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Introduction. Let R be a commutative ring with a unit element.
In [10], Lazard has shown that there is a unique (up to isomorphism
over R) maximal ring extension M(R) of R such that M(R) is R-
flat and the canonical injection j of R into M(R) is an epimorphism
in the category of commutative rings with units, that is, if f and g
are ring-homomorphisms of M(R) into a commutative ring R’ with
a unit element such that fj=gj, then f=g (we always assume that
a unit element is mapped to a unit element). M(R) is also charac-
terized by the property that if S is an overring of R such that S is
R-flat and the canonical injection of R into S is an epimorphism,
then S is isomorphic to a subring of M(R) which is R-flat.

On the other hand, a maximal quotient ring @(R) is defined for
an arbitrary (not necessarily commutative) ring K as a maximal
rational extension (the definition of a rational extension is stated in
§1) of R in an injective envelope® of R as an R-module and is
unique up to isomorphism over K. In the case where R is commu-
tative, Q(R) is also commutative and contains the total quotient
ring T(R) of R (see [5] or [8]).

Bourbaki has given a general method to construct “rings of

* An injective envelope of an R-module M is an injective R-module which is
an essential extension of M (see Def. 2 in §1), and is unique up to isomorphism.
If an R-module N is an essential extension of M, then there is an injective envelope
of M which contains N.
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quotients”, which we call Bourbaki-Gabriel rings of quotients, of an
arbitrary ring in several exercises (see Chap. II in [3]).

In this paper, first (in §1) we shall study some relations between
Q(R), M(R) and T(R) of a commutative ring R. In §2, using the
results in §1, we shall show that if f:R—R’ is a flat epimorphism
of commutative rings, that is, R’ is R-flat and f is an epimorphism,
then R’ is isomorphic to a Bourbaki-Gabriel ring of quotients of R.

Throughout this paper, a ring will mean a commutative ring
with a unit element.

The author wishes to express his hearty thanks to Prof. M. Nagata
and T. Nishimura for their kind advices.

§1. First, we recall some definitions and well-known results.

Definition 1. Let R be a ring and let MC N be R-modules.
Then N is called a rational extension of M, or M is rational in
N if for every pair x, v of N with y#0, there is an v in R such
that rx&€M and ry+0. If a ring R’ contains R, we say that R’
is a rational extension of R, or R is rational in R' if R is a
rational extension of R as R-modules.

Definition 2. Under the same notations as above, N is called
an essential extension of M if for any non-zero submodule M’ of
N, we have MO\ M'+0. For R and R’, we have the same definition.

From the above definitions, it follows immediately

Corollary. If N is a rational extension of M, then N is an
essential extension of M.

Theorem 1. Let R, R’ be rings such that RCR' and let f be
the canonical injection of R in R'. Then f is a flat epimorphism
if and only if for every x€R', (R:x)R'=R’, where (R:x) is, as
before, the set of y<R such that rx=R.

Proof. First we shall show that the condition is sufficient.
Let {x;} and {r;} be finite subsets of R’ and R respectively,
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such that Erx =0. Since (R:x2)R' =R’ for every i, we have
(O(R x))R’ R’. Hence there are finite subsets {@;} and {y;} of
D(R :x;) and R’ respectively, such that 3la;y,=1. Setting
c: =a;x;, we have x—Zc,,y, and Zr c;=0 ]for every ¢{ and j,
which shows that R’ is R flat.

To prove that f is an epimorphism, it is sufficient to show that
for every x in R/, x®1=1Qx in R’Q%)R’ by [13]. Since (R : x)R’
=R, we have a relation >1b;z;=1 with )€(R:x) and z€ER"
Then x=> xb;z,=>1b;x2; ,with b;x€R and so we have x®1
=x®§_}b;z;;2bix®z;=1®be;z,~=1®x. Thus the condition is
sufﬁcie;lt. , '

Next, we shall show that the condition is necessary. Since R’ is R-
flat and since R’ ®R’ R’ by [13], regarding R and xR as R-submodules
of R/, we have (R )R =(R: xR)®R’ R xR®R’ xR’ R,
Thus the proof is complete.

Corollary. Under the same notations as above, if f is a flat
epimor phism, then R’ is a rational extension of R. Furthermore
we have a canonical injection of R’ in Q(R).

Proof. Let x, ¥ be in R’ such that y+0. Since (R : x)R'=FR’
(R : x)y+#0, which implies that there is an # in R such that rx is
in R and 7y+#0 and so R’ is a rational extension of R. By the
corollary to Definition 2, R’ is an essential extension of R and,
therefore, R’ is contained in an injective envelope E’ of R and so
in a maximal quotient ring @ of R isomorphic to @(R). Then it
is clear that the isomorphism of @  onto Q(R) maps R’ into Q(R)
isomorphically.

From the above corollary, we may assume that M(R) is contained
in Q(R). Since the canonical injection of R into T(R) (=total
quotient ring of R) is clearly a flat epimorphism, we may also assume
that T(R) is contained in M(R). Thus we have the following
inclusion relation: RC T'(R)C M(R)CQ(R). In general, these in-
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clusions are proper. So some questions arise concerning the above
inclusion relations.

What are the conditions so that (1) M(R)=T(R), (2) Q(R)
=T(R), (3) M(R)=Q(R), and (4) Q(R) is R-flat?

For (1), several sufficient conditions are given by Lazard in [10].
For (2), we have the following result due to Small.

Proposition 1 (Small). Let R be a ring such that the set of
annihilator ideals® in R satisfies the maximum condition, then

QR =T(R).

Proof. Since T(R) is characterized in Q(R) as the set of
elements x such that (R : x) contains non-zero divisors, and since
for any ¥ in Q(R), (R : y) is a dense ideal** of R, it is sufficient
to show that any dense ideal of R contains non-zero divisors. It is
clear that any maximal annihilator ideal of R is a prime ideal. On
the other hand since Ann(Ann(a))=a for every annihilator ideal g,
the set of annihilator ideals of R satisfies the minimum condition,
too and from that it follows immediately that maximal annihilator
ideals are finite, say, un, n, -, n1,. Suppose that a dense ideal a
consists entirely of zero divisors. Then it is easy to see that
acm,Um,J.--Um,, and, therefore aCm; for some ¢ by the well-
known property of prime ideals. Since m; is an annihilator ideal,
there is an ¢a€R (a+#0) such that am;=0 and so aa=0, which is

a contradiction.

Corollary. If R is an integral domain or Noetherian, then
QR)=M(R)=T(R).

Proposition 2. If Q(R) is semi-simple Artinian, Q(R) = T(R).

Proof. By [14], for every essential ideal a (this means that a
is an ideal in R such that R is an essential extension of a as an

*# An ideal a in R is said to be an annihilator ideal if a=Ann(b) for some
ideal b in R, where Ann(6)={rER : 7b=0}.
*#%) An ideal a in R is called a dense ideal if Ann(a)=0.
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R-module) we have a@Q(R)=Q(R). Since any dense ideal is essential
and since for every x€Q(R), (R: x) is a dense ideal, we have
(R: x)Q(R)=Q(R). Then by Theorem 1, the canonical injection
of R into Q(R) is a flat epimorphism and we have Q(R)=M(R).
The following easy lemma, then, completes the proof of the pro-
position.

Lemma 1. If M(R) is semi-local, then M(R)=T(R).

Proof. 1t is sufficient to show that for every x& M(R), (R : x)
contains non-zero divisors. Suppose that (R : x) does not contain
any non-zero divisors for some x&M(R). Then (R:x)M(R) is
contained in the union of all maximal ideals of M(R). Since M(R)
is semi-local, it implies that (R : x) M(R) is contained in a maximal
ideal, which is a contradiction to the fact (R : x) M(R)=M(R).

For (3), we do not have any results except the ones which are
contained in (2). On the other hand, it is clear that if (2) or (3)
is valid, then so is (4).

Proposition 3. If R is a semi-hereditary ring, then Q(R) is
R-flat, and in this case, we have M(R)=T(R).

Proof. Flatness of Q(R) is due to Sandomierski (see [15]).
The later assertion follows from the following lemma since in this
case, T(R) is a von Neumann regular ring.

Lemma 2. Let R be arving such that every finilely generated
tdeal is principal, then M(R)=T(R).

Proof. Let x be an arbitrary element of M(R). Then we have
a relation > a;x,=1 for some ¢,€ (R : x) and x,€ M(R). Since the
ideal generaited by a/’s is principal, there is an &€ (R : x) such that
a;=b,v with ,€R for every #, and then »31b,x,=1, which shows
that (R : x) contains a non-zero divisor, say,,r and M(R)=T(R).

Remark. In [11], Nagata has given an example of a ring R
such that w. gl.dimR=1 and T(R)=R. For the R, Q(R) is not
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R-flat and therefore Q(R) #M(R). Indeed, if Q(R) is R-flat then
Q(R) is a semi-hereditary ring by [15], which is a contradiction

(see [4]).

§2. A set § of ideals in a ring R (in our case, commutative
with a unit) is called a Tl-set of R (I'ensemble topologisant et
idempotent in [3]) if the following conditions are satisfied:

1) If an ideal a contains a be %, then a is in H.

2) & is closed under finite intersection.

3) If be$ and a is an ideal such that (a:d)={rER : rbsa}
e for every beb, then aeR.

Let &% be a Tl-set of R. Then the set R of »€R such that
Ann(7) is in § is clearly an ideal in R. The inductive limit Rg of
the modules Homg(a, R/§R) for a€F can be turned naturally into
a commutative ring with a canonical homomorphism of R into Rg
with the kernel ¥R. Following to Lambek, we call Ry a Bourbaki-
Gabriel rving of quotients of R with respect to § (see [9]). The
following two propositions are well-known.

Proposition 4. Let S be a multiplicatively closed subset of R
and let F be the set of ideals a in R such that aN\S+¢. Then §
is a Tlset of R and Ry=R; (see [3]).

Proposition 5. Let ¥ be the set of dense ideals of R. Then
% is a TIset of R and Rg=Q(R) (see [5], [9]).

The following theorem is a slight generalization of Proposition 4.

Theorem 2.* Let f be a flat epimorphism of R in R’ and let
X be the set of ideals a in R such that aR'=FR'. Then ¥ is a TI-
set and Ry=FR’.

Proof. First we take account of the following two remarks;

# After completed this paper, the author found that the similar result was
obtained by J. P. Olivier. too (see Séminaire D’algébre Commutative dirigé par
P. Samuel, 1967/1968).



Remarks on genervalized rings of quotiénts, 111 211

i) If f is a flat epimorphism, the canonical injection f(R)—R’ is also
a flat epimorphism. ii) FR=XKer f.

Since it is trivial that { satisfies the condition (1) and (2), we
shall show that ¥ satisfies (3). Assume that bE% and a is an ideal
such that (a: b)) for every b&b. Then there are finite subsets
{6} and {x;} of b and R’ respectively, such that > f(b.)x;=1.

By our assumption that (a: d)EF for every ‘beb, we have a
relation >3 f(b;)x:;;=1 with b€ (a: b,) and x,ER’ for every i.

Thenjf(b,-) =330 f(b:i)xi;=>f(b:b;) x,;,€aR’, because b,b,;Ea
for every ¢ and j,jwhich shows tha)t aR'=R’, that is, aEP.

Case 1: Assume that f is injective. Let x be an element. of R’.
Then by Theorem 1 in §1, (R : x)R’=R’ and (R : x)F. The map
¢. : ¥|—>rx for r&(R : x) is clearly an R-homomorphism of (R : x)
into R, that is, ¢, €Homz((R : x), R). If we denote by the same ¢,
the canonical image of ¢, in Ry, x|—¢, gives a ring homomorphism
¢ of R’ into Rg. We shall show that ¢ is an isomorphism. It is
clear that ¢ is injective. Let » be an element of KRy and let a=§
be such that » is represented as an element of Homg(a, R). Since
aR'=R’, there are ¢;€a and x,€R’ such that Zia,»x,:l. Then we
have aN(N(R: x))EF and r=r(Xa;x)=2>a(rx;) for every
rek. ‘ ’ ‘

If reaﬂ(Q(R 1 X)), n(r)=£i}n(ai)rxi:r2n(a,)x;:rx with
x=2>1y9(a;)x;, which shows that y=¢, on aﬂ(h(R : x:)), hence
q;(x)l:v;. Thus, in this case, the proof is completé.

Case 2: In order to prove the theorem in the general case, we
shall begin with the following lemma.

Lemma 3. If i€Homk(a, R/R) for an a=F, then i=0 on
aNFR.

Proof. Since aR’=R’, we can take ¢;a and x,€ER’ so that
> f(a)x;=1. On the other hand, for every r&aJR, we have
A’(rai)za,./l(r):r/l(a,-)zo. Therefore if s€ R is such that s modulo
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FR=1(r), a;s€FR. Then f(s) =3 f(s)f(a)x;=>f(a;s)x.=0 since
a;se€FR=Ker f by the above rerrllark, which imp'lies that seKer f
=%R and A(») =0.

Since the canonical injection of f(R) into R’ is an injective and

flat epimorphism, by the proof in Case 1, we have R'=f(R)s where
%’ is the set of ideals a’ in f(R) such that o’R'=R’".

From Lemma 3, it follows that every element of. Rg can be re-
presented by an element of Homg(a, R/§R) for a suitable aEH
which contains ¥R. For such a, taking account of the fact that
f(R)=R/%R, we see that there is an isomorphism between
Homg(a, R/FR) and Hom,w (f(a), f(R)) with f(a)E%. Then it is
clear that Rs=f(R)g=R’. Thus the proof is complete.
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