 and 0.3), $f \in \boldsymbol{B}^{*}(S)^{+}$is given by a number f such that $0 \leq f<1$. Then $T_{t}^{0} f=e^{-c t} f$, where $0 \leq c<\infty$, and $K(d t) f=c e^{-c t} f d t$. Now $S \simeq \boldsymbol{Z}^{+}$ $=\{0,1,2, \cdots\}$. Let $\pi(1,\{n\})=\pi_{n}, \quad n=0,2,3, \cdots, \quad\left(0 \leq \pi_{n}, \sum_{n=0}^{\infty} \pi_{n} \leq 1\right)$. Then $\boldsymbol{T}_{t}^{0}(n, d \boldsymbol{y})=e^{-c n t} \delta_{\{n\}}(d \boldsymbol{y}), \boldsymbol{y} \in \boldsymbol{S}$, and

$$
\psi(n ; d s d \boldsymbol{y})=c n e^{-c n s} d s \sum_{j \geq n-1}^{\infty} \pi_{j-n+1} \delta_{[j]}(d \boldsymbol{y}) .
$$

Definition 4. 3. Given a fundamental system (T_{t}^{0}, K, π), we construct \boldsymbol{T}_{t}^{0} and ψ by (4.8) and (4.9). For a given $f \in \boldsymbol{B}(\boldsymbol{S})$, consider the following integral equation

$$
\begin{align*}
& u(t, x)=\boldsymbol{T}_{t}^{0} f(\boldsymbol{x})+\int_{0}^{t} \int_{\hat{s}} \psi(\boldsymbol{x} ; d s d \boldsymbol{y}) u(t-s, \boldsymbol{y}), \tag{4.13}\\
& x \in S, t \in[0, \infty)
\end{align*}
$$

call it the M-equation (corresponding to the $\operatorname{system}\left(T_{t}^{0}, K, \pi\right)$). A solution $u(t, x)$ of (4.13) is called a solution of the M-equation with the initial value f.

Theorem 4.2. Let \boldsymbol{X} be a branching Markov process and set $u(t, \boldsymbol{x})=\boldsymbol{T}_{t} f(\boldsymbol{x})=\boldsymbol{E}_{\boldsymbol{x}}\left[f\left(\boldsymbol{X}_{t}\right)\right], f \in \boldsymbol{B}(\boldsymbol{S})$. Then $u(t, \boldsymbol{x})$ is a solution of the M-equation corresponding to the system $\left(T_{t}^{0}, K, \pi\right)$ of the process \boldsymbol{X} with the initial value f.

Proof. By the strong Markov property ${ }^{7 \text {) }}$ applied to the first
6) It is easy to see that $T_{i}\langle f \mid g\rangle=\left\langle T_{i}^{i} f \mid T_{i}^{i} g\right\rangle$; in fact

$$
\begin{aligned}
& \left.\boldsymbol{T}_{t}^{0}\langle f \mid g\rangle=\lim _{\epsilon \rightarrow 0} \boldsymbol{T}_{i}\{(\widehat{f+\epsilon g}-\widehat{f}) / \epsilon\}=\lim _{\epsilon \rightarrow 0}\left[\widehat{T_{t}^{0}(f+\epsilon g}\right)-\widehat{T_{t}^{0} f}\right] / \epsilon \\
= & \lim _{\epsilon \rightarrow 0}\left(\widehat{T_{t}^{0} f+\epsilon T_{i}^{0} g}-\widehat{T_{t}^{0} f}\right) / \epsilon=\left\langle T_{t}^{0} f \mid T_{t}^{0} g\right\rangle \text { by (0.36). }
\end{aligned}
$$

7) It should be remembered that we are always assuming \boldsymbol{X} is strong Markov such that $\overline{\mathcal{B}}_{t+0}=\boldsymbol{\mathcal { B }}_{t}$.
spilitting time τ, we have

$$
\begin{aligned}
u(t, \boldsymbol{x}) & =\boldsymbol{E}_{\boldsymbol{x}}\left[f\left(\boldsymbol{X}_{t}\right)\right]=\boldsymbol{E}_{\boldsymbol{x}}\left[f\left(\boldsymbol{X}_{t}\right) ; t<\tau\right]+\boldsymbol{E}_{\boldsymbol{x}}\left[f\left(\boldsymbol{X}_{t}\right) ; \tau \leqq t\right] \\
& =\boldsymbol{T}_{t}^{0} f(\boldsymbol{x})+\boldsymbol{E}_{\boldsymbol{x}}\left[\left.\boldsymbol{E}_{\boldsymbol{X}_{\tau}}\left[f\left(\boldsymbol{X}_{t-s}\right)\right]\right|_{s=\tau} ; \tau \leq t\right] \\
& =\boldsymbol{T}_{t}^{0} f(\boldsymbol{x})+\int_{0}^{t} \int_{s} \psi(\boldsymbol{x} ; d s d \boldsymbol{y}) u(t-s, \boldsymbol{y})
\end{aligned}
$$

by Theorem 4.1.
Definition 4.4. Given a fundamental system (T_{t}^{0}, K, π) and given $f \in B^{*}(S)$, consider the following integral equation

$$
\begin{align*}
u(t, x) & =T_{t}^{0} f(x)+\int_{0}^{t} \int_{s} K(x ; d s d y) F(y ; u(t-s, \cdot)), \tag{4.14}\\
& x \in S, t \in[0, \infty)
\end{align*}
$$

where $F(x ; u)$ is defined by (4.10). We shall call it S-equation (corresponding to the system $\left(T_{i}^{0}, K, \pi\right)$). A solution $u(t, x)$ of (4.14) such that $|u(t, x)| \leq 1$ is called a solution of the S-equation with the initial value f.

Theorem 4.3. Let \boldsymbol{X} be a branching Markov process and set $u(t, x)=\boldsymbol{T}_{t} \widehat{f}(x)=\boldsymbol{E}_{x}\left[\widehat{f}\left(\boldsymbol{X}_{t}\right)\right], f \in \boldsymbol{C}^{*}(S), x \in S$ then $u(t, x)$ is a solution of the S-equation corresponding to the system $\left(T_{t}^{0}, K, \pi\right)$ of \boldsymbol{X} with the initial value f.

Proof. Since $\left.\boldsymbol{T}_{t} \widehat{f}(\boldsymbol{x})=\left.\widehat{\boldsymbol{T}_{t} \hat{f}}\right|_{s}(\boldsymbol{x})=\widehat{u(t, \cdot}\right)(\boldsymbol{x}) \cdot$ we obtain (4.14) from (4.13) by restricting it on S.
§4. 2. Construction of a branching semi-group through the M equation

First of all we shall give the following
Definition 4.5. A semi-group \boldsymbol{U}_{t} on $\boldsymbol{B}(\boldsymbol{S})$ is called a branching semi-group if it is a non-negative contraction semi-group (i.e. the kernel $\boldsymbol{U}_{t}(\boldsymbol{x}, d \boldsymbol{y})$ of \boldsymbol{U}_{t} is substochastic for every t) with the following property (called the branching property);

$$
\boldsymbol{U}_{t} \widehat{f}(\boldsymbol{x})=\widehat{\left.\boldsymbol{U}_{t} \hat{f}\right|_{s}}(\boldsymbol{x})
$$

Let (T_{t}^{0}, K, π) be a given fundamental system and T_{t}^{0} and ψ be defined through (4.8) and (4.9). Define kernels $\psi^{(n)}(\boldsymbol{x} ; d t d \boldsymbol{y})$ $(n=0,1,2, \cdots)$ on $\boldsymbol{S} \times([0, \infty) \times \boldsymbol{S})$ by $\left.^{8}\right)$

$$
\begin{align*}
& \Phi^{(0)}(\boldsymbol{x} ; t, d \boldsymbol{y})=\delta_{(\boldsymbol{x})}(d \boldsymbol{y}), \tag{4.15}\\
& \Phi^{(1)}(\boldsymbol{x} ; t, d \boldsymbol{y})=\int_{0}^{t} \psi(\boldsymbol{x} ; d s d \boldsymbol{y}),
\end{align*}
$$

and

$$
\mathscr{D}^{(n)}(\boldsymbol{x} ; t, d \boldsymbol{y})=\int_{0}^{t} \int_{S} \psi(\boldsymbol{x} ; d v d \boldsymbol{z}) \mathscr{\Phi}^{(n-1)}(\boldsymbol{z} ; t-v, d \boldsymbol{y}) .
$$

Then

$$
\psi^{(n)}(\boldsymbol{x} ; d t d y)=d_{t} \Phi^{(n)}(\boldsymbol{x} ; t, d \boldsymbol{y}) .
$$

Set for each $n=0,1,2, \cdots$,

$$
\begin{equation*}
\boldsymbol{T}_{t}^{(n)}(\boldsymbol{x}, d \boldsymbol{y})=\int_{0}^{t} \int_{\boldsymbol{s}} \psi^{(n)}(\boldsymbol{x} ; d s d \boldsymbol{z}) \boldsymbol{T}_{t-s}^{0}(\boldsymbol{z}, d \boldsymbol{y}) \cdot \cdot^{9)} \tag{4.16}
\end{equation*}
$$

Lemma 4.2. $\boldsymbol{T}_{t}^{(n)}$ and $\psi^{(n)}$ satisfy the following relations for $f \in \boldsymbol{B}(\boldsymbol{S})^{10)}$ and $0 \leq k \leq n ;$

$$
\begin{equation*}
\mathscr{\Phi}^{(n)}(t) f(\boldsymbol{x})=\int_{0}^{t} \psi^{(n-k)}(d r) \mathscr{D}^{(k)}(t-r) f(\boldsymbol{x}), \tag{4.17}
\end{equation*}
$$

(4.18) $\quad \boldsymbol{T}_{t}^{(n)} f(\boldsymbol{x})=\int_{0}^{t} \psi^{(n-k)}(d r) T_{t-r}^{(k)} f(\boldsymbol{x})$,

$$
\begin{equation*}
\boldsymbol{T}_{v}^{(0)} \boldsymbol{T}_{t-v}^{(n)} f(\boldsymbol{x})=\int_{v}^{t} \psi(d r) \boldsymbol{T}_{t-r}^{(n-1)} f(\boldsymbol{x}) \tag{4.19}
\end{equation*}
$$

$$
\begin{align*}
& \mathscr{D}^{(n)}(t) f(\boldsymbol{x})=\mathscr{D}^{(n)}(s) f(\boldsymbol{x})+\sum_{j=1}^{n} \boldsymbol{T}_{s}^{(n-j)} \mathscr{D}^{(j)}(t-s) f(\boldsymbol{x}), \tag{4.20}\\
& \quad \text { for } 0 \leq s \leq t .
\end{align*}
$$

Proof. (4.17) is the usual formula for iteration of convolutions and can be proved easily. (4.18) follows from (4.16) and (4.17). Now
8) Let $\Phi^{(n)}(\boldsymbol{x} ; t, d \boldsymbol{y})=\int_{0}^{t} \psi^{(n)}(\boldsymbol{x} ; d s d \boldsymbol{y})$. Clearly it is equivalent to give $\psi^{(n)}$ and $\Phi^{(n)}$.
9) Hence it is clear that $\boldsymbol{T}_{t}^{(n)}=\boldsymbol{T}_{t}^{\prime}$ and $\boldsymbol{T}_{t}^{(n)}, n=0,1,2, \cdots$ are non-negative kernels.
10) We write $\boldsymbol{T}_{I^{(n)}} f(\boldsymbol{x})=\int_{S^{\prime}} \boldsymbol{T}_{n^{(i)}}(\boldsymbol{x}, d \boldsymbol{y}) f(\boldsymbol{y}), \mathscr{D}^{(n)}(t) \cdot f(\boldsymbol{x})=\int_{S^{(n)}}(\boldsymbol{x} ; t, d \boldsymbol{y}) f(\boldsymbol{y})$ and $\psi^{(n)}(d t) f(\boldsymbol{x})=\int_{S} \psi^{(n)}(\boldsymbol{x} ; d t d \boldsymbol{y}) f(\boldsymbol{y})$.

$$
\begin{aligned}
\boldsymbol{T}_{v}^{(0)} \boldsymbol{T}_{t-v}^{(n)} f(\boldsymbol{x}) & =\boldsymbol{T}_{v}^{(0)}\left\{\int_{0}^{t-v} \psi(d r) \boldsymbol{T}_{t-v-r}^{(n-1)} f\right\}(\boldsymbol{x}) \\
& =\int_{0}^{t-v} \boldsymbol{T}_{v}^{(0)} \psi(d r) \boldsymbol{T}_{t-v-r}^{(n-1)} f(\boldsymbol{x}),
\end{aligned}
$$

and by (4.12) this is equal to

$$
\int_{0}^{t-v} d_{r} \Phi(r+v) \boldsymbol{T}_{t-r-v}^{(n-1)} f(\boldsymbol{x})=\int_{v}^{t} \psi(d r) T_{t-r}^{(n-1)} f(\boldsymbol{x})
$$

This proves (4.19). For the proof of (4.20), first we note that if $n=1$, (4.20) is just (4.12). Assume that it holds for $n=1, \frac{,}{2}, \cdots, n$; then

$$
\begin{aligned}
& \quad \mathscr{D}^{(n+1)}(t) f(\boldsymbol{x})=\int_{0}^{t} \psi(d r) \Phi^{(n)}(t-r) f(\boldsymbol{x}) \\
& =\int_{0}^{s} \psi(d r) \mathscr{D}^{(n)}(t-r) f(\boldsymbol{x})+\int_{s}^{t} \psi(d r) \mathscr{\Phi}^{(n)}(t-r) f(\boldsymbol{x}) \\
& =\int_{0}^{s} \psi(d r)\left\{\mathscr{D}^{(n)}(s-r) f+\sum_{j=1}^{n} \boldsymbol{T}_{s-r}^{(n-j)} \mathscr{D}^{(j)}(t-s) f\right\}(\boldsymbol{x}) \\
& \quad+\int_{s}^{t} \psi(d r) \mathscr{D}^{(n)}(t-r) f(\boldsymbol{x}) \\
& =\mathscr{D}^{(n+1)}(s) f(\boldsymbol{x})+\sum_{j=1}^{n} \boldsymbol{T}_{s}^{(n-j+1)} \mathscr{D}^{(j)}(t-s) f(\boldsymbol{x}) \\
& \quad+\int_{0}^{t-s} \boldsymbol{T}_{s}^{(0)} \psi(d r) \mathscr{D}^{(n)}(t-r) f(\boldsymbol{x}) \\
& =\mathscr{\Phi}^{(n+1)}(s) f(\boldsymbol{x})+\sum_{j=1}^{n+1} \boldsymbol{T}_{s}^{(n+1-j)} \mathscr{D}^{(j)}(t-s) f(\boldsymbol{x})
\end{aligned}
$$

by (4.12) and (4.18). This proves (4.20) for every n.
Lemma 4. 3. $\sum_{n=0}^{\infty} \boldsymbol{T}_{t}^{(n)}(\boldsymbol{x}, \boldsymbol{S}) \leq 1$ for every $\boldsymbol{x} \in \boldsymbol{S}$.
Proof. By (4.11) we have

$$
\begin{aligned}
& \boldsymbol{T}_{t}^{(1)}(\boldsymbol{x}, \boldsymbol{S})=\boldsymbol{T}_{t}^{(1)} 1(\boldsymbol{x})=\int_{0}^{t} \psi(d v) \boldsymbol{T}_{t-v}^{(0)} 1(\boldsymbol{x}) \\
& \quad \leq \int_{0}^{t} \psi(d v)(1-\psi(\cdot ;[0, t-v] \times \boldsymbol{S})) \\
& =\mathscr{D}^{(1)}(t) 1(\boldsymbol{x})-\mathscr{D}^{(2)}(t) 1(\boldsymbol{x})
\end{aligned}
$$

and

$$
\begin{aligned}
& \boldsymbol{T}_{t}^{(2)}(\boldsymbol{x}, \boldsymbol{S})=\int_{0}^{t} \psi(d v) T_{t-v}^{(1)} 1(\boldsymbol{x}) \\
& \quad \leq \int_{0}^{t} \psi(d v)\left[\boldsymbol{\emptyset}(t-v) 1(\boldsymbol{x})-\emptyset^{(2)}(t-v) 1(\boldsymbol{x})\right] \\
& \quad=\emptyset^{(2)}(t) 1(\boldsymbol{x})-\emptyset^{(3)}(t) 1(\boldsymbol{x}) .
\end{aligned}
$$

Repeating this we have for every $n=1,2, \cdots$,

$$
\boldsymbol{T}_{t}^{(n)}(\boldsymbol{x}, \boldsymbol{S}) \leq \Phi^{(n)}(t) 1(\boldsymbol{x})-\Phi^{(n+1)}(t) 1(\boldsymbol{x})
$$

and therefore we have

$$
\sum_{n=0}^{\infty} \boldsymbol{T}_{t}^{(n)}(\boldsymbol{x}, \boldsymbol{S}) \leq \boldsymbol{T}_{t}^{0} 1(\boldsymbol{x})+\boldsymbol{D}^{(1)}(t) 1(\boldsymbol{x}) \boldsymbol{x} \leq 1
$$

by (4.11).
Thus for each $t \in[0, \infty)$,

$$
\begin{equation*}
\boldsymbol{T}_{t}(\boldsymbol{x}, d \boldsymbol{y})=\sum_{n=0}^{\infty} \boldsymbol{T}_{t}^{(n)}(\boldsymbol{x}, d \boldsymbol{y}) \tag{4.21}
\end{equation*}
$$

defines a substochastic kernel on $\boldsymbol{S} \times \boldsymbol{S}$. Let

$$
\begin{equation*}
\boldsymbol{T}_{t} f(\boldsymbol{x})=\int_{\boldsymbol{S}} \boldsymbol{T}_{t}(\boldsymbol{x}, d \boldsymbol{y}) f(\boldsymbol{y}), \quad f \in \boldsymbol{B}(\boldsymbol{S}) . \tag{4.22}
\end{equation*}
$$

Now we shall show that \boldsymbol{T}_{t} is a semi-group on $\boldsymbol{B}(\boldsymbol{S})$. In fact

$$
\begin{aligned}
\boldsymbol{T}_{t}^{(n)} f(\boldsymbol{x}) & =\int_{0}^{t} \psi^{(n)}(d r) \boldsymbol{T}_{t-r}^{(0)} f(\boldsymbol{x}) \\
& =\int_{0}^{s} \psi^{(n)}(d r) \boldsymbol{T}_{t-r}^{(0)} f(\boldsymbol{x})+\int_{s}^{t} \psi^{(n)}(d r) \boldsymbol{T}_{t-r}^{(0)} f(\boldsymbol{x}) .
\end{aligned}
$$

Then by (4.20) the second term of the last expression is equal to

$$
\begin{gathered}
\sum_{j=1}^{n} \boldsymbol{T}_{s}^{(n-j)} \int_{0}^{t-s} \psi^{(j)}(d r) \boldsymbol{T}_{t-s-r}^{(0)} f(\boldsymbol{x})^{11)} \\
=\sum_{j=1}^{n} \boldsymbol{T}_{s}^{(n-j)} \boldsymbol{T}_{t-s}^{(j)} f(\boldsymbol{x}) .
\end{gathered}
$$

Also the first term is equal to
11) By (4.20), one can easily prove for $f(r, \boldsymbol{x}) \in \boldsymbol{B}([0, \infty] \times \boldsymbol{S})$

$$
\int_{s}^{t} \psi(d r) f(r, \cdot)(\boldsymbol{x})=\sum_{j=1}^{n} \boldsymbol{T}_{s}^{(n-j)} \int_{0}^{t-\delta} \psi^{(j)}(d r) f(r+s, \cdot)(\boldsymbol{x})
$$

$$
\int_{0}^{s} \psi^{(n)}(d r) \boldsymbol{T}_{s-r}^{(0)} \boldsymbol{T}_{t-s}^{(0)} f(\boldsymbol{x})=\boldsymbol{T}_{s}^{(n)} \boldsymbol{T}_{t-s}^{(0)} f(\boldsymbol{x})
$$

and hence we have

$$
\boldsymbol{T}_{t}^{(n)} f(\boldsymbol{x})=\sum_{j=0}^{n} \boldsymbol{T}_{s}^{(n-j)} \boldsymbol{T}_{t-s}^{(j)} f(\boldsymbol{x})
$$

Therefore

$$
\begin{aligned}
\boldsymbol{T}_{t} f(\boldsymbol{x}) & =\sum_{n=0}^{\infty} \sum_{j=0}^{n} \boldsymbol{T}_{s}^{(n-j)} \boldsymbol{T}_{t-s}^{(j)} f(\boldsymbol{x}) \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \boldsymbol{T}_{s}^{(n)} \boldsymbol{T}_{t-s}^{(m)} f(\boldsymbol{x}) \\
& =\boldsymbol{T}_{s}\left(\boldsymbol{T}_{t-s} f\right)(\boldsymbol{x}),
\end{aligned}
$$

which proves \boldsymbol{T}_{t} is a semi-group on $\boldsymbol{B}(\boldsymbol{S})$.
Next we shall show that $u(t, \boldsymbol{x})=\boldsymbol{T}_{t} f(\boldsymbol{x})$ is a solution of the M-equation (4.13). Moreover, it is the minimal solution in the sence that if $f \geq 0$, then $u(t, \boldsymbol{x})$ is the smallest of all non-negative solutions of (4.13). In fact,

$$
\begin{aligned}
u(t, \boldsymbol{x}) & =\boldsymbol{T}_{t} f(\boldsymbol{x}) \\
& =\boldsymbol{T}_{t}^{(0)} f(\boldsymbol{x})+\sum_{j=1}^{\infty} \boldsymbol{T}_{t}^{(j)} f(\boldsymbol{x}) \\
& =\boldsymbol{T}_{t}^{(0)} f(\boldsymbol{x})+\int_{0}^{t} \psi(d s) \sum_{i=0}^{\infty} \boldsymbol{T}_{t-s}^{(i)} f(\boldsymbol{x}) \\
& =\boldsymbol{T}_{t}^{(0)} f(\boldsymbol{x})+\int_{0}^{t} \psi(d s) \boldsymbol{T}_{t-s} f(\boldsymbol{x}),
\end{aligned}
$$

which proves $u(t, \boldsymbol{x})$ is a solution of the M-equation (4.13). Now let $0 \leq v$ be a solution of (4.13); then

$$
v(t, \boldsymbol{x})=\boldsymbol{T}_{t}^{0} f(\boldsymbol{x})+\int_{0}^{t} \psi(d r) v(t-r, \cdot)(\boldsymbol{x}) \geq \boldsymbol{T}_{t}^{0} f(\boldsymbol{x})
$$

and if we suppose $v(t, \boldsymbol{x}) \geq \sum_{i=0}^{n} \boldsymbol{T}_{t}^{(i)} f(\boldsymbol{x})$, then

$$
\begin{aligned}
v(t, \boldsymbol{x}) & \geqq \boldsymbol{T}_{t}^{0} f(\boldsymbol{x})+\int_{0}^{t} \psi(d r)\left(\sum_{i=0}^{n} \boldsymbol{T}_{t-r}^{(i)} f\right)(\boldsymbol{x}) \\
& =\sum_{i=0}^{n+1} \boldsymbol{T}_{t}^{(i)} f(\boldsymbol{x}) .
\end{aligned}
$$

This proves $v(t, \boldsymbol{x}) \geq \sum_{i=0}^{n} \boldsymbol{T}_{t}^{(i)} f(\boldsymbol{x})$ for all n, and hence letting $n \rightarrow \infty$, we have $v(t, \boldsymbol{x}) \geq \boldsymbol{T}_{t} f(\boldsymbol{x})$.

Finally we must show that \boldsymbol{T}_{t} is a branching semi-group, but this was proved already in Proposition 1.3. ${ }^{12)}$

Summarizing, we have the following
Theorem 4.4. For a given fundamental system (T_{t}^{0}, K, π), we construct a kernel $\boldsymbol{T}_{t}(\boldsymbol{x}, d \boldsymbol{y})$ on $\boldsymbol{S} \times \boldsymbol{S}$ by (4.15), (4.16) and (4.21). Then $\boldsymbol{T}_{t} f(\boldsymbol{x}) \equiv \int_{\boldsymbol{S}} \boldsymbol{T}_{t}(\boldsymbol{x}, d \boldsymbol{y}) f(\boldsymbol{y}), f \in \boldsymbol{B}(\boldsymbol{S})$, defines a branching semigroup. $u(t, \boldsymbol{x})=\boldsymbol{T}_{t} f(\boldsymbol{x}), f \in \boldsymbol{B}(\boldsymbol{S})$, is a solution of the M-equation corresponding to the given system with the initial value f, and if $f \geq 0$, then $u(t, x)$ is the minimal solution among all non-negative solutions with the initial value f.

Corollary. $u(t, x)=\boldsymbol{T}_{t} \widehat{f}(\boldsymbol{x}), f \in \boldsymbol{B}^{*}(\boldsymbol{S})$, is a solution of the S equation corresponding to the given system with the initial value f.

Proof is the same as tiat of Theorem 4.3.
To this semi-group there corresponds a unique (up to equivalence) branching Markov process \boldsymbol{X}. If we compare the above construction with the probabilistic construction given in Chapter III we see at once that \boldsymbol{X} is the $\left(X_{t}^{0}, \pi\right)$-branching Markov process, and hence it is a right continuous strong Markov process.

Example 4.2. Consider Example 4.1. Then the construction of \boldsymbol{T}_{t} is just the usual analytical construction of the semi-group of the minimal Markov chain ($X_{t}, \boldsymbol{P}_{i}$) on $i \in \boldsymbol{Z}^{+}=\{0,1,2, \cdots\}$ such that $\boldsymbol{E}_{i}(\tau)=\frac{1}{c i}$ and $\boldsymbol{P}_{i}\left(X_{\tau}=j\right)=\pi_{j-i+1}$, where τ is the first jumping time. Hence by the above theorem, we see in particular that such a Markov chain is a branching process, i.e. the transition matrix satisfies (1.3).

[^2]This fundamental fact is, of course, well known in the theory of branching processes, (cf. Harris [8], Chapter V).

Finally we shall discuss the uniqueness of the solution of the M-equation. The following class of fundamental systems plays an important rôle in the future discussions.

Definition 4.6. A fundamental system $\left(T_{t}^{0}, K, \pi\right)$ is said to satisfy the condition (U) if T_{t}^{0} satisfies

$$
\begin{equation*}
\inf _{x \in S} \inf _{0 \leq t \leq \sigma} T_{t}^{0} 1(x)>0, \quad \text { for every } \sigma>0 \tag{U}
\end{equation*}
$$

It is clear that a fundamental system $\left(T_{t}^{0}, K, \pi\right)$ satisfies the condition (U) if it is determined by [X, k, π] (cf. Definition 4.2) and k is bounded (i.e., $k \in \boldsymbol{B}(S)^{+}$); in fact,

$$
T_{t}^{0} 1(x)=E_{x}\left[e^{-\int_{0}^{t} t^{t\left(x_{s}\right) d s}}\right] \geqq e^{-t \| k_{t}}
$$

and hence for every $\sigma>0$

$$
\inf _{x \leq S} \inf _{0 \leq t \leq \sigma} T_{t}^{0} 1(x) \geqq e^{-\sigma|k|}>0 .
$$

Theorem 4.5. Suppose (T_{t}^{0}, K, π) satisfies the condition (U). Then the solution $u(t, x)$ of the M-equation with the initial value $f(\boldsymbol{x})$ such that $\lim _{\boldsymbol{x} \rightarrow \Delta} \sup _{0 \leq t \leq \sigma}|u(t, \boldsymbol{x})|=0$ is unique.

Proof. First we remark that for each $n=1,2, \cdots$, and $\sigma>0$, we have

$$
\begin{equation*}
\sup _{\boldsymbol{x} \in S^{n}} \psi(\boldsymbol{x} ;[0, \sigma] \times \boldsymbol{S})<1 . \tag{4.23}
\end{equation*}
$$

For, by (4.11) and (U),

$$
\sup _{x \in S^{n}} \psi(x ;[0, \sigma] \times S) \leq 1-\inf _{x \in S^{n}} T_{\sigma}^{0} 1(x)=1-\inf _{x \in S^{n}} \widehat{T_{\sigma}^{0}} 1(x)<1,
$$

Now suppose that there exist two solutions u_{1} and u_{2} of (4.13) satisfying the condition of the theorem, then $\varphi_{t}(\boldsymbol{x})=u_{1}(t, \boldsymbol{x})-u_{2}(t, \boldsymbol{x})$ is a solution of

$$
\varphi_{t}(\boldsymbol{x})=\int_{0}^{t} \int_{S} \psi(\boldsymbol{x} ; d r d \boldsymbol{y}) \varphi_{t-r}(\boldsymbol{y})
$$

such that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \sup _{0 \leq \leq \leq}\left|\varphi_{t}(\boldsymbol{x})\right|=0 . \tag{4.24}
\end{equation*}
$$

Assume

$$
a=\sup _{\boldsymbol{y} \in \boldsymbol{S}} \sup _{0 \leq s \leq \sigma}\left|\varphi_{s}(\boldsymbol{y})\right|>0 .
$$

Then by (4.24) there exists m such that

$$
\begin{equation*}
a=\sup _{\boldsymbol{y} \in S^{m}} \sup _{0 \leq s \leq \sigma}\left|\varphi_{s}(\boldsymbol{y})\right| . \tag{4.25}
\end{equation*}
$$

On the other hand

$$
\begin{aligned}
0<\sup _{\boldsymbol{x} \in S^{m}} \sup _{0 \leq t \leq \sigma}\left|\varphi_{t}(\boldsymbol{x})\right| & \leq \sup _{\boldsymbol{x} \in S^{m}} \sup _{0 \leq t \leq \sigma} \int_{0}^{t} \int_{S} \psi(\boldsymbol{x} ; d r d \boldsymbol{y})\left\{\sup _{\boldsymbol{y} \in \boldsymbol{S}} \sup _{0 \leq s \leq \sigma}\left|\varphi_{s}(\boldsymbol{y})\right|\right\} \\
& \leq \sup _{\boldsymbol{x} \in S^{m}} \psi(\boldsymbol{x},[0, \sigma] \times \boldsymbol{S})\left\{\sup _{\boldsymbol{y} \in \boldsymbol{S}} \sup _{0 \leq s \leq \sigma}\left|\varphi_{s}(\boldsymbol{y})\right|\right\}
\end{aligned}
$$

and hence by (4.23), we have

$$
0<\sup _{\boldsymbol{x} \in S^{m}} \sup _{0 \leq t \leq \sigma}\left|\varphi_{t}(\boldsymbol{x})\right|<\sup _{\boldsymbol{y} \in S} \sup _{0 \leq s \leq \sigma}\left|\varphi_{s}(\boldsymbol{y})\right|=a,
$$

which contradicts (4.25). Therefore $\varphi_{t}(\boldsymbol{x})=0$ for all $t \in[0, \sigma]$ and $\boldsymbol{x} \in \boldsymbol{S}$. Since σ is arbitrary, $u_{1}=u_{2}$, which proves the theorem.

Corollary. Suppose (T_{t}^{0}, K, π) satisfies the condition (U), and let \boldsymbol{U}_{t} be a branching semi-group on $\boldsymbol{B}(\boldsymbol{S})$ such that, for every $f \in \boldsymbol{B}(\boldsymbol{S}), u(t, \boldsymbol{x})=\boldsymbol{U}_{t} f(\boldsymbol{x})$ defines a solution of the M-equation (4.13). Then \boldsymbol{U}_{t} coincides with the semi-group \boldsymbol{T}_{t} constructed in Theorem 4.4.

Proof. Let $f \in \boldsymbol{B}^{*}(S)^{+}$; then $u(t, \boldsymbol{x})=\boldsymbol{U}_{t} \widehat{f}(\boldsymbol{x})=\widehat{u(t, \cdot)}(\boldsymbol{x})$ is a solution of the M-equation with the initial value \widehat{f}, where $u(t, x)$ $=\boldsymbol{U}_{t} \widehat{f}_{s}(x)$. We shall show that

$$
\begin{equation*}
\lim _{x \rightarrow \Delta} \sup _{0 \leq t \leq \sigma}|u(t, x)|=0, \quad \text { for every } \sigma>0 \tag{4.26}
\end{equation*}
$$

For, since $u(t, x)$ is a solution of the S-equation (4.14), we have

$$
\begin{aligned}
0 & \leq u(t, x)=T_{t}^{0} f(x)+\int_{0}^{t} \int_{s} K(x ; d s d y) F(y ; u(t-s, \cdot)) \\
& \leq T_{t}^{0} f(x)+\int_{0}^{t} \int_{s} K(x ; d s d y)=T_{t}^{0} f(x)+1-T_{t}^{0} 1(x) \\
& =1-T_{t}^{0}(1-f)(x) \leq 1-(1-\|f\|)_{x \in S, 0 \leq t \leq \sigma} T_{t}^{0} 1(x)<1
\end{aligned}
$$

for every $t \in|0, \sigma|$ and $x \in S$; therefore, (4.26) is satisfied. In the same way we see that $v(t, \boldsymbol{x})=\boldsymbol{T}_{t} \widehat{f}(\boldsymbol{x}), f \in B^{*}(S)^{+}$satisfies the same equation and (4.26). Hence by Theorem 4.5, we have $u(t, \boldsymbol{x}) \equiv v(t, \boldsymbol{x})$, i.e., $\boldsymbol{T}_{t} \widehat{f}(\boldsymbol{x})=\boldsymbol{U}_{t} \widehat{f}(x)$ for every $f \in \boldsymbol{B}^{*}(S)^{+}$. By Lemma 0.2 we have $\boldsymbol{T}_{t} \equiv \boldsymbol{U}_{t}$ on $\boldsymbol{B}(\boldsymbol{S})$.

§4.3. S-equation

Let (T_{t}^{0}, K, π) be a given fundamental system. In Definition 4. 4 of $\S 4.1$ the S-equation was defined as

$$
\begin{equation*}
u(t, x)=T_{t}^{0} f(x)+\int_{0}^{t} \int_{s} K(x ; d s d y) F\left(y ; u_{t-s}\right) \tag{4.14}
\end{equation*}
$$

where $u_{t}(x)=u(t, x)$. A solution of (4.14) can be constructed by the usual method of successive approximation.

Theorem 4.6. For a given $f \in \overline{\boldsymbol{B}^{*}(S)^{+}}$, define $\left\{u_{n}(t, x)\right.$ \} inductively by

$$
\begin{align*}
& u_{0}(t, x) \equiv 0 \tag{4.27}\\
& u_{n}(t, x)=T_{t}^{0} f(x)+\int_{0}^{t} \int_{s} K(x ; d s d y) F\left(y ; u_{n-1}(t-s, \cdot)\right)
\end{align*}
$$

Then

$$
\begin{equation*}
0 \leq u_{n} \leq u_{n+1} \leq 1-T_{t}^{0}(1-f) \tag{i}
\end{equation*}
$$

and hence

$$
\begin{equation*}
u_{\infty}(t, x) \equiv \lim _{n \rightarrow \infty} u_{n}(t, x) \tag{4.28}
\end{equation*}
$$

exists for every $t \in[0, \infty)$ and $x \in S$.
(ii) u_{∞} is a solution of the S-equation (4.14), and it is the minimal solution of (4.14) in the sense that if $v(0 \leq v \leq 1)$ is any solution of (4.14), then $u_{\infty} \leq v$.
(iii) u_{∞} has the following representation by \dot{a} (uniquely determined) substochastic kernel $\mu_{t}(x, d \boldsymbol{y})$ on $S \times \boldsymbol{S}$;

$$
\begin{equation*}
u_{\infty}(t, x)=\int_{s} \mu_{t}(x, d \boldsymbol{y}) \hat{f}(\boldsymbol{y}) . \tag{4.29}
\end{equation*}
$$

Proof. First of all we remark that, since

$$
F(x ; f)=\int_{S} \pi(x, d \boldsymbol{y}) \widehat{f}(\boldsymbol{y})
$$

and π is a substochastic kernel, if $0 \leq g_{1} \leq g_{2} \leq 1$, then $0 \leq F\left(x ; g_{1}\right)$ $\leq F\left(x ; g_{2}\right) \leq 1$. Then

$$
\begin{aligned}
u_{0} \equiv 0 & \leq u_{1}=T_{t}^{0} f(x)+\int_{0}^{t} \int_{s} K(x ; d s d y) \pi(y ;\{0\}) \\
& \leq T_{t}^{0} f(x)+\int_{0}^{t} \int_{s} K(x ; d s d y) \\
& =T_{t}^{0} f(x)+1-T_{t}^{0} 1(x) \\
& =1-T_{t}^{0}(1-f)(x)
\end{aligned}
$$

and if we suppose $0 \leq u_{k-1} \leq u_{k} \leq 1-T_{t}^{0}(1-f)$, then

$$
\begin{aligned}
0 & \leq u_{k}(t, x)=T_{t}^{0} f(x)+\int_{0}^{t} \int_{s} K(x ; d s d y) F\left(y ; u_{k-1}(t-s, \cdot)\right) \\
& \leq T_{t}^{0} f(x)+\int_{0}^{t} \int_{s} K(x ; d s d y) F\left(y ; u_{k}(t-s, \cdot)\right) \\
& =u_{k+1}(t, x) \leq T_{t}^{0} f(x)+\int_{0}^{t} \int_{s} K(x ; d s d y)=1-T_{t}^{0}(1-f)(x),
\end{aligned}
$$

which proves (i). Now it is clear that $u_{\infty}(t, x) \equiv \lim _{n \rightarrow \infty} u_{n}(t, x)$ is a solution of (4.14). Suppose that $0 \leq v \leq 1$ is a solution of (4.14); then $u_{0} \equiv 0 \leq v$, and if we suppose $u_{k} \leq v$, then

$$
\begin{aligned}
u_{k+1}(t, x) & =T_{t}^{0} f(x)+\int_{0}^{t} \int_{s} K(x ; d s d y) F\left(y ; u_{k}(t-s, \cdot)\right) \\
& \leq T_{t}^{0} f(x)+\int_{0}^{t} \int_{s} K(x ; d s d y) F(y ; v(t-s, \cdot)) \\
& =v(t, x) .
\end{aligned}
$$

This proves $u_{k} \leq v$ for every k, and hence $u_{\infty} \leq v$. Therefore (ii) is proved. Finally we shall prove (iii). By Lemma 0.3 it is easy to see that each $u_{k}(t, x)$ has the expression

$$
u_{k}(t, x)=\int_{S} \widehat{f}(\boldsymbol{y}) \mu_{t}^{(k)}(x, d \boldsymbol{y}),
$$

where $\mu_{t}^{(k)}(x, d \boldsymbol{y})$ is (for each fixed t) a substochastic kernel on $S \times \boldsymbol{S}$. Thus (4.29) holds with $\mu_{t}(x, d \boldsymbol{y})$ which is a weak limit

As already stated in the Corollary of Theory 4.4, the minimal solution of the M-equation supplies a solution of the S-equation. Conversely, we can construct a solution of the M-equation from a solution of S-equation as we shall see in the following

Theorem 4.7. Let $f \in \overline{B^{*}(S)^{+}}$and $u(t, x)$ be a solution of the S-equation (4.14); then $\boldsymbol{u}(t, \boldsymbol{x})$ defined by

$$
\begin{equation*}
\boldsymbol{u}(t, \boldsymbol{x})=\widehat{u(t,})(\boldsymbol{x}), \quad \boldsymbol{x} \in \boldsymbol{S} \tag{4.30}
\end{equation*}
$$

is a solution of the M-equation (4.13).
The theorem follows at once from the following Lemma by setting $s=0$ in (4.31).

Lemma 4.4. Let $u(t, x)=u_{t}(x)$ be a solution of the S-equation (4.14); then where $s<t$.

Proof. When $x=0$ or Δ, it is obvious. Suppose $x \in S^{n}$. We shall prove (4.31) by induction on n. When $n=1$ we have by (4.14)

$$
u_{t-s}=T_{t-s}^{0} f+\int_{0}^{t-s} \int_{s} K(\cdot ; d r d y) F\left(y ; u_{t-s-r}\right)
$$

and by (4.4)

$$
\begin{aligned}
T_{s}^{0} u_{t-s} & =T_{s}^{0} T_{t-s}^{0} f+T_{s}^{0} \int_{0}^{t-s} \int_{s} K(\cdot ; d r d y) F\left(y ; u_{t-s-r}\right) \\
& =T_{t}^{0} f+\int_{s}^{t} \int_{s} K(\cdot ; d r d y) F\left(y ; u_{t-r}\right)
\end{aligned}
$$

Thus (4.31) holds for $n=1$. Suppose it is true for $x \in S^{n-1}(n \geqq 2)$.. Then for $\boldsymbol{x}=\left[x_{1}, x_{2}, \cdots, x_{n}\right] \in S^{n}$, we have by setting $\boldsymbol{x}^{\prime}=\left[x_{2}, x_{3}, \cdots, x_{n}\right]$,

$$
\begin{aligned}
& \widehat{T_{s}^{0} u_{t-s}}(\boldsymbol{x})=T_{s}^{0} u_{t-s}\left(x_{1}\right) \prod_{j=2}^{n}\left(T_{s}^{0} u_{t-s}\right)\left(x_{j}\right) \\
= & \left\{T_{t}^{0} f\left(x_{1}\right)+\int_{s}^{t} \int_{s} K\left(x_{1} ; d r d y\right) F\left(y ; u_{t-r}\right)\right\}\left\{\widehat{T_{t}^{0} f\left(\boldsymbol{x}^{\prime}\right)}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\quad+\int_{s}^{t}\left\langle T_{v}^{0} u_{t-v} \mid \int_{s} K(\cdot ; d v d z) F\left(z ; u_{t-v}\right)\right\rangle\left(\boldsymbol{x}^{\prime}\right)\right\} \\
& =\widehat{T_{t}^{0}} f(\boldsymbol{x}) \\
& \quad+\int_{s}^{t} \int_{s} K\left(x_{1} ; d r d y\right) F\left(y ; u_{t-r}\right) \widehat{T_{t}^{0} f\left(\boldsymbol{x}^{\prime}\right)} \\
& \quad+T_{t}^{0} f\left(x_{1}\right) \int_{s}^{t}\left\langle T_{v}^{0} u_{t-v} \mid \int_{s} K(\cdot ; d v d z) F\left(z ; u_{t-v}\right)\right\rangle\left(\boldsymbol{x}^{\prime}\right) \\
& + \\
& +\int_{s}^{t} \int_{s} K\left(x_{1} ; d r d y\right) F\left(y ; u_{t-r}\right) \int_{s}^{t}\left\langle T_{v}^{0} u_{t-v} \mid \int_{s} K(\cdot ; d v d z) F\left(z ; u_{t-v}\right)\right\rangle\left(\boldsymbol{x}^{\prime}\right) \\
& = \\
& I, \text { say. }
\end{aligned}
$$

Now consider the last term:

$$
\begin{aligned}
& \quad \int_{s}^{t} \int_{s} K\left(x_{1} ; d r d y\right) F\left(y ; u_{t-r}\right) \int_{s}^{t}\left\langle T_{v}^{0} u_{t-v} \mid \int_{s} K(\cdot ; d v d z) F\left(z ; u_{t-v}\right)\right\rangle\left(\boldsymbol{x}^{\prime}\right) \\
& =\int_{s}^{t} \int_{S} K\left(x_{1} ; d r d y\right) F\left(y ; u_{t-r}\right)\left\{\int_{r}^{t}\left\langle T_{v}^{0} u_{t-v} \mid \int_{s} K(\cdot ; d v d z) F\left(z ; u_{t-v}\right)\right\rangle\left(\boldsymbol{x}^{\prime}\right)\right. \\
& \left.\quad+\int_{s}^{r}\left\langle T_{v}^{0} u_{t-v} \mid \int_{s} K(\cdot ; d v d z) F\left(z ; u_{t-v}\right)\right\rangle\left(\boldsymbol{x}^{\prime}\right)\right\} \\
& =\int_{s}^{t} \int_{S} K\left(x_{1} ; d r d y\right) F\left(y ; u_{t-r}\right) \int_{r}^{t}\left\langle T_{v}^{0} u_{t-v} \mid \int_{s} K(\cdot ; d v d z) F\left(z ; u_{t-v}\right)\right\rangle\left(\boldsymbol{x}^{\prime}\right) \\
& \quad+\sum_{j=2}^{n} \int_{s}^{t} \int_{s} K\left(x_{j} ; d v d y\right) F\left(y ; u_{t-v}\right) \int_{v}^{t} \int_{s} K\left(x_{1} ; d r d y\right) F\left(y ; u_{t-r}\right) \\
& \quad \times \prod_{k=2, k \neq j}^{n} T_{v}^{0} u_{t-v}\left(x_{k}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
I= & \widehat{T_{t}^{0} f}(\boldsymbol{x})+\int_{s}^{t} \int_{s} K\left(x_{1} ; d r d y\right) F\left(y ; u_{t-r}\right)\left\{\widehat{T_{t}^{0} f}\left(\boldsymbol{x}^{\prime}\right)\right. \\
& \left.+\int_{r}^{t}\left\langle T_{v}^{0} u_{t-v} \mid \int_{s} K(\cdot ; d v d z) F\left(z ; u_{t-v}\right)\right\rangle\left(\boldsymbol{x}^{\prime}\right)\right\} \\
& +\sum_{j=2}^{n} \int_{s}^{t} \int_{s} K\left(x_{j} ; d r d y\right) F\left(y ; u_{t-r}\right)\left\{T_{t}^{0} f\left(x_{1}\right)\right. \\
& \left.\left.+\int_{r}^{t} \int_{s} K\left(x_{1} ; d v d z\right) F\left(z ; u_{t-v}\right)\right) \times \prod_{k=2, k \neq j}^{n} T_{r}^{0} u_{t-r}\left(x_{k}\right)\right\}
\end{aligned}
$$

and, by induction hypothesis, this is equal to

$$
\begin{aligned}
& \widehat{T_{t}^{0} f(\boldsymbol{x})}+\int_{s}^{t} \int_{s} K\left(x_{1} ; d r d y\right) F\left(y ; u_{t-r}\right) \widehat{T_{r}^{0} u_{t-r}}\left(\boldsymbol{x}^{\prime}\right) \\
& \quad+\sum_{j=2}^{n} \int_{s}^{t} \int_{s} K\left(x_{j} ; d r d y\right) F\left(y ; u_{t-r}\right) \prod_{k=1, k \neq j}^{n} T_{r}^{0} u_{t-r}\left(x_{k}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\widehat{T_{t}^{0} f(x)}+\sum_{j=1}^{n} \int_{s}^{t} \int_{s} K\left(x_{j} ; d r d y\right) F\left(y ; u_{t-r}\right) \prod_{k=1, k \neq j}^{n} T_{r}^{0} u_{t-r}\left(x_{k}\right) \\
& =\widehat{T_{t}^{0} f(\boldsymbol{x})+\int_{s}^{t} \int_{s}\left\langle T_{r}^{0} u_{t-r} \mid \int_{s} K(\cdot ; d r d y) F\left(y ; u_{t-r}\right)\right\rangle(\boldsymbol{x}) .} .
\end{aligned}
$$

Thus (4.31) is proved.
Corollary 1. Suppose (T_{t}^{0}, K, π) satisfies the condition (U); then the solution $u(t, x)(0 \leq u \leq 1)$ of the S-equation (4.14) with the initial value $f \in \boldsymbol{B}^{*}(S)^{+}$is unique, and hence it coincides with $u_{\infty}(t, x)$ of Theorem 4.6.

Proof. Let $u(t, x)$ be a solution of the S-equation (4.14) then just as in the proof of Corollary of Theorem 4.5, we have

$$
\sup _{x \in S} \sup _{0 \leq t \leq \sigma}|u(t, x)| \leq 1-(1-\|f\|) \inf _{x \in S, 0 \leq t \leq \sigma} T_{t}^{0} 1(x)<1 .
$$

Then $\hat{u}(t, \cdot)(\boldsymbol{x})$ is a solution of the M-equation with the initial value $\widehat{f}(\boldsymbol{x})$ satisfying $\lim _{\boldsymbol{x} \rightarrow \pm} \sup _{0 \leq t \leq \sigma}|\hat{u}(t, \cdot)(\boldsymbol{x})|=0$. By Theorem $4.5 \widehat{u}(t, \cdot)(\boldsymbol{x})$ is the unique solution and therefore $u(t, x)$ must be unique.

Corollary 2. Let \boldsymbol{T}_{t} be the branching semi-group constricted in Theorem 4.4 (i.e., the semi-group of the $\left(X^{0}, \pi\right)$-branching Markov process). Then for $f \in \overline{B^{*}(S)^{+}}, u(t, x)=\boldsymbol{T}_{t} \widehat{f}{ }_{s}(x)$ is the minimal solution of the S-equation with the initial value f, that is, we have

$$
\boldsymbol{T}_{t} \widehat{f}_{s}(x)=u_{\infty}(t, x)
$$

where u_{∞} is defined in Theorem 4.6.
Proof. Let $v(t, x)(0 \leq v \leq 1)$ be a solution of the S-equation with the initial value f; then by Theorem 4.7 $\boldsymbol{v}(t, \boldsymbol{x})=\hat{v}(t, \cdot)(\boldsymbol{x})$ is a solution of the M-equation with the initial value $\hat{f(x)}$. By Theorem 4.4 we have $\boldsymbol{T}_{t} \widehat{f}(\boldsymbol{x}) \leq \boldsymbol{v}(t, \boldsymbol{x})$; in particular, we have $u(t, x) \leq v(t, x)$.

One of the consequences of Corollary 2 is the following. Let $f \equiv 1$; then $\left.\boldsymbol{T}_{t} \widehat{1}\right|_{s}(x)=\boldsymbol{E}_{x}\left[\hat{1}\left(\boldsymbol{X}_{t}\right)\right]=\boldsymbol{P}_{x}\left[e_{s}>t\right]$. Thus $\boldsymbol{P}_{x}\left[e_{s}>t\right]$ is the minimal solution of S-equation with the initial value 1. In particular we have the following

Corollary 3. For an (X^{0}, π)-branching Markov process \boldsymbol{X}, $\boldsymbol{P}_{x}\left[e_{\Delta}=+\infty\right]=1$ for every x if and only if $u(t, x) \equiv 1$ is the unique solution of the S-equation corresponding to the system $\left(T_{t}^{0}, K, \pi\right)$ of \boldsymbol{X} with the initial value 1.

Now we shall discuss the regularity of a solution of the S equation assuming some regularity conditions on the fundamental system (T_{t}^{0}, K, π). Let $H \subset \boldsymbol{B}(S)$ be a closed linear subspace of $\boldsymbol{B}(S)$ satisfying:
(H. 1) $\quad H \cap \boldsymbol{C}(S)$ is dense in $\boldsymbol{C}(S)$ in the sense of w-convergence. ${ }^{13)}$ (H. 2) The function $f(x)=\int_{a}^{b} u_{t}(x) d t$ belongs to H if $u_{t} \in H$ for each $t \in[a, b], u_{t}$ is right-continuous in t for each $x \in S$ and $\sup _{t \in[a, b]}\left\|u_{t}\right\|<\infty$.

Given a stochastically continuous ${ }^{14)}$ non-negative contraction semigroup U_{t} on $\boldsymbol{B}(S)$ such that $U_{t}(H) \subset H$, we set according to Dynkin [6]

$$
\begin{align*}
& H_{0} \equiv H_{0}^{(U)}=\left\{f \in H ; s-\lim U_{t} f=f\right\},{ }^{15)} \tag{4.32}\\
& \widetilde{H}_{0} \equiv \widetilde{H}_{0}^{(U)}=\left\{f \in H ; w-\lim U_{t} f=f\right\} .
\end{align*}
$$

The H-infinitesimal generator A_{H} and the weak H-infinitesimal generator $\widetilde{A_{H}}$ of U_{t} are defined as in [6]; in particular A_{H} is the infinitesimal generator in the Hille-Yosida sense of U_{t} restricted on H_{0}.

Definition 4.7. A fundamental system $\left(T_{t}^{0}, K, \pi\right)$ is called H regular if it is determined by [X, k, π] (cf. Definition 4.2) such that, if T_{t} is the semi-group of X,
(i) $T_{t}(H) \subset H$,
(ii) $k \cdot f \in H_{0}\left(\equiv H_{0}^{(T)}\right), \quad$ if $f \in H_{0}$, and

[^3](iii) $\quad F(\cdot ; f) \in H_{0}, \quad$ if $f \in H_{0} \cap \boldsymbol{B}^{*}(S)^{+}$.

When $H=H_{0}=\boldsymbol{C}(S)$ we shall call the H-regular fundamental system simply as regular.

Definition 4.8. A fundamental system $\left(T_{t}^{0}, K, \pi\right)$ is called weakly H-regular if it is determined by $[X, k, \pi]$ such that, if T is the semi-group of X,
(i) $T_{t}(H) \subset H$,
(ii) $k \cdot f \in \widetilde{H}_{0}\left(\equiv \widetilde{H}_{0}^{(T)}\right) \quad$ if $f \in \widetilde{H}_{0}$,
(iii) $\quad F(\cdot ; f) \in \widetilde{H}_{0} \quad$ if $f \in \widetilde{H}_{0} \cap \boldsymbol{B}^{*}(S)$, and
(iv) the function $f(x)=\int_{0}^{t} T_{s}^{0}\left(v_{t-s}\right) d s$ belongs to \widetilde{H}_{0}, if $v_{s} \in \widetilde{H}_{0}$ for every $s \in[0, t], v_{s}(x)$ is right continuous in s and $\sup _{s \in[0, t]}\left\|v_{s}\right\|<\infty$.

Remark 4.1. (i) The weak H-regularity does not necessarily imply the H-regularity.
(ii) If a system (T_{t}^{0}, K, π) is H-regular or weakly H-regular, then it satisfies the condition (U) since $k \in \boldsymbol{B}(S)^{+}$; hence the solution of the S-equation with the initial value $f \in \boldsymbol{B}^{*}(S)^{+}$is unique. (Therefore it must coincide with u_{∞} of Theorem 4.6 (4.28)).
(iii) If $\left(T_{t}^{0}, K, \pi\right)$ is H-regular (weakly H-regular), then $T_{t}^{0}(H) \subset H$ and $H_{0}^{(T 0)}=H_{0}$ (resp. $\left.\widetilde{H}_{0}^{\text {T0 }}=\widetilde{H}_{0}\right)$. Let $A_{H}\left(\widetilde{A_{H}}\right)$ and $A_{H}^{0}\left(\widetilde{A_{H}^{0}}\right)$ be the H infinitesimal generator (resp. weak H-infinitesimal generator) of T_{t} and T_{t}^{0} respectively. Then $D\left(\widetilde{A_{H}}\right)=D\left(\widetilde{A_{H}^{0}}\right)$ (resp. $D\left(A_{H}\right)=D\left(A_{H}^{0}\right)$) and $A_{H}^{0}=A_{H}-k$, (resp. $\widetilde{A_{H}^{0}}=\widetilde{A_{H}}-k$).
(iv) $\left(T_{t}^{0}, K, \pi\right)$ is regular if and only if it is determined by $[X, k, \pi]$ where the semi-group T_{t} of X is a strongly continuous semi-group on $\boldsymbol{C}(S), k \in \boldsymbol{C}(S)^{+}$and $F(\cdot ; f) \in \boldsymbol{C}(S)$ if $f \in \boldsymbol{C}^{*}(S)^{+}$.

Theorem 4.8. Suppose we are given an H-regular (weakly H-regular) fundamental system (T_{t}^{0}, K, π). If $f \in H_{0} \cap \boldsymbol{B}^{*}(S)^{+}$ (resp. $f \in \widetilde{H}_{0} \cap \boldsymbol{B}^{*}(S)^{+}$), then the solution of the S-equation $u(t, x)$ $\equiv u_{t}(x ; f)$ with the 'initial value f (which is unique ${ }^{16)}$ by Remark 4.1
16) We shall give another direct proof of the uniqueness of the solution in §4.4.
(ii)) belongs to H_{0} (resp. \widetilde{H}_{0}), and $u(t, \cdot)$ is strongly continuous (resp. weakly right continuous) in t.

Proof. Assume (T_{t}^{0}, K, π) is H-regular. By (4.7) $K(x ; d s d y)$ $=T_{s}^{0}(x, d y) k(y) d s$, where $T_{s}^{0}(x, d y)$ is the kernel of the semi-group T_{s}^{0}. Thus the S-equation has the form $u_{t}=T_{t}^{0} f+\int_{0}^{t} T_{s}^{0}\left(k \cdot F\left(\cdot ; u_{t-s}\right)\right) d s$. Let $\left\{u_{n}(t, \cdot)\right\}(n=0,1,2, \cdots)$ be defined by (4.27); then $u_{n} \leq u_{n+1}$ and $\lim _{n \rightarrow \infty} u_{n}=u$. Also by Theorem 4.6 (i) $\sup _{0 \leq \leq \leq \sigma}\|u(t, \cdot)\| \leq 1-(1-\|f\|) e^{-\sigma_{k} k_{k}}$ $\equiv A_{\sigma}<1$ for every $\sigma>0$. Next, we remark that if $g, h \in \boldsymbol{B}_{r}^{*}(S)^{+}$ where $r<1$, then by Lemma 0.1 (0.33) $\|\hat{g}-\hat{h}\|_{s} \leq a_{r}\|g-h\|$, and hence

$$
\begin{align*}
\|F(\cdot ; g)-F(\cdot ; h)\| & =\sup _{x \in S}\left|\int_{S} \pi(x, d \boldsymbol{y})(\widehat{f}(\boldsymbol{y})-\hat{g}(\boldsymbol{y}))\right| \tag{4.34}\\
& \leqq a_{r}\|g-h\| .
\end{align*}
$$

Now suppose $u_{n}(t, \cdot) \in H_{0}$ for every t and is strongly continuous in t. (For $n=0, u_{n} \equiv 0$, and hence it is trivially true). Then by the H-regularity of $\left(T_{t}^{0}, K, \pi\right), k F\left(\cdot ; u_{n}(s, \cdot)\right) \in H_{0}$, and hence $v_{s} \equiv T_{t-s}^{0}\left(k \cdot F\left(\cdot ; u_{n}(s, \cdot)\right) \in H_{0}\right.$ every $0 \leq s \leq t$. We shall prove that v_{s} is strongly continuous in s on $[0, t]$. For,

$$
\begin{aligned}
&\left\|v_{s+h}-v_{s}\right\|=\left\|T_{t-s-h}^{0}\left(k \cdot F\left(\cdot ; u_{n}(s+h, \cdot)\right)\right)-T_{t-s}^{0}\left(k \cdot F\left(\cdot ; u_{n}(s, \cdot)\right)\right)\right\|, \\
& \leqq\left\|T_{t-s-h}^{0}\left(k \cdot\left\{F\left(\cdot ; u_{n}(s+h, \cdot)\right)-F\left(\cdot ; u_{n}(s, \cdot)\right)\right\}\right)\right\| \\
& \quad+\left\|\left(T_{t-s-h}^{0}-T_{t-s}^{0}\right)\left(k \cdot F\left(\cdot ; u_{n}(s, \cdot)\right)\right)\right\| \\
& \leqq\|k\|\left\|F\left(\cdot ; u_{n}(s+h, \cdot)\right)-F\left(\cdot ; u_{n}(s, \cdot)\right)\right\| \\
&\left.\quad+\| T_{t-s-h}^{0}-T_{t-s}^{0}\right)\left(k \cdot F\left(\cdot ; u_{n}(s, \cdot)\right)\right) \| \\
& \leqq a^{\prime}\|k\| \cdot\left\|u_{n}(s+h, \cdot)-u_{n}(s, \cdot)\right\| \\
& \quad \quad+\left\|\left(T_{t-s-h}^{0}-T_{t-s}^{0}\right)\left(k \cdot F\left(\cdot ; u_{n}(s, \cdot)\right)\right)\right\| \\
& \rightarrow 0
\end{aligned}
$$

when $h \rightarrow 0$, where we set $a^{\prime}=A_{t}$. Therefore,

$$
\left.w_{t}=\int_{0}^{t} v_{s} d s=\int_{0}^{t} T_{s}^{0} \backslash k \cdot F\left(\cdot ; u_{n}(t-s, \cdot)\right)\right) d s \in H_{0}
$$

and

$$
\begin{aligned}
\| w_{t+h}- & w_{t}\left\|\leq \int_{t}^{t+h}\right\| T_{t+h-s}^{0}\left(k \cdot F\left(\cdot ; u_{n}(s, \cdot)\right) \| d s\right. \\
& +\int_{0}^{t}\left\|\left(T_{t+h-s}^{0}-T_{t-s}^{0}\right)\left(k \cdot F\left(\cdot ; u_{n}(s, \cdot)\right)\right)\right\| d s \\
& \rightarrow 0
\end{aligned}
$$

when $h \rightarrow 0$. Thus w_{t} is strongly continuous and therefore $u_{n+1}(t, \cdot)$ $=T_{t}^{0} f+w_{t} \in H_{0}$ and is strongly continuous in t. Hence, for every $n=0,1,2, \cdots, u_{n}(t, \cdot) \in H_{0}$ and is strongly continuous in t. Now if $t \leqq \sigma$, then, setting $a^{\prime}=a_{A_{\sigma}}$, we have

$$
\begin{aligned}
& \left\|u_{n}(t, \cdot)-u_{n-1}(t, \cdot)\right\| \leq \| \int_{0}^{t} T_{s}^{0}\left(k \cdot \left\{F\left(\cdot ; u_{n-1}(t-s, \cdot)\right)\right.\right. \\
& \left.\left.\quad-F\left(\cdot ; u_{n-2}(t-s, \cdot)\right)\right\}\right) d s \| \\
& \leq\|k\| \int_{0}^{t}\left\|F\left(\cdot ; u_{n-1}(t-s, \cdot)\right)-F\left(\cdot ; u_{n-2}(t-s, \cdot)\right)\right\| d s \\
& \leq a^{\prime}\|k\| \int_{0}^{t}\left\|u_{n-1}(s, \cdot)-u_{n-2}(s, \cdot)\right\| d s \\
& \leq\left(a^{\prime}\|k\|\right)^{2} \int_{0}^{t} \int_{0}^{t_{1}}\left\|u_{n-2}(s, \cdot)-u_{n-3}(s, \cdot)\right\| d s d t_{1} \\
& \quad \cdots \cdots \cdots \\
& \\
& \leq\left(a^{\prime}\|k\|\right)^{n} \int_{0}^{t} \cdots \int_{0}^{t_{n-1}}\left\|u_{1}(s, \cdot)\right\| d s d t_{n-1} d t_{n-2} \cdots d t_{1} \\
& \\
& \leqq \frac{\left\{a^{\prime}\|k\|\right\}^{n}}{n!} \sigma^{n} .
\end{aligned}
$$

Hence for every $\sigma>0$,

$$
\sup _{0 \leq t \leq \sigma}\left\|u_{t}(\cdot ; f)-u_{n}(t, \cdot)\right\| \leq \sum_{m \geq n} \frac{\left\{a^{\prime}\|k\|\right\}^{m}}{m!} \sigma^{m} \rightarrow 0
$$

when $n \rightarrow \infty$, which proves $u_{t}(\cdot ; f) \in H_{0}$ and is strongly continuous in t.

The proof for the case of weak H-regular is similar. We only remark that we use the condition (iv) of Definition 4.8 to show that $\int_{0}^{t} T_{s}^{0}\left(k \cdot F\left(\cdot ; u_{n}(t-s, \cdot)\right) d s \in \widetilde{H}_{0}\right.$ by assuming $u_{n}(s, \cdot) \in \widetilde{H}_{0}$ and is weakly right continuous in s.

Further regularity of the solution $u_{t}(\cdot ; f)$, when $f \in D\left(A_{H}\right) \cap$ $\boldsymbol{B}^{*}(S)^{+}$(resp. $\left.f \in D\left(\widetilde{A_{H}}\right) \cap \boldsymbol{B}^{*}(S)^{+}\right)$, will be disscussed in §4.5.

§4.4. Construction of a branching semi-group through the S equation

Given a fundamental system (T_{t}^{0}, K, π), we constructed in $\S 4.2$ a branching semi-group as the minimal solution of the M-equation. We shall now give another construction of a branching semi-group using the solution u_{∞} of the S-equation obtained in Theorem 4.6. For this we shall assume in this section that (T_{t}^{0}, K, π) is determined by $[X, k, \pi]$, where $k \in \boldsymbol{B}(S)^{+}$. Then this fundamental system satisfies the condition (U) and hence u_{∞} is the unique solution of the S-equation if the initial value f is in $\boldsymbol{B}^{*}(S)^{+}$. But the proof of Corollary 1 of Theorem 4.7 involves arguments on the M-equation; therefore we shall give first of all a direct proof of the uniqueness of the solution so that future discussions will be self-contained and independent of the discussion given in §4.2.

Let $u_{t}=u(t, x)(0 \leq u \leq 1)$ be a solution of the S-equation (4.14) with the initial value $f \in \boldsymbol{B}^{*}(S)^{+}$. Then

$$
\begin{gathered}
0 \leq u_{t}=T_{t}^{0} f+\int_{0}^{t} T_{s}^{0}(k \cdot F(\cdot ; f)) d s \leq T_{t}^{0} f+\left(1-T_{t}^{0} 1\right) \\
\leqq 1-(1-\|f\|) e^{-\| k \cdot t \cdot t} \equiv A_{t}<1 .
\end{gathered}
$$

If $v_{t}=v(t, x)(0 \leq v \leq 1)$ is another solution, then we have from (4.34) that if $t \leqq \sigma$

$$
\begin{aligned}
\| u_{t}- & v_{t}\|=\| \int_{0}^{t} T_{s}^{0}\left\{k\left(F\left(\cdot, u_{t-s}\right)-F\left(\cdot, v_{t-s}\right)\right)\right\} d s \| \\
& \leq a^{\prime}\|k\| \int_{0}^{t}\left\|u_{s}-v_{s}\right\| d s \\
& \leq\left(a^{\prime}\|k\|\right)^{2} \int_{0}^{t} \int_{0}^{t_{1}}\left\|u_{s}-v_{s}\right\| d s d t_{1} \\
& \cdots \cdots \cdots \\
& \leq\left(a^{\prime}\|k\|\right)^{n} \int_{0}^{t} \int_{0}^{t_{1}} \cdots \int_{0}^{t_{n-1}}\left\|u_{s}-v_{s}\right\| d s d t_{n-1} \cdots d t_{1} \\
& \leq \frac{\left(a^{\prime}\|k\|\right)^{n}}{n!} \sigma^{n},
\end{aligned}
$$

where $a^{\prime}=a_{A_{q}}$. Hence

$$
\sup _{0 \leq t \leq \sigma}\left\|u_{t}-v_{t}\right\| \leq \frac{\left(a^{\prime}\|k\|\right)^{n}}{n!} \sigma^{n} \rightarrow 0 \quad(n \rightarrow \infty)
$$

which proves $u_{t} \equiv v_{t}$; i.e., the solution of the S-equation with the initial value $f \in \boldsymbol{B}^{*}(S)^{+}$is unique, and hence it must coincide with u_{∞} of Theorem 4.6. We set $u_{t}(x ; f) \equiv u_{\infty}(t, x)$. Then by Theorem 4.6

$$
\begin{equation*}
\sup _{0 \leq \leq \leq \sigma}\left\|u_{t}(\cdot ; f)\right\| \leqq 1-(1-\|f\|) e^{-\| \| \| \sigma}<1, \quad \text { for all } \sigma>0, \tag{4.35}
\end{equation*}
$$

and u_{t} has the following expression

$$
\begin{equation*}
\left.u_{t}(x ; f)=\int_{s} \mu_{i}(x, d \boldsymbol{y}) \widehat{f(} \boldsymbol{y}\right) \tag{4.36}
\end{equation*}
$$

where $\mu_{t}(x, d \boldsymbol{y})$ is a (uniquely determined) substochastic kernel on $S \times \boldsymbol{S}$. By Lemma 0.3 there exists a (uniquely determined) substochastic kernel $\widetilde{\boldsymbol{T}}_{t}(\boldsymbol{x}, d \boldsymbol{y})$ on $\boldsymbol{S} \times \boldsymbol{S}$ such that for every $f \in \boldsymbol{B}^{*}(S)^{+}$,

$$
\begin{equation*}
\left.\widehat{u_{t}(\cdot ; f)}(\boldsymbol{x})=\int_{S} \widetilde{\boldsymbol{T}}_{t}(\boldsymbol{x}, d \boldsymbol{y}) \widehat{f(} \boldsymbol{y}\right), \quad t \in[0, \infty), \boldsymbol{x} \in \boldsymbol{S} \tag{4.37}
\end{equation*}
$$

We shall show that $\widetilde{\boldsymbol{T}}_{t} g(\boldsymbol{x})=\int \widetilde{\boldsymbol{T}}_{t}(\boldsymbol{x}, d \boldsymbol{y}) g(\boldsymbol{y}), g \in \boldsymbol{B}(\boldsymbol{S})$, defines a semi-group on $\boldsymbol{B}(\boldsymbol{S})$. For this we shall prove

$$
\begin{equation*}
u_{t+s}(\cdot ; f)=u_{t}\left(\cdot ; u_{s}(\cdot ; f)\right), \quad f \in \boldsymbol{B}^{*}(T)^{+} \tag{4.38}
\end{equation*}
$$

In fact,

$$
\begin{aligned}
u_{t+s}(\cdot ; f)= & T_{t+s}^{0} f+\int_{0}^{t+s} \int_{s} K(\cdot ; d r d y) F\left(y ; u_{t+s-r}(\cdot ; f)\right) \\
= & T_{t}^{0} T_{s}^{0} f+\int_{0}^{t} \int_{s} K(\cdot ; d r d y) F\left(y ; u_{t+s-r}(\cdot ; f)\right) \\
& \quad+\int_{t}^{t+s} \int_{s} K(\cdot ; d r d y) F\left(y ; u_{t+s-r}(\cdot ; f)\right) \\
= & I, \text { say } ;
\end{aligned}
$$

applying (4.4) to the last term of the above we have

$$
\begin{aligned}
I=T_{t}^{0} T_{s}^{0} f & +\int_{0}^{t} \int_{s} K(\cdot ; d r d y) F\left(y ; u_{t+s-r}(\cdot ; f)\right) \\
& +T_{t}^{0} \int_{0}^{s} \int_{s} K(\cdot ; d r d y) F\left(y ; u_{s-r}(\cdot ; f)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \therefore T_{t}^{v}\left(T_{s}^{0} f+\int_{0}^{s} \int_{s} K(\cdot ; d r d y) F\left(y ; u_{s-r}(\cdot ; f)\right)\right) \\
& \quad+\int_{0}^{t} \int_{s} K(\cdot ; d r d y) F\left(y ; u_{t+s-r}(\cdot ; f)\right) \\
& =T_{t}^{0} u_{s}(\cdot ; f)+\int_{0}^{t} \int_{s} K(\cdot ; d r d y) F\left(y ; u_{t+s-r}(\cdot ; f)\right)
\end{aligned}
$$

This proves that $v_{t}=u_{t+s}(\cdot ; f)$ is a solution of the S-equation with the initial value $u_{s}(\cdot ; f) \in \boldsymbol{B}^{*}(S)^{+}$, and by the uniqueness of the solution we have (4.38). Then for $f \in \boldsymbol{C}^{*}(S)^{+}$we have

$$
\begin{aligned}
\widetilde{\boldsymbol{T}}_{t+s} \widehat{f}(\boldsymbol{x}) & =\widehat{u_{t+s}(\cdot ; f)}(\boldsymbol{x})=\widehat{u_{t}\left(\cdot ; u_{s}(\cdot ; f)\right)}(\boldsymbol{x}) \\
& =\widetilde{\boldsymbol{T}}_{t}\left(\widehat{u_{s}(\cdot ; f)}\right)(\boldsymbol{x})=\widetilde{\boldsymbol{T}}_{t}\left(\widetilde{\boldsymbol{T}}_{s} \hat{f}\right)(\boldsymbol{x}) .
\end{aligned}
$$

By Lemma $0.2, \widetilde{\boldsymbol{T}}_{t+s} g(\boldsymbol{x})=\widetilde{\boldsymbol{T}}_{t}\left(\widetilde{\boldsymbol{T}}_{s} g\right)(\boldsymbol{x})$ holds for all $\boldsymbol{C}_{0}(\boldsymbol{S})$ and hence for all $g \in \boldsymbol{B}(\boldsymbol{S})$. Thus $\widetilde{\boldsymbol{T}}_{t}$ is a semi-group on $\boldsymbol{B}(\boldsymbol{S})$, and by its definition it is a branching semi-group. In this way we have constructed a branching semi-group \widetilde{T}_{t} from a given fundamental system. We shall assume further that $\left(T_{t}^{0}, K, \pi\right)$ is H-regular or weakly H regular; then we have the following

Theorem 4.9. (i) Suppose (T_{t}^{0}, K, π) is H-regular. Then $\widetilde{\boldsymbol{T}}_{t}$ is a strongly continuous semi-group on the smallest closed linear subspace \boldsymbol{H}_{0} in $\boldsymbol{B}(\boldsymbol{S})$ containing $\left\{\widehat{f} ; f \in H_{0} \cap \boldsymbol{B}^{*}(S)^{+}\right\}$. In particular if $\left(T_{t}^{0}, K, \pi\right)$ is regular, then $\widetilde{\boldsymbol{T}}_{t}$ is a strongly continuous semigroup on $\boldsymbol{C}_{0}(\boldsymbol{S})$, and hence the corresponding branching Markov process is a Hunt process.
(ii) Suppose $\left(T_{t}^{0}, K, \pi\right)$ is weakly H-regular. Then $\widetilde{\boldsymbol{T}}_{t}$ is weakly continuous on the smallest closed linear subspace $\widetilde{\boldsymbol{H}}_{0}$ in $\boldsymbol{B}(\boldsymbol{S})$ containing $\left\{\widehat{f} ; f \in \widetilde{H}_{0} \cap B^{*}(\boldsymbol{S})\right\}$. Also, $\widetilde{\boldsymbol{T}}_{t}$ is strongly continuous on the smallest closed linear subspace containing $\left\{\widehat{f}: f \in H_{0}^{(T 0)} \cap \boldsymbol{B}^{*}(S)\right\} .^{17)}$

Proof. Proof of (i) is almost immediate from Theorem 4.8: in fact if $f \in H_{0} \cap \boldsymbol{B}^{*}(S)^{+}$, then

[^4]$$
u_{t}(\cdot ; f)=\left.\widetilde{\boldsymbol{T}}_{t} \widehat{f}\right|_{s} \in H_{0} \cap \boldsymbol{B}^{*}(S)^{+} \quad \text { and } \quad\left\|u_{t}(\cdot ; f)-f\right\| \rightarrow 0
$$
when $t \rightarrow 0$. Then $\widetilde{T}_{t} \hat{f} \in H_{0}$ and
$$
\left\|\widetilde{\boldsymbol{T}}_{t} \widehat{j}-\widehat{f}\right\|_{s} \leq a_{A_{0}}\left\|u_{t}(\cdot ; f)-f\right\| \rightarrow 0
$$
when $t \rightarrow 0$. The first assertion of (ii) is proved similarly. As for the second assertion, we see from the Corollary of Theorem 4.10 given below that if $\left(T_{t}^{0}, K, \pi\right)$ is weakl H-regular, then $f \in D\left(\widetilde{A_{H}}\right)$ $\cap \boldsymbol{B}^{*}(S)^{+}$implies $u_{t}(\cdot ; f) \in D\left(\widetilde{A}_{H}\right) \cap \boldsymbol{B}^{*}(S)^{+} \subset H_{0}^{(\tau 0)} \cap \boldsymbol{B}^{*}(S)$; therefore $\left\|u_{t}(\cdot ; f)-f\right\| \rightarrow 0$. Then the proof is the same as in (i).

In §4. 2 we have constructed a branching semi-group \boldsymbol{T}_{t} as the minimal solution of the M-equation and, it is the semi-group corresponding to the (X^{0}, π) -branching Markov process. We now claim that $\widetilde{\boldsymbol{T}}_{t}=\boldsymbol{T}_{t}$; i.e., the semi-group $\widetilde{\boldsymbol{T}}_{t}$ is the semi-group corresponding to the (X^{0}, π)-branching Markov process. This follows from Theorem 4.4, Corollary or Theorem 4.7 and Theorem 4.5, Corollary. But in the case when (T_{t}^{0}, K, π) is regular, we can give the following direct proof independent of the arguments involving the M-equation. Thus we shall see that, at least in the case of a regular fundamental system, the construction of the (X^{0}, π)-branching Markov process given in this section is completely self-contained.

Suppose, therefore, (T_{t}^{0}, K, π) is regular; then branching Markov process \boldsymbol{X} corresponding to the semi-group $\widetilde{\boldsymbol{T}_{t}}$ is a Hunt process, ${ }^{18)}$ and we shall show that \boldsymbol{X} is the (X^{0}, π)-branching Markov process. By Theorem 4.10 given below, if $f \in D\left(A^{0}\right) \cap \boldsymbol{B}^{*}(S)^{+}$, then

$$
\left\|\frac{1}{t}\left(\widetilde{\boldsymbol{T}}_{t} \widehat{f}-\widehat{f}\right)-\left\langle f \mid A^{0} f+k F(f)\right\rangle\right\|_{s} \rightarrow 0 \quad \text { when } t \rightarrow 0
$$

In particular we have

$$
\left\|\frac{1}{t}\left(\widetilde{\boldsymbol{T}} \widehat{f}_{s}-f\right)-A^{0} f-k \int_{s} \pi(\cdot, d \boldsymbol{y}) \widehat{f}(\boldsymbol{y})\right\| \rightarrow 0 \quad \text { when } t \rightarrow 0 .
$$

[^5]If we consider $\lambda f,|\lambda| \leq 1$, then we see easily that ${ }^{19)}$

$$
\begin{gathered}
\left.\left.\sup _{x \in S} \left\lvert\, \frac{1}{t} \int_{s^{n}} \widetilde{\boldsymbol{T}}_{t}(x, d \boldsymbol{y}) \widehat{f(} \boldsymbol{y}\right.\right)-k(x) \int_{S^{n}} \pi(x, d \boldsymbol{y}) \widehat{f(} \boldsymbol{y}\right) \mid \rightarrow 0 \\
(n=0,2,3, \cdots)
\end{gathered}
$$

and

$$
\sup _{x \in S}\left|\frac{1}{t}\left\{\int_{s} \widetilde{\mathbf{T}}_{t}(x, d y) f(y)-f(x)\right\}-A^{0} f(x)\right| \rightarrow 0, \quad \text { when } t \rightarrow 0 .
$$

From the first formula we can conclude, as in Ikeda-Watanabe [18], that $\pi(\boldsymbol{x}, d \boldsymbol{y})$ is the branching law of \boldsymbol{X} and further

$$
\boldsymbol{P}_{x}\left[\tau \leq t, \boldsymbol{X}_{\tau} \in E\right]=\int_{0}^{t} \int_{s} T_{s}^{*}(x, d y) k(y) \pi(y, E) d s
$$

where $T_{s}^{*}(x, d y)$ is the kernel of the semi-group of the non-branching part X^{*} of \boldsymbol{X}. From this we have $\sup _{x \in S} \boldsymbol{P}_{x}[\tau \leq t]=0(t)$. We shall now prove that X^{*} is epuivalent to X^{0}, i.e., $T_{s}^{*} \equiv T_{s}^{0}$. It is sufficient to show that

$$
\begin{equation*}
\sup _{x \in S} \boldsymbol{E}_{x}\left[f\left(\boldsymbol{X}_{t}\right) ; t \geq \tau, \boldsymbol{X}_{t} \in S\right]=0(t) \quad(t \downarrow 0) \tag{*}
\end{equation*}
$$

since then we have, for $f \in D\left(A^{0}\right) \cap B^{*}(S)^{+}$,

$$
\begin{aligned}
& \sup _{x \in S}\left|\frac{1}{t}\left\{\int_{S} T_{t}^{*}(x, d y) f(y)-f(x)\right\}-A^{0} f(x)\right| \\
& \leq \sup _{x \in S}\left|\frac{1}{t}\left\{\int_{S} \widetilde{\boldsymbol{T}}_{t}(x, d y) f(y)-f(x)\right\}-A^{0} f(x)\right| \\
& \quad+\frac{1}{t} \sup _{x \in S} \boldsymbol{E}_{x}\left[f\left(\boldsymbol{x}_{t}\right) ; t \geq \tau, \boldsymbol{X}_{t} \in S\right] \rightarrow 0 .
\end{aligned}
$$

This proves that $D\left(A^{0}\right) \subset D\left(A^{*}\right)$ and $A^{*} f=A^{0} f$ on $D\left(A^{0}\right)$, and hence $T_{t}^{0} \equiv T_{t}^{*}$. But we have

$$
\boldsymbol{E}_{x}\left[f\left(\boldsymbol{X}_{t}\right) ; t \geq \tau, \boldsymbol{X}_{t} \in S\right]=\boldsymbol{E}_{x}\left[\left.\boldsymbol{E}_{\boldsymbol{X}_{\mathrm{r}}}\left[f\left(\boldsymbol{X}_{t-u}\right) ; \boldsymbol{X}_{t-u} \in S\right]\right|_{u=\tau} ; \tau \leq t\right]
$$

and

$$
\begin{gathered}
\boldsymbol{E}_{\boldsymbol{x}}\left[f\left(\boldsymbol{X}_{r}\right) ; \boldsymbol{X}_{r} \in S\right]=\boldsymbol{T}_{r}\langle 0 \mid f\rangle(\boldsymbol{x})=\lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon}\left(\widehat{\left.T_{r} \epsilon \widehat{f}-\widehat{T_{r} 0}\right)(\boldsymbol{x})}\right. \\
\left.=\left.\left\langle\left.\boldsymbol{T}_{r} \widehat{0}\right|_{s}\right| \boldsymbol{T}_{r}\langle 0 \mid f\rangle\right|_{s}\right\rangle(\boldsymbol{x}) .
\end{gathered}
$$

[^6]Since $\sup _{x \in S} T_{r} \widehat{0}(x)=0(r)$ we have

$$
\left.\left.\sup _{\boldsymbol{x} \in S-S .}\left\langle T_{r} \hat{0}_{s}\right| \boldsymbol{T}_{r}\langle 0 \mid f\rangle\right|_{s}\right\rangle(\boldsymbol{x})=0(r)
$$

Combining this with $\sup _{x \in S} \boldsymbol{P}_{x}[\tau \leq t]=0(t)$ we have $\left(^{*}\right)$. Thus \boldsymbol{X} is the (X^{0}, π)-branching Markov process.

§4.5. Backward and forward equations

We shall discuss in this section the theory of the infinitesimal generator of a branching semi-group \boldsymbol{T}_{t} corresponding to the (X^{0}, π)branching Markov process. As in [6], the strong and the weak infinitesimal generators \boldsymbol{A} and $\tilde{\boldsymbol{A}}$ of \boldsymbol{T}_{t} are defined by

$$
\boldsymbol{A} f=s-\lim _{t \rightarrow 0} \frac{\boldsymbol{T}_{t} f-f}{t} \quad \text { and } \quad \widetilde{\boldsymbol{A}} f=w-\lim _{t \rightarrow 0} \frac{\boldsymbol{T}_{t} f-f}{t}
$$

with domain of definitions

$$
D(\boldsymbol{A})=\left\{f: f \in \boldsymbol{B}(\boldsymbol{S}) \text { such that } s-\lim _{t \rightarrow 0} \frac{\boldsymbol{T}_{t} f-f}{t}=\boldsymbol{A} f \text { exists }\right\}
$$

and

$$
\begin{aligned}
& D(\widetilde{\boldsymbol{A}})=\left\{f ; f \in \boldsymbol{B}(\boldsymbol{S}) ; w-\lim _{t \rightarrow 0} \frac{\boldsymbol{T}_{t} f-f}{t}=\widetilde{\boldsymbol{A}} f\right. \text { exists } \\
&\text { such that } \left.w-\lim _{t \downarrow 0} \boldsymbol{T}_{t}(\widetilde{\boldsymbol{A}} f)=\widetilde{\boldsymbol{A}} f\right\} .
\end{aligned}
$$

It seems difficult to discuss \boldsymbol{A} or $\widetilde{\boldsymbol{A}}$ without some additional condition on the system (T_{t}^{0}, K, π) and so we shall assume it is H-regular or weakly H-regular for some closed linear subspace H satisfying the conditions (H.1) and (H.2) of §4.3.

Lemma 4.5. Suppose $\left(T_{t}^{0}, K, \pi\right)$ is H-regular (weakly H regular) and let $v_{t} \in H, t \in[0, \infty)$ and $f \in \boldsymbol{B}^{*}(S)^{+} \cap H_{0}$ (resp. $\left.f \in \boldsymbol{B}^{*}(S)^{+} \cap \widetilde{H}_{0}\right)$ such that $\left\|v_{t}-f\right\| \rightarrow 0$ when $t \rightarrow 0$. Then

$$
\begin{align*}
& s-\lim _{t \downarrow 0} \frac{\int_{0}^{t} T_{s}^{0}\left(k \cdot F\left(\cdot ; v_{t-s}\right)\right) d s}{t}=k F(f) \tag{4.39}\\
& \left(\text { resp. } w-\lim _{t \downarrow 0} \frac{\int_{0}^{t} T_{s}^{0}\left(k \cdot F\left(\cdot ; v_{t-s}\right)\right) d s}{t}=k F(f)\right) .
\end{align*}
$$

Proof. From the condition $\left\|v_{t}-f\right\| \rightarrow 0(t \rightarrow 0)$ and $f \in \boldsymbol{B}^{*}(S)^{+}$ we may assume $\sup _{0 \leq t \leq t_{0}}\left\|v_{t}\right\| \leq r<1$ for some $t_{0}>0$. We shall put for $t \leqq t_{0}$

$$
\frac{1}{t} \int_{0}^{t} T_{s}^{0}\left(k \cdot F\left(\cdot ; v_{t-s}\right)\right) d s-k F(\cdot ; f)=I_{1}+I_{2}
$$

where

$$
I_{1}=\frac{1}{t} \int_{0}^{t} T_{s}^{0}\left\{k F\left(\cdot ; v_{t-s}\right)-k F(\cdot ; f)\right\} d s
$$

and

$$
I_{2}=\frac{1}{t} \int_{0}^{t} T_{s}^{0}(k F(\cdot ; f)) d s-k F(\cdot ; f)
$$

By (4.34) we have

$$
\begin{aligned}
\left\|I_{1}\right\| & \leq \frac{1}{t} \int_{0}^{t}\left\|T_{s}^{0}\left\{k\left(F\left(\cdot ; v_{t-s}\right)-F(\cdot ; f)\right)\right\}\right\| d s \\
& \leq \frac{1}{t}\|k\| a_{r} \int_{0}^{t}\left\|v_{s}-f\right\| d s \rightarrow 0(t \rightarrow 0) .
\end{aligned}
$$

If $\left(T_{t}^{0}, K, \pi\right)$ is H-regular (weakly H-regular) and $f \in H_{0}$ (resp. $f \in \widetilde{H}_{0}$), then $k F(\cdot ; f) \in H_{0}$ (resp. $k F(\cdot ; f) \in \widetilde{H}_{0}$) and hence

$$
\begin{aligned}
& s-\lim _{t \rightarrow 0} T_{t}^{0}(k F(\cdot ; f))=k F(\cdot ; f) \\
& \text { (resp. } \left.w-\lim _{t \rightarrow 0} T_{t}^{0}(k F(\cdot ; f))=k F(\cdot ; f)\right) .
\end{aligned}
$$

Then we have clearly that

$$
s-\lim _{t \rightarrow 0} I_{2}=0 \quad\left(\text { resp. } w-\lim _{t \rightarrow 0} I_{2}=0\right),
$$

and the proof of the lemma is now complete.
Theorem 4.10. (i) Suppose (T_{t}^{0}, K, π) is H-regular. If $f \in D\left(A_{H}^{0}\right) \cap \boldsymbol{B}^{*}(S)^{+}\left(=D\left(A_{H}\right) \cap \boldsymbol{B}^{*}(S)^{+}\right)$, then $\widehat{f} \in D(\widetilde{\boldsymbol{A}})$ and $\widetilde{\boldsymbol{A}} \widehat{f}$ is given by

$$
\begin{equation*}
\boldsymbol{A} \cdot \hat{f}=\langle f \mid \boldsymbol{c}(f)\rangle \tag{4.40}
\end{equation*}
$$

where

$$
\begin{align*}
c(f) & =A_{H}^{0} f+k F(\cdot ; f) \tag{4.41}\\
& =A_{H} f+k(F(\cdot ; f)-f) .
\end{align*}
$$

Conversely, if $f \in H \cap \boldsymbol{B}^{*}(S)^{+}$is such that $\widehat{f} \in D(\boldsymbol{A})$, then $f \in D\left(A_{H}^{0}\right)$ $\left(=D\left(A_{H}\right)\right)$ and hence $\boldsymbol{A} \widehat{f}$ is given by (4.40).
(ii) Suppose $\left(T_{t}^{0}, K, \pi\right)$ is weakly H-regular. If $f \in D\left(\widetilde{A_{H}^{0}}\right) \cap \boldsymbol{B}^{*}(S)^{+}$ $\left(=D\left(\widetilde{A}_{H}\right) \cap \boldsymbol{B}^{*}(S)^{+}\right)$, then $\widehat{f} \in D(\widetilde{\boldsymbol{A}})$ and $\widetilde{\boldsymbol{A}} \hat{f}$ is given by

$$
\begin{equation*}
\tilde{\boldsymbol{A}} \widehat{f}=\langle f \mid \tilde{c}(f)\rangle \tag{4.42}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{c}(f)=\widetilde{A_{H}^{0}} f+k F(\cdot ; f)=\widetilde{A_{H}} f+k(F(\cdot ; f)-f) \tag{4.43}
\end{equation*}
$$

Conversely, if $f \in H \cap \boldsymbol{B}^{*}(S)^{+}$is such that $\widehat{f} \in D(\widetilde{\boldsymbol{A}})$, then $f \in D\left(\widetilde{A_{H}^{0}}\right)$ $=D\left(\widetilde{A}_{H}\right)$ and hence $\widetilde{\boldsymbol{A}} \hat{f}$ is given by (4.42).

Proof. We shall first prove (i). Suppose $f \in D\left(A_{H}^{0}\right) \cap \boldsymbol{B}^{*}(S)^{+}$ then by Theorem 4. 8, $u_{t}(\cdot ; f)=\left.\boldsymbol{T}_{t} \widehat{f}\right|_{s} \in H_{0}$ and $\left\|u_{t}(\cdot ; f)-f\right\| \rightarrow 0$ when $t \downarrow 0$. Now if $c(f)$ is defined by (4.41), we have

$$
\begin{aligned}
& \left(\frac{u_{t}(\cdot ; f)-f}{t}-c(f)\right)=\left(\frac{T_{t}^{0} f-f}{t}-A_{H}^{0} f\right) \\
& \quad+\left(\frac{\int_{0}^{t} T_{s}^{0}\left(k \cdot F\left(\cdot ; u_{t-s}\right)\right) d s}{t}-k F(\cdot ; f)\right) .
\end{aligned}
$$

Clearly the first term converges strongly (i.e., in the norm) to zero when $t \downarrow 0$ and so does also the second term by Lemma 4.5. Thus $\left\|\frac{1}{t}\left(u_{t}(\cdot ; f)-f\right)-c(f)\right\| \rightarrow 0$ when $t \rightarrow 0$. Then, if $t \leq \sigma$, we have by Lemma 0.1 (0.35)

$$
\begin{aligned}
&\left\|\frac{\boldsymbol{T}_{t} \hat{f}-\widehat{f}}{t}-\langle f \mid c(f)\rangle\right\|_{S}=\left\|\frac{\widehat{u_{t}(\cdot ; f)}-\widehat{f}}{t}-\langle f \mid c(f)\rangle\right\|_{S} \\
& \leq d_{A_{\sigma}}\left\|\frac{1}{t}\left(u_{t}(\cdot ; f)-f\right)-c(f)\right\|+e_{A_{\sigma}}\|c(f)\|\left\|u_{t}(\cdot ; f)-f\right\|^{20\rangle} \\
& \rightarrow 0
\end{aligned}
$$

when $t \rightarrow 0$ proving that $\widehat{f} \in D(\boldsymbol{A})$ and $\boldsymbol{A} \widehat{f}=\langle f \mid c(f)\rangle$.
Conversely let $f \in H \cap \boldsymbol{B}^{*}(S)^{+}$be such that $\widehat{f} \in D(\boldsymbol{A})$. Then

$$
\left\|\frac{1}{t}\left(\boldsymbol{T}_{t} \hat{f}-\widehat{f}\right)-\boldsymbol{A} \hat{f}\right\|_{S} \rightarrow 0 \quad(t \rightarrow 0 ;
$$

20) $\quad \mathrm{A}_{\sigma}=1-(1-||f||) e^{-a \| k_{i}^{\prime} \mid}<1$.
and a fortiori

$$
\left\|\frac{1}{t}\left(u_{t}(\cdot ; f)-f\right)-\left.\boldsymbol{A} \widehat{f}\right|_{s}\right\| \rightarrow 0 \quad(t \rightarrow 0) ;
$$

that is,

$$
\begin{equation*}
\left\|\frac{T_{t}^{0} f-f}{t}+\frac{1}{t} \int_{0}^{t} T_{s}^{0}\left(k \cdot F\left(\cdot ; u_{t-s}\right)\right) d s-\left.\boldsymbol{A} \widehat{f}\right|_{s}\right\| \rightarrow 0 \quad(t \rightarrow 0) \tag{4.44}
\end{equation*}
$$

From (4.44) we see in particular that $\left\|\frac{T_{t}^{0} f-f}{t}\right\|$ is bounded in t and hence $\left\|T_{t}^{0} f-f\right\| \rightarrow 0$. Therefore $f \in H_{0}$ and this implies, by Theorem 4.8, that $u_{t}(\cdot ; f) \in H_{0}$ and $\left\|u_{t}(\cdot ; f)-f\right\| \rightarrow 0$. Then by Lemma 4.5 $s-\lim _{t \downarrow 0} \frac{1}{t} \int_{0}^{t} T_{s}^{0}\left(k \cdot F\left(\cdot ; u_{t-s}\right)\right) d s=k \cdot F(\cdot ; f)$. Combining this with (4.44) we see that $s-\lim \frac{T_{t}^{0} f-f}{t}$ exists and is equal to $\boldsymbol{A} \widehat{f}_{s}-k \cdot F(\cdot ; f)$ which proves $f \in D\left(A_{H}^{0}\right)$.

The proof of (ii) is quite similar, and therefore it is omitted.
Corollary. Suppose the fundamental system $\left(T_{t}^{0}, K, \pi\right)$ is H-regular (weakly H-regular). If $f \in D\left(A_{H}\right) \cap \boldsymbol{B}^{*}(S)^{+}$(resp. $\left.f \in D\left(\widetilde{A_{H}}\right) \cap \boldsymbol{B}^{*}(S)^{+}\right), \quad$ then $\quad u_{t}=u_{t}(\cdot ; f)=\left.\boldsymbol{T}_{t} \widehat{f}\right|_{s} \in D\left(A_{H}\right) \quad$ (resp. $u_{t} \in D\left(\widetilde{A}_{H}\right)$) for every $t \in[0, \infty)$ and $\frac{d u_{t}}{d t}$ exists strongly (resp. $\frac{d^{+} u_{t}}{d t}$ exists weakly); ${ }^{21)}$ further, we have

$$
\begin{align*}
& \frac{d u_{t}}{d t}=A_{H} u_{t}+k\left(F\left(\cdot ; u_{t}\right)-u_{t}\right) \tag{4.45}\\
& \left(\text { resp. } \frac{d^{+} u_{t}}{d t}=\widetilde{A_{H}} u_{t}+k\left(F\left(\cdot ; u_{t}\right)-u_{t}\right)\right)
\end{align*}
$$

and

$$
\begin{equation*}
\left\|u_{t}-f\right\| \rightarrow 0, \quad(t \rightarrow 0) . \tag{4.46}
\end{equation*}
$$

Proof. If $f \in D\left(A_{H}\right) \cap \boldsymbol{B}^{*}(S)$, then $\hat{f} \in D(\boldsymbol{A})$. Therefore, by the general theory of semi-groups we see that $\boldsymbol{T}_{t} \widehat{f}(\boldsymbol{x})=\widehat{u_{t}(\cdot ; f)}(\boldsymbol{x}) \in D(\boldsymbol{A})$ and is strongly differentiable ${ }^{22)}$ in t and $\frac{d \boldsymbol{T}_{t} \widehat{f}}{d t}=\boldsymbol{A} \boldsymbol{T}_{t} \widehat{f}=\boldsymbol{T}_{t} \boldsymbol{A} \widehat{f}$. Then
21) $\frac{d^{+} u_{t}}{d t}$ denotes the right hand derivative.
22) With respect to the Banach space $\boldsymbol{B}(\boldsymbol{S})$.
$u_{t}(\cdot ; f)$ is strongly differentiable in t and $u_{t} \in D\left(A_{H}\right)$ by the second part of (i) of the previous theorem. By the same theorem we have (4.45). The proof of the case of weakly H-regular is quite similar and hence it is omitted.

Definition 4.9. The equation (4.45) with the initial condition (4.46) is called the backward equation corresponding to the system (T_{i}^{0}, K, π).

Thus the backward equation is a semi-linear evolution equation and the semi-group of the $\left(X^{0}, \pi\right)$-branching Markov process defines its solution.

Now we shall consider the equation

$$
\frac{\partial \boldsymbol{T}_{t} \hat{f}}{\partial t}=\boldsymbol{T}_{t} \boldsymbol{A} \widehat{f}=\boldsymbol{T}_{t}\langle f \mid c(f)\rangle
$$

For simplicity, we shall assume that the fundamental system (T_{t}^{0}, K, π) is regular, though a similar argument can be carried over for H regular or weakly H-regular fundamental systems. Then the branching semi-group \boldsymbol{T}_{t} is a strongly continuous semi-group on $\boldsymbol{C}_{0}(\boldsymbol{S})$ such that if $f \in D(A) \cap \boldsymbol{C}^{*}(S)^{+, 23)}$ then $\widehat{f} \in D(\boldsymbol{A})$ and

$$
\begin{equation*}
\boldsymbol{A} \widehat{f}=\langle f \mid c(f)\rangle \tag{4.48}
\end{equation*}
$$

where $c(f)$ is given by $c(f)=A f+k(F(\cdot ; f)-f)$. (4.48) determines the semi-group uniquely: in fact we have the following

Theorem 4.11. Let $\left(T_{t}^{0}, K, \pi\right)$ be a regular fundamental system. Let \boldsymbol{U}_{t} be a non-negative contraction semi-group on $\boldsymbol{B}(\boldsymbol{S})$ such that if $f \in D(A) \cap \boldsymbol{C}^{*}(S)^{+}$, then $\widehat{f} \in D\left(\boldsymbol{A}_{\boldsymbol{U}}\right)^{24)}$ and

$$
\begin{equation*}
\boldsymbol{A}_{\boldsymbol{U}} \widehat{f}=\langle f \mid c(f)\rangle, \tag{4.49}
\end{equation*}
$$

where
23) In the case of $H=\boldsymbol{C}(S)$ we write A_{H} simply as A.
24) $D\left(\boldsymbol{A}_{\boldsymbol{U}}\right)$ is the domain of the strong infinitesimal generator $\boldsymbol{A} \boldsymbol{U}$ of \boldsymbol{U}_{\bullet};

$$
D(\boldsymbol{A} \boldsymbol{U})=\left\{f \in \boldsymbol{B}(\boldsymbol{S}) ; s-\lim \frac{\boldsymbol{U}_{t} f-f}{t} \equiv \boldsymbol{A}_{U} f \text { exists }\right\} .
$$

$$
\begin{equation*}
c(f)=A^{0} f+k \cdot F(\cdot ; f)=A f+k(F(\cdot ; f)-f) \tag{4.50}
\end{equation*}
$$

Then $\boldsymbol{U}_{t}=\boldsymbol{T}_{t}$, that is, \boldsymbol{U}_{t} is the semi-group of $\left(X^{0}, \pi\right)$-branching Markov process.

Before proving the theorem we shall give the following remark. Let \boldsymbol{B} be a Banach space and \mathscr{D} be an open subset of \boldsymbol{B}. A real valued function $\mathscr{D}(f)$ defined on \mathscr{D} is said to be G-differentiable ${ }^{25)}$ in \mathscr{D} if for every $f \in \mathscr{D}$ and $g \in \boldsymbol{B}$

$$
\lim _{\epsilon \downarrow 0} \frac{\Phi(f+\epsilon g)-\emptyset(f)}{\epsilon} \equiv \delta \Phi(f ; g)
$$

exists. $\delta \Phi(f ; g)$ is called the first variation with increment g of f. Now we take $\boldsymbol{C}(S)$ as \boldsymbol{B} and

$$
\begin{equation*}
\mathscr{D}(S)=\{f \in \boldsymbol{C}(S) ; 0<f<1\} \tag{4.51}
\end{equation*}
$$

as \mathscr{D}. Given a bounded measure μ on S define $\mathscr{D}(f), f \in \mathscr{D}$ by

$$
\emptyset(f)=\int_{S} \widehat{f}(x) \mu(d x)
$$

Then by (1.49), $\mathscr{D}(f)$ is G-differentiable in \mathscr{D} and

$$
\begin{equation*}
\delta \Phi(f ; g)=\int_{S}\langle f \mid g\rangle(\boldsymbol{x}) \mu(d \boldsymbol{x}), \quad f \in \mathscr{D}(S), \quad g \in \boldsymbol{C}(S) . \tag{4.52}
\end{equation*}
$$

Remark 4.2. Such $\mathscr{D}(f)$ has all higher order derivatives and in fact it is an analytic function of $f \in \mathscr{D}(S)$ in the sense of [9]. One can develop the theory of branching semi-groups on the basis of analytic functions defined on $\mathscr{D}(S)$ instead of using the symmetric direct product spaces: for such an approach see Mullikin [36].

Now let \boldsymbol{U}_{t} be a semi-group satisfying the condition of the theorem. If we set

$$
\begin{equation*}
\boldsymbol{\Phi}_{\boldsymbol{x}, t}(f)=\boldsymbol{U}_{t} \widehat{f(\boldsymbol{x})}, \quad f \in \mathscr{D}(S) \tag{4.53}
\end{equation*}
$$

then for each $x \in S$ we have that
(i) for fixed $f \in \mathscr{D}(S)$, it is continuous in $t,{ }^{26)}$

[^7](ii) for fixed $f \in D(A) \cap \mathscr{D}(S)$, it is continuously differentible in t, and
(iii) for fixed t, it is G-differentiable in $f \in \mathscr{D}(S)$.

By (4.47) and (4.52) we have for $f \in D(A) \cap \mathscr{D}(S)$

$$
\frac{\partial \Phi_{x, t}}{\partial t}(f)=\delta \Phi_{\boldsymbol{x}, t}(f ; c(f)), \Phi_{x, 0+}(f)=\widehat{f(x)} .
$$

Definition 4.10. For a given regular fundamental system (T_{t}^{0}, K, π) and a function $\mathscr{D}(f)$ defined on $\mathscr{D}(S)$,

$$
\left\{\begin{array}{l}
\frac{\partial \Phi_{t}(f)}{\partial t}=\delta \Phi_{t}(f ; c(f)), \quad f \in D(A) \cap \mathscr{D}(S) \tag{4.54}\\
\Phi_{0+}(f)=\emptyset(f)
\end{array}\right.
$$

is called the forward equation corresponding to the system $\left(T_{t}^{0}, K, \pi\right)$. A function $\mathscr{\sigma}_{t}(f)$ of (t, f) defined on $[0, \infty) \times \mathscr{D}(S)$ is called a solution of (4.54) with the initial value $\Phi(f)$ if it satisfies the conditions (i), (ii), (iii) above and (4.54).

Example 4.3. In the simplest case when $S=\{a\}$ and if the fundamental system is given by c and $\left\{\pi_{i}\right\}_{i=0}^{\infty}$ (cf. Example 4.1), ${ }^{2 \pi}$ then the forward equation (4.54) is given as
where

$$
\frac{\partial \Phi_{t}(f)}{\partial t}=c(f) \frac{\partial \Phi_{t}(f)}{\partial f}
$$

$$
c(f)=c \cdot\left(\sum_{j=0}^{\infty} \pi_{j} f^{j}-f\right) .
$$

If $\Phi_{i, t}(f)=\sum_{j=0}^{\infty} P_{i j}(t) f^{j}$, then the above equation is equivalent to

$$
\frac{\partial P_{i j}(t)}{\partial t}=-j c P_{i j}(t)+c \sum_{k=1}^{j+1} P_{i k} k \cdot \pi_{j-k+1} .
$$

This is just the classical Kolmogorov's forward differential equation for a Markov chain $\left(X_{t}, P_{i}\right)$ such that $E_{i}(\tau)=\frac{1}{i c}$ and $P_{i}\left[x_{\tau}=j\right]$ $=\pi_{j-i+1}$, where τ is the first jumping time.

Thus $\Phi_{x, t}(f)=\boldsymbol{U}_{t} \widehat{f}(\boldsymbol{x}), f \in \mathscr{D}(S)$, defines a solution of the forward

[^8]equation (4.54) with the initial value $\Phi(f) \equiv \widehat{f(x)}$ for, each fixed $\boldsymbol{x} \in \boldsymbol{S}$. Hence the theorem will be proved if we can prove the following

Theorem 4. 11'. Let $\left(T_{t}^{0}, K, \pi\right)$ be a given regular fundamental system and \boldsymbol{U}_{t} be a non-negative contraction semi-group on $\boldsymbol{B}(\boldsymbol{S})$ such that for each $\boldsymbol{x} \in \mathbf{S}, \boldsymbol{\Phi}_{x, t}(f) \equiv \boldsymbol{U}_{t} \widehat{f}(\boldsymbol{x}), f \in \mathscr{D}(S)$, defines a solution of the forward equation (4.54) with the initial value $\Phi(f) \equiv \widehat{f(x)} . \quad$ Then $\boldsymbol{U}_{\boldsymbol{t}}=\boldsymbol{T}_{\boldsymbol{t}}$.

Proof. Set $\Phi_{x, t}^{\prime}(f)=\boldsymbol{T}_{t} \hat{f}(\boldsymbol{x}), f \in \mathscr{D}(S)$; then we know that for each fixed $\boldsymbol{x}, \Phi_{x, t}^{\prime}(f)$ is also a solution of (4.54) with the initial value $\boldsymbol{\sigma}(f)=\widehat{f}(\boldsymbol{x})$. Since $\boldsymbol{U}_{\boldsymbol{t}}$ is a contraction semi-group, we have by Lemma 0.1 ,

$$
\begin{gathered}
\left|\boldsymbol{\Phi}_{x, t}(f)-\boldsymbol{\Phi}_{x, t}(g)\right|=\left|\boldsymbol{U}_{t}(\hat{f}-\hat{g})(\boldsymbol{x})\right| \leq\|\widehat{f}-\hat{g}\|_{s} \leq a_{r}\|f-g\|, \\
f, g \in \mathscr{D}(S) \cap \boldsymbol{C}_{r}^{*}(S),
\end{gathered}
$$

and noting (4.52) we have, provided $f, g \in \mathscr{D}(S) \cap \boldsymbol{C}_{r}^{*}(S)$,

$$
\begin{aligned}
& \left|\delta \varpi_{x, t}(f ; c(f))-\delta \varpi_{x, t}(g ; c(g))\right| \\
= & \left|\boldsymbol{U}_{t}(\langle f \mid c(f)\rangle-\langle g \mid c(g)\rangle)\right| \\
\leq & \|\langle f \mid c(f)\rangle-\langle g \mid c(g)\rangle\|_{s} \\
\leq & b_{r}\|c(f)\|\|f-g\|+c_{r}\|c(f)-c(g)\| .
\end{aligned}
$$

Clearly we have similar results for $\boldsymbol{\Phi}_{x, t}^{\prime}$. Hence if we set $\boldsymbol{\Phi}_{t}(f)$ $=\emptyset_{x, t}(f)-\varpi_{x, t}^{\prime}(f), f \in \mathscr{D}(S)$, then $\varpi_{t}(f)$ is a solution of $(4,54)$ with the initial value $\mathscr{\Phi}(f) \equiv 0$ such that for every $r<1$

$$
\begin{equation*}
\left|\varpi_{t}(f)-\varpi_{t}(g)\right| \leq \alpha_{r}\|f-g\| \tag{4.55}
\end{equation*}
$$

and

$$
\begin{align*}
&\left|\delta \Phi_{t}(f ; c(f))-\delta \Phi_{t}(g ; c(g))\right| \tag{4.56}\\
& \leq \beta_{r}\|c(f)\|\|f-g\|+r_{r}\|c(f)-c(g)\|
\end{align*}
$$

for every f and g in $\mathscr{D}(S) \cap C_{r}^{*}(S)$, where α_{r}, β_{r} and γ_{r} are constants depending on r. By the following lemma we have $\mathscr{\Phi}_{t}(f) \equiv 0$ and hence $\boldsymbol{U}_{\boldsymbol{t}} \widehat{f(\boldsymbol{x})}=\boldsymbol{\varpi}_{\boldsymbol{x}, t}(f)=\boldsymbol{\Phi}_{\boldsymbol{x}, t}^{\prime}(f)=\boldsymbol{T}_{\boldsymbol{t}} \widehat{f}(\boldsymbol{x})$ for every $f \in \mathscr{D}(S)$.

Since the linear hull of $\{\hat{f} ; f \in \mathscr{D}(S)\}$ is dense in $\boldsymbol{C}_{0}(\boldsymbol{S})$ we have $\boldsymbol{U}_{t}=\boldsymbol{T}_{t}$ on $\boldsymbol{C}_{0}(\boldsymbol{S})$ and hence on $\boldsymbol{B}(\boldsymbol{S})$.

Lemma 4.6. Let $\Phi_{t}(f)$ be a solution of the forward equation (4.54) with the initial value $\Phi(f) \equiv 0$ satisfying (4.55) and (4.56) for every $r<1$. Then $\Phi_{t}(f)=0$ for every $t \geq 0$ and $f \in \mathscr{D}(S)$.

Proof. Since $D(A) \cap \mathscr{D}(S)$ is dense in $\mathscr{D}(S)$ and $\mathscr{D}_{t}(f)$ is continuous in $f \in \mathscr{D}(S)$ by (4.55), it is sufficient to show $\mathscr{\Phi}_{i}(f) \equiv 0$ for every $f \in D(A) \cap \mathscr{D}(S)$. So assume $f \in D(A) \cap \mathscr{D}(S)$ and let $u_{t} \equiv u_{t}(\cdot ; f)$ be the solution of S-equation with the initial value f; then we know that $u_{t} \in D(A) \cap \mathcal{D}(S)$ by Cor. of Theorem 4.10 and $\sup _{0 \leq t \leq \sigma}\left\|u_{t}\right\| \leq A_{\sigma}<1$ for every $\sigma<0$. We shall now prove that $\frac{d \psi_{\sigma}(t)}{d t} \equiv 0$ in $t \in(0, \sigma)$, where we set $\psi_{\sigma}(t)=\mathscr{\emptyset}_{t}\left(u_{\sigma-t}\right), t \in[0, \sigma]$, for each fixed $\sigma>0$. If this is proved, then $\psi_{\sigma}(t)$ is constant in t, and hence $\psi_{\sigma}(\sigma)=\Phi_{\sigma}(f)=\psi_{\sigma}(0)=\Phi_{0}\left(u_{\sigma}\right)=0$ for every $\sigma>0$; therefore, the lemma will be proved.

Now

$$
\begin{aligned}
& \frac{1}{h}\left[\psi_{\sigma}(t+h)-\psi_{\sigma}\right]=\frac{1}{h}\left[\varpi_{t+h}\left(u_{\sigma-t-h}\right)-\varpi_{t}\left(u_{\sigma-t}\right)\right] \\
= & \frac{1}{h}\left[\boldsymbol{\emptyset}_{t+h}\left(u_{\sigma-t-h}\right)-\varpi_{t}\left(u_{\sigma-t-h}\right)\right]+\frac{1}{h}\left[\varpi_{t}\left(u_{\sigma-t-h}\right)-\varpi_{t}\left(u_{\sigma-t}\right)\right] \\
= & I_{1}+I_{2},
\end{aligned}
$$

where we set

$$
I_{1}=\frac{1}{h}\left[\Phi_{t+h}\left(u_{\sigma-t-h}\right)-\Phi_{t}\left(u_{\sigma-t-h}\right)\right]
$$

and

$$
I_{2}=\frac{1}{h}\left[\Phi_{t}\left(u_{\sigma-t-h}\right)-\Phi_{t}\left(u_{\sigma-t}\right)\right] .
$$

Set $\Theta_{t}(f)=\frac{\partial \Phi_{t}}{\partial t}(f)\left(=\delta \Phi_{t}(f ; c(f))\right)$; then $I_{1}=\Theta_{t+\theta h}\left(u_{\sigma-t-h}\right)$ for some $\theta=\theta(h)$ such that $0<\theta<1$, and hence

$$
\begin{align*}
& \left|I_{1}-\Theta_{t}\left(u_{\sigma-t}\right)\right|=\left|\Theta_{t+\theta h}\left(u_{\sigma-t-h}\right)-\Theta_{t}\left(u_{\sigma-t}\right)\right| \tag{4.57}\\
\leq & \left|\Theta_{t+\theta h}\left(u_{\sigma-t-h}\right)-\Theta_{t+\theta h}\left(u_{\sigma-t}\right)\right|+\left|\Theta_{t+\theta h}\left(u_{\sigma-t}\right)-\Theta_{t}\left(u_{\sigma-t}\right)\right| .
\end{align*}
$$

Since Θ_{s} is continuous in s by the condition (ii) of a solution, the second term tends to zero when $h \rightarrow 0$. The first term is equal to

$$
\left|\delta \Phi_{t+\theta h}\left(u_{\sigma-t-h} ; c\left(u_{\sigma-t-h}\right)\right)-\delta \Phi_{t+\theta h}\left(u_{\sigma-t} ; c\left(u_{\sigma-t}\right)\right)\right|,
$$

and by (4.56) this is majorized by

$$
K_{1}\left\|u_{\sigma-t-h}-u_{\sigma-t}\right\|+K_{2}\left\|c\left(u_{\sigma-t-h}\right)-c\left(u_{\sigma-t}\right)\right\| .
$$

The first term tends to zero when $h \rightarrow 0$. By Theorem 4.11 and its corollary, $c\left(u_{\sigma-t-h}\right)=\left.\left(\boldsymbol{A} \hat{u}_{\sigma-t+h}\right)\right|_{s}=\left.\left(\boldsymbol{T}_{\sigma-t-h} \boldsymbol{A} \widehat{f}\right)\right|_{s}$ and similarly $c\left(u_{\sigma-t}\right)=\left.\left(\boldsymbol{T}_{\sigma-t} \boldsymbol{A} \widehat{f}\right)\right|_{s}$; therefore, the second term is majorized by $\left\|\left(\boldsymbol{T}_{\sigma-t-h}-\boldsymbol{T}_{\sigma-t}\right) \boldsymbol{A} \widehat{f}\right\|$ which tends to zero when $h \rightarrow 0$. This proves $\left|I_{1}-\Theta\left(u_{\sigma-t}\right)\right| \rightarrow 0$ when $h \rightarrow 0$.

Next consider I_{2}; setting $g=c\left(u_{\sigma-t}\right)$,

$$
\begin{aligned}
I_{2} & =\frac{1}{h}\left\{\Phi_{t}\left(u_{\sigma-t-h}\right)-\Phi\left(u_{\sigma-t}\right)\right\} \\
& =\frac{1}{h}\left\{\Phi_{t}\left(u_{\sigma-t-h}\right)-\Phi_{t}\left(u_{\sigma-t}-h \cdot g\right)\right\} \\
& +\frac{1}{h}\left\{\Phi_{t}\left(u_{\sigma-t}-h \cdot g\right)-\Phi_{t}\left(u_{\sigma-t}\right)\right\}
\end{aligned}
$$

and the second term tends to $-\delta \Phi_{t}\left(u_{\sigma-t} ; g\right)$ when $h \rightarrow 0$ by the definition of the functional derivative δ. By (4.55) the first term is majorized by

$$
\frac{K}{h}\left\|u_{\sigma-t-h}-u_{\sigma-t}+h \cdot g\right\|,
$$

and this tends to zero since

$$
\begin{aligned}
& \left\|\frac{u_{\sigma-t-h}-u_{\sigma-t}}{h}+g\right\|=\left\|\frac{1}{h}\left\{\left.\boldsymbol{T}_{\sigma-t} \widehat{f}\right|_{s}-\left.\boldsymbol{T}_{\sigma-t-h} \widehat{f}\right|_{s}\right\}-\left.\left(\boldsymbol{A} \boldsymbol{T}_{\sigma-t} \widehat{f}\right)\right|_{s}\right\| \\
& \rightarrow 0 \quad(h \rightarrow 0) .
\end{aligned}
$$

Thus $I_{2} \rightarrow-\delta \Phi\left(u_{\sigma-t} ; g\right)$ and hence

$$
I_{1}+I_{2} \rightarrow \Theta_{t}\left(u_{\sigma-t}\right)-\delta \varpi_{t}\left(u_{\sigma-t} ; g\right)=\left(\frac{\partial}{\partial t} \Phi-\delta \Phi_{t}\right)=0 .
$$

This proves $\frac{d \psi_{\sigma}(t)}{d t}=0$.

Finally we shall give a direct proof that the semi-group $\boldsymbol{T}_{\boldsymbol{t}}$ constructed in Theorem 4.4 as the minimal solution of the M-equation satisfies the forward equation. This will give us a new proof of the branching property of \boldsymbol{T}_{t} at least in the case when (T_{t}^{0}, K, π) is regular. This point can be seen more clearly in the following way: if $\Phi_{x_{, t}}(f)=\boldsymbol{T}_{t} \widehat{f}(\boldsymbol{x}), f \in \mathscr{D}(S)$, defines a solution of the forward equation with the initial value $\varnothing(f)=\widehat{f}(\boldsymbol{x})$ for each $\boldsymbol{x} \in \boldsymbol{S}$, then $\boldsymbol{D}_{\boldsymbol{x}, t}^{\prime}(f)=\widehat{\left.\boldsymbol{T}_{t} \hat{f}\right)\left.\right|_{s}}(\boldsymbol{x})$ defines also a solution of the same equation with the same initial value. Hence by Lemma 4.5 we have

$$
\boldsymbol{D}_{\boldsymbol{x}, t}^{\prime}-\boldsymbol{\Phi}_{\boldsymbol{x}, \boldsymbol{t}} \equiv 0, \quad \text { i.e., } \quad \boldsymbol{T}_{t} \widehat{f}(\boldsymbol{x})=\left(\widehat{\left.\boldsymbol{T}_{t} \widehat{f}\right)\left.\right|_{s}}(\boldsymbol{x})\right.
$$

This proves \boldsymbol{T}_{t} has the branching property. ${ }^{28)}$
Now, \boldsymbol{T}_{t} was constructed as

$$
\boldsymbol{T}_{t} f=\sum_{n=0}^{\infty} \boldsymbol{T}_{t}^{(n)} f, \quad f \in \boldsymbol{B}(\boldsymbol{S}),
$$

where $\boldsymbol{T}_{t}^{(n)}, n=0,1,2, \cdots$ were defined by (4.16). Let $\mu(\boldsymbol{x}, d \boldsymbol{y})$ be a kernel on $\boldsymbol{S} \times \boldsymbol{S}$ defined by

$$
\begin{equation*}
\int_{\boldsymbol{s}} \mu(\boldsymbol{x}, d \boldsymbol{y}) \widehat{f}(\boldsymbol{y})=\langle f \mid k \cdot F(\cdot ; f)\rangle(\boldsymbol{x}) \tag{4.58}
\end{equation*}
$$

Such a kernel exists and uniquely determined by Lemma 0.3. Set

$$
\begin{equation*}
\phi(t, \boldsymbol{x}, d \boldsymbol{y})=\int_{S} \boldsymbol{T}_{t}^{0}(\boldsymbol{x}, d \boldsymbol{z}) \mu(\boldsymbol{z}, d \boldsymbol{y}) \tag{4.59}
\end{equation*}
$$

then the kernel $\psi(\boldsymbol{x} ; d s d \boldsymbol{y})$ defined by (4.9) is given by

$$
\psi(\boldsymbol{x} ; d s d \boldsymbol{y})=\phi(s, \boldsymbol{x}, d \boldsymbol{y}) d s
$$

Now set

$$
\begin{equation*}
\phi^{*}(t, \boldsymbol{x}, d \boldsymbol{y})=\int_{S} \mu(\boldsymbol{x}, d \boldsymbol{z}) T_{t}^{0}(\boldsymbol{z}, d \boldsymbol{y}) \tag{4.60}
\end{equation*}
$$

then clearly

[^9](4.61)
\[

$$
\begin{aligned}
& \int_{s} \phi(s, \boldsymbol{x}, d \boldsymbol{z}) \boldsymbol{T}_{t-s}^{0}(\boldsymbol{z}, d \boldsymbol{y}) \\
= & \int_{s} T_{s}^{0}(\boldsymbol{x}, d \boldsymbol{z}) \phi^{*}(t-s, \boldsymbol{z}, d \boldsymbol{y})
\end{aligned}
$$
\]

Rewriting (4.16) by ϕ and ϕ^{*}, we have

$$
\begin{aligned}
& \boldsymbol{T}_{t}^{(1)}(\boldsymbol{x}, d \boldsymbol{y})=\int_{0}^{t} \int_{s} \phi(s, \boldsymbol{x}, d \boldsymbol{z}) \boldsymbol{T}_{t-s}^{0}(\boldsymbol{z}, d \boldsymbol{y}) d s \\
&=\int_{0}^{t} \int_{S} \boldsymbol{T}_{s}^{0}(\boldsymbol{x}, d \boldsymbol{z}) \phi^{*}(t-s, \boldsymbol{z}, d \boldsymbol{y}) d s \\
& \boldsymbol{T}_{t}^{(2)}(\boldsymbol{x}, d \boldsymbol{y})=\int_{0}^{t} \int_{s}^{(2)}(s, \boldsymbol{x}, d \boldsymbol{z}) \boldsymbol{T}_{t-s}^{(0)}(\boldsymbol{z}, d \boldsymbol{y}) d s^{29)} \\
&=\int_{0}^{t} \int_{S} \boldsymbol{T}_{s}^{0}(\boldsymbol{x}, d \boldsymbol{z}) \phi^{*(2)}(t-s, \boldsymbol{z}, d \boldsymbol{y}) d s \\
&=\int_{0}^{t} \int_{S} \boldsymbol{T}_{s}^{(1)}(\boldsymbol{x}, d \boldsymbol{z}) \phi^{*}(t-s, \boldsymbol{z}, d \boldsymbol{y}) d s \\
& \vdots \\
& \boldsymbol{T}_{t}^{(n)}(\boldsymbol{x}, d \boldsymbol{y})=\int_{0}^{t} \int_{S} \boldsymbol{T}_{s}^{(n-1)}(\boldsymbol{x}, d \boldsymbol{z}) \phi^{*}(t-s, \boldsymbol{z}, d \boldsymbol{y}) d s
\end{aligned}
$$

and hence

$$
\begin{aligned}
\boldsymbol{T}_{t} f(\boldsymbol{x}) & =\sum_{n=0}^{\infty} \boldsymbol{T}_{t}^{(n)} f(\boldsymbol{x}) \\
& =\boldsymbol{T}_{t}^{0} f(\boldsymbol{x})+\int_{0}^{t} d s \boldsymbol{T}_{s}\left(\int_{s} \phi^{*}(t-s, \cdot, d \boldsymbol{y}) f(\boldsymbol{y})\right)(\boldsymbol{x})
\end{aligned}
$$

for every $f \in \boldsymbol{B}(\boldsymbol{S})$. In particular for $\widehat{f}(\boldsymbol{x}), f \in \boldsymbol{B}^{*}(S)^{+}$, we have by (4.60) and (4.58)
(4.62) $\quad \boldsymbol{T}_{t} \widehat{f}(\boldsymbol{x})=\widehat{T_{t}^{0} f(\boldsymbol{x})}+\int_{0}^{t} d s \boldsymbol{T}_{s}\left(\left\langle T_{t-s}^{0} f \mid k F\left(\cdot ; T_{t-s}^{0} f\right)\right\rangle\right)(\boldsymbol{x})$.

Therefore, if $f \in \boldsymbol{C}^{*}(S)^{+} \cap D(A)$,

$$
\begin{aligned}
& \left\|\frac{\boldsymbol{T}_{t} \widehat{f}-\widehat{f}}{t}-\left\langle f \mid A^{0} f+k \cdot F(\cdot ; f)\right\rangle\right\| \\
& \quad \leq\left\|\frac{\widehat{T_{t}^{0} f}-\widehat{f}}{t}-\left\langle f \mid A^{0} f\right\rangle\right\| \\
& \quad+\left\|\frac{1}{t} \int_{0}^{t} d s\left\{\boldsymbol{T}_{s}\left(\left\langle T_{t-s}^{0} f \mid k \cdot F\left(\cdot ; T_{t-s}^{0} f\right)\right\rangle\right)-\langle f \mid k F(\cdot ; f)\rangle\right\}\right\| \\
& =\left\|I_{1}\right\|+\left\|I_{2}\right\|
\end{aligned}
$$

29) $\phi^{(2)}(t, \boldsymbol{x}, d \boldsymbol{y})=\int_{\boldsymbol{S}} \int_{0}^{t} \phi(t-s, \boldsymbol{x}, d \boldsymbol{z}) \phi(s, \boldsymbol{z}, d \boldsymbol{y}) d s . \quad \phi^{*(2)}$ is defined similarly.
and by Lemma 0.1 (0.35),

$$
\left\|I_{1}\right\| \leq d\left\|\frac{1}{t}\left(T_{t}^{0} f-f\right)-A^{0} f\right\|+e\left\|A^{0} f\right\| \cdot\left\|T_{t}^{0} f-f\right\| \rightarrow 0
$$

when $t \rightarrow 0$. Also by (0.34) and (4.34)

$$
\begin{aligned}
\left\|I_{2}\right\| \leq & \frac{1}{t} \int_{0}^{t} d s\left\|\left\langle T_{t-s}^{0} f \mid k F\left(\cdot ; T_{t-s}^{0} f\right)\right\rangle-\langle f \mid k F(\cdot ; f)\rangle\right\| \\
\leq & \frac{1}{t} \int_{0}^{t} d s\left\|\left\langle T_{t-s}^{0} f \mid k \cdot F\left(\cdot ; T_{t-s}^{0} f\right)\right\rangle-\left\langle T_{t-s}^{0} f \mid k \cdot F(\cdot ; f)\right\rangle\right\| \\
& +\frac{1}{t} \int_{0}^{t} d s\left\|\left\langle T_{t-s}^{0} f \mid k \cdot F(\cdot ; f)\right\rangle-\langle f \mid k K(\cdot ; f)\rangle\right\| \\
\leq & \frac{K}{t} \int_{0}^{t} d s\left\|k \cdot F\left(\cdot ; T_{t-s}^{0} f\right)-k \cdot F(\cdot ; f)\right\| \\
& +\frac{K^{\prime}}{t} \int_{0}^{t}\left\|T_{t-s}^{0} f-f\right\| d s \\
\leq & \frac{K^{\prime \prime}}{t} \int_{0}^{t}\left\|T_{t-s}^{0} f-f\right\| d s
\end{aligned}
$$

for some constants K, K^{\prime} and $K^{\prime \prime}$ and $t \in[0, \sigma]$ if σ is sufficiently small. Hence $\left\|I_{2}\right\| \rightarrow 0$ where $t \rightarrow 0$. Hence $\widehat{f} \in D(\boldsymbol{A})$ and $\boldsymbol{A} \widehat{f}=\langle f| A^{0} f$ $+k \cdot F(\cdot ; f)\rangle$. This implies, as we have seen above, that $\Phi_{t, x}(f)$ $=\boldsymbol{T}_{t} \widehat{f}(\boldsymbol{x}), f \in \mathscr{D}(S)$, satisfies the forward equation.

§4.6. Number of particles and related equations

Let $\boldsymbol{X}=\left(\boldsymbol{X}_{t}, \boldsymbol{P}_{\boldsymbol{x}}\right)$ be a branching Markov process; we assume

$$
\begin{equation*}
\boldsymbol{P}_{\boldsymbol{x}}\left[e_{\Delta}=+\infty\right]=1 \quad \text { for every } \boldsymbol{x} \in \boldsymbol{S} \tag{4.63}
\end{equation*}
$$

This is equivalent to the following weaker condition:

$$
\begin{equation*}
\boldsymbol{P}_{x}\left[e_{\Delta}=+\infty\right]=1 \quad \text { for every } x \in S \tag{4.64}
\end{equation*}
$$

since, if $x=\left[x_{1}, x_{2}, \cdots, x_{n}\right]$,

$$
\boldsymbol{P}_{x}\left[e_{\Delta}=+\infty\right]=\lim _{t \rightarrow \infty} \boldsymbol{T}_{t} \widehat{1}(\boldsymbol{x})=\lim _{t \rightarrow \infty} \prod_{i=1}^{n} \boldsymbol{T}_{t} \widehat{1}\left(x_{i}\right)=\prod_{i=1}^{n} \boldsymbol{P}_{x_{i}}\left[e_{\Delta}=+\infty\right] .
$$

The mapping $f \in \mathfrak{B}(S) \rightarrow \check{f} \in \mathfrak{B}(\boldsymbol{S})$ is defined by (0.32);

$$
\check{f}(\boldsymbol{x})= \begin{cases}0, & \text { if } \boldsymbol{x}=0 \\ f\left(x_{1}\right)+f\left(x_{2}\right)+\cdots+f\left(x_{n}\right), & \text { if } \boldsymbol{x}=\left[x_{1}, x_{2}, \cdots, x_{n}\right] \in S^{n}, \\ & n=1,2, \cdots .\end{cases}
$$

We shall sometimes write $(f)^{\vee}$ instead of \check{f}. It is clear for $f \in \boldsymbol{B}(S)^{+}$and $0 \leq \lambda \leq 1$ that if g is defined by $g(x)=\lambda^{f(x)}$, then

$$
\begin{equation*}
\widehat{g}(\boldsymbol{x})={h^{\check{f}}(\boldsymbol{x})}, \quad \boldsymbol{x} \in \boldsymbol{S} . \tag{4.65}
\end{equation*}
$$

The operation " \checkmark " is linear:

$$
\begin{equation*}
\left(f_{1}+f_{2}\right)^{\vee}=\breve{f_{1}}+\breve{f_{2}} . \tag{4.66}
\end{equation*}
$$

In this section we shall discuss $\xi_{t}^{f}(\omega)$ defined by

$$
\begin{equation*}
\xi_{t}^{f}(\boldsymbol{\omega})=\breve{f}\left(\boldsymbol{X}_{t}\right) . \tag{4.67}
\end{equation*}
$$

If I_{D} is the indicator function of a set $D \in \mathscr{B}(S)$

$$
\begin{equation*}
\xi_{t}^{D}(\omega) \equiv \xi_{t}^{I_{D}}(\omega)=\check{I}_{D}\left(\boldsymbol{X}_{t}\right) \tag{4.68}
\end{equation*}
$$

stands for the number of particles in the set D.
Lemma 4.7. For $f \in \boldsymbol{B}(S)^{+}$and $h \in \overline{\boldsymbol{B}^{*}(S)^{+}}$we have, for $\boldsymbol{x}=\left[x_{1}, x_{2}, \cdots, x_{n}\right] \in S^{n}$,

$$
\begin{equation*}
\left.\boldsymbol{T}_{t}\left(\widehat{h}(\check{f})^{k}\right)(\boldsymbol{x})=\sum_{\left(k_{1}, k_{2}, \cdots, k_{n}\right)}^{(k)} \frac{k!}{k_{1}!k_{2}!\cdots k_{n}!} \prod_{j=1}^{n} \boldsymbol{T}_{t}\left(\widehat{h}(\check{f})^{k_{j}}\right)\left(x_{j}\right)\right)^{30)} \tag{4.69}
\end{equation*}
$$

Proof. We assume first $h \in \boldsymbol{B}^{*}(S)^{+}$; then there exists some $\lambda_{0}>0$ such that, if $|\lambda| \leq \lambda_{0},\left\|e^{\lambda /}\right\|\|h\|<1$. Therefore, setting $g=e^{\lambda f}$, we have for $\boldsymbol{x}=\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ and $|\lambda| \leq \lambda_{0}$

$$
\begin{aligned}
& \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} \boldsymbol{T}_{t}\left(\widehat{h}(\check{f})^{k}\right)(\boldsymbol{x}) \\
= & \boldsymbol{T}_{t}(\widehat{h} \cdot \widehat{g})(\boldsymbol{x}) \\
= & \prod_{j=1}^{n} \boldsymbol{T}_{t}(\widehat{h} \cdot \widehat{g})\left(x_{j}\right) \\
= & \sum_{k_{1}=0}^{\infty} \sum_{k_{2}=0}^{\infty} \cdots \sum_{k_{n}=0}^{\infty} \frac{\lambda^{k_{1}+k_{2}+\cdots+k_{n}}}{k_{1}!k_{2}!\cdots k_{n}!} \prod_{j=1}^{n} \boldsymbol{T}_{t}\left(\widehat{h}(\check{f})^{k_{j}}\right)\left(x_{j}\right) .
\end{aligned}
$$

[^10]Comparing the coefficients of λ^{k} we have (4.69). When $h \in \overline{\boldsymbol{B}^{*}(S)^{+}}$, we have (4.96) by the monotone convergence theorem, taking $h_{n} \in \boldsymbol{B}^{*}(S)^{+}$such that $h_{n} \uparrow h$.

Corollary. For $f \in \boldsymbol{B}(S)^{+}$,

$$
\begin{equation*}
\boldsymbol{T}_{t} \breve{f}(\boldsymbol{x})=\left(\left.\boldsymbol{T}_{t} \breve{f}\right|_{s}\right)^{\vee}(\boldsymbol{x}) \tag{4.70}
\end{equation*}
$$

Now set for $f \in \boldsymbol{B}(S)^{+}$

$$
\begin{equation*}
M_{t} f(x)=\left.\boldsymbol{T}_{t} \check{f}\right|_{s}(x)=\boldsymbol{E}_{x}\left[\check{f}\left(\boldsymbol{X}_{t}\right)\right] \tag{4.71}
\end{equation*}
$$

Let

$$
\boldsymbol{B}^{1}=\left\{f \in \boldsymbol{B}(S), M_{t}|f| \in \boldsymbol{B}(S) \text { for every } t>0\right\}
$$

It is clear that if f belongs to \boldsymbol{B}^{1} then both $f^{+}=f \vee 0$ and f^{-} $=(-f) \vee 0$ belong to \boldsymbol{B}^{1}. We define $M_{t} f(x)$ for $f \in \boldsymbol{B}^{1}$ by

$$
\begin{equation*}
M_{t} f(x)=M_{t} f^{+}(x)-M_{t} f^{-}(x) \tag{4.72}
\end{equation*}
$$

If we define a kernel $M_{t}(x, d y)$ on $S \times S$ by

$$
\begin{equation*}
M_{t}(x, E)=M_{t} I_{E}(x), x \in S, E \in \mathscr{B}(S) \tag{4.73}
\end{equation*}
$$

then we have clearly

$$
\begin{equation*}
M_{t} f(x)=\int_{s} f(y) M_{t}(x, d y), f \in \boldsymbol{B}^{1} \tag{4.74}
\end{equation*}
$$

By (4.70) we have

$$
\begin{aligned}
M_{t+s} f(x) & =\boldsymbol{T}_{t+s} \check{f}(x)=\boldsymbol{T}_{t}\left(\boldsymbol{T}_{s} \check{f}\right)(x)=\boldsymbol{T}_{t}\left(\left.\boldsymbol{T}_{s} \check{f}\right|_{s}\right)^{\vee}(x) \\
& =\boldsymbol{T}_{t}\left(M_{s} f\right)^{\vee}(x)=M_{t}\left(M_{s} f\right)(x) .
\end{aligned}
$$

Thus we have the following
Theorem 4. 12. $\int M_{t} f(x)=\int M_{t}(x, d y) f(y)=\boldsymbol{E}_{x}\left[\check{f}\left(\boldsymbol{X}_{t}\right)\right], x \in S$, $f \in \boldsymbol{B}^{1}$, defines a non-negative semi-group on \boldsymbol{B}^{1}.

Definition 4.10. The non-negative semi-group M_{t} is called the expectation semi-group of the process \boldsymbol{X}_{t}.

From now on we assume \boldsymbol{X} is an (X^{0}, π)-branching Markov process and let (T_{t}^{0}, K, π) be the fundamental system of \boldsymbol{X}.

Lemma 4.8. Let $h \in \overline{\boldsymbol{B}^{*}(S)^{+}}$and $f \in \boldsymbol{B}(S)^{+}$; then for each $k=0,1,2, \cdots$, we have

$$
\begin{gather*}
\left.\boldsymbol{T}_{t}\left(\widehat{h}(\breve{f})^{k}\right)\right|_{s}(x)=T_{t}^{0}\left(h \cdot f^{k}\right)(x)+\int_{0}^{t} \int_{s} K(x ; d s d y) \tag{4.75}\\
\left.\cdot \sum_{n=0}^{\infty} \sum_{\left(k_{1}, k_{2}, \cdots, k_{n}\right)}^{(k)} \frac{k!}{k_{1}!k_{2}!\cdots k_{n}!} \int_{s^{n}} \pi(y, d \boldsymbol{z}) \prod_{j=1}^{n} \boldsymbol{T}_{t-s}\left(\widehat{h}(\breve{f})^{k_{j}}\right)\right|_{s}\left(z_{j}\right) .^{31)}
\end{gather*}
$$

Proof. We assume first that $h \in \boldsymbol{B}^{*}(S)^{+}$. Then there exists some $\lambda_{0}>0$ such that, if $|\lambda| \leq \lambda_{0},\left\|e^{\lambda f}\right\|\|h\|<1$. We know that $v(t, x)$ $=\left.\boldsymbol{T}_{t}\left(\widehat{h} \cdot \widehat{e^{\prime f}}\right)\right|_{s}(x)$ satisfies the S-equation:

$$
\begin{equation*}
v(t, x)=T_{t}^{0}\left(h \cdot e^{\lambda f}\right)+\int_{0}^{t} \int_{s} K(x ; d s d y) \int_{s} \pi(y, d \boldsymbol{z}) \hat{v}(t-s, \cdot)(\boldsymbol{z}) . \tag{4.76}
\end{equation*}
$$

Since $v(t, x)=\left.\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} \boldsymbol{T}_{t}\left(\widehat{h}(\breve{f})^{k}\right)\right|_{s}(x),|\lambda|<\lambda_{0}, \quad$ we have

$$
\begin{align*}
& \left.\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} \boldsymbol{T}_{t}\left(\widehat{h}(\breve{f})^{k}\right)\right|_{s}(x) \tag{4.77}\\
= & \sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!}\left\{\boldsymbol{T}_{t}^{0}\left(h \cdot f^{k}\right)(x)+\int_{0}^{t} \int_{s} K(x ; d s d y) \sum_{n=0}^{\infty} \int_{s^{n}} \pi(y, d \boldsymbol{z})\right. \\
\cdot & \sum_{\left(k_{1}, k_{2}, \cdots k_{n}\right)}^{(k)} \frac{k!}{k_{1}!k_{2}!\cdots k_{n}!} \prod_{j=1}^{n} \boldsymbol{T}_{t-s}\left(\left.\widehat{h}(\check{f})^{k_{j}}\right|_{s}\left(z_{j}\right),\right. \\
& \left(\boldsymbol{z}=\left[z_{1}, z_{2}, \cdots, z_{n}\right]\right) .
\end{align*}
$$

Comparing the coefficients of λ^{k} we have (4.75). When $\mathrm{h} \in \overline{\boldsymbol{B}^{*}(S)^{+}}$, taking $h_{n} \in \boldsymbol{B}(S)^{+}$such that $h_{n} \uparrow h$, we have (4.75) by the monotone convergence theorem.

If $h \equiv 1$ and $k=1$, we have from (4.75)

$$
\begin{align*}
&\left.\boldsymbol{T}_{t}(\breve{f})\right|_{s}(x)=T_{t}^{0} f(x)+ \tag{4.78}\\
& \int_{0}^{t} \int_{s} K(x ; d s d y) \sum_{n=0}^{\infty} \int_{s^{n}} \pi(y, d \boldsymbol{z}) \\
&=\left.\sum_{i=1}^{n} \boldsymbol{T}_{t-s}(\check{f})\right|_{s}\left(z_{j}\right) \\
&= \int_{0}^{t} \int_{s} K(x ; d s d y) \int_{S} \pi(y, d \boldsymbol{z}) \mid\left(\left.T_{t-s} \check{f}\right|_{s}\right)^{\vee}(\boldsymbol{z}) .
\end{align*}
$$

Theorem 4.13. $u(t, x)=M_{t} f(x), f \in \boldsymbol{B}^{+}$satisfies the following (linear) integral equation

$$
\text { 31) } \boldsymbol{z}=\left[z_{1}, z_{2}, \cdots, z_{n}\right] \text {. }
$$

$$
\begin{equation*}
u(t, x)=T_{t}^{0} f(x)+\int_{0}^{t} \int_{s} K(x ; d s d y) G(y ; u(t-s, ; \cdot)), \tag{4.79}
\end{equation*}
$$

where

$$
\begin{equation*}
G(y ; g)=\int_{S} \pi(x, d \boldsymbol{y}) \check{g}(\boldsymbol{y}) . \tag{4.80}
\end{equation*}
$$

Further, $u(t, x)=M_{t} f(x)$ defines the smallest solution among all non-negative solutions of (4.79).

Proof. (4.79) follows from (4.78). To prove the second assertion, we need the following

Lemma 4.9. If $\boldsymbol{x}=\left[x_{1}, x_{2}, \cdots, x_{n}\right] \in S^{n}$,

$$
\begin{equation*}
\boldsymbol{T}_{t}^{(0)} \check{f}(\boldsymbol{x})=\left\langle T_{t}^{0} 1 \mid T_{t}^{0} f\right\rangle(\boldsymbol{x}) \equiv \sum_{i=1}^{n}\left\{\prod_{j \neq i} T_{t}^{0} 1\left(x_{j}\right)\right\} T_{t}^{0} f\left(x_{i}\right), \tag{4.81}
\end{equation*}
$$

$$
\begin{align*}
& \quad \int_{0}^{s} \int_{s} \psi(\boldsymbol{x} ; d s d \boldsymbol{y}) \hat{g}(s, \cdot)(\boldsymbol{y}) \tag{4.82}\\
& \quad=\sum_{i=1}^{n} \int_{0}^{t} T_{s}^{o} g(s, \cdot)\left(x_{i}\right)\left[-d_{s}\left(\Pi T_{i \neq i}^{o} 1\left(x_{j}\right)\right)\right] \\
& +\sum_{i=1}^{n} \int_{0}^{t}\left\{\prod_{j \neq i} T_{s}^{0} 1\left(x_{j}\right)\right\} \int_{s} K\left(x_{i} ; d s d s\right) G(y ; g(s, \cdot)), \\
& \\
& \text { for every } f \in \mathfrak{B}(S)^{+} \text {and } g \in \mathfrak{B}([0, \infty) \times S)^{+32} .
\end{align*}
$$

Proof. Let $h=e^{-\lambda f}$; then (4.81) is obtained from $\boldsymbol{T}_{t}^{(0)} \widehat{h}(\boldsymbol{x})=\widehat{T_{i}^{0} h}(\boldsymbol{x})$ by differentiating with respect to λ and then putting $\lambda=0$. (4.82) can be proved in a similar way.

Now let $v_{t} \equiv v(t, x)(0 \leq v \leq+\infty)$ be a solution of (4.79). Then, for $\boldsymbol{x}=\left[x_{1}, x_{2}, \cdots, x_{n}\right] \in S^{n}$,

$$
\begin{aligned}
\check{v}_{t}(x) & =\sum_{i=1}^{n} v\left(t, x_{i}\right) \\
& =\sum_{i=1}^{n} T_{t}^{0} f\left(x_{i}\right)+\sum_{i=1}^{n} \iint_{0}^{t} K\left(x_{i} ; d s d y\right) G\left(y ; v_{t-s}\right) \\
& =\sum_{i=1}^{n}\left\{\prod_{j \neq i} T_{t}^{0} 1\left(x_{j}\right)\right\} T_{t}^{0} f\left(x_{i}\right)+\sum_{i=1}^{n}\left(1-\prod_{j \neq i} T_{t}^{0} 1\left(x_{j}\right)\right) T_{t}^{0} f\left(x_{i}\right) \\
& +\sum_{i=1}^{n} \int_{0}^{t} \prod_{j \neq i} T_{s}^{0} 1\left(x_{j}\right) \int_{s} K\left(x_{i} ; d s d y\right) G\left(y ; v_{t-s}\right) \\
& +\sum_{i=1}^{n} \int_{0}^{t}\left(1-\prod_{j \neq i} T_{s}^{0} 1\left(x_{j}\right)\right) \int_{s} K\left(x_{i} ; d s d y\right) G\left(y ; v_{t-s}\right) \\
& \equiv I_{1}+I_{2}+I_{3}+I_{4}, \text { say }
\end{aligned}
$$

[^11]then
\[

$$
\begin{aligned}
I_{4} & =\sum_{i=1}^{n} \int_{0}^{t} \int_{0}^{s} d_{r}\left(-\prod_{j \neq i} T_{r}^{0} 1\left(x_{j}\right)\right) \int_{S} K\left(x_{i} ; d s d y\right) G\left(y ; v_{t-s}\right) \\
& =\sum_{i=1}^{n} \int_{0}^{s}\left[\int_{r}^{t} \int_{S} K\left(x_{i} ; d s d y\right) G\left(y ; v_{t-s}\right)\right] d_{r}\left(-\prod_{j \neq i} T_{r}^{0} 1\left(x_{j}\right)\right),
\end{aligned}
$$
\]

and hence

$$
\begin{aligned}
I_{2}+I_{4}= & \sum_{i=1}^{n} \int_{0}^{t}\left[T_{t}^{0} f\left(x_{i}\right)+\int_{r}^{t} \int_{S} K\left(x_{i} ; d s d y\right) G\left(y ; v_{t-s}\right)\right] d_{r}\left(-\prod_{j \neq i} T_{r}^{0} 1\left(x_{j}\right)\right) \\
& =\sum_{i=1}^{n} \int_{0}^{t}\left[T_{r}^{0} v_{t-r}\left(x_{i}\right)\right] d_{r}\left(-\prod_{j \neq i} T_{r}^{0} 1\left(x_{j}\right)\right) .
\end{aligned}
$$

where we used (4.4) to single out T_{0}^{r}.
Therefore by (4.82)

$$
I_{2}+I_{4}+I_{3}=\int_{0}^{t} \int_{S} \psi(\boldsymbol{x} ; d s d \boldsymbol{y}) \check{v}_{t-s}(\boldsymbol{y})
$$

By (4.81)

$$
I_{1}=\boldsymbol{T}_{t}^{(0)} \check{f}(\boldsymbol{x})
$$

Hence we have

$$
\check{v}_{t}(\boldsymbol{x})=\boldsymbol{T}_{t}^{(0)} \check{f}(\boldsymbol{x})+\int_{0}^{t} \int_{s} \psi(\boldsymbol{x} ; d s d \boldsymbol{y}) \check{v}_{t-s}(\boldsymbol{y}) ;
$$

i.e., $\check{v}_{t}(\boldsymbol{x})$ is a a solution of the M-equation with the initial value $\check{f}(\boldsymbol{x})$. In §4.2 we have shown that $\boldsymbol{T}_{\boldsymbol{t}} \breve{f}(\boldsymbol{x})$ is the smallest of all such solutions, and therefore

$$
\boldsymbol{T}_{t} \breve{f}(\boldsymbol{x}) \leq \check{v}_{t}(\boldsymbol{x})
$$

which implies, in particular, that

$$
M_{t} f(x)=\left.\left(\boldsymbol{T}_{t} \check{f}\right)\right|_{s}(x) \leq v_{t}(x)
$$

From now on we shall assume that the fundamental system (T_{t}^{0}, K, π) is determined by [X, k, π] and is H-regular or weakly H regular. We shall assume further that

$$
\begin{equation*}
\sup _{x \in S} \int \pi(x, d \boldsymbol{y}) \check{1}(\boldsymbol{y}) \equiv K<\infty \tag{4.83}
\end{equation*}
$$

and

$$
\begin{equation*}
k \cdot G(\cdot ; g) \in H_{0}\left(\text { resp. } \widetilde{H}_{0}\right) \text { if } g \in H_{0} \quad\left(\text { resp. } \widetilde{H}_{0}\right) \tag{4.84}
\end{equation*}
$$

in the case when the fundamental system is H-regular (resp. weakly H-regular).

From (4.83) we have for every $g \in \boldsymbol{B}(S)$,

$$
\begin{equation*}
\|G(\cdot ; g)\| \leq K \cdot\|g\| . \tag{4.85}
\end{equation*}
$$

Now, for given $f \in \boldsymbol{B}^{*}(S)$, define $\left\{u_{n}(t, x)\right\}_{n=0}^{\infty}$ successively by

$$
\begin{gather*}
u_{0}(t, x) \equiv 0 \tag{4.86}\\
u_{n}(t, x)=T_{t}^{0} f(x)+\int_{0}^{t} \int_{s} K(x ; d s d y) G\left(\cdot ; u_{n-1}(t-s, \cdot)\right) .
\end{gather*}
$$

Then just as in the case of the S-equation, $u_{n} \uparrow u_{\infty}$, where u_{∞} is the minimal solution of (4.79), and hence $u_{\infty}(t, \cdot)=M_{t} f$ by the above theorem. We shall now prove

$$
\begin{equation*}
\left\|M_{t} f\right\| \leq e^{K\|k\| t}\|f\| . \tag{4.87}
\end{equation*}
$$

For, if we assume

$$
\begin{equation*}
\left\|u_{n}(t, \cdot)\right\|<\sum_{j=0}^{n} \frac{(K \cdot\|k\| t)^{j}}{j!}\|f\|, \tag{4.88}
\end{equation*}
$$

then

$$
\begin{aligned}
0 & \leq u_{n+1}(t, x)=T_{t}^{0} f(x)+\int_{0}^{t} T_{s}^{0}\left\{k \cdot G\left(\cdot ; u_{n}(t-s, \cdot)\right)\right\} d s \\
& \leq\|f\|+\|k\| K \int_{0}^{t}\left\|u_{n}(s, \cdot)\right\| d s \\
& \leq\|f\|+\|k\| \cdot K \cdot \int_{0}^{t} \sum_{j=0}^{n} \frac{(K \cdot\|k\| \cdot s)^{j}}{j!}\|f\| d s \\
& =\sum_{j=0}^{n+1} \frac{(K\|k\| t)^{j}}{j!}\|f\| .
\end{aligned}
$$

This proves (4.88) for every n and hence letting $n \rightarrow \infty$ we have (4.87). Now noting the following property of G,

$$
\begin{equation*}
\|G(\cdot ; g)-G(\cdot ; h)\| \leq\|g-h\| \tag{4.89}
\end{equation*}
$$

we can repeat the same arguments as for the S-equation to obtain the following

Theorem 4.14. Assume that the fundamental system $\left(T_{t}^{0}, K, \pi\right)$ is H-regular or weakly H-regular and (4.83) is satisfied; then for given $f \in \boldsymbol{B}(S)$ there exists a unique solution $u(t, x) \in \boldsymbol{B}(S)$ of (4.79) and $u(t, x)=M_{t} f(x) \equiv E_{x}\left[\check{f}\left(\boldsymbol{X}_{t}\right)\right]{ }^{33)} M_{t}$ satisfies

$$
\begin{equation*}
\left\|M_{t} f\right\| \leq e^{\| \|\| \| t}\|f\|, f \in \boldsymbol{B}(S) \tag{4.90}
\end{equation*}
$$

Further, (i) if $\left(T_{t}^{0}, K, \pi\right)$ is H-regular, then M_{t} is a strongly continuous semi-group on H_{0} with the infinitesimal generator L such that $D(L)=D\left(A_{H}\right)\left(=D\left(A_{H}^{0}\right)\right)^{34)}$
and

$$
\begin{align*}
L u & =A_{H}^{0} u+k \cdot G(\cdot ; u) \tag{4.91}\\
& =A_{H} u+k\{G(\cdot ; u)-u\} .
\end{align*}
$$

(ii) If $\left(T_{t}^{0}, K, \pi\right)$ is weakly H-regular, then M_{t} is a weakly rightcontinuous semi-group on \widetilde{H}_{0} with the weak infinitesimal generator \widetilde{L} such that $D(\widetilde{L})=D\left(\widetilde{A}_{H}\right)\left(=D\left(\widetilde{A}_{H}^{0}\right)\right)^{35)}$ and

$$
\begin{align*}
& \widetilde{L} u=\widetilde{A}_{H}^{0} u+k \cdot G(\cdot ; u) \tag{4.92}\\
& =\widetilde{A}_{H} u+k\{G(\cdot ; u)-u\} .
\end{align*}
$$

Now consider for instance the case when $\pi(x, d \boldsymbol{y})=\delta_{[x, x]}(d \boldsymbol{y}) ;{ }^{36)}$ then $G(x ; f)=2 f(x)$ and hence $L u=A u+k u$. By Kac's theorem

$$
\begin{equation*}
M_{t} f(x)=E_{x}\left[\exp \left(\int_{0}^{t} k\left(x_{s}\right) d s\right) f\left(x_{t}\right)\right], \tag{4.93}
\end{equation*}
$$

where E_{x} is the expectation with respect to the process X. If $k \leq 0$ the Markov process corresponding to M_{t} is obtained from X by shortening the life time (cf. §0.1), while in the case $k \geq 0$ we must introduce creation of new particles and the branching process \boldsymbol{X} seems to be one of the natural and nice models for the creation (cf. Knight [23] for another approach).

[^12]Finally we shall derive some equations for higher moments of ξ_{t}^{f}. For simplicity we shall assume $\left(T_{t}^{0}, K, \pi\right)$ is regular and for any $f \in \boldsymbol{C}(S)^{+}$

$$
\boldsymbol{E}_{x}\left[(\check{f})^{p}\left(\boldsymbol{X}_{t}\right)\right] \equiv \boldsymbol{E}_{x}\left[\left(\xi_{t}^{f}\right)^{p}\right] \in \boldsymbol{C}(S)^{+} .
$$

Set

$$
\begin{equation*}
u^{(p)}(t, x)=\boldsymbol{E}_{x}\left[(\breve{f})^{p}\left(X_{t}\right)\right] . \tag{4.94}
\end{equation*}
$$

Now we shall introduce the following notations: Iet $\left(\alpha_{n}^{(i)}\right)_{n=0}^{\infty}, i$ $=1,2, \cdots$ be a countable family of sequences and define $P_{n}^{m}\left(\alpha^{(.)}\right)$by
(4. 95) $\prod_{j=1}^{n}\left(\sum_{n=0}^{\infty} \frac{\lambda^{n}}{n!} \boldsymbol{\alpha}_{n}^{(j)}\right)=\sum_{n=0}^{\infty} \frac{\lambda^{n}}{n!}\left[\sum_{i=1}^{n} \alpha_{n}^{(i)}+P_{n}^{m}\left(\alpha_{\text {. }}{ }^{(.)}\right)\right]$.

Clearly $P_{n}^{m}\left(\alpha_{.}^{(\cdot)}\right)$ is a polynomial in $\alpha_{k}^{(i)}, k=1,2, \cdots, n-1, i=1,2$, \cdots, m. For $\boldsymbol{y} \in \boldsymbol{S}, \boldsymbol{y}=\left[y_{1}, \cdots, y_{m}\right] \in S^{m}, m(\boldsymbol{y})=m$ and

$$
\begin{align*}
H_{p}(t, \boldsymbol{y}) & \equiv H_{p}\left(u^{(1)}(t, \cdot), u^{(2)}(t, \cdot), \cdots, u^{(p-1)}(t, \cdot)\right)(\boldsymbol{y}) \tag{4.96}\\
& =P_{p}^{m(\boldsymbol{y})}(\boldsymbol{\alpha} \cdot \cdot),
\end{align*}
$$

where

$$
\boldsymbol{\alpha}_{k}^{(i)}=u^{(k)}\left(t, y_{i}\right), i=1,2, \cdots, m(\boldsymbol{y}), \quad k=1,2, \cdots, p-1 .
$$

Theorem 4.15. Under the assumptions above, we have

$$
\begin{align*}
u^{(p)}(t, x) & =M_{t}\left[f^{p}\right](x) \tag{4.97}\\
& +\int_{0}^{s} M_{t-s}\left[k \int_{s} \pi(\cdot ; d \boldsymbol{y}) H_{p}(s, \boldsymbol{y})\right](x) d s, x \in S .
\end{align*}
$$

Proof. It is sufficient to prove (4.97) for non-negative f. If we take $h \equiv 1$ in (4.75) we have
(4.98) $\quad u^{(p)}(t, x)=T_{t}^{0}\left[(f)^{p}\right](x)+\int_{0}^{t} T_{t-s}^{0}\left[k G\left(\cdot ; u_{s}^{(p)}\right)\right](x) d s$

$$
+\int_{0}^{t} T_{t-s}^{0}\left[k \int_{s} \pi(\cdot ; d \boldsymbol{z}) H_{p}(s, \boldsymbol{z})\right](x) d s
$$

Now put

$$
v(t, x)=M_{t}\left[f^{p}\right](x)+\int_{0}^{t} M_{t-s}\left[k \cdot \int_{S} \pi(\cdot ; d \boldsymbol{y}) H_{p}(s, \boldsymbol{y})\right](x) d s .
$$

Combining this with

$$
M_{t}[g](x)=T_{t}^{0}[g](x)+\int_{0}^{t} T_{t-s}^{0}\left[k G\left(\cdot ; M_{s}(g)\right)\right](x) d s
$$

we have

$$
\begin{aligned}
& v(t, x)= T_{t}^{0}\left[f^{\phi}\right](x) \\
&+\int_{0}^{t} T_{t-s}^{0}\left[k \int_{s} \pi(\cdot ; d \boldsymbol{y}) H_{p}(s, \boldsymbol{y})\right](x) d s \\
&+\int_{0}^{t} T_{t-s}^{0}\left[k G\left(\cdot ; M_{s}\left[f^{p}\right]\right)\right](x) d s \\
&+ \int_{0}^{t} \int_{0}^{t-s}\left[T_{t-s-6}^{0}\left[k G\left(\cdot ; M_{\theta}\left[k \int_{s} \pi(\cdot ; d \boldsymbol{y}) H_{p}(s, \boldsymbol{y})\right]\right)\right] d \theta d s .\right.
\end{aligned}
$$

It is easy to see that

$$
\begin{aligned}
& \int_{0}^{t} \int_{0}^{t-s} T_{t-s-\theta}^{\mathrm{e}}\left[k G\left\{\cdot ; M_{\theta}\left[k \int_{S} \pi(\cdot ; d \boldsymbol{y}) H_{p}(s, \boldsymbol{y})\right]\right\}\right](x) d \theta d s \\
= & \int_{0}^{t} \int_{s}^{t} T_{t-u}^{0}\left[k G\left\{\cdot ; M_{u-s}\left[k \int_{S} \pi(\cdot ; d \boldsymbol{y}) H_{p}(s, \boldsymbol{y})\right]\right\}\right](x) d u d s \\
= & \int_{0}^{t} d s \int_{0}^{s} T_{r-s}^{0}\left[k G\left\{\cdot ; M_{s-u}\left[k \int_{S} \pi(\cdot ; d \boldsymbol{y}) H_{p}(u, \boldsymbol{y})\right]\right\}\right](x) d u .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \quad v(t, x)=T_{t}^{0}\left[f^{p}\right](x)+\int_{0}^{t} T_{t-s}^{0}\left[k \int_{S} \pi(\cdot ; d \boldsymbol{y}) H_{p}(s, \boldsymbol{y})\right](x) d s \\
& +\int_{0}^{t} T_{t-s}^{0}\left[k G\left(\cdot ; M_{s}\left[p^{f}\right]+\int_{0}^{s} M_{s-u}\left[k \int_{s} \pi(\cdot ; d \boldsymbol{y}) H_{p}(u, \boldsymbol{y})\right] d u\right)\right](x) d s \\
& =T_{t}^{0}\left[f^{p}\right](x)+\int_{0}^{t} T_{t-s}^{0}\left[k \int_{s} \pi(\cdot ; \boldsymbol{y}) H_{p}(s, \boldsymbol{y})\right](x) d s \\
& \quad+\int_{0}^{t} T_{t-s}^{0}\left[k G\left(\cdot ; v_{s}\right)\right](x) d s .
\end{aligned}
$$

Therefore we have

$$
\begin{align*}
v(t, x)=T_{t}^{0}\left[f^{p}\right](x) & +\int_{0}^{t} T_{t-s}^{0}\left[k \int_{S} \pi(\cdot ; d \boldsymbol{y}) H_{p}(s, \boldsymbol{y})\right](x) d s \tag{4.99}\\
& +\int_{0}^{t} T_{t-s}^{0}\left[k G\left(\cdot ; v_{s}\right)\right](x) d s .
\end{align*}
$$

Since the equation (4.99) has a unique solution in $\boldsymbol{C}(S)$, we have

$$
v(t, x)=u^{(\phi)}(t, x)
$$

which completes the proof.
The formula (4.97) permits us to obtain $u^{(\rho)}(t, x)$ successively though it is quite complicated even for $p=3$. For example $u^{(1)}(t, x)$ $=M_{t} f(x)$, and

$$
\begin{aligned}
u^{2}(t, x) & =M_{t}\left[f^{2}\right](x) \\
& +\int_{0}^{t} M_{t-s}\left[k \int_{s} \pi(\cdot ; d \boldsymbol{y}) \sum_{i \neq j} M_{s} f\left(y_{i}\right) M_{s} f\left(y_{j}\right)\right](x) d s .
\end{aligned}
$$

In a similar way we can prove

$$
\begin{aligned}
& \boldsymbol{E}_{x}\left[\check{f}\left(x_{t}\right) \check{g}\left(x_{t}\right)\right] \\
& \quad=M_{t}(f \cdot g)+\int_{0}^{t} M_{t-s}\left[k \int_{s} \pi(\cdot d \boldsymbol{y}) \sum_{i \neq j} M_{s} f\left(y_{i}\right) M_{s} g\left(y_{j}\right)\right](x) d s .
\end{aligned}
$$

If, in particular, $\pi(x, d y)=\sum_{n=0}^{\infty} p_{n} \delta[\underbrace{x, \cdots, x}_{n}](d \boldsymbol{y})$ and $C \equiv \sum_{n=1}^{\infty} n(n-1) p^{n}$
$<\infty$, then

$$
E_{x}\left[\check{f}\left(x_{t}\right) \check{g}\left(x_{t}\right)\right]==M_{t}[f g](x)+C \int_{0}^{t} M_{t-s}\left[k M_{s} f M_{s} g\right](x) d s
$$

V. Transformations of branching Markov processes

In this chapter we shall consider transformations of branching Markoy processes; i.e., operations on a branching Markov process which yield a new branching Markov process. We shall discuss mainly the transformations by multiplicative functionals (cf. §0.1 Definition 0.8) and obtain, in particular, the condition on a multiplicative functional under which the transformed process will be a branching Markov process.

§5.1. Multiplicative functionals of branching type.

Let $\boldsymbol{X}=\left(\Omega, \mathcal{B}_{t}, 0 \leq t \leq \infty, \boldsymbol{P}_{\boldsymbol{x}}, \quad \boldsymbol{x} \in \widehat{\boldsymbol{S}}, \boldsymbol{X}_{t}, \theta_{t}\right)^{1)}$ be a branching Markov process and $M_{t}(\omega)$ be an \boldsymbol{N}_{t+0}-multiplicative functional of \boldsymbol{X}. Unless otherwise stated we shall assume always

$$
\boldsymbol{E}_{\boldsymbol{x}}\left[M_{t}\right] \leq 1, \text { for every } \boldsymbol{x} \in \boldsymbol{S}
$$

and

$$
\begin{equation*}
\boldsymbol{P}_{\partial}\left[M_{t}=1\right]=\boldsymbol{P}_{\Delta}\left[M_{t}=1\right]=1, \text { for every } t \geq 0 . \tag{5.2}
\end{equation*}
$$

Also we shall assume that

1) We are assuming always $\overline{\mathscr{G}}_{t+0}=\mathscr{B}_{t}$.
(5•3) $\Omega=W \equiv$ the set of all right continuous path functions $w: t \in[0, \infty) \rightarrow w(t) \in \widehat{\boldsymbol{S}}$ such that if $w(t)=\partial(=\Delta)$ then $w(s)=0$ (resp. $=\Delta$) for all $s \geqq t$.

Let $W^{(n)}$ be the n -fold product of W and put

$$
\widetilde{W}=\bigcup_{n=1}^{\infty} W^{(n)}: \text { the sum of } W^{(n)}
$$

We define a mapping φ of \widetilde{W} to W by

$$
\begin{equation*}
(\varphi \widetilde{w})(t),=r\left(w^{1}(t), w^{2}(t), \cdots, w^{n}(t)\right), t \geq 0, \tag{5.4}
\end{equation*}
$$

when $\widetilde{w}=\left(w^{1}, w^{2}, \cdots, w^{n}\right) \in W^{(n)}, w^{j} \in W, j=1,2, \cdots, n$, where r is defined by (0.19).

Definition 5.1. A multiplicative functional M_{t} of \boldsymbol{X} is said to be of branching type if it satisfies for any $n \geq 1$

$$
\left.M_{t}(\varphi \widetilde{w})=\prod_{i=1}^{n} M_{t}\left(w^{i}\right), t \geqq 0 \text {, (a.s. } \widetilde{P}_{x}, \forall \boldsymbol{x} \in S^{(n)}\right)
$$

where $\widetilde{w}=\left(w^{1}, w^{2}, \cdots, w^{(n)}\right) \in W^{(n)}$ and

$$
\widetilde{\boldsymbol{P}}_{x}=\boldsymbol{P}_{x_{1}} \times \boldsymbol{P}_{x_{2}} \times \cdots \times \boldsymbol{P}_{x_{n}}, \boldsymbol{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right) .
$$

Theorem 5.1. Let \boldsymbol{X} be a branching Markov process, M_{t} be an \Re_{t}-multiplicative functional of \boldsymbol{X} satisfying (5.1) and (5.2) and \boldsymbol{X}^{M} be the M_{t}-subprocess of \boldsymbol{X}. Then the following statements are equivalent to each other:
(i) X^{M} is a branching Markov process,
(ii) M_{t} is a multiplicative functional of branching type.

Proof. 1^{0}) (i) \rightarrow (ii). Suppose the M_{t}-subprocess ${ }^{2)} \boldsymbol{X}^{M}$ $=\left(\boldsymbol{X}_{t}, P_{\boldsymbol{x}}^{M}, W\right)$ is a branching Markov process. Then \boldsymbol{X}^{M} has the property B.I, and hence for $0 \leq t_{1}<t_{2}<\cdots<t_{p}=t$ and $f_{1}, \cdots, f_{p} \in C^{*}(S)$, we have

$$
\begin{equation*}
\boldsymbol{E}_{\boldsymbol{x}}^{M}\left[\prod_{j=1}^{p} \widehat{f}_{j}\left(\boldsymbol{X}_{t_{j}}\right)\right]=\prod_{i=1}^{n} \boldsymbol{E}_{x_{i}}^{M}\left[\prod_{j=1}^{p} \widehat{f_{j}}\left(\boldsymbol{X}_{t_{j}}\right)\right], \boldsymbol{x}=\left[x_{1}, x_{2}, \cdots, x_{n}\right] . \tag{5.6}
\end{equation*}
$$

[^13]Also we have by the property B.I of \boldsymbol{X},

$$
\begin{align*}
& \boldsymbol{E}_{\boldsymbol{x}}^{M}\left[\prod_{j=1}^{p} \widehat{f_{j}}\left(\boldsymbol{X}_{t_{j}}\right)\right]=\boldsymbol{E}_{\boldsymbol{x}}\left[\prod_{j=1}^{p} \widehat{f_{j}}\left(\boldsymbol{X}_{t_{j}}\right) M_{t}\right] \tag{5.7}\\
= & \boldsymbol{E}_{\boldsymbol{x}_{1}} \times \boldsymbol{E}_{\boldsymbol{x}_{2}} \times \cdots \times \boldsymbol{E}_{\boldsymbol{x}_{n}}\left[\prod_{j=1}^{p} \widehat{f_{j}}\left(\boldsymbol{X}_{t_{j}}(\varphi \widetilde{w})\right) \cdot M_{t}(\varphi \widetilde{w})\right] .
\end{align*}
$$

From (5.6) and (5.7) we have

$$
\boldsymbol{E}_{x_{1}} \times \boldsymbol{E}_{x_{2}} \times \cdots \times \boldsymbol{E}_{x_{n}}\left[\prod_{j=1}^{p} \widehat{f}_{j}\left(\boldsymbol{X}_{t_{j}}(\varphi \widetilde{w})\right)\left\{M_{t}(\varphi \widetilde{w})-\prod_{i=1}^{n} M_{t}\left(w^{i}\right)\right\}\right]=0 .
$$

Since $\prod_{j=1}^{p} \widehat{f}_{j}\left(\boldsymbol{X}_{t_{j}}(\varphi(\widetilde{w}))\right)$ generates $\sigma\{\widetilde{W}, \mathscr{B}(\widetilde{\boldsymbol{S}}) ; \varphi \widetilde{w}(s) ; \quad s \leq t\}$, this proves (5.5), that is, M_{t} is a multiplicative functional of branching type.
2°) (ii) \rightarrow (i). If M_{t} is a multiplicative functional of branching type, then noting that $\boldsymbol{X}_{\boldsymbol{t}}$ has the property B.I we have

$$
\begin{aligned}
& \boldsymbol{E}_{\boldsymbol{x}}^{M}\left[\widehat{f}\left(\boldsymbol{X}_{t}\right)\right]=\boldsymbol{E}_{\boldsymbol{x}}\left[\widehat{f}\left(\boldsymbol{X}_{t}\right) M_{t}\right] \\
= & \boldsymbol{E}_{x_{1}} \times \cdots \times \boldsymbol{E}_{x_{n}}\left[\widehat{f}\left(\boldsymbol{X}_{t}(\varphi \widetilde{w})\right) M_{t}(\varphi \widetilde{w})\right] \\
= & \boldsymbol{E}_{x_{1}} \times \cdots \times \boldsymbol{E}_{x_{n}}\left[\prod_{j=1}^{n} \widehat{f}\left(\boldsymbol{X}_{t}\left(w^{j}\right)\right) \prod_{j=1}^{n} M_{t}\left(w^{j}\right)\right] \\
= & \left.\prod_{j=1}^{n} \boldsymbol{E}_{x_{j}}\left[\widehat{f(} \boldsymbol{X}_{t}\right) M_{t}\right] \\
= & \left.\prod_{j=1}^{n} \boldsymbol{E}_{x_{i}}^{M} \widehat{[f}\left(\boldsymbol{X}_{t}\right)\right],
\end{aligned}
$$

which implies that the M_{t}-subprocess is a branching Markov process.
Remark 5.1. In Theorem 5.1 the assertion "(ii) \rightarrow (i)" is true if M_{t} is an \Re_{t+0}-multiplicative functional.

Definition 5.2. Let M_{t} be a multiplicative functional of $\boldsymbol{X} . M_{t}$ is said to be of branching type in the weak sense if for any $n \geq 1$,

$$
\begin{equation*}
\left.M_{t}(\varphi \widetilde{w})=\prod_{j=1}^{n} M_{t}\left(w^{j}\right), 0 \leqq t \leqq \tau(\varphi \widetilde{w}) \quad \text { a.s. } \widetilde{P}_{\boldsymbol{x}}, \boldsymbol{x} \in S^{(n)}\right) \tag{5.5}
\end{equation*}
$$

Theorem 5.2. Let \boldsymbol{X} be a branching Markov process satisfying the conditions (c.1) and (c.2) of §1.2, and M_{t} an \mathcal{N}_{t}-multiplicative functionl such that M_{t}-subprocess \boldsymbol{X}^{M} of \boldsymbol{X} satisfies (c.1)
and (c.2). Then the following statements are equivalent:
(i) X^{M} is a branching Markov process,
(ii) M_{t} is a multiplicative functional of branching type in the weak sense.

Proof. (i) \rightarrow (ii) is clear from the previous theorem since every multiplicative functional of branching type is of branching type in the weak sense. Assume conversely that M_{t} is of branching type in the weak sense. Let $x=\left[x_{1}, x_{2}, \cdots, x_{n}\right] \in S^{n}$; then

$$
\begin{aligned}
& \boldsymbol{E}_{\boldsymbol{x}}^{M}\left[\widehat{f}\left(\boldsymbol{X}_{t}\right) ; t<\tau\right]=\boldsymbol{E}_{\boldsymbol{x}}\left[\widehat{f}\left(\boldsymbol{X}_{t}\right) M_{t} ; t<\tau\right]^{3)} \\
= & \left.\boldsymbol{E}_{x_{1}} \times \boldsymbol{E}_{x_{2}} \times \cdots \times \boldsymbol{E}_{x_{n}}\left[\widehat{f(} \boldsymbol{X}_{t}(\varphi \widetilde{w})\right) \cdot M_{t}(\varphi \widetilde{w}) ; t<\tau(\varphi \widetilde{w})\right] \\
= & \boldsymbol{E}_{x_{1}} \times \boldsymbol{E}_{x_{2}} \times \cdots \times \boldsymbol{E}_{x_{n}}\left[\prod_{j=1}^{n}\left\{\widehat{f}\left(\boldsymbol{X}_{t}\left(u^{j}\right)\right) M_{t}\left(w^{j}\right) \cdot I_{\left.\left[t<\tau\left(w^{j}\right)\right]\right\}}\right\}\right] \\
= & \prod_{j=1}^{n} \boldsymbol{E}_{x_{j}}\left[\widehat{f}\left(\boldsymbol{X}_{t}\right) M_{t} ; t<\tau\right] \prod_{j=1}^{n} \boldsymbol{E}_{x_{j}}^{M}\left[\widehat{f}\left(\boldsymbol{X}_{t}\right) ; t<\tau\right],
\end{aligned}
$$

which proves X^{M} has the property B. III (i). Quite similarly we can prove that X^{M} has the property B. III (ii). By Theorem 1.2 d), X^{M} is a branching Markov process.

Remark 5.2. (ii) \rightarrow (i) is true if M_{t} is an \mathcal{N}_{t+0}-multiplicative functional.

§5.2. Examples

Example 5.1. (Harmonic transformation). Let $f \in \boldsymbol{C}^{*}(S)^{+}$; assume that $e(\boldsymbol{x})=\lim _{t \rightarrow \infty} \boldsymbol{T}_{t} \widehat{f}(\boldsymbol{x})$ exists and $e(\boldsymbol{x})>0$ for every $\boldsymbol{x} \in \boldsymbol{S}$. Then

$$
M_{t}(w)= \begin{cases}\frac{e\left(\boldsymbol{X}_{t}(w)\right)}{e\left(\boldsymbol{X}_{0}(w)\right)}, & \text { if } \boldsymbol{X}_{0}(w) \in \boldsymbol{S} \tag{5.6}\\ 1, & \text { if } \quad \boldsymbol{X}_{0}(w)=\Delta\end{cases}
$$

defines a multiplicative functional of branching type. In fact $e(\boldsymbol{x})$ $=\widehat{\left.e\right|_{s}}(\boldsymbol{x})$, and hence
3) This follows from the general formula: $\boldsymbol{P}_{x}^{M}\left[B ; e_{A}>t\right]=\boldsymbol{E}_{x}\left[M_{t} ; B, \epsilon_{J} \lambda_{t}\right]$. $\forall B \in \mathscr{B}_{t}$.

$$
\begin{equation*}
M_{t}(\varphi \widetilde{w})=\frac{e\left(\boldsymbol{X}_{t}(\varphi \widetilde{w})\right)}{e\left(\boldsymbol{X}_{0}(\varphi \widetilde{w})\right)}=\frac{\prod_{j=1}^{n} e\left(\boldsymbol{X}_{t}\left(w^{j}\right)\right)}{\prod_{j=1}^{n}\left(e\left(\boldsymbol{X}_{0}\left(w^{j}\right)\right)\right.}=\prod_{j=1}^{n} M_{t}\left(w^{j}\right), \tag{5.7}
\end{equation*}
$$

where $\widetilde{w}=\left(w^{1}, w^{2}, \cdots, w^{n}\right) \in W^{(n)}$. If in particular

$$
e_{1}(x)=\boldsymbol{P}_{x}\left[e_{\partial}<\infty\right]>0 \text { or } e_{2}(x)=\boldsymbol{P}_{x}\left[e_{A}=+\infty\right]>0
$$

then they define a multiplicative functional of branching type since $e_{1}(x)=\lim _{t \rightarrow \infty} \boldsymbol{T}_{t} \widehat{0}(x)$ and $e_{2}(x)=\lim _{t \rightarrow \infty} \boldsymbol{T}_{\boldsymbol{t}} \widehat{\mathbf{1}}(x)$.

Example 5.2. (Killing of the non-branching part). For f $\in \boldsymbol{B}(S)^{+}$, set

$$
M_{t}(w)= \begin{cases}\exp \left(-\int_{0}^{t} \check{f}\left(\boldsymbol{X}_{s}(w)\right) d s\right), & \text { if } \boldsymbol{X}_{0}(w) \in \boldsymbol{S} \\ 1 & , \text { if } \boldsymbol{X}_{0}(w)=\Delta\end{cases}
$$

Then $M_{t}(w)$ is a contraction ${ }^{4}$ multiplicative functional of branching type since

$$
\begin{aligned}
M_{t}(\varphi \widetilde{w}) & =\exp \left(-\sum_{j=1}^{n} \int_{0}^{t} \check{f}\left(\boldsymbol{X}_{s}\left(w^{j}\right)\right) d s\right) \\
& =\prod_{j=1}^{n} M_{t}\left(w^{j}\right),
\end{aligned}
$$

where $\widetilde{w}=\left(w^{1}, w^{2}, \cdots, w^{n}\right) \in W^{(n)}$.
It is easy to see that the non-branching part of \boldsymbol{X}^{M} is the $e^{-\int_{0}^{t} f\left(x_{g}^{r}\right) d s}$ subprocess of the non-branching part of \boldsymbol{X}.

Example 5.3. (Transformation of branching laws).
Let \boldsymbol{X} be an $\left(X^{0}, \pi\right)$-branching process such that the non-branching part X^{0} is the $e^{-\int_{0}^{t} k\left(x_{s}\right) d s}$-subprocess of a conservative Hunt process $X=\left(x_{t}, P_{x}\right)$ on S, where $k \in \boldsymbol{B}(S)^{+}$. Let $f(x, \boldsymbol{y})$ be a function in $\boldsymbol{B}(S \times \widehat{\boldsymbol{S}})^{+}$such that $\int_{\hat{\boldsymbol{s}}} e^{f(x, y)} \pi(x, d \boldsymbol{y})=1$ for every $x \in S$. We define a kernel $n(\boldsymbol{x}, d \boldsymbol{y})$ on $\boldsymbol{S} \times \widehat{\boldsymbol{S}}$ by

[^14]$$
n(\boldsymbol{x}, d \boldsymbol{y})=\sum_{i=0}^{n} k\left(x_{i}\right) \pi\left(x_{i}, d \boldsymbol{y}_{i}\right) \times \prod_{j \neq i} \delta_{\left\{x_{j}\right\}}\left(d \boldsymbol{y}_{j}\right) \circ \gamma^{-1}
$$
where $\gamma:\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \cdots, \boldsymbol{y}_{n}\right) \rightarrow \boldsymbol{y}$ is defined by (0.19). Define a kernel $n^{*}(\boldsymbol{x}, d \boldsymbol{y})$ in the same way using the kernel $\left.\pi^{*}(x, d \boldsymbol{y}) \equiv e^{f(x, y)}\right) \pi(x, d \boldsymbol{y})$ instead of $\pi(x, d \boldsymbol{y})$. Then since n^{*} is absolutely continuous with respect to n it is easy to see that there exists $f(\boldsymbol{x}, \boldsymbol{y})$ which is an extension of $f(x, \boldsymbol{y})$ such that $f(\boldsymbol{x}, \boldsymbol{y}) \in \boldsymbol{B}(\boldsymbol{S} \times \widehat{\boldsymbol{S}})$ and $n^{*}(\boldsymbol{x}, d \boldsymbol{y})$ $=e^{f(x, y)} n(\boldsymbol{x}, \boldsymbol{y})$. Now we shall define a multiplicative functional $M_{t}(w)$ of the process \boldsymbol{X} by
$$
M_{t}(w)=\exp \left\{\sum_{\tau_{n} \leq t} f\left(\boldsymbol{X}_{\tau_{n}-}, \boldsymbol{X}_{\tau_{n}}\right)\right\} .^{5)}
$$

Then it is clear that $M_{t}(w) \equiv 1$ if $\boldsymbol{X}_{0}=\partial$ or Δ, and we can show that it is a multiplicative functional of branching type in the weak sense such that $\boldsymbol{E}_{\boldsymbol{x}}\left[M_{t}\right]=1$ for every \boldsymbol{x} and $t \geq 0$. The M_{t}-subprocess X^{M} coincides with the $\left(X^{0}, \pi^{*}\right)$-branching Markov process. (Cf. [27] where the transformation of Lévy measures by multiplicative functionals is discussed).

§5.3. Construction of a multiplicative functional of branching type.

Let \boldsymbol{X} be an $\left(X^{0}, \pi\right)$-branching Markov process and m_{t} be a multiplicative functional of the non-branching part X^{0} of \boldsymbol{X}. We shall construct a multiplicative functional M_{t} of branching type in the weak sense of the process \boldsymbol{X} by piecing out m_{t}.

Let $W=\bigcup_{n=0}^{\infty} W_{n}$ where $W_{n}=\left\{w \in W ; w(0) \in S^{n}\right\}$. Define a mapping φ from the n-fold product $W_{1} \times W_{1} \times \cdots \times W_{1}$ of W_{1} to W_{n} by

$$
\begin{equation*}
(\varphi \widetilde{w})(t)=\gamma\left[w^{1}(t), w^{2}(t), \cdots, w^{n}(t)\right], \tag{5.9}
\end{equation*}
$$

where $\widetilde{w}=\left(w^{1}, w^{2}, \cdots, w^{n}\right) \in W_{1} \times W_{1} \times \cdots \times W_{1}$.
Lemma 5.1. Let $F(w)$ be a bounded $\left.\Re_{\infty}\right|_{W_{1}-}$ - easurable function
5) $\left\{\tau_{n}\right\}$ is defined by (1.8).
on W_{1}. Then there exists one and only one $\left.\overbrace{\infty}\right|_{W_{n}}$-measurable function \widetilde{F} on W_{n} such that

$$
\begin{equation*}
\widetilde{F}(\varphi \widetilde{w})=\prod_{j=1}^{n} F\left(w^{j}\right) \text { for } \widetilde{w}=\left(w^{1}, w^{2}, \cdots, w^{n}\right) \tag{5.10}
\end{equation*}
$$

Proof. It is sufficient to show that if $\varphi \widetilde{w}=\varphi \widetilde{w}^{\prime} \quad\left(\widetilde{w}, \widetilde{w}^{\prime} \in W_{1} \times\right.$ $\cdots \times W_{n}$), then $\prod_{j=1}^{n} F\left(w^{j}\right)=\prod_{j=1}^{n} F\left(w^{\prime j}\right)$. But this is clearly true if $F(w)$ is of the from

$$
F(w)=\sum_{k=1}^{n} a_{k} \prod_{i=1}^{m_{k}} \sum_{l=1}^{p_{i k}} C_{l i k} \widehat{f}_{l i k}\left(\boldsymbol{X}_{t_{i}}(w)\right)
$$

where $f_{l i k} \in C^{*}(S)$, and hence by Lemma 0.2 it is true for all bounded $\left.\eta_{\infty}\right|_{w_{1}}$-meaurable function F.

Now let $X^{0}=\left\{W_{1},\left.\bigcap_{t}\right|_{W_{1}}, \boldsymbol{X}_{t}, t<\tau, \boldsymbol{P}_{x}, x \in S\right\}$ be the non-branching part on S of \boldsymbol{X}_{t} and m_{t} be the $\left.\mathcal{T}_{t}\right|_{W_{1}}$-multiplicative functional of X^{0} whose defining set is $W_{1 .}^{\prime}{ }^{6}$) For $n \geq 0$ we extend m_{t} as follows: when $n \geq 1$, we put

$$
\begin{align*}
\widetilde{m}_{t}(\varphi \widetilde{w}) & =\prod_{j=1}^{n} m_{t}\left(w^{j}\right), \text { if } t<\tau(\varphi \widetilde{w}) \tag{5.11}\\
& =\widetilde{m}_{(\varphi \widetilde{w})}(\varphi \widetilde{w}), \text { if } t \geq \tau(\varphi \widetilde{w})
\end{align*}
$$

and when $n=0$, we put

$$
\widetilde{m}_{t}(\varphi \widetilde{w})=1
$$

Then \widetilde{m}_{t} is well defined as an $\left.\eta_{\infty}\right|_{W_{n}}$-measurable function by the previous lemma. As is easily seen, we can take $W^{\prime}=\bigcup_{n=0}^{\infty} W_{n}^{\prime}$, where $W_{n}^{\prime}=\varphi\left(W_{n}^{\prime} \times \cdots \times W_{1}^{\prime}\right)$, as a defining set of \widetilde{m}_{t}. We shall now define $M_{t}(w)$ as follows:

$$
\begin{align*}
& M_{t}(w)= \widetilde{m}_{\tau}(w) \cdot \theta_{\tau_{i}} \widetilde{m}_{\tau}(w) \cdots \theta_{\tau_{j}-1} \widetilde{m}_{T}(w) \cdot \widetilde{m}_{i-\tau_{j}}(w)\left(\theta_{\tau_{j}} w\right), \\
& \text { on } w \in A_{j}^{\prime}, j=0,1,2 \cdots \\
&=\prod_{j=1}^{\infty} \theta_{\tau_{j}} \widetilde{m}_{T}(w), \text { on } w \in\left\{t \geq \tau_{\infty}\right\},
\end{align*}
$$

where
6) Cf. £0. 1.

$$
\begin{equation*}
\theta_{\tau_{i}} \widetilde{m}_{r}(w)=\widetilde{m}_{a}\left(\theta_{\tau_{j}} w\right) \tag{5.13}
\end{equation*}
$$

where $a=\tau\left(\theta_{7}, w\right)$ and

$$
A_{j}^{\prime}=\left\{w: \tau_{j} \leq t<\tau_{+1}\right\} .
$$

Lemma 5.2. M_{t} is $ク_{t+0}$ measurable.
Proof. We first note that

$$
\begin{equation*}
M_{t}(w)=M_{\tau_{i}}(w) \cdot \widetilde{m}_{t-\widetilde{\tau}_{j}(w)}\left(\theta_{\tau_{j}} w\right) \text { on } A_{j}^{t} \tag{5.15}
\end{equation*}
$$

Then $M_{\tau_{j}}(w)$ is $\eta_{\tau_{j}}$-measurable, and hence $M_{\tau_{j}} \cdot I_{A_{j}^{t}}$ is \Re_{t+0}-measurable. Next we set

$$
\tau_{j}^{n}(w)=\frac{m-1}{2^{n}} \text { on } B_{m}=\left\{w: \frac{m-1}{2^{n}}<\tau_{j}(w) \leq \frac{m}{2^{n}}\right\}
$$

then $\tau_{j}^{n} \hat{\uparrow} \tau_{j}(n \rightarrow \infty)$ and hence $t-\tau_{j}^{n} \downarrow t-\tau_{j}$. Now $\widetilde{m}_{t-r_{j}^{n}}\left(\theta_{\tau_{j}} w\right) \cdot I_{B_{m}}$ $\left.=\widetilde{m}_{t-\frac{m-1}{9^{n}}}\left(\theta_{\tau_{j}} w\right) \cdot I_{t t<\tau_{j}+t-\frac{m-1}{2^{n} \leq t+}} \frac{1}{2^{n}} \right\rvert\,$. Since $\widetilde{m}_{t-\frac{m-1}{2^{n}}}\left(\theta_{\tau_{j}} w\right)$ is $\mathcal{N}_{\tau_{j}+t-\frac{m-1}{2^{n}}}$-mearsuable, $\widetilde{m}_{t-r_{j}^{n}}\left(\theta_{\tau_{j}} w\right) I_{B_{m}}$ is $\operatorname{T}_{t+\frac{1}{2^{n}}}$-measurable, and hence $\lim _{n \rightarrow \infty} \widetilde{m}_{t-T_{n}^{j}}\left(\theta_{\tau_{j}} w\right)$ $=\widetilde{m}_{t-\tau_{j}}\left(\theta_{\tau_{j}} w\right)$ is \Re_{t+0}-measurable.

Lemma 5.3. $\quad M_{t}(w)$ is multiplicative, i.e.,

$$
\begin{equation*}
M_{t+s}(w)=M_{t}(w) M_{s}\left(\theta_{t} w\right), w \in W^{\prime} \tag{5.6}
\end{equation*}
$$

Proof. Since

$$
M_{s}\left(\theta_{t} w\right)=M_{\tau_{,},\left(\theta_{t} w\right)}\left(\theta_{t} w\right) \cdot \widetilde{m}_{s-\tau_{j},\left(\theta_{t} w\right)}\left(\theta_{\tau_{j}}\left(\theta_{i} w\right)\right), \theta_{t} w \in A_{j}^{s}
$$

and

$$
M_{t}(w)=M_{\tau_{i}}(w) \cdot \widetilde{m}_{t-\tau_{i}(w)}\left(\theta_{\tau_{i}} w\right), w \in A_{i}^{t}
$$

we have for $w \in A_{i}^{t} \cap \theta_{t}^{-1}\left(A_{j}^{s}\right) \cap W^{\prime}$

$$
\begin{align*}
& M_{t}(w) \cdot M_{s}\left(\theta_{t} w\right)=M_{\tau_{i}}(w) \widetilde{m}_{t-r_{i}}\left(\theta_{\tau_{i}} w\right) M_{\tau_{j}(\theta, w)}\left(\theta_{t} w\right) \widetilde{m}_{s-\tau_{j}\left(\theta_{i} w\right)}\left(\theta_{\tau_{j}}\left(\theta_{t} w\right)\right) \tag{5•17}\\
= & M_{\tau_{i}}(w) \widetilde{m}_{t-\tau_{i}}\left(\theta_{\tau_{i}} w\right) \widetilde{m}_{\tau\left(\theta \theta_{t} w\right)}\left(\theta_{t} w\right) \theta_{\tau_{i}\left(\theta_{t}, u\right.} \widetilde{m}_{\tau\left(\theta_{t} w\right)}\left(\theta_{t} w\right) \cdots \widetilde{m}_{s-\tau_{j}\left(\theta_{t} u^{u}\right)}\left(\theta_{\tau_{j}}\left(\theta_{\tau} w\right)\right) .
\end{align*}
$$

If $w \in A_{i}^{t} \cap \theta_{t}^{-1}\left(A_{j}^{s}\right) \cap W^{\prime}$, we have

$$
\left\{\begin{array}{l}
\tau_{k}\left(\theta_{t} w\right)=\tau_{i+k}(w)-t, \quad k=1,2, \cdots \tag{5.18}\\
\theta_{t} w=\theta_{t-\tau_{i}}\left(\theta_{\tau_{i}} w\right)
\end{array}\right.
$$

and hence

$$
\begin{align*}
& \widetilde{m}_{t-\tau_{i}}\left(\theta_{1_{i}} w\right) \widetilde{m}_{\tau(\theta, w)}\left(\theta_{t} w\right) \tag{5.19}\\
& =\widetilde{m}_{t-\tau_{i}}\left(\theta_{\tau_{i}} w\right) \widetilde{m}_{\tau_{i+1}-t}\left(\theta_{t-\tau_{i}}\left(\theta_{\tau_{i}} w\right)\right) \\
& =\widetilde{m}_{\tau_{i+1}-\tau_{i}}\left(\theta_{T_{i}} w\right)=\theta_{\tau_{i}} \widetilde{m}_{T}(w) \text {, } \\
& \theta_{\tau_{1}\left(\theta_{t}\right)} \widetilde{m}_{T\left(\theta_{t w}\right)}\left(\theta_{t} w\right) \tag{5.20}\\
& =\widetilde{m}_{\tau(v)}\left(\theta_{\tau_{1}\left(\theta_{t} w\right)}\left(\theta_{t} w\right)\right), \quad v=\theta_{\tau_{1}\left(\theta_{t} w\right)}\left(\theta_{t} w\right), \\
& =\widetilde{m}_{T(v)}\left(\theta_{\tau_{i+1} w}\right), \quad v=\theta_{\tau_{i+1}} w \text {, } \\
& =\theta_{T_{i+1}} \widetilde{m}_{t}(w) \text {, }
\end{align*}
$$

Also for $w \in A_{i}^{t} \cap \theta_{t}^{-1}\left(A_{j}^{s}\right) \cap W^{\prime}$, we have

$$
\left\{\begin{array}{l}
s-\tau_{j}\left(\theta_{i} w\right)=t+s-\tau_{i+j}(w) \tag{5.21}\\
\theta_{\tau j\left(\theta_{i} w\right)}\left(\theta_{i} w\right)=\theta_{\tau,\left(\theta_{i} w\right)+t} w=\theta_{\tau_{i}+j} w,
\end{array}\right.
$$

and hence

$$
\begin{equation*}
\widetilde{m}_{s-\tau_{j}\left(\theta_{t} w\right)}\left(\theta_{T_{j}}\left(\theta_{t} w\right)\right)=\widetilde{m}_{t+s-T_{i}+j}\left(\theta_{T_{i+j}} w\right) . \tag{5.22}
\end{equation*}
$$

(5.17), (5.15), (5.20) and (5.22) imply

$$
M_{t}(w) M_{s}\left(\theta_{t} w\right)=M_{t+s}(w), w \in W^{\prime}
$$

Remark 5.3. If $m_{t} \leq 1$ then $\widetilde{m}_{t} \leq 1$ and hence $M_{t} \leq 1$.
Lemma 5.4. If $\boldsymbol{E}_{x}\left[m_{\tau}\right]=1$ for every $x \in S$, then for every n $\boldsymbol{E}_{\boldsymbol{x}}\left[M_{\mathrm{t}_{\wedge} \tau_{n}}\right]=1$ for $\boldsymbol{x} \in \widehat{\boldsymbol{S}}$.

Proof. Eirst it is clear that $\boldsymbol{E}_{\boldsymbol{x}}\left[M_{T}\right]=1$ for every $\boldsymbol{x} \in \boldsymbol{S}$. Then $\boldsymbol{E}_{\boldsymbol{x}}\left[M_{\tau_{2}}\right]=\boldsymbol{E}_{\boldsymbol{x}}\left[M_{\tau_{1}+\tau_{1}\left(\theta \tau_{1} w\right)}\right]=\boldsymbol{E}_{\boldsymbol{x}}\left[M_{\tau_{1}} \boldsymbol{E}_{\boldsymbol{X}_{\mathrm{r}}}\left[M_{\tau_{1}}\right]\right]=1$, and repeating this we have $\boldsymbol{E}_{\boldsymbol{x}}\left[M_{\tau_{k}}\right]=1$ for every k. Next we have
(5.23) $\quad M_{t \wedge \tau_{n}+\tau_{1}\left(\theta \tau_{n} \wedge t w\right)}= \begin{cases}M_{\tau_{k+1}}, & \text { if } \tau_{k} \leq t<\tau_{k+1}, \\ M_{\tau_{n+1}}, & \text { if } t \geq \tau_{n},\end{cases}$
and hence

$$
\begin{aligned}
& \boldsymbol{E}_{\boldsymbol{x}}\left[M_{t \wedge \tau_{\boldsymbol{x}}}\right]=\boldsymbol{E}_{\boldsymbol{x}}\left[M_{t \wedge \tau_{n}} \boldsymbol{E}_{\boldsymbol{X}_{\tau_{n} \wedge t}}\left[M_{\tau_{1}}\right]\right] \\
= & \boldsymbol{E}_{\boldsymbol{x}}\left[M_{t \wedge \tau_{n}} M_{\tau_{1}\left(\theta \tau_{n} \wedge u\right)}\left(\theta_{\tau_{n} \wedge t} w\right)\right] \\
= & \boldsymbol{E}_{\boldsymbol{x}}\left[M_{t \wedge \tau_{n}+\tau_{1}\left(\theta \tau_{n} \wedge \wedge_{t v}\right)}\right] \\
= & \sum_{k=1}^{n-1} \boldsymbol{E}_{\boldsymbol{x}}\left[M_{\tau_{k+1}} ; \tau_{k} \leq t<\tau_{k+1}\right]+\boldsymbol{E}_{\boldsymbol{x}}\left[M_{\tau_{n+1}} ; t \geq \tau_{n}\right] .
\end{aligned}
$$

Also, if $k \leq n-1$,

$$
\begin{aligned}
& \boldsymbol{E}_{\boldsymbol{x}}\left[M_{\tau_{k+1}} ; \tau_{k} \leq t<\tau_{k+1}\right] \\
= & \boldsymbol{E}_{\boldsymbol{x}}\left[M_{\tau_{k+1}} \boldsymbol{E}_{\boldsymbol{x} \tau_{k+1}}\left[M_{\tau_{n-1}}\right] ; \tau_{k} \leq t<\tau_{k+1}\right] \\
= & \boldsymbol{E}_{\boldsymbol{x}}\left[M_{\tau_{k+1}} M_{\tau_{n-k}}\left(\theta_{\tau_{k+1}} w\right) ; \tau_{k} \leq t<\tau_{k+1}\right] \\
= & \boldsymbol{E}_{\boldsymbol{x}}\left[M_{\tau_{n+1}} ; \tau_{k} \leq t<\tau_{k+1}\right] .
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
\boldsymbol{E}_{\boldsymbol{x}}\left[M_{t \wedge \tau_{n}}\right] & =\sum_{k=0}^{n-1} \boldsymbol{E}_{\boldsymbol{x}}\left[M_{\tau_{n+1}} ; \tau_{k} \leq t<\tau_{k+1}\right]+E\left[M_{\tau_{n+1}} ; t \geq \tau_{n}\right] \\
& =\boldsymbol{E}_{\boldsymbol{x}}\left[M_{\tau_{n+1}}\right]=1,
\end{aligned}
$$

which proves the lemma.
From this lemma we see that if $\boldsymbol{E}_{x}\left[M_{T}\right]=1$ for every $x \in S$, then $\boldsymbol{E}_{\boldsymbol{x}}\left[M_{t}\right] \leq \lim _{n \rightarrow \infty} \boldsymbol{E}_{\boldsymbol{x}}\left[M_{t \wedge \tau_{n}}\right]=1$ and $\boldsymbol{E}_{\boldsymbol{x}}\left[M_{t}\right]=1$ if $\left\{M_{t \wedge \tau_{n}}, n=0,1,2, \cdots\right\}$ is uniformly integrable. Summarizing we have the following

Theorem 5.3. Let \boldsymbol{X} be a branching Markov process and X^{0} $=\left\{W_{1},\left.\Re_{t}\right|_{w_{1}}, \boldsymbol{X}_{t}, t<\tau, x \in S\right\}$ be the non-branching part of \boldsymbol{X}. Let m_{t} be a multiplicative functional of X^{0} satisfying either
(i) $m_{t} \leq 1$
or
(ii) $\boldsymbol{E}_{x}\left[m_{\tau}\right]=1, x \in S$.

Then $M_{t}(w)$ defined by (5.12) is an \Re_{t+0} multiplicative functional of \boldsymbol{X} which is of branching type in the weak sense satisfying
(i)' $\quad M_{t} \leq 1$
or
(ii) $\boldsymbol{E}_{\boldsymbol{x}}\left[M_{t}\right] \leq 1, \boldsymbol{x} \in \boldsymbol{S}$
according as m_{t} satisfies (i) or (ii).

If further $\left\{M_{t \wedge \wedge_{n}}, n=1,2, \cdots\right\}$ is uniformly integrable, then we have in the case of (ii)
(ii) ${ }^{\prime \prime} \boldsymbol{E}_{\boldsymbol{x}}\left[M_{t}\right]=1, \boldsymbol{x} \in \boldsymbol{S}$.

§5.4. Transformation of drift

Let $X=\left(X_{t}, \mathcal{B}_{t}, P_{x}\right)$ be a Hunt process on S with a reference measure ${ }^{7}$ and B_{t} be a continuous additive functional of the process X such that $F_{x}\left[B_{t}^{2}\right]<\infty$ and $E_{x}\left[B_{t}\right]=0 .{ }^{8)}$ Then it is known that there exists a unique non-negative continuous additive functional $\langle B\rangle$, such that $E_{x}\left[B_{t}^{2}\right]=E_{x}\left[\langle B\rangle_{t}\right]$. Set

$$
\begin{equation*}
m_{t}=\exp \left\{B_{t}-\frac{1}{2}\langle B\rangle_{t}\right\} . \tag{5.24}
\end{equation*}
$$

Lemma 5.5. Let σ be a finite valued Markov time of X satisfying for every $t>0$

$$
\begin{equation*}
\{t<\sigma\} \subset\left\{\sigma \leq t+\sigma\left(\theta_{t} w\right)\right\} .{ }^{9} \tag{5.25}
\end{equation*}
$$

If $\sup _{x \in S} E_{x}\left[\langle B\rangle_{\sigma}\right]<\infty$, then $E_{x}\left[m_{\sigma}\right]=1$ for every $x \in S$.
Proof. ${ }^{10)}$ Set $\sigma_{n}=\inf \left\{t ;\left|C_{t}\right| \geq n\right\} \wedge n, n=1,2, \cdots$, where $C_{t}=B_{t}$ $-\frac{1}{2}\langle B\rangle_{t}$; then we have

$$
\begin{equation*}
E_{x}\left[m_{\sigma \wedge \sigma_{n}}\right]=1, n=1,2, \cdots . \tag{5.26}
\end{equation*}
$$

For, by a formula on stochastic integrals (cf. [27])

$$
\begin{aligned}
m_{t}-1=e^{c_{t}}-1 & =\int_{0}^{t} m_{s} d B_{s}-\frac{1}{2} \int_{0}^{t} m_{s} d\langle B\rangle_{s}+\frac{1}{2} \int_{0}^{t} m_{s} d\langle B\rangle_{s} \\
& =\int_{0}^{t} m_{s} d B_{s} .
\end{aligned}
$$

Then, ncting $m_{t} \leq \epsilon^{n}$ for $t \leq \sigma \wedge \sigma_{n}$, we have $E_{x}\left[\int_{0}^{\sigma \wedge \sigma_{n}} m_{s} d B_{s}\right]=0$ proving (5.26). Next we shall prove
7) Cf. $\S 0.1$.
8) The class of such additive functionals was studied in [32].
9) If σ is a quasi-hitting time or $\sigma \equiv t$, (5.25) is clearly satisfied.
10) We have borrowed the essential part of the proof from Dynkin [6].

$$
\begin{equation*}
\inf _{x \in S} E_{x}\left[m_{\sigma}\right] \equiv d>0 \tag{5.27}
\end{equation*}
$$

For, by the assumption $\sup _{x} E_{x}\left[\langle B\rangle_{\sigma}\right]<\infty$, we have

$$
\begin{aligned}
& P_{x}\left[C_{\sigma}<-2 k\right] \leq P_{x}\left[\left|C_{\sigma}\right|>2 k\right] \leq P_{x}\left[\left|B_{\sigma}\right|>k\right]+P_{x}\left[\frac{1}{2}\langle B\rangle_{\sigma}>k\right] \\
\leq & \frac{1}{k^{2}} E_{x}\left[B_{\sigma}^{2}\right]+\frac{1}{2 k} E_{x}\left[\langle B\rangle_{\sigma}\right]=\left(\frac{1}{k^{2}}+\frac{1}{2 k}\right) E_{x}\left[\langle B\rangle_{\sigma}\right]<\frac{1}{2}
\end{aligned}
$$

for all x if k is sufficiently large. Then for all $x \in S$

$$
\begin{aligned}
& E_{⿱}\left[m_{\sigma}\right] \geq E_{x}\left[m_{\sigma} ; C_{\sigma} \geq-2 k\right] \geq e^{-2 k} P_{x}\left[C_{\sigma} \geq-2 k\right] \\
= & e^{-2 k}\left(1-P_{x}\left[C_{\sigma}<-2 k\right]\right) \geq \frac{e^{-2 k}}{2}
\end{aligned}
$$

proving (5.27).
Now by (5.25) we have $\sigma \leq \sigma_{n}+\sigma\left(\theta_{\sigma_{n}} w\right)$ and hence by the supermartingale inequality ${ }^{11)}$

$$
\begin{aligned}
& E_{x}\left[m_{\sigma} ; \sigma_{n} \leq \sigma\right] \geq E\left[m_{\tau_{n}+\sigma\left(\theta_{o n} \omega\right)} ; \sigma_{n} \leq \sigma\right] \\
= & E_{x}\left[m_{\sigma_{n}} E_{X_{\sigma n}}\left[m_{\sigma}\right] ; \sigma_{n} \leq \sigma\right] \geq d E_{x}\left[m_{\sigma_{n}} ; \sigma_{n} \leq \sigma\right] .
\end{aligned}
$$

Therefore we have, (noting $\sigma_{n} \uparrow \infty$),

$$
\begin{equation*}
\lim _{n \rightarrow \infty} E_{x}\left[m_{\sigma_{n}} ; \sigma_{n} \leq \sigma\right]=0 . \tag{5.28}
\end{equation*}
$$

Then

$$
1=E_{x}\left[m_{\sigma \wedge \sigma_{n}}\right]=E_{x}\left[m_{\sigma} ; \sigma<\sigma_{n}\right]+E_{x}\left[m_{\sigma_{n}} ; \sigma_{n} \leq \sigma\right]
$$

and by (5.28)

$$
\lim _{n \rightarrow \infty} E_{x}\left[m_{\sigma} ; \sigma<\sigma_{n}\right]=E_{x}\left[m_{\sigma}\right]=1
$$

Now assume that the non-branching part X^{0} of a $\left(X^{0}, \pi\right)$ branching Markov process \boldsymbol{X} is equivalent to an $e^{-A_{t}}$-subprocess of a Hunt process $X=\left(X_{t}, \mathcal{B}_{t}, P_{x}\right)$, where A_{t} is a continuous non-negative additive functional of X. Then X^{0} is equivalent to the process $\left\{\bar{X}_{t}, P_{x}\right\}$ defined by (0.12) and (0.13). By enlarging \mathcal{B}_{t} if necessary we can assume that the life time $\bar{\zeta}$ defined by (0.12) is a \mathscr{B}_{t}-Markov

[^15]time for which (5.25) is easily verified. If further the condition
\[

$$
\begin{equation*}
\sup _{x \in S} E_{x}\left[\langle B\rangle_{\bar{\xi}}\right]<\infty \tag{5.29}
\end{equation*}
$$

\]

is satisfied, then we have

$$
E_{x}\left[m_{\bar{\zeta}}\right]=1
$$

Now $m_{t \wedge \bar{s}}$ can be considered as a multiplicative functional of X^{0} and applying Theorem 5.3 we have a multiplicative functional M_{t} of \boldsymbol{X}. We shall call this M_{t} a multiplicative functional of drift.

Example 5.4. Let $X=\left\{x_{t}=\left(x_{t}^{1}, x_{t}^{2}, \cdots, x_{t}^{N}\right), P_{x}\right\}$ be an N-dimensional Brownian motion ${ }^{12)}$ and $A_{t}=\int_{0}^{t} k\left(x_{s}\right) d s$, where $k \in \boldsymbol{C}(S)$ such that $k(x) \geq c>0$. Let

$$
B_{t}=\sum_{i=0}^{N} \int_{0}^{t} b_{i}\left(x_{s}\right) d x_{s}^{i}
$$

where $b_{i}(x), i=1,2, \cdots, N$, are bounded continuous functions on R^{N}. Then $\langle B\rangle_{t}=\sum_{i=1}^{N} \int_{0}^{t}\left|b_{i}\right|^{2}\left(x_{s}\right) d s$. In this case the conditions (5.29) can be easily verified, and hence we have a multiplicative functional of drift M_{t} for every branching Markov process \boldsymbol{X} whose non-branching part is equivalent to X^{0}. The backward equation of \boldsymbol{X} is given by

$$
\frac{\partial u}{\partial t}=\frac{1}{2} \bar{\Delta} u+k(x) \cdot\{F(x ; u)-u\},
$$

while the backward equation of X^{M} is given by

$$
\frac{\hat{o} u}{\partial t}=\frac{1}{2} \bar{\Delta} u+\sum_{i=1}^{N} b_{i} \frac{\partial u}{\partial x_{i}}+k(x)(F(x ; u)-u) .
$$

Thus M_{t} induces a drift.

§5.5. Another transformation.

The following transformation is a generalization of a well known transformation for a branching process of a single type $(S=\{a\})$,

[^16](cf. Harris [8], p 14).
Let \boldsymbol{X} be a branching Markov process with the semi-group \boldsymbol{T}_{t} such that $q(x)<1$ for every $x \in S$ where
\[

$$
\begin{equation*}
q(x)=\lim _{t \rightarrow \infty} \boldsymbol{T}_{t} \widehat{0}(x)=\boldsymbol{P}_{x}\left[e_{\partial}<\infty\right] .{ }^{13)} \tag{5.30}
\end{equation*}
$$

\]

Theorem 5.4. There exists a (unique) branching semi-group $\widetilde{\boldsymbol{T}}_{\text {t }}$ (and hence a branching Markov process) such that

$$
\begin{equation*}
\widetilde{\boldsymbol{T}}_{t} \widehat{f}_{s}(x)=\frac{1}{1-q(x)}\left\{\boldsymbol{T}_{t}\left(\left.\widehat{q+f(1-q))}\right|_{s}(x)-q(x)\right\} .\right. \tag{5.31}
\end{equation*}
$$

Proof. It is sufficient to to show that there exists a substochastic kernel $\mu_{t}(x, d \boldsymbol{y})$ on $S \times \boldsymbol{S}$ such that the right-hand side of (5.31) is equal to $\int \widehat{f}(\boldsymbol{y}) \mu_{t}(x, d \boldsymbol{y})$, since, then by Lemma 0.3 there exists a unique substochastic kernel $\widetilde{\boldsymbol{T}}_{t}(\boldsymbol{x}, d \boldsymbol{y})$ on $\boldsymbol{S} \times \boldsymbol{S}$ such that

$$
\int_{S} \widetilde{\boldsymbol{T}}_{t}(\boldsymbol{x}, d \boldsymbol{y}) \widehat{f}(\boldsymbol{y})=\widehat{\int_{S} \mu_{t}(\cdot, d \boldsymbol{y}) \widehat{f}(\boldsymbol{y})}(\boldsymbol{x})
$$

and the semi-group property of $\widetilde{\boldsymbol{T}}_{t}$ is obvious from (5.31). First we note $\boldsymbol{T}_{t} \hat{q}=\hat{q}$ since $\boldsymbol{T}_{t} \hat{q}=\lim _{s \rightarrow \infty} \boldsymbol{T}_{t} \boldsymbol{\boldsymbol { T } _ { t }} \widehat{0}=\left.\lim _{s \rightarrow \infty} \widehat{\boldsymbol{T}_{t+s}} \widehat{0}\right|_{s}=\hat{q}$. Then

$$
\begin{aligned}
& \left.\frac{1}{1-q(x)}\left\{\boldsymbol{T}_{t}(\widehat{y+f(1-q})\right)(x)-q(x)\right\} \\
= & \frac{1}{1-q(x)} \int_{S} \boldsymbol{T}_{t}(x, d \boldsymbol{y})[\overline{(q+f(1-q))(\boldsymbol{y})-\widehat{q}(\boldsymbol{y})]} \\
= & \left.\frac{1}{1-q(x)} \int_{S} \boldsymbol{T}_{t}(\boldsymbol{x}, d \boldsymbol{y})\left\{\sum_{\boldsymbol{y}^{\prime}<\boldsymbol{y}}^{*} \hat{q}\left(\boldsymbol{y}^{\prime}\right) \widehat{(1-q)}\left(\boldsymbol{y}^{\prime \prime}\right) \widehat{f(} \boldsymbol{y}^{\prime \prime}\right)\right\} .^{14)}
\end{aligned}
$$

But for fixed x and t,

$$
\mu_{t}^{*}(g)=\int_{S} \boldsymbol{T}_{t}(x, d \boldsymbol{y})\left\{\sum_{\boldsymbol{y}^{\prime}<\boldsymbol{y}}^{*} \hat{q}\left(\boldsymbol{y}^{\prime}\right) \widehat{(1-q)}\left(\boldsymbol{y}^{\prime \prime}\right) g\left(\boldsymbol{y}^{\prime \prime}\right)\right\}, \quad g \in \boldsymbol{B}(\boldsymbol{S})
$$

defines clearly a non-negative linear functional on $\boldsymbol{B}(\boldsymbol{S})$ and hence

[^17]it is given by a non-negative Radon measure $\mu_{t}(x, d \boldsymbol{y}) . \mu_{t}$ is a substochastic kernal on $S \times S$ since
$$
\int_{S} \mu_{t}(x, d \boldsymbol{y}) \hat{1}(\boldsymbol{y})=\frac{1}{1-q(x)}\left(\boldsymbol{T}_{t} \hat{1}(x)-q(x)\right) \leq 1
$$

From (5.31) we have $\widetilde{\boldsymbol{T}}_{t} \widehat{0}(x)=\frac{1}{1-q(x)}\{q(x)-q(x)\}=0$; i.e., for the transformed branching process the extinction probability is identically zero.

Osaka University
Tokyo Institute of Technology
Kyoto University

[^0]: 1) As we remarked in $\S 3.3$ it is equivalent to give a stochastic kernel π on $S \times \widehat{S}$ such that $\pi(x, S) \equiv 0$.
 2) Definition 1.2. In this chapter, we shall assume that every branching Markov process satisfies (C.2).
 3) Definition 1.3.
[^1]: 4) The right hand side of (4.9) is, if $\boldsymbol{x}=\left[x_{1}, x_{2}, \cdots, x_{n}\right] \in S^{n}$,

 $$
 \sum_{i=1}^{n} \int_{0}^{t} \int_{s} K\left(x_{i} ; d s d z\right)\left\{F(z ; f(s, \cdot))_{j \neq i} T_{s}^{v} f(s, \cdot)\left(x_{j}\right)\right\} .
 $$

[^2]: 12) When the fundamental system satisfies the condition (U) of Definition (4.2) given below, we can give a simpler proof of the branching property by Theorem 4.7 and Theorem 4.5, Cor. Cf. §4.4.
[^3]: 13) Let $\left\{f_{s}\right\} \subset \boldsymbol{B}(S)$ then $\underset{s \rightarrow s_{0}}{w-\lim _{s}=f_{i_{0}}}$ if and only if $\sup _{s} \| f_{s i}<\infty$ and $\lim _{s \rightarrow s_{0}} f_{s}(x)=f_{s_{0}}(x)$ for every $x \in S$.
 14) i.e. $\lim _{t \downarrow 0} U_{t} f(x)=f(x)$ for every $f \in \boldsymbol{C}(S)$. Every semi-group corresponding to a right continuous Markov process on S is stochastically continuous.
 15) $s-\lim _{s \rightarrow s_{0}} f_{s}=f_{s_{0}}$ if and only if $\left\|f_{s}-f_{\delta_{0}}\right\| \rightarrow 0,\left(s \rightarrow s_{0}\right)$.
[^4]: 17) In the case of H-regular we have $H_{J^{(T 0)}}=H_{0}\left(\equiv H_{v^{(T)}}^{(T)}\right.$ but in the case of weakly H-regular they do not coincide in general.
[^5]: 18) Hence it satisfies the conditions (C.1) and (C.2), cf. §1.2.
[^6]: 19) Generally, if a sequence of a Banach space valued analytic functions $\left\{f_{n}(\lambda)\right\}$ is such that $\left\|f_{n}(\lambda)\right\| \rightarrow 0(|\lambda| \leq 1)$ when $n \rightarrow \infty$, then $\left\|f_{n}^{(\nu)}(0)\right\| \rightarrow 0(n \rightarrow \infty)$ where $f_{n}^{(\nu)}$ is ν-th derivative.
[^7]: 25) Cf. Hille-Phillips [9] p. 71.
 26) (i) is a consequence of (ii). Note that the linear hull of $\{f ; \widehat{f} \in D(A)$ $\cap \mathscr{D}(S)\}$ is dense in $\boldsymbol{C}_{0}(\boldsymbol{S})$.
[^8]: 27) Clearly it is a regular fundamental system.
[^9]: 28) This argument is similar to that given in Harris [8] to prove that a minimal Markov chain such that $P_{i}\left(X_{T}=j\right)=\pi_{j-i+1}$ and $E_{i}(\tau)=\frac{1}{c_{i}}$ (cf. Example 2) is a branching process.
[^10]: 30) This equality is true including the case $+\infty=+\infty$. $\sum_{\left(k_{1}, k_{2}, \cdots, k_{n}\right)}^{(k)}$ denotes the sum over all ($k_{1}, k_{2}, \cdots, k_{n}$) such that $k_{i} \geq 0$ and $k_{1}+k_{2}+\cdots+k_{n}=k$.
[^11]: 32) As for the definitions of \boldsymbol{T}_{t} and ψ, see §4.1.
[^12]: 33) This implies, in particular, that $\boldsymbol{B}^{1}=\boldsymbol{B}(S)$.
 34) $A_{H}\left(A_{H}^{0}\right)$ is the H-infinitesimal generator of $T_{t}\left(T_{t}^{0}\right)$.
 35) $\widetilde{A}_{H}\left(\widetilde{A_{H}^{\prime}}\right)$ is the weak H-infinitesimal generator of $T_{t}\left(T_{t}^{0}\right)$.
 36) $\delta_{[x, x]}(d y)$ is the unit measure on S at $[x, x] \in S^{2}$.
[^13]: 2) Cf. §0.1.
[^14]: 4) $M_{t}(w)$ is called a contraction multiplicative functional if $M_{t}(w) \leq 1$ for every t and w.
[^15]: 11) It is easy to see that (m_{t}, \mathcal{B}_{t}) is a supermartingale for every P_{x}; we have $E_{x}\left[m_{t \text { torn }}\right]=1$ just as (5.26) and hence $E_{x}\left[m_{t}\right] \leq \lim E_{x}\left[m_{t \text { ton }}\right]=1$ for every t. Thus $E_{x}\left[m_{t+s} \mid \mathscr{B}_{s}\right]=E_{X_{s}}\left[m_{t}\right] \cdot m_{s} \leq m_{s}$ a.s.
[^16]: 12) We take as S the one-point compactification of R^{N}. cf. Chapter III Ex. 3(A).
[^17]: 13) $q(x)$ is called the extinction probability.
 14) For fixed $\boldsymbol{y} \in \boldsymbol{S}, \boldsymbol{y}=\left[y_{1}, \cdots, y_{n}\right]$, we denote $\boldsymbol{y}^{\prime}<\boldsymbol{y}$ if $\boldsymbol{y}^{\prime}=\left[y^{\prime}, \cdots, y_{i}^{\prime}\right], k \leq n$, such that $y_{i}^{\prime}=y_{l_{i}}$ for some $l_{i}, 1 \leq l_{i} \leq n$ and all $l_{i}, i=1,2, \cdots, k$ are different. $\boldsymbol{y}^{\prime \prime}=\left[y_{i}^{\prime \prime}\right.$, $\left.\cdots, y_{n-k}^{\prime \prime}\right]$ is the remainder of \boldsymbol{y} excluding \boldsymbol{y}^{\prime}, i.e., \boldsymbol{y}^{\prime} and $\boldsymbol{y}^{\prime \prime}$ define a partition of \boldsymbol{y}. $\sum_{\boldsymbol{y}^{\prime}<\boldsymbol{y}}^{*}$ denotes the sum (for fixed \boldsymbol{y}) over all \boldsymbol{y}^{\prime} such that $\boldsymbol{y}^{\prime}<\boldsymbol{y}$ and $\boldsymbol{y}^{\prime} \neq \boldsymbol{y}$.
