Simplical cohomology and n-term extensions of algebras

By

Akira Iwai
(Received September 10, 1969)

Iniroduction

Simplicial method is very useful in discussing (co)homology theory in a non-abelian category. M. André [1] and J. Beck [2] investigated the simplicial cohomology $H^{*}(A, M)$ of a commutative algebra A over a basic ring K with coefficients in an A-module M.

The purpose of the present paper is to interpret the cohomology $H^{*}(A, M)$. Our interpretation of $H^{*}(A, M)$ is an analogy of that of the functor Ext* by N. Yoneda [9].

It has been known that the 0 -th cohomology group $H^{0}(A, M)$ is isomorphic to the module $\operatorname{Der}_{K}(A, M)$ of K-derivations of A into M, and the first cohomology group $H^{1}(A, M)$ is in $1-1$ correspondence with the set $\operatorname{Ex}^{1}(A, M)$ of isomorphic classes of 1 -term extensions of A by M. N. Shimada and others [8] have shown that the second cohomology group is in $1-1$ correspondence with the set $\operatorname{Ex}^{2}(A, M)$ of equivalence classes of 2 -term extensions of A by M in the sense of S . Lichtenberg and S. Schlessinger [7] (or in M. Gerstenhaber [5]).

We start with the definitions of quasi-simplicial algebras and the simplicial cohomology. Let \mathcal{A} be the category of associative commutative algebras with unit over a basic ring K. Denote by (\mathcal{A}, A) the category of morphisms in \mathcal{A} with range A.

A quasi-simplicial algebra A_{*} over A is defined by a diagram in (\mathcal{A}, A)

$$
\begin{equation*}
\cdots \underset{\varepsilon^{n}}{\vec{\vdots}} A_{n}^{\stackrel{\varepsilon^{0}}{\rightrightarrows}} A_{n-1} \stackrel{\rightarrow}{\rightarrow} \xrightarrow{\stackrel{\varepsilon^{0}}{\longrightarrow}} A_{0} \xrightarrow{\varepsilon^{0}} A_{-1}=A \tag{0.1}
\end{equation*}
$$

with $\varepsilon^{i} \varepsilon^{j}=\varepsilon^{j-1} \varepsilon^{i}, i<j$ (see $\S 1$ for details).
If B is an abelian group object in (A, A), then B is the idealization $A+M$ of some A-module M. For every object C in (\mathcal{A}, A), A-module M is regarded as a C-module via the structure homomorphism $C \rightarrow A$, and we have an isomorphism of functors

$$
\operatorname{Hom}_{(\mathcal{A}, A)}(C, B) \cong \operatorname{Der}_{K}(C, M)
$$

A quasi-simplicial algebra (0.1) leads to a cochain complex

$$
\begin{equation*}
\ldots \stackrel{\partial^{n}}{\leftarrow} \operatorname{Hom}\left(A_{n}, B\right) \stackrel{\partial^{n-1}}{\leftarrow} \operatorname{Hom}\left(A_{n-1}, B\right) \leftarrow \cdots \leftarrow \operatorname{Hom}\left(A_{0}, B\right) \tag{0.2}
\end{equation*}
$$

where $\partial^{n}=\sum_{i=0}^{n+1}(-1)^{i} \operatorname{Hom}\left(\varepsilon^{i}, B\right)$ and $\operatorname{Hom}=\operatorname{Hom}(\mathcal{A}, A)$.
The derived group of the complex (0.2) does not depend on the choice of A_{*}, so far as A_{*} is "free" and "acyclic" ($§ 1$). It is called the simplicial cohomology group of A by M, and denoted by $H^{*}(A, M)$. Our cohomology is equivalent to that in M. André [1], Chap. II. In particular the "standard simplicial algebra" (§2) of A is free and acyclic, and hence our cohomology is also equivalent to the cotriple cohomology in the sense of J. Beck [2].

For a positive integer n, we define an n-fold (quasi-) simplicial extension of A by M to be a (quasi-) simplical algebra which satisfies certain conditions ($§ 3$). As every simplical module is determined by its "Moore complex" ($\S 1$), an n-fold simplial extension of A by M is as well determined by a sequence of K-modules

$$
0 \rightarrow M \xrightarrow{d_{n}} X_{n-1} \xrightarrow{d_{n-1}} \cdots \xrightarrow{d_{1}} X_{0} \xrightarrow{d_{0}} A \rightarrow 0 \text { (exact) }
$$

with certain conditions ($\S 5$). Such a sequence is called an n-term extension of A by M. The totality of n-fold (resp. quasi-) simplicial
extensions of A by M is suitably classified into the set $\operatorname{Ex}^{n}(A, M)$ (resp. $\mathrm{Ex}_{q-s}^{n}(A, M)$) (§4).

The main theorem asserts that $H^{n}(A, M)$ is in $1-1$ corres pondence with $\operatorname{Ex}^{n}(A, M)$ and simultaneously with $\operatorname{Ex}_{q-s}^{n}(A, M)$. The argument is functorial in substance, so it will be applicable to other algebraic systems: e.g. non-commutative algebras, algebras with out unit and Lie algebras.

The author wishes to thank Professor N. Shimada for his suggestion and encouragement.

§1. Simplicial objects

Let \varnothing be the category such that ob \varnothing consists of the null set $[-1]$ and sets $[n]=\{0,1, \cdots, n\}$ for non-negative integers n, mor \varnothing consists of monotone non-decreasing maps. Let Ψ be the subcategory of $\mathscr{\emptyset}$ such that $\operatorname{mor} \Psi$ consists of all injections in $\mathscr{\emptyset}$. Let $\mathscr{\emptyset}_{0}$ (resp. Ψ_{0}) be the full subcategory of \mathscr{D} (resp. Ψ) such that ob \mathscr{D}_{0} (resp. ob Ψ_{0}) consists of ob \varnothing (recp. ob Ψ) except the null set.

For a monotone map $\alpha:[p] \rightarrow[q]$ in \mathscr{D}, p (resp. q) is called the domain (resp. the range) of α, and denoted by $d(\alpha)$ (resp. $r(\alpha)$). There exist the special monotone maps

$$
\varepsilon^{i}=\varepsilon_{n}^{i}:[n-1] \rightarrow[n], \quad \delta^{i}=\delta_{n}^{i}:[n+1] \rightarrow[n]
$$

with $0 \leq i \leq n$ such that

$$
\begin{array}{cccc}
\varepsilon^{i}(j)=j, & j<i, & \delta^{i}(j)=j, & j \leq i, \tag{1.1}\\
j+1, & j \geq i, & j-1, & j>i .
\end{array}
$$

Every monotone map α is represented by a composition of a surjection δ and an injection $\varepsilon: \alpha=\varepsilon \delta$. Every surjection (resp. injection) is represented by a composition of δ^{i} (resp. ε^{i}).

A contravariant functor of $\mathscr{\mathscr { L }}, \varnothing_{0}, \Psi$ or Ψ_{0} into a category \mathcal{C} is called respectively an augmented simplicial object, a simplicial object, an augmented quasi-simplicial object, a quasi-simplicial object in \mathcal{C}.

If X is one of them, then we write X_{*}, X_{n}, and $\bar{\alpha}$ instead of X,
$X([n])$ and $X(\alpha)$. The morphism $\bar{\varepsilon}_{n}^{i}: X_{n} \rightarrow X_{n-1}$ (resp. $\bar{\delta}_{n}^{i}: X_{n} \rightarrow X_{n+1}$) is called the face operator (resp. the degeneracy operator), and often denoted by $\varepsilon^{i}=\varepsilon_{n}^{i}$ (resp. $\delta^{i}=\delta_{n}^{i}$) for simplicity.

Let $\rho_{*}^{\prime}, \rho_{*}: X_{*} \rightarrow Y_{*}$ be two morphisms of quasi-simplicial objects (a morphism ρ_{*} means a functor morphism). Consider a family $\omega^{*}=\left\{\omega_{n}^{i}\right\}$ of morphisms with $\omega^{i}=\omega_{n}^{i}: X_{n} \rightarrow Y_{n+1}, 0 \leq i \leq n$, which satisfies the following conditions:

$$
\begin{align*}
& \varepsilon^{0} \omega_{n}^{0}=\rho_{n}^{\prime}, \tag{1.2}\\
& \varepsilon^{n+1} \omega_{n}^{n}=\rho_{n}, \\
& \varepsilon^{i} \omega^{j}=\omega^{j-1} \varepsilon^{i}, \quad i<j, \\
& \varepsilon^{i+1} \omega^{i+1}=\varepsilon^{i+1} \omega^{j}, \\
& \varepsilon^{i} \omega^{j}=\omega^{j} \varepsilon^{i-1}, \quad i>j+1 .
\end{align*}
$$

Then ω^{*} is called a homotopy between ρ_{*}^{\prime} and $\rho_{*} . \quad \rho_{*}^{\prime}$ is said homotopic to ρ_{*}, in notation $\rho_{*}^{\prime} \sim \rho_{*}$. The relation \sim is not an equivalence relation in general.

If $\rho_{*}^{\prime}, \rho_{*}: X_{*} \rightarrow Y_{*}$ are two morphisms of simplicial objects, then a homotopy between ρ_{*}^{\prime} and ρ_{*} is defined by a family ω^{*} which satisfies the above conditions (1.2) and the following conditions

$$
\begin{array}{ll}
\omega^{j} \delta^{i}=\delta^{i} \omega^{j-1}, & i<j, \tag{1.3}\\
\omega^{j} \delta^{i}=\delta^{i+1} \omega^{j}, & i \geq j .
\end{array}
$$

For an (augmented) (quasi-)simplicial object A_{*} in a category with zero object, if there exists

$$
\widetilde{A_{n}}=\bigcap_{i=1}^{n} \operatorname{Ker} \varepsilon^{i}
$$

for every n, then $\widetilde{A}_{*}=\left\{\widetilde{A}_{n}\right\}$ with $d_{n}=\varepsilon^{0} \mid \widetilde{A}_{n}$ forms a chain complex. This chain complex is called the Moore complex of A_{*}.

A simplicial object in the category of sets is called a simplicial set. In the same sence we use terminologies "a simplicial module", etc.

An augmented (quasi-) simplicial set A_{*} is said acyclic, if, for every integer $n \geq 0$ and $n+1$ elements $a_{0}, a_{1}, \cdots, a_{n} \in A_{n-1}$ with $\varepsilon^{i} a_{j}$ $=\varepsilon^{j-1} a_{i}, i<j$, there exists an element $a \in A_{n}$ such that $\varepsilon^{i} a=a_{i}$.

An augmented (quasi-) simplicial set A_{*} is said to satisfy the Kan condition, if, for every integer $n>0$ and n elements a_{0}, \cdots, a_{k-1}, $a_{k+1}, \cdots, a_{n} \in A_{n-1}$ with $0 \leq k \leq n$ and $\varepsilon^{i} a_{j}=\varepsilon^{j-1} a_{i}, i<j$, there exists an elements $a \in A_{n}$ such that $\varepsilon^{i} a=a_{i}$ for $i \neq k$. If an augmented (quasi-) simplicial set A_{*} is acyclic, then it astifies the Kan codition.

A (quasi-)simplicial group, module or ring is said acyclic (resp. to satisfy the Kan condition), if the (quasi-)simplicial set consisting of its underlying set is acyclic (resp. satisfies the Kan condition). The Moore complex of an (augmented) (quasi-)simplicial ring is is defined to be the Moore complex of the underlying module. It is easily verified that a (quasi-)simplicial group (hence also module and ring) satisfying the Kan condition is acyclic if and only if its Moore complex is acyclic. It is well known that a simplicial group satisfies the Kan condition.

Proposition 1. (Partition of unity) Let A_{*} be a simplicial object in a pre-additive category \mathcal{C} with kernels. Then there exists the Moore complex $\widetilde{A_{*}}$ of A_{*}. And then for every integer $n \geq 0$ there exists one and only one family of morphisms

$$
\left\{\theta_{\alpha}: A_{n} \rightarrow A_{r} \mid \alpha:[n] \rightarrow[r] \text { is a surjection, } 0 \leq r \leq n\right\}
$$

satisfying the following conditions:

$$
\begin{align*}
& \varepsilon^{i} \theta_{\alpha}=0, \quad 0<i \leq r, \tag{1.4}\\
& i d_{A_{n}}=\sum_{\alpha} \pi_{\alpha}, \quad \pi_{\alpha}=\bar{\alpha} \theta_{\alpha}, \tag{1.5}\\
& (\alpha \text { runs over all surjections with donain } n) .
\end{align*}
$$

Moreover we have

$$
\begin{array}{r}
\pi_{\alpha} \pi_{\beta}=\pi_{\alpha}, \quad \alpha=\beta \tag{1.6}\\
0, \\
\end{array} \quad \alpha \neq \beta, ~ \$
$$

$$
\begin{equation*}
A_{n} \cong \sum_{\mathrm{x}} \alpha A_{,(\alpha)}, \quad \bar{\alpha} \widetilde{A_{r}}=\operatorname{lm}\left(\bar{\alpha} \mid \widetilde{A_{r}}\right) \cong \widetilde{A_{r}}, \tag{1.7}
\end{equation*}
$$

where \sum means biproduct (i.e. product and coproduct).
Before the proof we introduce the following notations. For each monotone map $\xi:[p] \rightarrow[q]$, define $\xi_{+}:[p+1] \rightarrow[q+1]$ by

$$
\begin{aligned}
& \xi_{+}(i)=\xi(i), \quad 0 \leq i \leq p, \\
& =q+1, \quad i=p+1 .
\end{aligned}
$$

Evidently $\left(\delta_{n}^{i}\right)_{+}=\delta_{n+1}^{i},\left(\varepsilon_{n}^{i}\right)_{+}=\varepsilon_{n+1}^{i}$ and $(\xi \eta)_{+}=\xi_{+} \eta_{+}$. We extend formally this notation to $\bar{\xi}$ by $(\bar{\xi})_{+}=\bar{\xi}_{+}$and also to linear combinations of these $\bar{\xi}$. If $\alpha:[n] \rightarrow[r]$ for $n>0$ is a surjection, then we have
case (1) $\alpha=\beta_{+}$for some surjection β if $\alpha(n-1)<\alpha(n)$, case (2) $\alpha=\beta \delta^{n-1}$ for some surjection β if $\alpha(n-1)=\alpha(n)$.

Proof of Proposition 1.1. For a surjection $\alpha:[n] \rightarrow[r]$ put

$$
\begin{align*}
& \theta_{\alpha}=\theta_{\alpha}^{1} \theta_{\alpha}^{2} \cdots \theta_{\alpha}^{n}, \tag{1.8}\\
& \theta_{\alpha}^{j}=\varepsilon^{j}, \quad \text { if } \alpha(j-1)=\alpha(j), \\
& \\
& \quad 1-\delta^{j-1} \varepsilon^{j}, \quad \text { if } \alpha(j-1)<\alpha(j) .
\end{align*}
$$

Then it follows (1.4). If a surjection α is in case 1 , it follows $\theta_{\alpha}=\left(\theta_{\beta}\right)_{+}\left(1-\delta^{n-1} \varepsilon^{n}\right)$ and $\alpha \varepsilon^{n}=\varepsilon^{r(\alpha)} \beta$. If a surjection α is in case 2 , it follows $\theta_{\alpha}=\theta_{\beta} \varepsilon^{n}$ and $\alpha \varepsilon^{n}=\beta$. Hence we have by induction on n

$$
\begin{equation*}
\text { for two surjections } \alpha, \beta \text { with domain } n \text {. } \tag{1.9}
\end{equation*}
$$

$$
\begin{aligned}
\theta_{\alpha} \bar{\beta} \equiv 1, & \text { if } \alpha=\beta \\
0, & \text { if } \alpha \neq \beta .
\end{aligned}
$$

where the notation \equiv implies the congruence modulo the submodule generated by $\bar{\gamma}_{\varepsilon}^{i}{ }_{n}^{i}$ with $0<i \leq n, r \in \operatorname{Hom}_{\mathcal{C}}\left(A_{r(\beta)-1}, A_{r(\alpha)}\right)$. If $\left\{\theta_{\alpha}^{\prime}\right\}$ is another family of morphisms satisfying (1.4) and (1.5) then (1.9) implies $\theta_{\alpha}=\theta_{\alpha}^{\prime}$. (1.6) follows from (1.4), (1.5) and (1.9). (1.5) is verified by induction on n as follows

$$
\begin{aligned}
\sum_{d(\alpha)-n} \pi_{\alpha} & =\sum_{\alpha(n-1)=\alpha(n)} \pi_{\alpha}+\sum_{\alpha(n-1)<\alpha(n)} \pi_{\alpha} \\
& =\delta^{n-1}\left(\sum_{d\left(\alpha_{1}\right)=n-1} \pi_{\alpha_{1}}\right) \varepsilon^{n}+\left(\sum_{d\left(\alpha_{2}\right)-n-1} \pi_{\alpha_{2}}\right)_{+}\left(1-\delta^{n-1} \varepsilon^{n}\right) \\
& =\delta^{n-1} \varepsilon^{n}+\left(1-\delta^{n-1} \varepsilon^{n}\right) \\
& =1 .
\end{aligned}
$$

Hence A_{n} is isomorphic to the biproduct of all $\operatorname{Ker}\left(1-\pi_{\alpha}\right)=\operatorname{Im}\left(\pi_{\alpha}\right)$. Let $\widetilde{A_{n}}$ be the kernel of $1-\pi_{c}$ for the identity ${ }_{c}=\iota_{n}$ of [$\left.n\right]$. Let $\hat{\imath}: \widetilde{A}_{n} \rightarrow A_{n}$ be the canonical injection. Then we have an exact sequence for each object B in \mathcal{C};

$$
\begin{aligned}
& 0 \rightarrow \operatorname{Hom}_{\mathcal{C}}\left(B, \widetilde{A}_{n}\right) \xrightarrow{\operatorname{Hom}_{\mathcal{C}}(, \hat{\imath})} \operatorname{Hom}_{\mathcal{C}}\left(B, A_{n}\right) \\
& \xrightarrow{\left(\operatorname{Hom}_{\mathcal{C}}\left(, \varepsilon^{i}\right)\right)} \prod_{i=1}^{n} \operatorname{Hom}_{\mathcal{C}}\left(B, A_{n-1}\right) \quad \text { (exact) }
\end{aligned}
$$

which leads to

$$
\widetilde{A_{n}}=\bigcap_{i=1}^{n} \operatorname{Ker} \varepsilon^{i} .
$$

For a surjection $\alpha:[n] \rightarrow[r]$

$$
\begin{gather*}
0 \rightarrow \operatorname{Hom}_{\mathcal{C}}\left(B, \widetilde{A}_{r}\right) \xrightarrow{\operatorname{Hom}_{\mathcal{C}}(, \bar{\alpha} \hat{\imath})} \operatorname{Hom}_{\mathcal{C}}\left(B, A_{n}\right) \\
\xrightarrow{\operatorname{Hom}_{\mathcal{C}}\left(, 1-\pi_{\alpha}\right)} \operatorname{Hom}_{\mathcal{C}}\left(B, A_{n}\right) \tag{exact}
\end{gather*}
$$

which leads to

$$
A_{n} \cong \sum_{\alpha} \operatorname{Ker}\left(1-\pi_{\alpha}\right) \cong \sum_{\alpha} \widetilde{A}_{(\alpha)}
$$

Proposition 1.2. (Dold) If \mathcal{C} is an additive category with kernels, then for a positive chain complex \widetilde{A}_{*} in \mathcal{C} there exists one and only one simplicial object A_{*} in \mathcal{C} such that the Moore complex of A_{*} is $\widetilde{A_{*}}$. Therefore there exists an equivalence between the categories of simplicial objects and positive chain complexes in \mathcal{C}.

Proof. For a positive chain complex \widetilde{A}_{*}, let

$$
A_{n}=\sum_{\alpha} \widetilde{A}_{r(\alpha)}, \quad n \geq 0
$$

where α runs over all surjections with domain n. Denote by $\tilde{\alpha}: A_{r(\alpha)}$ $\rightarrow A_{d(\alpha)}$ the canonical injection. For a surjection β in $\mathscr{D}_{0}, \bar{\beta}: A_{r(\beta)}$ $\rightarrow A_{d(\beta)}$ is defined by

$$
\bar{\beta} \hat{\alpha}=\widetilde{\alpha \beta}, \text { for each surjection } \alpha \text { with } d(\alpha)=r(\beta) .
$$

For an integer i with $0 \leq i \leq n, \bar{\varepsilon}^{i}=\bar{\varepsilon}_{n}^{i}: A_{n} \rightarrow A_{n-1}$ is defined as follows.

$$
\begin{array}{ll}
\bar{\varepsilon}^{i} \hat{\alpha}=0, i>0, & \alpha(i-1)<\alpha(i)<\alpha(i+1), \quad d(\alpha)=n, \\
\bar{\varepsilon}^{i} \widetilde{\alpha \delta^{i-1}}=\bar{\varepsilon}^{i} \widetilde{\alpha \delta \delta^{i}}=\tilde{\alpha}, & d(\alpha)=n-1, i>0, \\
\bar{\varepsilon}^{0} \widetilde{\alpha \delta^{0}}=\tilde{\alpha}, & d(\alpha)=n-1, \\
\bar{\varepsilon}^{0} \tilde{\alpha}^{+}=\tilde{\alpha} d_{n}, & d(\alpha)=n-1,
\end{array}
$$

where α^{+}is defined by $\alpha^{+}(0)=0, \alpha^{+} \varepsilon^{0}=\varepsilon^{0} \alpha$ and $d_{n}:{\widetilde{A_{n}}}_{n}{\widetilde{A_{n-1}}}$ is a boundary morphism. Note that every map in Φ_{0} is represented by $\alpha \delta^{0}$ or α^{+}. Straight forward calculations lead to $\bar{\beta}_{1} \bar{\beta}_{2}=\overline{\beta_{2} \beta_{1}}$ for two surjections β_{1}, β_{2} with $r\left(\beta_{1}\right)=d\left(\beta_{2}\right), \bar{\varepsilon}^{i} \bar{\varepsilon}^{j}=\bar{\varepsilon}^{j-1} \bar{\varepsilon}^{i}, \bar{\varepsilon}^{i} \bar{\delta}^{j}=\bar{\delta}^{j-1} \bar{\varepsilon}^{i}, \bar{\delta}^{i} \bar{\varepsilon}^{j}=\bar{\varepsilon}^{j+1} \bar{\delta}^{i}$ with $i<j, \bar{\varepsilon}^{i} \bar{\delta}^{i}=i d$ and $\bar{\varepsilon}^{i+1} \bar{\delta}^{i}=0$.

Hence A_{*} is a simplicial object.
The remain of the proof follows from Proposition 1.1.

§2. Simplicial cohomology

Let K be an associative and commutative ring with unit. Let \mathcal{A} be the category of associative and commutative K-algebra with unit. An object A in \mathcal{A} is called simply a K-algebra. For a K. algebra A, denote by (\mathcal{A}, A) the category of morphisms $\varepsilon=\varepsilon_{B}: B \rightarrow A$ in \mathcal{A}. An augmented (quasi-) simplicial object A_{*} in \mathcal{A} is called a (quasi-) simplicial algebra over A_{-1}. By a morphism ρ_{*} of a (quasi-) simplicial algebra over A we mean a morphism of augmented (quasi-) simplicial algebras with $\rho_{-1}=i d_{A}$.

Denoted by \mathcal{S} the category of pointed sets. Let $U(A)$ be the underlying set of $A \in \mathrm{ob} \mathcal{A}$ with the base point $0 \in U(A)$. Let $F(S)$ be the quotient algebra of the polynomial algebra generated by the set S identifying the base point with 0 . Then we have an adjoint pair

$$
(\varepsilon, \eta): F \dashv U:(\mathcal{A}, \mathcal{S})
$$

The pair $F-\backslash U$ generates a cotriple $(G, \varepsilon, \eta)=\left(F U, \varepsilon, R_{\eta} U\right)$. Functors $G_{n}=G^{n+1}$ and functor morphisms $\varepsilon_{n}^{i}=G_{\varepsilon}^{i} \varepsilon G^{n-i}, \delta_{n}^{i}=G^{i} \delta G^{n-i}$ define a simplicial object in $\operatorname{Cat}(\mathcal{A}, \mathcal{A})$. For a K-algebra A, a family of $G_{n}(A)$ with $\varepsilon^{i}=\varepsilon^{i}(A), \delta^{i}=\delta^{i}(A)$ defines a simplicial object called the standard simplicial algebra over A. An (augmented) quasi-simplicial algebra A_{*} is called free, if A_{n} is a polynomial algebra over K for $n \geq 0$. An (augmented) simplicial algebra A_{*} is called free, if there exists $S_{n} \in \mathrm{ob} \mathcal{S}$ for $n \geq 0$ such that $A_{n}=F\left(S_{n}\right)$ and $\left(U \delta^{i}\right) S_{n} \subset S_{n+1}$, $0 \leq i \leq n$.

Proposition 2.1. The standard simplicial algebra $G_{*}(A)$ is free and acyclic.

Proof. Since $G_{n}(A)=F U G_{n-1}(A)$ and $\left(U \delta^{i}\right)\left(U G_{n}(A)\right) \subset U G_{n+1}(A)$ for $0 \leq i \leq n$, it follows that $G_{*}(A)$ is free. On the other hand, η induces a contracting homotopy of the Moore complex $\widetilde{G}_{*}(A)$.

Proposition 2.2. Let F_{*} be a free (quasi-)simplicial algebra over a K-algebra A. Let A_{*} be an acyclic (quasi-)simplicial algebra over A. Then there exists a morphism $\rho_{*}: F_{*} \rightarrow A_{*}$ of (quasi-) simplicial algebra over A.

Proof. We construct ρ_{n} for $n \geq-1$ such that $\rho_{-1}=i d_{A}, \varepsilon^{i} \rho_{n}=\rho_{n-1} \varepsilon^{i}$, $0 \leq i \leq n$, furthermore in the simplicial case $\rho_{n} \delta^{i}=\delta^{i} \rho_{n-1}, 0 \leq i \leq n$. Assume that such $\rho_{-1}, \rho_{0}, \cdots, \rho_{n-1}$ are defined.

In the quasi-simplicial case, there exists a set $S \in \mathcal{S}$ such that $F_{n}=F(S)$. A quasi-simplicial set $\operatorname{Hom}_{\mathcal{A}}\left(F(S), A_{*}\right)=\operatorname{Hom}_{\mathcal{S}}\left(S, U\left(A_{*}\right)\right)$ is acyclic by the assumption of the theorem. Hence there exists $\rho_{n} \in \operatorname{Hom}_{\mathcal{A}}\left(F(S), A_{n}\right)$ such that $\varepsilon^{i} \rho_{n}=\rho_{n-1} \varepsilon^{i}$.

In the simplicial case, there exist $S_{n} \in \mathcal{S}$ for $n \geq 0$ such that $F_{n}=F\left(S_{n}\right),\left(U \delta^{i}\right) S_{n-1} \subset S_{n}$. Hence there exists a set map $\bar{\rho}_{n}: S_{n} \rightarrow U A$ such that
$\bar{\rho}_{n}(x)=\bar{\delta}^{\bar{\prime}} \bar{\rho}_{n-1}(y)$, for $x=\delta^{i} y$ for some i and some $y \in S_{n-1}$,
$\bar{\varepsilon}^{i} \bar{\rho}_{n}(x)=\bar{\rho}_{n-1} \bar{\varepsilon}^{i}(x), 0 \leq i \leq n, \quad$ for $x \in S_{n}-\bigcup_{i=0}^{n-1} \bar{\delta}^{i} S_{n-1}$,
where $\rho_{n-1}=U \rho_{n-1}, \bar{\delta}^{i}=U \delta^{i}, \varepsilon^{i}=U \varepsilon^{i}$, whence $\bar{\rho}_{n}$ determines a required morphism $\rho_{n}: F_{n}=F\left(S_{n}\right) \rightarrow A_{n}$.

Proposition 2.3. Let F_{*} be a free (quasi-)simplicial algebra over a K-algebra A. Let A_{*} be an acyclic (quasi-)simplicial algebra over A. Let $\rho_{*}^{\prime}, \rho_{*}$ be two morphisms of F_{*} to A_{*}. Then ρ_{*}^{\prime} is homotopic to ρ_{*}.

Proof. We construct a homotopy $\omega_{n}^{i}, \cdot 0 \leq i \leq n$, between ρ_{*}^{\prime} and ρ_{*}. Since $\operatorname{Hom}_{\mathcal{S}}\left(S, U\left(A_{*}\right)\right)$ is acyclic, it follows that there exists $\omega^{0}=\omega_{0}^{0}$ such that $\varepsilon^{0} \omega^{0}=\rho_{0}^{\prime}, \varepsilon^{1} \omega^{0}=\rho_{0}$. For an integer $n>0$ assume that
$\omega_{i}^{i}, 0 \leq i \leq j<n$, are defined.
In the quasi-simplicial case, since the quasi-simplicial set $\operatorname{Hom}_{\mathcal{S}}(S$, $\left.U\left(A_{*}\right)\right)$ satisfies the Kan condition, it follows that there exists ω_{n}^{0} such that $\varepsilon^{0} \omega_{n}^{0}=\rho_{n}^{\prime}, \varepsilon^{i} \omega_{n}^{0}=\omega_{n-1}^{0} \varepsilon^{i-1}, 0<i \leq n+1$. In the same way we define inductively $\omega_{n}^{j}, 0<j<n$, so that $\varepsilon^{i} \omega_{n}^{j}=\omega_{n-1}^{j-1} \varepsilon^{i}$ for $i<j$, $\varepsilon^{j} \omega_{n}^{j}=\varepsilon^{j} \omega_{n}^{j-1}$ and $\varepsilon^{i} \omega_{n}^{j}=\omega_{n-1}^{i} \varepsilon^{i-1}$ for $i>j+1$. Since $\operatorname{Hom}_{\mathcal{S}}\left(S, U\left(A_{*}\right)\right)$ is acyclic, it follows that there exists ω_{n}^{n} such that $\varepsilon^{i} \omega_{n}^{n}=\omega_{n-1}^{n-1} \varepsilon^{i}$ for $i<n, \varepsilon^{n} \omega_{n}^{n}=\varepsilon^{n} \omega_{n}^{n-1}$, $\varepsilon^{n+1} \omega_{n}^{n}=\rho_{n}$.

In the simplicial case the proof can be obtained analogously, if we pay the same attention as in the proof of Theorem 1.

Let T be a contravariant functor of $\mathcal{A}(\operatorname{resp} .(\mathcal{A}, A))$ to an abelian category. If A_{*} is an augmented quasi-simplicial algebra, we have a chain complex

$$
\begin{aligned}
& 0 \rightarrow T\left(A_{0}\right) \xrightarrow{\partial^{0}} A\left(T_{1}\right) \xrightarrow{\partial^{1}} \cdots \rightarrow T\left(A_{n}\right) \xrightarrow{\partial^{n}} T\left(A_{n+1}\right) \rightarrow \cdots \\
& \partial^{n}=\sum_{0=i}^{n+1}(-1)^{i} T_{\varepsilon^{i}} .
\end{aligned}
$$

If ω^{*} is a homotopy between ρ_{*}^{\prime} and ρ_{*} which are morphisms of augmented quasi-simplcial algebras of A_{*} into A_{*}^{\prime}, then s^{n} $=\sum_{i=0}^{n}(-1)^{i} T \omega_{n}^{i}$ for $n \geq 0$ form a chain homotopy between $T \rho_{*}^{\prime}$ and $T \rho_{*}$ i.e.

$$
s^{n+1} \partial^{n}+\partial^{n-1} s^{n}=T \rho_{n}^{\prime}-T \rho_{n}
$$

whence $T \rho_{n}^{\prime}$ and $T \rho_{n}$ induce the same morphism of the derived objects $H^{n}\left(T\left(A_{*}^{\prime}\right)\right) \rightarrow H^{n}\left(T\left(A_{*}\right)\right)$.

Let F_{*} be a free acyclic quasi-simplicial algebra over A^{\prime} in \mathcal{A} (resp. (\mathcal{A}, A)). Then we can consider cohomology $H^{*}\left(T\left(F_{*}\right)\right)$, which does not depend on the choice of F_{*} by Proposition 2.2 and 2.3, and is denoted by $H^{*}\left(A^{\prime}, T\right)$. In the same way we can consider n-th homology $H_{*}\left(A^{\prime}, S\right)=H_{*}\left(S\left(F_{*}\right)\right.$) for a covariant functor S of \mathcal{A} (resp. (\mathcal{A}, A)) to an abelian category.

In particular for an abelian group object B in (\mathcal{A}, A), we consider the cohomology group of A^{\prime} in (\mathcal{A}, A) by the functor $\operatorname{Hom}_{(\mathcal{A}, A)}(, B) . \quad B$ is represented as an idealization $A+M$ of an A-module M (J. Beck [2]).

We call the group $H^{n}\left(A, \operatorname{Hom}_{\mathcal{A}}(, B)\right)$ the simplicial cohomology group of A by M, in notation $H^{n}(A, M)$.
$\operatorname{Hom}_{(\mathcal{A}, A)}\left(A^{\prime}, B\right)$ for $A^{\prime} \in \operatorname{ob}(\mathcal{A}, A)$ is isomorphic to the K module $\operatorname{Der}_{K}\left(A^{\prime}, M\right)$ of K-derivations, where M is considered an A^{\prime} module via the structure homomorphism $\varepsilon: A^{\prime} \rightarrow A$. Let A_{*} be a simplicial algebra over A. Put

$$
\begin{aligned}
\operatorname{Der}_{\widetilde{K}}\left(A_{n}, M\right) & =\left\{f \in \operatorname{Der}_{\kappa}\left(A_{n}, M\right) \mid f \delta^{i}=0,0 \leq i \leq n\right\} \\
& =\left\{f \in \operatorname{Der}_{\kappa}\left(A_{n}, M\right) \mid f \pi_{\mathrm{r}}=f\right\} .
\end{aligned}
$$

where we use the same π_{ι} as defined in Lemma 1 for identity $\iota=\iota_{n}$.
Proposition 2.4. If A_{*} be a simplicial algebra over A, then we have the canonical isomorphism

$$
H^{n}\left(\operatorname{Der}_{\kappa}^{\sim}\left(A_{*}, M\right)\right) \leftrightarrows H^{n}\left(\operatorname{Der}_{K}\left(A_{*}, M\right)\right), \quad n \geq 0
$$

Proof. If $f \in \operatorname{Der}_{\kappa}^{\sim}\left(A_{n}, M\right)$ then

$$
\left(f \partial_{n+1}\right) \pi_{t_{n+1}}=f \pi_{\iota_{n}} \partial_{n+1}=f \partial_{n+1}
$$

whence $f \partial_{n+1} \in \operatorname{Der}_{\widetilde{K}}\left(A_{n+1}, M\right)$, where $\partial_{n}=\sum_{i=0}^{n}(-1)^{i} \varepsilon^{i}$.
Hence $\operatorname{Der}^{\sim}\left(A_{*}, M\right)$ is a chain subcomplex.
Put

$$
\begin{aligned}
& t_{i}=\left(1-\delta^{0} \varepsilon^{1}\right)\left(1-\delta^{1} \varepsilon^{2}\right) \cdots\left(1-\delta^{i-1} \varepsilon^{i}\right) \\
& u^{i}=t_{0} \delta^{0}-t_{1} \delta^{1}+\cdots+(-1)^{i-1} t_{i-1} \delta^{i-1} .
\end{aligned}
$$

It follows that

$$
1-t_{n}=\partial_{n+1} u_{n}+u_{n-1} \partial_{n} .
$$

If f is an n-cocycle (i.e. $f \partial_{n+1}=0$) in $\operatorname{Der}\left(A_{*}, M\right)$, then

$$
f-f \pi_{\mathrm{t}}=f\left(1-t_{n}\right)=\left(f u_{n-1}\right) \partial_{n},
$$

As u_{n-1} is represented by a linear combination of morphisms in $(\mathcal{A}, A), f u_{n-1}$ is a derivation. Hence f is cohomologous in $\operatorname{Der}\left(A_{*}, M\right)$ to a cocycle $f \pi_{i}$ in $\operatorname{Der}^{-}\left(A_{*}, M\right)$.

If $f \in \operatorname{Der}^{\sim}\left(A_{n}, M\right)$ is a coboundary in $\operatorname{Der}\left(A_{n}, M\right)$, there exists $g \in \operatorname{Der}\left(A_{n-1}, M\right)$ such that $f=g \partial_{n}$. Therefore

$$
f=f \pi_{\iota_{n}}=g \partial_{n} \pi_{\iota_{n}}=\left(g \pi_{\iota_{n-1}}\right) \partial_{n} .
$$

Hence f is a coboundary in $\operatorname{Der}^{-}\left(A_{n}, M\right)$.

§3. Standard extensions

Let A_{*} be an (augmented) (quasi-) simplicial algebra. Let M_{*} be an (augmented) (quasi-)simplicial module. If M_{n} is an A_{n}-module for each n, and if the multiplications $A_{n} \bigotimes_{\kappa} M_{n} \rightarrow M_{n}$ are compatible with the face operators ε^{i}, also with the degeneracy operators δ^{i} in the simplicial case, then we call M_{*} to be an A_{*} module. The idealizations $A_{n}+M_{n}$ form an (augmented) (quasi-) simplicial algebra, which we call the idealization of M_{*}, and denote it by $A_{*}+M_{*}$. A sub A_{*}-module I_{*} of A_{*} is called an ideal of $A_{*} . A_{n} / I_{n}$ form an (augmented) (quasi-) simplicial algebra, which we denote by A_{*} / I_{*}. If I_{*} satisfies the Kan condition, then we have $\left(A_{*} / I_{*}\right)^{-}=\widetilde{A}_{*} / \widetilde{I}_{*}$.

For a positive integer n and a module M over a K-algebra A, there exist one and only one simplicial A-module M_{*} such that $\widetilde{M}_{n}=\widetilde{M}_{n-1}=M, d_{n}=$ identity and $\widetilde{M}_{r}=0$ for $r \neq n, n-1$. If A_{*} is a simplicial algebra over A, then M_{*} is canonically an A_{*}-module, the multiplication of which is given by $A_{r} \otimes M_{r} \xrightarrow{\varepsilon \otimes 1} A \otimes M_{r} \rightarrow M_{r}$. We can consider the idealization $B_{*}=A_{*}+M_{*}$. Let f be an n-cocycle in $\operatorname{Der}_{K}^{-}\left(A_{*}, M\right)$. Define a subset I_{r} in B_{r} as follows

$$
\begin{aligned}
& I_{r}=0, \quad r<n-1, \\
& I_{n-1}=\varepsilon^{0}\left(\kappa_{1}-\kappa_{2} f\right)\left(\widetilde{A_{n}}\right), \\
& I_{r}=\left\{x \in B_{r} \mid \bar{\alpha}(x) \in I_{n-1} \text { for every injection } \alpha:[n-1] \rightarrow[r]\right\}, \\
& \quad r \geq n .
\end{aligned}
$$

where $\kappa_{1}: A_{n} \rightarrow B_{n}$ and $\kappa_{2}: M \rightarrow B_{n}$ are the canonical injections.
If $\alpha:[n-1] \rightarrow[r]$ is not an injection, there exists an surjection $\beta:[n-1] \rightarrow[s], s<n-1$ and an injection $\beta:[s] \rightarrow[r]$ such that $\alpha=\gamma \beta$. Hence $x \in I_{r}$ implies $\tilde{\gamma}(x)=0$, which means $\bar{\alpha}(x)=0$. Hence for every r, I_{r} is the set of all $x \in B_{r}$ such that $\tilde{\alpha}(x) \in I_{n-1}$ for every
monotone map $\alpha:[n-1] \rightarrow[r]$. Since I_{n-1} is an ideal of B_{n-1}, it follows that I_{*} is an ideal in B_{*}.

Denote by $E(f), \rho_{*}$ and τ, the simplicial algebra B_{*} / I_{*}, the canonical homomorphism $A_{*} \rightarrow E(f)$ and $M \rightarrow E(f)_{n}^{\sim}$ respectively.

Proposition 3.1. Let A_{*} be an acyclic simplicial algebra over a K-algebra A. Let M be an A-module. If f is an n-cocycle in $\operatorname{Der}_{K}^{\sim}\left(A_{*}, M\right)$, then there exists one and only one acyclic simplicial algebra E_{*} over A satisfying the following conditions: (1) There exists a morphism $\rho_{*}: A_{*} \rightarrow E_{*}$ of simplicial algebras over A. (2) There exists an isomorphism $\tau: M \rightarrow \widetilde{E_{n}}$ of A_{n}-modules such that $\rho_{n}=\tau f$. (3) $\widetilde{E}_{r}=0$ for $r>n$. (4) ρ_{r} is an isomorphism for $0 \leq r$ $\leq n-2$.

Proof. To prove the existence we may put $E_{*}=E(f)$ using the above notations. Then the condition (1), (2), (3) and (4) are satisfied. In the following commutative diagram the upper and middle raws and all the column are exact.

Hence the Moore complex \widetilde{E}_{*} is acyclic. It shows the acyclicity of E_{*}. The uniqueness of E_{*} follows from the Corollary 3.3 of Proposition 3. 2 .

Proposition 3.2. With the same A_{*}, M and f as in Proposition 3.1, let f^{\prime} be another n-cocycle in $\operatorname{Der}_{K}^{\sim}\left(A_{*}, M\right)$ which is cohomologous to f. Let E_{*}^{\prime} be an acyclic (quasi-) simplicial algebra over A satisfying the condition (2) and (3) in Proposition 3.1
for a morphism $\rho_{*}^{\prime}: A_{*} \rightarrow E_{*}^{\prime}$ of (quasi-) simplicial algebras over A and $\tau^{\prime}: M \rightarrow \widetilde{E}_{n}^{\prime}$. Then there exists a morphism $\sigma_{*}: E_{*}(f) \rightarrow E_{*}^{\prime}$ of (quasi-) simplicial algebras over A such that $\sigma_{n} \tau=\tau^{\prime}, \sigma_{r} \rho_{r}=\rho_{r}^{\prime}$ for $0 \leq r \leq n-2$.

Proof. There exists an $(n-1)$-cochain g súch that $f-f^{\prime}=g \partial_{n}$. Let $\sigma_{r}=\rho_{r}^{\prime}: E_{r}=A_{r} \rightarrow E_{r}^{\prime}$ for $0 \leq r \leq n-2$. Let $\bar{\sigma}_{n-1}: B_{n-1}=A_{n-1}+M$ $\rightarrow E_{n-1}^{\prime}$ be a homomorphism of K-algebras such that $\bar{\sigma}_{n-1} \mid A_{n-1}=\rho_{n-1}^{\prime}$ $+d_{n} \tau g d_{n}$ and $\bar{\sigma}_{n-1} \mid M=d_{n} \tau^{\prime} . \bar{\sigma}_{n-1}$ induces a homomorphism of E_{n-1} into E_{n-1}^{\prime}. For an integer $r \geq n$ assume that homomorphisms $\sigma_{s}: E_{s}$ $\rightarrow E_{s}^{\prime}, s<r, n \leq r$ are defined such that $\varepsilon^{i} \sigma_{r-1}=\sigma_{r-2} \varepsilon^{i}, 0 \leq i \leq r-1$. By the acyclicity of E_{*}^{\prime}, there exists an element $\sigma_{r}(x)$ for each $x \in E_{r}$ such that $\varepsilon^{i}\left(\sigma_{r}(x)\right)=\sigma_{r-1} \varepsilon^{i}(x), 0 \leq i \leq r$. Since $d_{r}: \widetilde{E}_{r} \rightarrow \widetilde{E}_{r}^{\prime}$ is a monomorphism, it follows that $\sigma_{r}(x)$ is uniquely determined by x. Hence $\sigma_{r}: E_{r} \rightarrow E_{r}^{\prime}$ is a homomorphism of K-algebras such that $\varepsilon^{i} \boldsymbol{\sigma}_{r}=\sigma_{r-1} \varepsilon^{i}$. $d_{n} \tau^{\prime}=\bar{\sigma}_{n-1} \mid M$ implies $d_{n} \tau^{\prime}=\tilde{\boldsymbol{\sigma}}_{n-1} d_{n} \tau=d_{n} \tilde{\boldsymbol{\sigma}}_{n} \tau$. Hence $\tau^{\prime}=\tilde{\boldsymbol{\sigma}}_{n} \tau$. The lemma was shown in the quasi-simplicial case. In the simplicial case, $\sigma_{r} \delta^{i}$ $=\delta^{i} \sigma_{r-1}$ for $0 \leq i \leq r<n$ follows from the definition. For $r \geq n, \sigma_{r} \delta^{i}$ $=\delta^{i} \sigma_{r-1}$ follows from the uniquness of σ_{r}.

Corollary 3. 3. With the same A_{*} and M as in Lemma, let f, f^{\prime} be two n-cocycles in $\operatorname{Der}_{K}^{-}\left(A_{*}, M\right)$. There exists an isomorphism σ_{*} between $E_{*}=E(f)$ and $E_{*}^{\prime}=E\left(f^{\prime}\right)$ such that $\tilde{\sigma}_{n} \tau=\tau^{\prime}, \quad \sigma_{r} \rho_{r}=\rho_{r}^{\prime}$ for $0 \leq r \leq n-2$, if and only if f and f^{\prime} are cohomologous.

Proof. Assume that f and f^{\prime} are cohomologous. By Proposition 3.2, there exists a canonical morphism $\sigma_{*}: E_{*} \rightarrow E_{*}^{\prime} \cdot \sigma_{*}$ gives a chain map $\tilde{\sigma}_{*}: \widetilde{E_{*}} \rightarrow \widetilde{E_{*}^{\prime}}$, which is an isomorphism by the five lemma.

Conversely if $\sigma_{*}: E(f) \rightarrow E\left(f^{\prime}\right)$ is an isomorphism such that $\tilde{\sigma}_{n} \tau=\tau^{\prime}, \sigma_{r} \rho_{r}=\rho_{r}^{\prime}$ for $0 \leq r \leq n-2$, then $\varepsilon^{i} \sigma_{n-1} \rho_{n-1}=\sigma_{n-2} \rho_{n-2} \varepsilon^{i}=\rho_{n-2}^{\prime} \varepsilon^{i}=\varepsilon^{i} \rho_{n-1}^{\prime}$. There exists a homomorphism $\bar{g}: A_{n-1} \rightarrow E_{n}^{\prime}$ of K-modules such that $d_{n} \bar{g}=\sigma_{n-1} \rho_{n-1}-\rho_{n-1}^{\prime}$. Since $d_{n} \bar{g}(x y)=\sigma_{n-1} \rho_{n-1}(x) d_{n} \bar{g}(y)+\rho_{n-1}^{\prime}(y) d_{n} \bar{g}(x)$, and d_{n} is a monomorphism, it follows that $\bar{g}(x y)=\delta^{0} \sigma_{n-1} \rho_{n-1}(x) \bar{g}(y)$ $+\delta^{0} \rho_{n-1}^{\prime}(y) \bar{g}(x)$. Let $g=\tau^{\prime-1} \bar{g}: A_{n-1} \rightarrow M$ then $g(x y)=x g(y)+y g(x)$. Since $d_{n} \bar{g} \delta^{i}=\delta^{i}\left(\sigma_{n-2} \rho_{n-2}-\rho_{n-2}^{\prime}\right)=0,0 \leq i \leq n$, it follows $g \in \operatorname{Der}_{K}^{\sim}\left(A_{n-1}, M\right)$.

Since $\quad d_{n} \bar{g} \partial_{n}=d_{n}\left(\sigma_{n} g_{n}-g_{n}^{\prime}\right)=d_{n}\left(\sigma_{n} \tau f-\tau^{\prime} f^{\prime}\right)=d_{n} \tau^{\prime}\left(f-f^{\prime}\right), \quad$ it follows that $f-f^{\prime}=g \partial_{n}$.

In particular if A_{*} is the standard simplicial algebra $G_{*}(A)$, and f is a cocycle in $\operatorname{Der}_{\kappa}^{\sim}\left(G_{*}(A), M\right)$, then we call $E(f)$ the standard n-fold extension.

§4. (quasi-) simplicial extensions

Let M be a module over a K-algebra A. Let n be a positive integer. We define an n-fold (quasi-)simplicial extension E_{*} of A by M as follows:
(1) E_{*} is an acyclic (quasi-)simplicial algebra over A (so satisfying the Kan condition),
(2) $\widetilde{E}_{r}=0, r>n$,
(3) $\widetilde{E}_{n} \cong M$ as E_{n}-modules,
(4) $\bar{E}_{n}^{2} \cap \widetilde{E_{n}}=0, \bar{E}_{n}=\operatorname{Ker}\left(\varepsilon: E_{n} \rightarrow A\right)$,
where \bar{E}_{n}^{2} means the product $\bar{E}_{n} \cdot \bar{E}_{n}$ of ideals.
If E_{*} is a simplicial algebra, then the condition (4) is replaced by the following condition:
(4) π_{ι} is a derivation.

In fact, it is easily verified that (4') implies (4). Conversely assume that E_{*} satisfy (4). Then $\pi_{\iota}(x y)=0$ for $x, y \in \bar{E}_{n}$. Denote by 0 the unique map $[n] \rightarrow[0]$, then π_{0} is a homomorphism of algebras, and $\pi_{\iota} \pi_{0}=0$. Note that $\pi_{\iota}\left(\pi_{0}(x) y\right)=\pi_{0}(x) \pi_{\iota}(y)$. An equation for $x, y \in E_{n}$

$$
x y=\pi_{0}(x) y+\pi_{0}(y) x-\pi_{0}(x y)+\left(1-\pi_{0}\right)(x) \cdot\left(1-\pi_{0}\right)(y)
$$

leads to

$$
\begin{aligned}
\pi_{\iota}(x y) & =\pi_{0}(x) \pi_{\iota}(y)+\pi_{0}(y) \pi_{\iota}(x) \\
& =x \pi_{\iota}(y)+y \pi_{\iota}(x) .
\end{aligned}
$$

This states that (4) implies (4^{\prime}).
A morphism of such extensions is defined to be a morphism of an augmented (quasi-)simplicial algebras with $\rho_{-1}=i d_{A}, \hat{\rho}_{n}=i d_{M}$.

If there exists a sequence of morphisms of extensions

$$
E^{0} \rightarrow E^{1} \leftarrow E^{2} \rightarrow \cdots \rightarrow E^{2 r-1} \leftarrow E^{2 r}
$$

then E^{0} and $E^{2 r}$ are called equivalent. The equivalent classes of extensions are called the Yoneda classes.

Proposition 4.1. If E_{*} is an n-fold (quasi-) simplicial extension of a K-algebra A by an A-module M, then there exists an n cocyle f in $\operatorname{Der}_{K}^{\sim}\left(G_{*}(A), M\right)$ and a morphism of the standard n fold extension $E(f)$ into E_{*}.

Proof. By Theorem 1, there exists a morphism ρ_{*} of $G_{*}(A)$ to E_{*} of (quasi-) simplicial algebras over $A . \rho_{n} \pi_{\iota}$ induces caonically a homomorphism $f: G_{n}(A) \rightarrow M$ of K-modules: $\tau^{\prime} f=\rho_{n} \pi_{\mathrm{i}}$.

It follows from (4) that

$$
\rho_{n} \pi_{\iota}(x y)=\rho_{n} \pi_{0}(x) \rho_{n} \pi_{l}(y)+\rho_{n} \pi_{0}(y) \rho_{n} \pi_{\iota}(x),
$$

which implies that f is a derivation. Since $\pi_{\iota} \delta^{i}=0,0 \leq i \leq n$, it follows $f \in \operatorname{Der}_{K}^{\sim}\left(G_{n}(A), M\right)$.

By the fact $\rho_{n} \pi_{\iota} \partial_{n+1}=\varepsilon^{0} \rho_{n+1} \pi_{\iota}$ and the condition (2) for $r=n+1$, it follows $f \partial_{n+1}=0$, which means f is a cocycle. It follows from Lemma 5 that there exists a morphism of $E(f)$ into E_{*}.

Proposition 4.2. If $\rho_{*}: E(f) \rightarrow E_{*}$ and $\rho_{*}^{\prime}: E\left(f^{\prime}\right) \rightarrow E_{*}$ are morphisms from the standard extension of n-fold (quasi-) simplicial extensions of a K-algebra A by an A-module M, then n-cocycles f and f^{\prime} are cohomogous.

Proof. Morphisms ρ_{*} and ρ_{*}^{\prime} are induced respectively from morphisms $\bar{\rho}_{*}$ and $\bar{\rho}_{*}^{\prime}$ of the standard simplicial algebra $G_{*}=G_{*}(A)$ into E_{*}. By Theorem 2, there exists a homotopy ω^{*} of $\bar{\rho}_{*}^{\prime}$ into $\bar{\rho}_{*}$. Put $\bar{g}=\sum_{i=0}^{n=1}(-1)^{i}\left(\omega_{n-1}^{i}-\rho_{n} \delta^{i}\right) \pi_{i}$. Then it follows

$$
\begin{aligned}
& \varepsilon^{0} \bar{g} \partial_{n}=\varepsilon^{0}\left(\rho_{n}^{\prime}-\rho_{n}\right) \pi_{i} \\
& \varepsilon^{i} \bar{g}=0, \quad 1 \leq i \leq n .
\end{aligned}
$$

Hence \bar{g} induces a homomorphism g of G_{n-1} into M of K-modules.

The acyclicity of E_{*} and the condition (2) for $r=n+1$ imply $\left(\bar{\rho}_{n}^{\prime}-\bar{\rho}_{n}\right) \pi_{t}=\bar{g} \partial_{n}$, which means $f^{\prime}-f=g \partial_{n}$.

If $x \in G_{n-1}$ and $y \in \bar{G}_{n-1}$ then

$$
\begin{aligned}
\bar{g}\left(\pi_{0}(x) y\right) & =\rho_{n} \delta^{0} \pi_{0}(x) \cdot \bar{g}(y)+\sum_{i=0}^{n-1}(-1)^{i}\left(\omega^{i}-\rho_{n} \delta^{0}\right) \pi_{0}(x) \cdot \omega^{i} \pi_{\iota}(y) \\
& =\rho_{n} \delta^{0} \pi_{0}(x) \cdot \bar{g}(y) .
\end{aligned}
$$

Hence it follows that g is an $(n-1)$-cochain in $\operatorname{Der}_{\kappa}^{\sim}\left(G^{*}, M\right)$.
Hence f and f^{\prime} are cohomologous.
By Corollary 3.3, Proposition 4.1 and Proposition 4.2, we get the following theorem.

Theorem 4.3. Let n be a positive integer. Denote by $\operatorname{Ex}^{n}(A, M)$ (resp. $\mathrm{Ex}_{q-s}^{n}(A, M)$) the set of the Yoneda classes in the category of n-fold simplicial (resp. quasi-simplicial) extensions of a K algebra A by an A-module M. Denote by $H^{n}(A, M)$ the n-th simplicial cohomology group of A by M. Then there exist canonical bijections between $\operatorname{Ex}^{n}(A, M)$ and $\mathrm{Ex}_{q-s}^{n}(A, M)$ and $H^{\prime \prime}(A, M)$.

§5. 3-fold extensions

Let n be a positive integer.
Proposition 5.1. Let E_{*} be an augmented acyclic (quasi-) simplicial K-module such that E_{r} is a K-algebra for $-1 \leq r<n$, and $\widetilde{E}_{r}=0$ for $r>n$. Assume that the multiplications in E_{r} with $-1 \leq r<n$ are compatible with the face operators, also with the degeneracy operators in the simplicial case. Then there uniquely exist multiplications in $E_{r}, r>n$ such that E_{*} becomes a (quasi-) simplicial algebra.

Proof. For an integer $r \geq n$, assume that associative commutative multiplications $\varphi_{s}: E_{s} \times E_{s} \rightarrow E, s<r$ are defined and that $\varepsilon^{i} \varphi_{s}=\varphi_{s-1}\left(\varepsilon^{i} \times \varepsilon^{i}\right)$. Then there exists a set map φ_{r} such that $\varepsilon^{i} \varphi_{r}$ $=\varphi_{r-1}\left(\varepsilon^{i} \times \varepsilon^{i}\right)$ by virtue of the acyclicity of E_{*}. Since $d_{r}: \widetilde{E}_{r} \rightarrow \widetilde{E}_{r-1}$ is an injection, φ_{r} is uniquely determined. Hence φ_{r} is associative
and commutative. In the simplicial case $\varphi_{r}\left(\delta^{i} \times \delta^{i}\right)=\delta^{i} \varphi_{r-1}$ is also satisfied by the uniqueness of φ_{r}.

In the following $\alpha, \beta, \gamma, \delta, \xi$ and η imply monotone surjections. An exact sequence of K-modules

$$
\begin{equation*}
0 \longrightarrow M=\widetilde{E}_{n} \xrightarrow{d_{n}} \widetilde{E}_{n-1} \longrightarrow \cdots \xrightarrow{d_{1}} \widetilde{E}_{0} \xrightarrow{d_{0}} A \longrightarrow 0 \tag{1}
\end{equation*}
$$

with K-linear maps

$$
\varphi_{\alpha, \beta}^{\gamma}: \widetilde{E}_{r(\alpha)} \otimes \widetilde{E}_{r(\beta)} \rightarrow \widetilde{E}_{r(\gamma)}, \quad 0 \leq d(\alpha)=d(\beta)=d(r) \leq n,
$$

is called an n-term extension of A by M, if the following conditions (2) to (9) are satisfied.

$$
\begin{align*}
& \sum_{\xi} \varphi_{\xi, \eta}^{\delta}\left(\varphi_{\alpha, \beta}^{\xi} \otimes 1\right)=\sum_{n} \varphi_{\alpha, \eta}^{\delta}\left(1 \otimes_{\beta, \gamma}^{\rho_{\eta}^{\eta}}\right) . \tag{2}\\
& \varphi_{\alpha, \beta}^{\gamma}=\varphi_{\beta, \alpha}^{\gamma} \tau, \quad \text { where } \tau(x \otimes y)=y \otimes x . \tag{3}\\
& \varphi_{\alpha \delta, \beta \delta}^{\gamma \delta}=\varphi_{\alpha, \beta}^{\gamma}, \tag{4}\\
& \varphi_{\alpha \delta i \beta s i}^{\gamma}=0, \quad \text { if } r(i) \neq r(i+1) \text {. } \tag{5}\\
& \varphi_{\alpha, \beta}^{\gamma \delta i}=0 \text {, if } \alpha(i-1)<\alpha(i)<\alpha(i+1) \text { and } r(i-1)=r(i) \text {. } \\
& \varphi_{\alpha, \beta}^{\gamma \delta i-1}+\varphi_{\alpha, \beta}^{\gamma \delta i}=0, \quad \text { if } \alpha(i-1)<\alpha(i)<\alpha(i+1) \text {. } \\
& \varphi_{\alpha \delta i-1 \beta \delta^{i}}^{\gamma \delta i}=\varphi_{\alpha, \beta}^{\gamma}, \quad \text { if } \gamma(i-1)=\gamma(i) \text {, } \tag{6}\\
& \varphi_{\alpha \delta i-1, \beta \delta i}^{\gamma \delta i-1}+\varphi_{\alpha \delta i-1, \beta \delta i}^{\gamma \delta i}=\varphi_{\alpha, \beta}^{\gamma}, \quad \text { if } r(i-1) \neq r(i) \text {. } \\
& \varphi_{\alpha+, \beta 80}^{\gamma \delta 0}+d \varphi_{\alpha,, \beta 80}^{\gamma+}=\varphi_{\alpha, \beta}^{\gamma}(d \otimes 1) \tag{7}
\end{align*}
$$

where α^{+}is the surjection such that $\varepsilon^{0} \alpha=\alpha^{+} \varepsilon^{0}$.

$$
\begin{align*}
& \widetilde{E}_{0} \text { is a } K \text {-algebra, and } d_{0} \text { is a homorphism of } K \text {-algebras. } \tag{8}\\
& \varphi_{\alpha, \beta}^{\iota}=0, \quad \text { if } \iota=\iota_{n} \text { and } r(\alpha)>0, \tag{9}\\
& \varphi_{0, \iota}^{\iota}=\varphi_{M}\left(d_{0} \otimes 1\right),
\end{align*}
$$

where $\varphi_{M}: A \otimes M \rightarrow M$ is the multiplication of M.
A morphism of n-term extensions is a chain map ρ_{*} with ρ_{-1} $=i d_{A}$ and $\rho_{n}=i d_{M}$ which is compatible with $\varphi_{\alpha, \beta}^{\gamma}$.

Proposition 5.2. If E_{*} is an n-fold simplicial extension of A by $M, \varphi=\varphi_{m}: E_{m} \otimes_{K} E_{m} \rightarrow E_{m}$ is the multiplication, then the Moore complex \widetilde{E}_{*} of E_{*} with $\varphi_{\alpha, \beta}^{\gamma}$ is an n-term extension of A by M,
where

$$
\varphi_{\alpha, \beta}^{\gamma}: \widetilde{E}_{r(\alpha)} \otimes \widetilde{E}_{r(\beta)} \rightarrow \widetilde{E}_{r(\gamma)}
$$

is induced by $\theta_{r} \varphi(\bar{\alpha} \otimes \bar{\beta})$ for three surjections α, β, r with the same domain.

The category of n-fold simplicial extensions of A by M is equivalent to the category n-term extensions of A by M.

Proof. The proof of the former part is streight-foreward. Given an n-term extension \widetilde{E}_{*} of A by M. There exists one and only one simplicial K-module E_{*} over A such that its Moore complex is \widetilde{E}_{*} :

$$
E_{m}=\sum_{d(\alpha)=m} \widetilde{E}_{r(\alpha)}, \quad m \geq 0 .
$$

Define $\varphi=\varphi_{m}: E_{m} \otimes E_{m} \rightarrow E_{m}, 0 \leq m \leq n$ by

$$
\varphi(\tilde{\boldsymbol{\alpha}} \otimes \tilde{\beta})=\sum_{r} \tilde{\gamma} \varphi_{\alpha, \beta}^{\gamma} .
$$

(2) and (3) imply the associativity and commutativity of φ respectively. (4) implies the compatibility of φ with the degeneracy operators. (4), (5) and (6) follow the compatibility of φ with the face operators ε^{i} for $i>0$. It follows that

$$
\begin{aligned}
& \varepsilon^{0} \varphi\left(\widetilde{\alpha \delta^{0}} \otimes \widetilde{\beta} \widetilde{\delta}^{0}\right)=\varphi(\tilde{\alpha} \otimes \tilde{\beta}), \\
& \varepsilon^{0} \varphi\left(\tilde{\alpha}^{+} \otimes \widetilde{\beta} \widetilde{\delta}^{0}\right)=\varphi(\tilde{\alpha} d \otimes \tilde{\beta}), \\
& \varepsilon^{0} \varphi\left(\tilde{\alpha}^{+} \otimes \beta^{+}\right)=\varphi(\tilde{\alpha} d \otimes \tilde{\beta} d),
\end{aligned}
$$

where the equation is obtained by the calculation

$$
\begin{aligned}
\varphi_{\alpha, \beta}^{\gamma}(d \otimes d) & =\varphi_{\alpha, \beta}^{\gamma}(d \otimes 1)(1 \otimes d) \\
& =\varphi_{\alpha \delta^{\prime}, \beta, \delta 1}^{\gamma 0 \delta \delta}+d \varphi_{\alpha+\delta \delta 0, \beta+\delta 1}^{\gamma+50}+d \varphi_{\alpha+\delta^{0}, \beta, \delta 1}^{\gamma+\delta 1} \\
& =\varphi_{\alpha+, \beta^{+}}^{\gamma+}+d \varphi_{\alpha^{+}+\beta^{+}}^{\gamma+} .
\end{aligned}
$$

Then E_{m} with $0 \leq m \leq n$ are K-algebras with the multiplication compatible with face and degeneracy operators, whence E_{*} is a simplicial algebra over A by Proposition 5.1.

It follows from (8) that $\widetilde{E}_{n}^{2} \cap \widetilde{E}_{n}=0$, Hence E_{*} is an n-fold simplicial extension.

Theorem 5.2. Let A be a K-algebra and M be a A-module.
(1) a 1-term extension of A by M is given by an exact sequence

$$
0 \longrightarrow M \xrightarrow{d_{1}} E_{0} \xrightarrow{d_{0}} A \longrightarrow 0
$$

where d_{0} is a homomorphism of K-algebras, d_{1} is a homomorphism of E_{0}-modules.
(2) a 2-term extension of A by M is given by an exact sequence

$$
0 \longrightarrow M \xrightarrow{d_{2}} \widetilde{E}_{1} \xrightarrow{d_{1}} E_{0} \xrightarrow{d_{0}} A \longrightarrow 0
$$

where d_{0} is a homomorphism of K-algebras, d_{1} and d_{2} are homomorphisms of E_{0}-modules, and

$$
d_{1}(x) y=d_{1}(y) x, \quad x, y \in \widetilde{E}_{1} .
$$

(3) a-term extension of A by M is given by an exact sequence

$$
0 \longrightarrow M \xrightarrow{d_{3}} \widetilde{E}_{2} \xrightarrow{d_{2}} \widetilde{E}_{1} \xrightarrow{d_{1}} E_{0} \xrightarrow{d_{0}} A \longrightarrow 0
$$

with a E_{0}-bilinear map

$$
\langle,\rangle: \widetilde{E}_{1} \otimes_{E_{0}} \widetilde{E}_{1} \rightarrow \widetilde{E}_{2}
$$

where d_{0} is a homomorphism of K-algebras, d_{1} is a homomorphism of E_{0}-modules with associative and commutative multiplications (i.e. E_{0}-algebras not necessary with unit), d_{2} and d_{3} are homomorphisms of E_{0}-modules, the map \langle, satisfies:

$$
\begin{aligned}
& d_{2}\left\langle x_{1}, y_{1}\right\rangle=x_{1} y_{1}-d_{1} y_{1} x_{1} \\
& \left\langle x_{1}, y_{1} z_{1}\right\rangle=\left\langle x y_{1}, z_{1}\right\rangle+d_{1} z_{1}\left\langle x_{1}, y_{1}\right\rangle \\
& \left\langle d_{2} x_{2}, x_{1}\right\rangle=\left\langle x, d_{2} x_{2}\right\rangle-d_{1} x_{1} \cdot x_{2} .
\end{aligned}
$$

Proof. The proof of (1) and (2) are seen in N. Shimada and others [8]. The proof of (3). For the 3 -fold simplicial extension E_{*}, let \widetilde{E}_{*} be the Moore complex and

$$
\left\langle x_{1}, y_{1}\right\rangle=\delta^{0} x_{1} \cdot\left(\delta^{0}-\delta^{1}\right) y_{1}, \quad x_{1}, y_{1} \in \widetilde{E_{1}} .
$$

Then

$$
\begin{aligned}
& \varepsilon^{0}\left\langle x_{1}, y_{1}\right\rangle=x_{1} y_{1}-\delta^{0} \varepsilon^{0} y_{1} \cdot x_{1} \\
& \left\langle x_{1} y, z_{1}\right\rangle-\left\langle x_{1}, y_{1} z_{1}\right\rangle=\left\langle x_{1}, y_{1}\right\rangle \delta^{1} z_{1} .
\end{aligned}
$$

Since $\bar{E}_{3}^{2} \cap \widetilde{E_{3}}=0$, it follows that

$$
\begin{aligned}
& \left\langle\varepsilon^{0} x_{2}, x_{1}\right\rangle-\left\langle x_{1}, \varepsilon^{0} x_{2}\right\rangle+\delta^{0} \delta^{0} \varepsilon^{0} x_{i} \cdot x_{2} \\
& \quad=\varepsilon^{0}\left(\delta^{1} \delta^{1} x_{1} \cdot \delta^{0} x_{2}-\delta^{0} \delta^{1} x_{1} \cdot \delta^{1} x_{2}+\delta^{0} \delta^{0} x_{1} \cdot \delta^{2} x_{2}\right)=0, \\
& \delta^{1} x_{1} \cdot x_{2}-\delta^{0} \delta^{0} \varepsilon^{0} x_{2} \cdot x_{2}=\varepsilon^{0}\left(\left(\delta^{0}-\delta^{1}\right) \delta^{1} x_{1} \cdot \delta^{0} x_{2}\right)=0, \\
& x_{2} y_{2}-\left\langle\varepsilon^{0} x_{2}, \varepsilon^{0} y_{2}\right\rangle=\varepsilon^{0}\left(\delta^{0} x_{2} \cdot \delta^{0} y_{2}-\delta^{1} x_{2} \cdot \delta^{1} y_{2}+\delta^{1} x_{2} \cdot \delta^{2} y_{2}\right)=0 .
\end{aligned}
$$

Conversely, let a sequence

$$
0 \rightarrow M=\widetilde{E_{3}} \rightarrow \widetilde{E_{2}} \rightarrow \widetilde{E}_{1} \rightarrow \widetilde{E_{0}}=E_{0} \rightarrow A \rightarrow 0
$$

satisfy the conditions in the theorem, E_{*} be a simplicial module such that its Moore complex is given by the above sequence. Denote by x_{i}, y_{i}, and z_{i} elements of \widetilde{E}_{i}.

Now we define multiplications in E_{1}, E_{2}, E_{3} so that $\delta^{0} x_{1} \cdot\left(\delta^{0}-\delta^{1}\right) y_{1}$ $=\left\langle x_{1}, y_{1}\right\rangle$, and prove that E_{*} becomes a 3 -fold simplicial extension. The required multiplications should be commutative and compatible with degeneracy operators. Therefore the multiplication is determined only by the following conditions.

In $E_{1}=\delta^{0} E_{0}+\widetilde{E}_{1}$,

$$
\left(\delta^{0} x^{0}+x_{1}\right)\left(\delta^{0} y^{0}+y_{1}\right)=\delta^{0}\left(x_{0} y_{0}\right)+\left(x_{0} y_{1}+y_{0} x_{1}+x_{1} y_{1}\right) .
$$

In $E_{2}=\delta^{0} \delta^{0} E_{0}+\delta^{0} \widetilde{E_{1}}+\delta^{1} \widetilde{E_{1}}+\widetilde{E_{2}}$,

$$
\begin{aligned}
& \delta^{0} \delta^{0} x_{0} \cdot x_{2}=x_{0} x_{2}, \\
& \delta^{0} x_{1} \cdot \delta^{1} y_{1}=\delta^{0}\left(x_{1} y_{1}\right)-\left\langle x_{1}, y_{1}\right\rangle, \\
& \delta^{0} x_{1} \cdot x_{2}=\left\langle x_{1}, d_{2} x_{2}\right\rangle, \\
& \delta^{1} x_{1} \cdot x_{2}=d_{1} x_{1} \cdot x_{2} \\
& x_{2} \cdot y_{2}=\left\langle d_{2} x_{2}, d_{2} y_{2}\right\rangle .
\end{aligned}
$$

In $E_{3}=\delta^{0} \delta^{0} \delta^{0} E_{0}+\delta^{0} \delta^{0} \widetilde{E_{1}}+\delta^{0} \delta^{1} \widetilde{E_{1}}+\delta^{1} \delta^{1} \widetilde{E_{1}}+\delta^{0} \widetilde{E_{2}}+\delta \widetilde{E_{2}}+\delta^{2} \widetilde{E_{2}}+\widetilde{E_{3}}$,

$$
\begin{aligned}
& x \cdot x_{3}=\varepsilon x \cdot x_{3}, \quad x \in E_{3}, \quad \varepsilon=\varepsilon_{0}^{0} \varepsilon_{1}^{0} \varepsilon_{2}^{0} \varepsilon_{3}^{0}, \\
& \delta^{0} \delta^{0} x_{1} \cdot \delta^{2} x_{2}=\delta^{1}\left\langle x_{1}, d_{2} x_{2}\right\rangle-\delta^{0}\left\langle x_{1}, d_{2} x_{2}\right\rangle,
\end{aligned}
$$

$$
\begin{aligned}
& \delta^{0} \delta^{1} x_{1} \cdot \delta^{1} x_{2}=\delta^{1}\left\langle x_{1}, d_{2} x_{2}\right\rangle+\delta^{0}\left(d_{1} x_{1} \cdot x_{2}-\left\langle x_{1}, d_{2} x_{2}\right\rangle\right), \\
& \delta^{1} \delta^{1} x_{1} \cdot \delta^{0} x_{2}=\delta^{0}\left(d_{1} x_{1} \cdot x_{2}\right), \\
& \delta^{0} x^{2} \cdot \delta^{1} y_{2}=\delta^{0}\left\langle d_{2} x_{2}, d_{2} y_{2}\right\rangle, \\
& \delta^{0} x_{2} \cdot \delta^{2} y_{2}=0, \\
& \delta^{1} x_{2} \cdot \delta^{2} y_{2}=\delta^{1}\left\langle d_{2} x_{2}, d_{2} y_{2}\right\rangle-\delta^{0}\left\langle d_{2} x_{2}, d_{2} y_{2}\right\rangle .
\end{aligned}
$$

It is easily verified that the multiplications defined above are compatible with the face and degeneracy operators. The associativity of the multiplication in E_{1} is seen imediately. It is not difficult but tedious to prove the associativity in E_{2}. By the definition of the multiplication in E_{3}, it follows that $\bar{E}_{3}^{2} \cap \widetilde{E_{3}}=0$. The associativity in E_{3} follows from Proposition 5.1.

References

L1] M. André, Méthode simpliciale en algèbre homologie et algèbre commutative, Lecture Notes in Mathematics 32, Springer-Verlag 1967.
[2] J. Beck, Triples, algebras and cohomology, Doctorial dissertation, Columbia Univ., 1967.
[3] A. Dold, Homology of symmetric products and other functions of complexes, Ann. of Math., 68 (1958), 54-80.
[4] A. Dold and D. Puppe, Homologie nicht-additiver Funktoren, Ann. Inst. Fourier, 11, (1961), 201-312.
[5] M. Gerstenhaber, On the deformation of rings and algebras II, Ann. of Math., 84 (1966), 1-19.
[6] A. Iwai, On the standard complexes of cotriples, Rroc. Japan Acad., 4 (1968), 327-329.
[7] S. Lichtenbaum and S. Schlessinger, The cotangent complex of a morphism, Trans. Amer Math. Soc., 128 (1967), 41-70.
[8] N. Shimada, H. Uehara, F. Brenneman and A. Iwai, Triple cohomology of algebras and two term extensions, Publ. RIMS, Kyoto Univ., 5 (1969).
[9] N. Yoneda, On the homology theory of modules, J. Fac. Sci. Tokyo, Sec I., 7 (1954), 193-327.

