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Iniroduction

Simplicial method is very useful in discussing (co)homology theory
in a non-abelian category. M. André [1] and J. Beck [2] investigated
the simplicial cohomology H*(A, M) of a commutative algebra A
over a basic ring K with coefficients in an A-module M.

The purpose of the present paper is to interpret the cohomology
H*(A, M). Our interpretation of H*(A, M) is an analogy of that
of the functor Ext* by N. Yoneda [9].

It has been known that the 0-th cohomology group H°(A, M)
is isomorphic to the module Derx(A, M) of K-derivations of A into
M, and the first cohomology group H'(A, M) is in 1—1 corres-
pondence with the set Ex'(A, M) of isomorphic classes of 1-term
extensions of A by M. N. Shimada and others |8] have shown that
the second cohomology group is in 1—1 correspondence with the set
Ex®*(A, M) of equivalence classes of 2-term extensions of A by M
in the sense of S. Lichtenberg and S. Schlessinger [7] (or in
M. Gerstenhaber [5]).

We start with the definitions of quasi-simplicial algebras and the
simplicial cohomology. Let A be the category of associative commu-
tative algebras with unit over a basic ring K. Denote by (1, A)
the category of morphisms in ./ with range A.
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A quasi-simplicial algebra A, over A is defined by a diagram
in (A, A)

€ g
= = - — 0
(0' 1) A E An f An—l E o Ao_)A_le
- — —_  —
” 1
€ €

with e'e’=¢"1¢', 1<<j (see §1 for details).

If B is an abelian group object in (A, A), then B is the ideali-
zation A+ M of some A-module M. For every object C in (A4, A),
A-module M is regarded as a C-module via the structure homomor-
phism C—A, and we have an isomorphism of functors

Hom(_z, 4)(C, B)=Derx(C, M).

A quasi-simplicial algebra (0.1) leads to a cochain complex
5 i1
(0.2) +-+«<—Hom(A,, B)«—Hom(A,.,, B)<---<~Hom(A4,, B)
where 8"=3725(—1)' Hom(¢', B) and Hom=Hom_z, 4).

The derived group of the complex (0. 2) does not depend on the
choice of A4, so far as A, is “free” and “acyclic” (§1). It is called
the simplicial cohomology group of A by M, and denoted by
H*(A, M). Our cohomology is equivalent to that in M. André [1],
Chap. II. In particular the ‘“standard simplicial algebra” (§2) of 4
is free and acyclic, and hence our cohomology is also equivalent to
the cotriple cohomology in the sense of J. Beck [2].

For a positive integer n, we define an n-fold (quasi-)simplicial
extension of A by M to be a (quasi-)simplical algebra which satisfies
certain conditions (§3). As every simplical module is determined by
its “Moore complex” (§1), an #-fold simplial extension of 4 by M
is as well determined by a sequence of K-modules

d dn—l dl

” dO
0—-M X, X, A—0 (exact)

with certain conditions (§5). Such a sequence is called an #n-ferm
extension of A by M. The totality of n-fold (resp. quasi-) simplicial
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extensions of 4 by M is suitably classified into the set Ex"(A4, M)
(resp. Exi_.(A, M)) (§4).

The main theorem asserts that H"(A, M) is in 1—1 corres-
pondence with Ex"(A4, M) and simultaneously with Ex}_.(4, M).
The argument is functorial in substance, so it will be applicable to
other algebraic systems: e.g. non-commutative algebras, algebras with-
out unit and Lie algebras.

The author wishes to thank Professor N. Shimada for his sugges-

tion and encouragement.

§1. Simplicial objects

Let @ be the category such that ob® consists of the null set
[—1] and sets [#]={0,1,---,n} for non-negative integers 7z, mor®
consists of monotone non-decreasing maps. Let ¥ be the subcategory
of ® such that mor% consists of all injections in @. Let @, (resp.
¥,) be the full subcategory of & (resp. ) such that ob®, (resp.
ob¥%,) consists of ob® (recp. ob¥) except the null set.

For a monotone map a: [p]—[q] in @, p (resp. q) is called the
domain (resp. the range) of «, and denoted by d(a) (resp. 7(a)).
There exist the special monotone maps

e=ci: [m—1]—[n], &=0d.: [n+1]—[n]

with 0<{¢<{z such that
1.1 (=7, i<, §(5)=7, <,
Jj+1, j=i, j—1, j>i.

Every monotone map « is represented by a composition of a sur-
jection & and an injection e : @=ed. Every surjection (resp. injection)
is represented by a composition of & (resp. ¢').

A contravariant functor of @, @, ¥ or ¥, into a category C is
called respectively an augmented simplicial object, a simplicial object,
an augmented quasi-simplicial object, a quasi-simplicial object in C.

If X is one of them, then we write X4, X,, and @ instead of X,
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X([n]) and X(a). The morphism z : X,—X,, (resp. 8, : X,—>X,.1)
is called the face operator (resp. the degeneracy operator), and often
denoted by &'=¢; (resp. 6'=9}) for simplicity.

Let ok, 04 : X«— Y, be two morphisms of quasi-simplicial objects
(a morphism p, means a functor morphism). Consider a family
w* = {0}} of morphisms with o'=0w) : X,—Y,,:, 0<{<n, which satisfies
the following conditions:

1.2) on=n0,,
en+1w::pn ,
do’ =0, <j,
eyt = €i+1mj,
cw’ =we!, 1>j+1.

Then o* is called a homotopy between py and ps. oy is said
homotopic to ps, in notation py~psx. The relation ~ is not an
equivalence relation in general.

If o, px : X4— Y, are two morphisms of simplicial objects, then
a homotopy between pi and p4 is defined by a family »* which satis-
fies the above conditions (1.2) and the following conditions

1.3) 0’ =80, 1<j,
W =5, i>].
For an (augmented) (quasi-)simplicial object A, in a category
with zero object, if there exists

A,= (N Keré
i=1

for every 7, then E,k: {4,} with d,=¢"| A, forms a chain complex.
This chain complex is called the Moore complex of A,.

A simplicial object in the category of sets is called a simplicial
set. In the same sence we use terminologies “a simplicial module”,
etc.

An augmented (quasi-)simplicial set A, is said acyclic, if, for
every integer #>0 and n+1 elements a, &, -, a.€A,—. with ¢a;
=¢''a;, i<(j, there exists an element a= A, such that ¢a=ua;.
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An augmented (quasi-)simplicial set A, is said to satisfy the
Kan condition, if, for every integer =0 and # elements a, ***, G,
W1, o, 0, E A, with 0<<k<<m and ¢'q;=¢'a;, i<j, there exists an
elements a€ A, such that ¢a=a; for i#k. If an augmented (quasi-)
simplicial set A, is acyclic, then it astifies the Kan codition.

A (quasi-)simplicial group, module or ring is said acyclic (resp.
to satisfy the Kan condition), if the (quasi-)simplicial set consisting
of its underlying set is acyclic (resp. satisfies the Kan condition).
The Moore complex of an (augmented) (quasi-)simplicial ring is
is defined to be the Moore complex of the underlying module. It is
easily verified that a (quasi-)simplicial group (hence also module and
ring) satisfying the Kan condition is acyclic if and only if its Moore
complex is acyclic. It is well known that a simplicial group satisfies

the Kan condition.

Proposition 1. (Partition of unity) Let A, be a simplicial
object in a pre-additive category C with kernels. Then theve exists
the Moore complex A, of Ay.. And then for every integer n=>0
there exists onme and only one family of morphisms

{0 : A,— A, |a: [#]—[r] is a surjection, 0<r<<m}
satisfying the following conditions:
(1.4 e0.=0, 0<<i<r,

(1.5) idA,ZZaTEa, ﬂa:aﬁa,
(e runs over all surjections with donain n).

Moreover we have

(1.6) Malg=1a, a=/f,
0, a#B,
1.7 A=0alw, @A, =Im(a|A)=A,,

where >\ means biproduct (i.e. product and coproduct).

Before the proof we introduce the following notations. For each
monotone map & : [ p]—|q], define &, : [p+1]—[g+1] by
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&) =€), 0<<i<p,
=q+1, i=p+1.
Evidently (8)),=0}.,1, (e)),=¢i.1 and (&), =&.9,. We extend formally
this notation to & by (§),=&, and also to linear combinations of these
& If a: [n]—[r] for n>0 is a surjection, then we have
case (1) a=p, for some surjection B if a(n—1)<<a(n),
case (2) a=p0"" for some surjection B if a(n—1)=a(n).

Proof of Proposition 1.1. For a surjection a : [#]—[7] put

(1.8) 0o = 056500 ,
03::6].7 if w(j_l):w(j):
1—o%, if a(j—1)<<a(Jj).
Then it follows (1.4). If a surjection « is in case 1, it follows
fa=(05),(1—0"%") and ae"=¢‘*B. If a surjection « is in case 2, it

follows 0.=0s¢" and we"=p. Hence we have by induction on 7

1.9 for two surjections «, 8 with domain #.
0&@51, if w:B,
0, if a#p4.
where the notation = implies the congruence modulo the submodule

generated by el with 0<<i<n, reHome(A.p-1, Aiwy). I {02} is
another family of morphisms satisfying (1.4) and (1.5) then (1.9)
implies 0.=0;. (1.6) follows from (1.4), (1.5) and (1.9). (1.5)
is verified by induction on # as follows

> aer=n T = 2latn-1y=axtn) o+ 2au1)<atn) T
=0 (Sacany=n-17a,)&" + (Suwsr-n-17a;) 4 (1 —8""¢")
=§"""e"+ (1—0""e")
=1.

Hence A, is isomorphic to the biproduct of all Ker(l—r«)=Im(na).
Let A, be the kernel of 1—z for the identity ¢=¢, of [n]. Let
¢+ A,—A, be the canonical injection. Then we have an exact sequence
for each object B in C;
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0 Homg (B, A °m¢ D Hom (B, A,)
Me I}l Home (B, A.-) (exact)
which leads to
ﬁ; = ﬂ Kere¢'.
i=1

For a surjection a : [#]—[7]

~ Home( , @)

0—Hom¢(B, 4,) ->Hom¢ (B, A4.)

Home( , 1—74)

>Homg (B, A.) (exact)
which leads to

~

A=t Ker(1—ma) = A, .

Proposition 1.2. (Dold) If C is an additive category with
kernels, then for a positive chain complex A, in C there exists one
and only one simplicial object Ay in C such that the Moore com-
plex of Ay is Ay. Therefore there exists an equivalence between
the categories of simplicial objects and positive chain complexes
in C.

Proof. For a positive chain complex Z* let

~

An = Z“ Ar(“) ’ nZO

where a runs over all surjections with domain #. Denote by & : A,
—Au«y the canonical injection. For a surjection B in @,, B : A.a

— Ay is defined by
Ba=ap, for each surjection @ with d(a)=7(RB).
For an integer { with 0<li<<m, =5} : A,— A, is defined as follows.
ga=0, i>0, a(G—D<<a(@)<a(G+1), d(a)=n,
Fad =Fad =a, d(a)=n—1, i>0,
e’ =a, d(a)=n—1,
fat=ad,, d(a)=n—1,
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where «' is defined by a'(0)=0, a'¢’=c'a and d,: A,—A,., is a
boundary morphism. Note that every map in @, is represented by
ad® or a’. Straight forward calculations lead to Fif.=f.f: for two
surjections B, B. with 7(8,) =d(B.), &&=""¢, ¢/ =§"1¢, §e ="’
with {<Cj, &8 =id and &"'6'=0.

Hence A, is a simplicial object.

The remain of the proof follows from Proposition 1. 1.

§2. Simplicia] cohomology

Let K be an associative and commutative ring with unit. Let
A be the category of associative and commutative K-algebra with
unit. An object A in A is called simply a K-algebra. For a K-
algebra A, denote by (A, A) the category of morphisms e=e, : B—A
in . An augmented (quasi-)simplicial object A4 in A is called a
(quasi-)simplicial algebra over A-,. By a morphism p, of a (quasi-)
simplicial algebra over A we mean a morphism of augmented (quasi-)
simplicial algebras with o, =ida.

Denoted by S the category of pointed sets. Let U(A) be the
underlying set of A=ob/ with the base point 0= U(A). Let F(S)
be the quotient algebra of the polynomial algebra generated by the
set S identifying the base point with 0. Then we have an adjoint
pair

(e,n) : FHU : (A, 8)

The pair F— U generates a cotriple (G, ¢, ) =(FU, ¢, RyU). Func-
tors G,=G"" and functor morphisms e, =GeG"", §,=G'dG"* define a
simplicial object in Cat(A, A). For a K-algebra A, a family of
G.(A) with ¢=¢(A), 0'=06(A) defines a simplicial object called the
standard simplicial algebra over A. An (augmented) quasi-simplicial
algebra A, is called free, if A, is a polynomial algebra over K for
n>0. An (augmented) simplicial algebra A, is called free, if there
exists S,=o0bS for #>0 such that A,=F(S,) and (Us)S.cS,.1,
0<<i<<n.
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Proposition 2.1. The standard simplicial algebra G,(A) is
free and acyclic.

Proof. Since G,(A)=FUG,-,(A) and (Us")(UG.(A))c UG, ,.(A)
for 0<<i<<m, it follows that G4«(A) is free. On the other hand, 7

induces a contracting homotopy of the Moore complex 5*(/1).

Proposition 2.2. Let Fy be a free (quasi-)simplicial algedra
over a K-algebra A. Let A, be an acyclic (quasi-)simplicial algebra
over A. Then there exists a morphism py, : Fy—A, of (quasi-)
simplicial algebra over A.

Proof. We construct p, for n22>—1 such that o, =id,, ¢o.=p.1 ¢,
0<<i<{m, furthermore in the simplicial case p.0'=0%,-., 0<i<m. As-
sume that such p_;, 0o, ***, 0.1 are defined.

In the quasi-simplicial case, there exists a set SES such that
F,=F(S). A quasi-simplicial set Hom_z(F(S), Ax)=Homg(S, U(A))
is acyclic by the assumption of the theorem. Hence there exists
o.€Hom_ _;(F(S), A) such that ¢p,=p, .

In the simplicial case, there exist S,&S8 for #>>0 such that
F,=F(S,), (Us)S,..cS,. Hence there exists a set map 7, : S.—~UA
such that

5.(%) =0'0,-1(¥), for x=4y for some i and some yES,.i,

#9.00) =748 (x), 0<i<n, for 2€S,~ U5S,,
where p,.1= Up.—1, 8 =Ud, ¢=U¢, whence p, determines a required
morphism o, : F,=F(S,)—A..

Proposition 2.3. Let Fy be a free (quasi-)simplicial algebra
over a K-algebra A. Lel A, be an acyclic (quasi-)simplicial algebra
over A. Let oy, ox be two morphisms of Fy to Ayx. Then o is
homotopic to py.

Proof. We construct a homotopy w;, -0<{{<{n, between p} and
px. Since Homg(S, U(A,)) is acyclic, it follows that there exists
o’ =w) such that w’=0}, ¢'o"=pg,. For an integer #>>0 assume that
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wi, 0<i<j<n, are defined.

In the quasi-simplicial case, since the quasi-simplicial set Hom (S,
U(A,)) satisfies the Kan condition, it follows that there exists o]
such that ol=p,, dol=o0r1e"!, 0<i<<n+1. In the same way we
define inductively o}, 0<<j<n, so that c'w]=wi ie' for i<<j, dw]=cwi™
and cwi=w0) & for i>7+1. Since Homg(S, U(A4)) is acyclic, it
follows that there exists ) such that c'w,=w,li¢’ for i<n, e'w,=c'w)",
Moy =p,.

In the simplicial case the proof can be obtained analogously, if
we pay the same attention as in the proof of Theorem 1.

Let T be a contravariant functor of 4 (resp. (A, A)) to an
abelian category. If A, is an augmented quasi-simplicial algebra, we

have a chain complex

al an
0— T(Ao)—>A(T1)——> —T(A)—T(A )~
n+1( 1) T€

If »* is a homotopy between pi and p, which are morphisms
of augmented quasi-simplcial algebras of A, into A%, then s”
(=1 Tw, for n>>0 form a chain homotopy between 7Tp% and
Toy ie.
s"M9" +6"1s"= Tprn— To,
whence Tp, and Tp, induce the same morphism of the derived objects
H'(T(A))—~H'(T(AD).

Let F, be a free acyclic quasi-simplicial algebra over A’ in ./
(resp. (A, A)). Then we can consider cohomology H*(T(Fy)),
which does not depend on the choice of F, by Proposition 2.2 and
2.3, and is denoted by H*(A’, T). In the same way we can consider
n-th homology Hy(A’, S)= H,(S(Fy)) for a covariant functor S of
A (resp. (A, A)) to an abelian category.

In particular for an abelian group object B in (A, A), we
consider the cohomology group of A’ in (A, A) by the functor
Hom_z, 4)( , B). B is represented as an idealization A+ M of an
A-module M (J. Beck [2]).
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We call the group H"(A, Hom_;( , B)) the simplicial cohomo-
logy group of A by M, in notation H"(A, M).

Hom( s, 4)(A4’, B) for A’€ob(J, A) is isomorphic to the K-
module Derx(A’, M) of K-derivations, where M is considered an A’-
module via the structure homomorphism ¢: A’—A. Let A, be a
simplicial algebra over A. Put

Derz(A.,, M) ={f<Derx(A,, M)|f6'=0, 0<i<n}
={feDerx(A,, M) | fr.=f}.

where we use the same =z, as defined in Lemma 1 for identity ¢=¢,.

Proposition 2.4. If A, be a simplicial algebra over A, then
we have the canonical isomorphism

H'(Derg (Ay, M))=H"(Derx(Ay, M)), n=>0.
Proof. If feDerx(A, M) then

(fa“+1)n‘nﬂ :fﬂtn an+1 :fan+1

whence f0,.:EDerz (A1, M), where 8,=>1(—1)¢"
Hence Der~(A,, M) is a chain subcomplex.
Put

t=(1—-08%")(1—a%*) - (1—0""%),
w=10"—t:0"+ -+ (—1)" 87
It follows that
1— tn =a;/+l U+ U1 6,, .

If f is an n-cocycle (i.e. f0,,,=0) in Der(A,, M), then

f—fa=fQ—1)=_fu.-)d.,
As u,, is represented by a linear combination of morphisms in
(A, A), fu, is a derivation. Hence f is cohomologous in Der(A,, M)
to a cocycle fr. in Der (Ay, M).
If feDer (A,, M) is a coboundary in Der(A,, M), there exists
g€Der(A,-1, M) such that f=gd,. Therefore
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f=frn,=g0.n,=(gn,.,)d..
Hence f is a coboundary in Der (4, M).

§3. Standard extensions

Let A, be an (augmented) (quasi-)simplicial algebra. Let M,
be an (augmented) (quasi-)simplicial module. If M, is an A,-module
for each #, and if the multiplications A,Q«M,—M, are compatible
with the face operators ¢, also with the degeneracy operators & in
the simplicial case, then we call M, to be an Ay-module. The ideali-
zations A,+ M, form an (augmented) (quasi-)simplicial algebra, which
we call the idealization of M,, and denote it by A,+M,. A sub
A,-module I, of A, is called an ideal of A,. A,/I, form an (aug-
mented) (quasi-)simplicial algebra, which we denote by A,/I.. If
I, satisfies the Kan condition, then we have (A, /I*)~=E* /7*.

For a positive integer # and a module M over a K-algebra A,
there exist one and only one simplicial A-module M, such that
M,=M,..=M, d,=1identity and M.=0 for r#n, n—1. If A, is a
simplicial algebra over A, then M, is canonically an A,-module, the

1
multiplication of which is given by A,®M,@>A®M,—>M,. We can

consider the idealization By=A,+ M,. Let f be an n-cocycle in
Derz(Ay, M). Define a subset I, in B, as follows

I,=0, r<n—1,
La=(n—rf)(A),
I.={x€B,|a(x)E I, for every injection a: [#—1]—[r]},

r=>n.

where «, : A,—B, and k. : M—B, are the canonical injections.

If @:[#n—1]—[7] is not an injection, there exists an surjection
B:[n—1]—[s], s<m—1 and an injection B:[s]—[7] such that
a=rB. Hence x€ 1, implies 7(x) =0, which means @(x)=0. Hence
for every 7, I, is the set of all x& B, such that a(x) €[, for every
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monotone map a : [#—1]—[r]. Since I,_; is an ideal of B,., it
follows that I, is an ideal in B,.

Denote by E(f), pox and =, the simplicial algebra B,/I,, the
canonical homomorphism A,—E(f) and M—E(f), respectively.

Proposition 3.1. Let A, be an acyclic simplicial algebra over
a K-algebra A. Let M be an A-module. If f is an n-cocycle in
Dery (Ay, M), then there exists one and only one acyclic simplicial
algebra E, over A satisfying the following conditions: (1) There
exists a morphism o, . Ax—E of simplicial algebras over A. (2)
There exists an isomorphism t: M—E, of A-modules such that
o=tf. (3) E,=0 for v=>n. (4) o, is an isomorphism for 0<r
<n—2.

Proof. To prove the existence we may put E,=FE(f) using
the above notations. Then the condition (1), (2), (3) and (4) are
satisfied. In the following commutative diagram the upper and middle
raws and all the column are exact.

0 0
! |

7;“ ‘_;j; I Z-l > 0

l ! J

A=A A M—A, +M—A, > — A= A—0
! | [ I

0—F, E.. E o> —E—A—0
| !
0 0

Hence the Moore complex E* is acyclic. It shows the acyclicity of
E,. The uniqueness of E, follows from the Corollary 3.3 of Pro-
position 3. 2.

Proposition 3.2. With the same A,, M and f as in Pro-
position 3.1, let f’' be another n-cocycle in Derx(Ay., M) which is
cohomologous to f. Let E% be an acyclic (quasi-)simplicial algebra
over A satisfying the condition (2) and (3) in Proposition 3.1
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for a morphism o : Ay,—FE of (quasi-)simplicial algebras over A
and < : M—E'!. Then there exists a morphism oy : E.(f)—FEL
of (quasi-)simplicial algebras over A such that ¢,c=<', s,0,=0. for
0<r<n—2.

Proof. There exists an (#—1)-cochain g such that f—f'=ga,.
Let 6,=9/: E,=A,—E] for 0<r<n—2. Let 6,..:B..=A4..+M
—FE/_, be a homomorphism of K-algebras such that 7,-.|A,-1=0)
+d,rgd, and G,.|M=d,. &, induces a homomorphism of E,_
into E;_,. For an integer »—># assume that homomorphisms o, : E,
—F!, s<r, n<<r are defined such that ¢s,.;=0,,¢', 0<{<<r—1. By
the acyclicity of E%, there exists an element ¢,(x) for each x€E,
such that ¢(s,(x)) =0,1¢'(x), 0<i<r. Since d, : E,—~E’ is a mono-
morphism, it follows that ¢,(x) is uniquely determined by x. Hence
6, : E,~E] is a homomorphism of K-algebras such that s, =0,_¢"
d,”’=5,,| M implies d,v’=6,.d,v=d,5,7. Hence <’ =5,7. The lemma
was shown in the quasi-simplicial case. In the simplicial case, o,0’
=d§'0,.1 for 0<i<<r<<m follows from the definition. For »>n, ¢,
=0'¢,-1 follows from the uniquness of o,.

Corollary 3.3. With the same Ay, and M as in Lemma, let f,
[’ be two n-cocycles in Dergx(Ay, M). There exists an isomorphism
ox belween E,=E(f) and E.=E(f’) such that 6,c=7, ¢,0,=0.
for 0<r<n—2, if and only if f and f’' are cohomologous.

Proof. Assume that f and f’ are cohomologous. By Proposition
3.2, there exists a canonical morphism gy : E,—E%. o4 gives a chain
map 64 : E‘J*»Evﬁ,(, which is an isomorphism by the five lemma.

Conversely if o4 : E(f)—E(f’) is an isomorphism such that
Gat=1,0,0,=p. for 0<r<m—2, then €c,_10s1=0n-—2pur26 =016 =¢cph_s.
There exists a homomorphism g : A,.,—~F, of K-modules such that
d,8=6,-1ps-1— p\-1. Since d.Z(xy) =0,-10,-1(x)d.8(Y) +p1(¥)d.g(x),
and d, is a monomorphism, it follows that g(xy) =06%,-10.,1(2)g(¥)
+80-1(»)g(x). Let g=7""'g : A,s—>M then g(xy) =x2g(y) +yg(x).
Since d,80'=0"(6,-20,—2— 0h-2) =0, 0<¢<n, it follows g& Derx (4,1, M).
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Since d,g0,=d.(6.8.—g1)=d,(e.cf—7f)=d.7'(f—f"), it follows
that f—f'=g@,.
In particular if A, is the standard simplicial algebra G,(A4),

and f is a cocycle in Derx(G4(A), M), then we call E(f) the
standard n-fold extension.

§4. (quasi-)simplicial extensions

Let M be a module over a K-algebra A. Let n be a positive
integer. We define an n-fold (quasi-)simplicial extension E, of A
by M as follows:

(1) E, is an acyclic (quasi-)simplicial algebra over A (so

satisfying the Kan condition),

(2 E=0, r>n,

3 E=M as E-modules,

4) ENE,=0, E,=Ker(s: E,~A4),
where E? means the product E,-E, of ideals.

If E, is a simplicial algebra, then the condition (4) is replaced
by the following condition:

(4") = is a derivation.

In fact, it is easily verified that (4’) implies (4). Conversely
assume that E, satisfy (4). Then =(xy)=0 for x, y=E,. Denote
by O the unique map [n]—[0], then =, is a homomorphism of
algebras, and n.m,=0. Note that 7.(m(x)y) == (x)7.(¥). An equation
for x,y€E,

xy=m(2)y+m(y)x—m(xy) + (1 —m) () (1—m) (¥)
leads to

m(xy) =m(£)n () +m(P)m(x)
=xn.(y) +yn.(%x).
This states that (4) implies (4").
A morphism of such extensions is defined to be a morphism of
an augmented (quasi-)simplicial algebras with p_,=id,, p.=idy.
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If there exists a sequence of morphisms of extensions
E' SEl«E2 5. s E2r-1_E¥

then E° and E* are called equivalent. The equivalent classes of
extensions are called the Yomeda classes.

Proposition 4.1. If E, is an n-fold (quasi-)simplicial exten-
sion of a K-algebra A by an A-module M, then there exists an n-
cocyle f in Derg(Gy(A), M) and a morphism of the standard n-
fold extension E(f) into Ey.

Proof. By Theorem 1, there exists a morphism p, of Gy4(A)
to E, of (quasi-)simplicial algebras over A. p,n induces caonically
a homomorphism f : G,(A)—M of K-modules: <f=p,n..

It follows from (4) that

an(xy) :pn”O(x)pnm(y) +(),,7To(y>(),,7t¢<x),

which implies that f is a derivation. Since #.0'=0, 0<{i<{#, it follows
fe€Der(G,(A), M).

By the fact p,7.0,,1=¢"..1m. and the condition (2) for r=n-+1,
it follows f9.,,=0, which means f is a cocycle. It follows from
Lemma 5 that there exists a morphism of E(f) into E,.

Proposition 4.2. If p.: E(f)—Ey and o : E(f)—E, are
morphisms from the standard extension of n-fold (quasi-)simplicial
extensions of a K-algebra A by an A-module M, then n-cocycles f
and ' ave cohomogous.

Proof. Morphisms p, and oy are induced respectively from
morphisms p, and 55 of the standard simplicial algebra G,=G.(A)
into Ey. By Theorem 2, there exists a homotopy o* of g% into py.
Put §=§(—1)"(wi_l—p,,6‘)m. Then it follows

80, =¢"(pi—p.)m.,
dE=0, 1<i<n.

Hence g induces a homomorphism g of G,-, into M of K-modules.
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The acyclicity of E, and the condition (2) for r=n+1 imply
(pr—p.)m.=g0,, which means f'—f=ga,.
If xEG"—1 and yEEnq then

n—1

?Cﬂo(x)y)=Pn5°no(x)'Z’(J’)+§,<—1)"(a)‘~—m6°)no(x)°w"m(y)
=0.,0'm (%) - 2().
Hence it follows that g is an (#—1)-cochain in Dery(G*, M).

Hence f and f’ are cohomologous.

By Corollary 3.3, Proposition 4.1 and Proposition 4.2, we get
the following theorem.

Theorem 4.3. Let n be a positive integer. Denote by Ex"(A, M)
(vesp. Ex;,_,(A, M)) the set of the Yoneda classes in the category
of nfold simplicial (vesp. quasi-simplicial) extensions of a K-
algebra A by an A-module M. Denote by H"(A, M) the n-th
simplicial cohomology group of A by M. Then there exist cano-
nical bijections between Ex"(A, M) and Ex,_.(A, M) and H' (A, M).

§5. 3-fold extensions
Let n be a positive integer.

Proposition 5.1. Let E, be an augmented acyclic (quasi-)
simplicial K-module such that E, is a K-algebra for —1<r<ln,
and E,=0 for r>n. Assume that the multiplications in E, with
—1<r<<m are compatible with the face operators, also with the
degeneracy operators in the simplicial case. Then there uniquely
exist multiplications in E,, r>n such that E, becomes a (quasi-)
simplicial algebra.

Proof. For an integer »>>n, assume that associative commu-
tative multiplications ¢, : E, X E,—E, s<<r are defined and that
fo.=¢,.1(¢ Xe'). Then there exists a set map ¢, such that ¢,
=¢,1(¢' X&) by virtue of the acyclicity of E,. Since d, : E—E.

is an injection, ¢, is uniquely determined. Hence ¢, is associative
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and commutative. In the simplicial case ¢,(8"X8")=08"¢p,.s is also

satisfied by the uniqueness of ¢,.

In the following a, B, r, 8, § and » imply monotone surjections.
An exact sequence of K-modules

~d, ~ dy ~ d
€)) 0—M=FE—-5F, ,—>—>E;—>A—0

with K-linear maps
oue EwRFE.@—E.@, 0<d(@)=d(@)=d(@)<n,

is called an n-term extension of A by M, if the following conditions
(2) to (9) are satisfied.

@ S0k (05.601) = 30,0k, (1QFD).

3 ?0.8=Phats where «(x®y) =y&®x.
(4) ¢l§.as =

() Pasips: =0, if y()#rG+1D.

o=0, if a(i—1)<a(@)<<a(@+1) and y(G—1)=70).
ol +or=0, if a(l—1)<a(@)<<a(@+1).

(6) o8 =ons, if r@—1=r@),
Cayir 5+ Pl =np s if r(E—1) Fr(@.
M oa s+ Aok o3 =ra(dX1)
where ' is the surjection such that a=a'e’.
(8 E, is a K-algebra, and d, is a homorphism of K-algebras.
©)) 0t e=0, if ¢=¢, and 7(a)>0,

¢6.l:¢M(d0®1),

where ¢n : AQM—M is the multiplication of M.
A morphism of n-term extensions is a chain map p, with p
=id, and p,=id, which is compatible with ¢ s.

Proposition 5.2. If E, is an n-fold simplicial extension of
Aby M, o=¢, : E.,Q«E.,—E, is the multiplication, then the Moore
complex E, of E, with ¢Lg is an n-term extension of A by M,
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whevre
¢as : E@@E,—E,

s induced by 0,0(@QB) for three surjections w, B, y with the same

domain. |
The category of wn-fold simplicial extensions of A by M is

equivalent to the category n-term extensions of A by M.

Proof. The proof of the former part is streight-foreward. Given
an #-term extension E* of A by M. There exists one and only one
simplicial K-module Ey over A such that its Moore complex is Fy:

EmZZJ(G):anr(a)) m=0.
Define ¢p=¢., : E.QFE,—FE,, 0<m<n by
0 (a®B) =X foxs -

(2) and (3) imply the associativity and commutativity of ¢ respec-

4

tively. (4) implies the compatibility of ¢ with the degeneracy opera-
tors. (4), (5) and (6) follow the compatibility of ¢ with the face
operators ¢ for ¢=>0. It follows that

0 (d’®B5") = 0 (aQR),
"o (&' ®B8") = ¢ (ad@R),
o (@' ®B) =p(ad®pd),
where the equation is obtained by the calculation

0e.8(dQd) =95 5(dR1) (1Qd)
= guavg s+ Ao g+ Aol g.s
=g e +delig .
Then E, with 0<<m<(n are K-algebras with the multiplication
compatible with face and degeneracy operators, whence E, is a sim-
plicial algebra over A by Proposition 5. 1. -

It follows from (8) that E!NE,=0, Hence E, is an n-fold sim-
plicial extension.
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Theorem 5.2. Let A be a K-algebra and M be a A-module.
(1) a 1-term extension of A by M is given by an exact sequence

di _d
0—> M—>Ey—> A—>0

where d, is a homomorphism of K-algebras, d, is a homo-
morphism of E,-modules.

(2) a 2-term extension of A by M is given by an exact sequence

ds ~ di _ do
0—> M—>E\—> Ey—> A—>0

where d, is a homomorphism of K-algebras, d, and d, are
homomor phisms of E,modules, and
di(x)y=di(yx, x yEE;.

(3) a 3-term extension of A by M is given by an exact sequence

d ~ dz ~ dl do '
0—M—S5E—5>Ei—Ey—>A—>0

with a Eybilinear map
<L IEl®£oE1—>Ez ,

where d, is a homomorphism of K-algebras, d, is a homo-
morphism of E,modules with associative and commutative
multiplications (i.e. Ealgebras not necessary with unit), d.
and dy, are homomorphisms of E,modules, the map { , >
satisfies:

AolX1, Y1) =% 91— d: Y1 %
X1, 91200 ={xY1, 219+ dr 2%, Y1)
{ds%s, 2D =L%, doX2)—d1 %, % .
Proof. The proof of (1) and (2) are seen in N. Shimada and

others [8]. The proof of (3). For the 3-fold simplicial extension
E,., let E, be the Moore complex and

(X1, Y1) =082+ (8" —6)y1, %1, y1€E .
Then
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X1, Y1) =211 — 0% Y1 X
81y, 21) — &1, Y1200 =L%1, Y1)0"21 .
Since E:NE;=0, it follows that
(&%, 210 — (X1, €°%2) +8°0°%"%; - %,
=" (070721 0%, —0°0" 21+ 8" X2+ 8°0° %1+ 8°%2) =0,
8% X2 —08°0°" X2 £, =" ((8°— ") "%, 8°x,) =0,
X2 Yo — %2, €°9:) =€" (0% 8°Y2 — 845+ 'y, + 8%+ 62y,) =0.
Conversely, let a sequence
0—M=E—~E.—E—E,— E,~A—0

satisfy the conditions in the theorem, E, be a simplicial module such
that its Moore complex is given by the above sequence. Denote by
x;, ¥:, and z; elements of E.

Now we define multiplications in E,, E,, E; so that 6°x;- (6°—6")y,
={44, Y1, and prove that E, becomes a 3-fold simplicial extension.
The required multiplications should be commutative and compatible
with degeneracy operators. Therefore the multiplication is determined
only by the following conditions.

In E,=0°E,+E,,
(0°2° +2:) (8°Y° + 31) =8° (%0 Y0) + (Xo Y1+ Yo X1+ X1 1),

In E.=0"%E,+0E\+6'E+ E,,

0°0° %0 X2 = X%,

0°%1°0"y1=0° (X1 91) — %1, Y,

8%+ 22 = %1, da X3,

0'%1 X =d1 %1 %,

X2+ Yo =Ld: %2, d:¥:2).
In Ey=0%0"E,+6°%° B+ 8" By + 80 Ey + 8 By + 0Eo + 0°Ey + E,

X Xy=eX %, XEE;, e=elelele],

0°%0°% 1+ 0%%, =01, ds X2) — 8 X1, A2 %2,
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30721 0" %2 =0"CXy, A2 22D+ (di X1+ X2 — %1, d2 %2)),
80" %, 0°%, =08°(d1 %:" %2),

8°x% 8"y, =0%d: X2, d292),

8%, 6%y, =0,

0%, 029, =0"Cd2 %o, ds Vo) — 042 X2, d> 2.

It is easily verified that the multiplications defined above are com-

patible with the face and degeneracy operators. The associativity of

the

multiplication in E, is seen imediately. It is not difficult but

tedious to prove the associativity in E,. By the definitiion of the

multiplication in Ej, it follows that E:NE;=0. The associativity in

E; follows from Proposition 5. 1.
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