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Introduction

Among local rings there is a hierarchy: regular = complete inter-
section = Gorenstein = Macaulay. These concepts are extended to
non-local rings; for example a ring A is regular if for all prime ideal
p of A, Ay is a regular local ring.

In this paper, we shall investigate if these properties are conserved
under tensor product operations. It is well known that the tensor
product B&.C of regular rings are not regular in general, even if
we assume A, B and C are fields.

But it can be shown that under a suitable condition tensor pro-
ducts of regular rings are complete intersections. For Macaulay rings
and Gorenstein rings, it is proved implicitly in [2], that tensor product
B®4C of Macaulay rings are again Macaulay if we assume B is A-
flat and C is finitely generated over A, and we shall show that the
same is true for Gorenstein rings.

Part I, which is the main part of the present paper, was written
by the first author. If one assume that A is a field, then the treat-
ment is much simpler and we have a similar result under a weaker
finiteness condition. The case was given by the second and the third
authors and is the contents of Part II. On the other hand, the case
of complete tensor products over a field was observed by the last
author, who wrote Part III.
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These three groups of authors obtained results rather indepen-
dently. But, because of the close relationship among these results,
the authors put their manuscripts together and obtained the present
paper.

Part 1
1. Notations and quoted theorems

A ring means always commutative Noetherian ring with unit.
A prescheme is always locally Noetherian prescheme.

(1.1) Definition. A local ring A is a complete intersection if
there exist a regular local ring B and B-sequence (%, -+, x;) such
that AEB/(x1, RS xd).

(1.2) Definition. A local ring A is an S-complete intersection if
its completion Ais a complete intersection in the sense of (1.1).

(1.3) Proposition. (Scheja [5]) If A is @ homomorphic image
of a regular local ring, then A is a complete intersection < A is
an S-complete intersection.

Henceforth, we shall use the word ‘“complete intersection” for
the sense of S-complete intersection and write C.I. for short.

(1.4) Proposition. (Scheja [5]) If A is a local ring and (x,
cee, %4) 1S an A-sequence, then:
Aisa Cl < A/(x,, -, %x,) is a C.L

The definitions and properties of Macaulay rings and Gorenstein
rings are found respectively in [6] and [2]. We do not refer to
them, now.

(1.5) Definition. A prescheme (X, Ox) is regular (resp. C.L,
Gorenstein, Macaulay) if for every x€ X, the local ring O, is regular
(resp. C.I., Gorenstein, Macaulay).

(1.6) Definition. A ring A is regular (resp. C.I., Gorenstein,
Macaulay) if Spec (A) is regular (resp. C.I., Gorenstein, Macaulay).
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(1.7) Definition. A morphism of preschemes f: X—Y is Goren-
stein (resp. Macaulay, C.I.) if f is flat and if each fibre f7'(y)
= X xySpec (k(y)) is Gorenstein (resp. Macaulay, C.L.).

2. The theorems and proofs

Theorem 1. Let (A,m) and (B,n) be local rings, f: A—B
a local homomorphism, making B a flat A-module. Then:

(1) B is Macaulay<=>A and B/mB are Macaulay.

(2) B is Gorenstein<>A and B/mB are Gorenstein.

(3) A is regular and B/mB is a C.I.=>B is a C.I.

Theorem 1. If f: X—Y is a flat and surjective morphism
of preschemes, then:

(1) X is Macaulay<=>Y and f are Macaulay.

(2)" X is Gorenstein<=Y and f are Gorenstein.

(8) If Y is regular and f is C.I, then X is C.I

(The condition “f is surjective” is necessary only to deduce that Y
is Macaulay (resp. Gorenstein) from X is Macaulay (resp. Gorenstein)
in (1)’ and (2)").

Proof. (1) is in [2] (VI.6.3.5.).
(3) As A is regular, m is generated by an A-sequence (xy, ‘-, %4)
(d=dimA). As f is flat, (x,, -, x,) is a B-sequence. By (1.3),
B is a CI1.<>B/mB is a C.I
(2) We prove the assertion by induction on d=dim(B/mB). By
(1), we may assume A, B and B/mB are Macaulay.

Case 1. d=0.

Let q be an ideal of A, generated by a parameter system. As
A is Macaulay, q is generated by an A-sequence. As B is A-flat,
an A-sequence is also a B-sequence. So, A is Gorenstein<>A4/q is
Gorenstein, and B is Gorenstein<>B/qB is Gorenstein.

Thus we may assume dimA=0 and dimB=0. As dimA=0, A
is Gorenstein<=>0: m=A/m<>Hom,(A/m, A)=A/m. Now, let us
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assume A and B/mB are Gorenstein. Then:

Hom;(B/n,B)=Hom,;(B/n, Hom,(B/mB, B))
=Hom,(B/n, Hom,(A/m, A)Q.B)
=Hom;(B/n, A/m&.B)
=Hom;(B/n, B/mB)=B/n.

Thus B is Gorenstein. Conversely, let us assume A or B/mB is not
Gorenstein. Then HomB/mB(B/n, b/mB)=(B/n)?, Hom,(A/m, A)
=(A/m)*, pg>>1. Then by the same argument as above, Hom(B/n, B)
=(B/n)*” and B is not Gorenstein.

Case 2. d>0.

As B/mB is Macaulay and dim(B/mB)>0, we can find an
element x= B such that x is not a zero divisor in B/mB. Then by
[2] ((O.10.2.4.) x is not a zero divisor in B and B=B/xB is A-
flat. By the induction hypothesis, B is Gorenstein<>A and B/mB
are Gorenstein. But as B/mB==(B/mB)/x(B/mB), B/mB is Goren-
stein<=>B/mB is Gorenstein. Thus B is Gorenstein<=>B is Gorenstein
<>A and B/mB are Gorenstein. <>A and B/mB are Gorenstein,
and we are done.

Remark. It is clear that in the proof of (3), the following is
included:

(4) A is regular and B is a C1=>B/mB is a C.L

Corollary 1. If A is a Gorenstein ving (vesp. is a C.I.), so
is A[X].

Proof. The natural map Spec (A[X])— Spec(A) is clearly
Gorenstein. As for the C.I. property, we may assume A is local,
A=B/(x4, -, x4), B is regular and (x,, -, x,) a B-sequence. Then
A[X]=B[X]/(%y, -+, 2)B[X], B[X] is regular and (xy, -, %x,) a
B[X]-sequence. So A[X] is a C.I.

Corollary 2. If A is Gorenstein ring (resp.is a C.1.) having
a subfield k, and if K is a finitely generated extension of k, then
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AR.K is again Gorenstein (a C.L).

Corollary 2. If f: X—Y is a Gorenstein morphism (resp.
is a morphism of C.L) and if Y'—Y is a morphism of finite type,
S0 IS fu: X' =XX, Y=Y

Proof. By the induction on the number of generators of K over
k, we may assume K=~F(x). If x is transcendental over k, then
AR, K is a localization of A[X] and our assertion follows from
Corollary 1. If x is algebraic over %k, then K=Fk[X]/f(X)) and
AR K=A[X1/f(X)A[X], f(X) is not a zero divisor in A[X]

and again our assertion follows from Corollary 1.

Theorem 2. Let B and C be A-algebras, B is flat over A and
C is finitely generated over A. Then:
(1) If A B and C are Gorenstein, then BR4C is Gorenstein.
(2) If BisaC.l and A and C are rvegular, then BR.C is
a C.I

Proof. By Theorem 1, the morphism Spec(B) —Spec(A4) is
Gorenstein. So, by Corollary 2/, Spec(BQC)—>Spec(C) is Gorenstein.
And again by Theorem 1, the theorem follows. The same argument
for the C.I. case.

Remarks. 1. The assertions of Theorem 1; “A and B/mB are
Gorenstein=B is Gorenstein” is in Hartshorne [3], and “B is Goren-
stein=>A is Gorenstein” is in Iversen [4]. The proof is different
from ours.

2. In the notations of Theorem 1, we should like to assert;
“Bis a C1.<>A and B/mB are CI.” By means of the characteri-
zation of C.I. in [5], the assertion is valid, for example, if we assume

mB=n. But we cannot determine the general case, yet.

Part 1II
In this part we shall prove the following

Theorem. Let A and B be two Gorenstein (vesp. Macaulay)
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rings containing a common field K. Assume that AQxB is no-
etherian and A/m is finitely generated over K for each maximal
ideal m of A. Then AQ«B is also a Gorenstein (vesp. Macaulay)
ring.

From now on, a “ring” always means a commutative noetherian
ring with an identity element.

We begin with an easy

Lemma. Let R be a 0-dimensional local ving with the maximal
tdeal m. Then the following conditions are equivalent:
(1) R is a Gorenstein ring, i.e. 0 is irrveducible.
(2) 0:m=R/m,
(3) There exists a large® principal ideal aR such that (0 : a)
is irreducible.

Proof. (1)=>(2): Let x and ¥ be non-zero elements in (0 : m).
Then xRNyR+0. If rx=sy is a non-zero element in xRN YR, then
s and 7 are units of R and hence xR=yR. Therefore (0: m) is
simple.

(2)=(3): Obviously (0:m) is the required principal ideal.

(3)=(): If 0 is reducible, then 0=xRNyR for some non-zero
elements x, ¥ of R. Since (0:a)=&R:a)N(yR:a) and (0: a)
is irreducible, we may have (0: a)= (xR : a). It follows easily that
aRNxR=0. Thus aR being large, xR=0 which is a contradiction.

Proposition 1. If R is a Gorenstein (or Macaulay) ving, so
is the polynomial ring R[X,, -+, X,].

Proof. In the case of Macaulay rings, this is well known ([6]).
Also for Gorenstein rings it seems to be known, but, having been
able to find no reference, we shall sketch a proof which is a modifi-
cation of one in Macaulay case. First we may assume z=1. Let I
be a maximal ideal of R[X]. We may further assume that R is a

* An ideal a of R is called large if R is an essential extension of a, that is
aMb40 for each non-zero ideal b of R.
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local Gorenstein ring with the maximal ideal m=9t( R. The image
of M in (R/m)[X] is generated by an element f modulo m of
(R/m)[X], where f is an irreducible monic polynomial in R[X] and
all of its coefficients are units of R. Then we have M=mR[X]
+fR[X]. Let q=(a,-,a,)R be an irreducible m-primary ideal
generated by a system of parameter in K. Now we have to prove
that (qR[X]+fR[X]) is irreducible. Changing R into R/q, we
may assume that R is O-dimensional and q=0. Therefore it is suffi-
cient to prove R[X]/M=(fR[X] : M)/fR[X]. By the above
Lemma, R/m=(0:m)=aR and (R/m[X]=aR[X] as R[X]-modules.
Under this isomorphism, f modulo m corresponds to @f. Hence
R(X]/M=(R/m)[X]/(f modulo m)(R/m)[X]=aR[X]/afR[X]
=aR[X]/(aR[X]INfR[X])=(aR[X]+fR[X])/fR[X]. On the
other hand, we have aR[X]+fR[X]=(fR[X] :M). For, let
he(fR(X] : M) and h=fg+r, degr<<degf. Then mr=fR[X]
for each mem. Compairing the degrees, we have m»=0, and hence
re(0: m)R[X]=aR[X], that is h€aR[X]+fR[X]. Therefore
(fR[X] : 9 CaR[X]+fR[X]. The opposite inclusion is obvious.

Proposition 2. Let R be a Gorenstein (rvesp. Macaulay) ring
containing a field K, and let L be a finitely generated extension
field over K. Then, RQ«L is also a Gorenstein (resp. Macaulay)
ring.

Proof. By induction, we may assume that L is a simple ex-
tension field over K. Say L=K(a). When « is transcendental over
K, we have RQxL=R[X]s, where S is a multiplicative set in
R[X] consists of the non-zero elements of K[X]. When « is alge-
braic over K, we have RQxL=R[X]/fR[X], where f is a non-
zero element in K[X]. Therefore the result follows immediately
from Proposition 1.

Proof of the Theorem:
Let 9 be a maximal ideal of AX«B. We must prove that
(AQ«xB)gy, is a local Gorenstein (or Macaulay) ring. Without loss
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of generality, we may assume that A and B be local rings with the
maximal ideals m and n respectively and IMNA=m, MNB=mn.
Suppose dim A>1, and @ is non-zero divisor in n1, then a®1 is a
non-zero divisor in M and ARxB/(a®1) (AR« B)=(A/aA)R« B.
By induction, we may assume that dim A=0. Similarly we may also
assume that dim B=0. Since dim(AQ«B)=0, we need nothing to
say in the case of Macaulay rings. In the Gorenstein case, by Lemma
A/m=(0:m) and (0:m) is large in A. Hence (A/MmQ«B)g,
= (AQ« B) g,/ (M@« B)g), is isomorphic to a large principal ideal
a(AQxB)gy of (AQxB)gy,. On the other hand, (A/mQ«B)g, is a
0-dimensional Gorenstein local ring by Proposition 2, hence ((0: a)
in (AQ®«x B)yy) = (nQ« B)gy, is irreducible. Therefore again by Lemma,
(AQ®« B)gy, is Gorenstein.

Remark: The assumption in Theorem that AQ«B is noetherian
and A/m is finitely generated over K for each maximal ideal m of
A, is satisfied, for instance, when A is a ring of finitely generated
type over K, that is a quotient ring of a finitely generated ring over

K.
Part III

Let (R, 4, D, -+, M), (R, Wy, VD, -+, VL) are semi-local rings
which are modules over a field k. Set T=RX),R’. If one of R/
and R’/ is finitely generated over k, then T/(WT+WGT) is
noetherian and every prime divisor p of W& T+ 9T is a minimal

prime divisor. Then we see the following lemma.
Lemma 1. T/(WLT+WGT)=(R/M)KQ(R' /M)

Now, we assume that R, R’ are the Gorenstein rings and that
ti, ts, oo+, b, and t,t;, -+, t. arve the system of parameters, in the sense
that >t.R and St R are the primary ideals belong to I, and
9N, respectively. Then R=R/(t, ts, -+, t,) and R'=R'/(t;, 8, -, 1)
have only one minimal ideals 9%, and 0N respectively. We denote
the local tensor product of R and R’ by RXR'.
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Lemma 2. Notation as above. If R’/ is finitely generated
over k, then every minimal ideal in RX R’ is contained in the ideal
NRNDRX R generated by NI, = {n@u’|neN, ' sN)}.

Proof. We see that MW, CRR,KCRxXFK, and see that
NKQN; is an ideal in RY,R’. Now we consider the ideal generally
by 9@ in R x R’ which is denoted by (@) R x K’. We identify
maximal ideals 9 and D% with subsets VE®1 and 1QW in RR), R,
respectively. Let ¢c=3]a,Qb, where ¢,€R and b, R. If c(1QM)
=0 and c(PLX1) =0 then ceN,QRN;. Because; c(1QMW)) =0 means
> a,Q0b,) 1QM;) =0 namely > a,Qb,m'=0 for all m'€9IN;. Now,
let @i, @, +-+, @, be the linearly independent basis for 3la, R, then we
can see a“+,=l§‘aBuA,B (AEk). 'I;herefore %‘.a,,@b,=al®b1+az®bz
e +au®bu+21(§aBA,B®bu+,) =p2=la,,®b,',, thus we may assume that
all the @, are linearly independent over k. Since > a,Xb,m =0, and
since @, (p=1,2,:--,u) are the linearly independent we see that
b,m’=0 which means b,=W0;. Similarly we get ¢, and therefore
c=>12,b,=9,QN;. Thus, if we assume that the element ¢ of
R®QF is contained in a minimal ideal of RRQR’, then cENQN;.
RQR—-RxXRK is an injection and since RX R is a ring of quotient
of RQF, every minimal ideal of R X K, lies over a minimal ideal of
RQFR and we have the result. (q.e.d.)

Lemma 3. With the same notation as above, (RQN)RX K’
=(R/M) x (R'/M)) as Rx R-modules.

Proof. Let a be a non-zero element in 9;. Then 0#aRCN,.
9 is a minimal ideal in R and therefore aR=9t. On the other
hand @M, =0 and therefore 9,=R/IN;. Similarly we get Y =R'/M,
therefore (9@ R X R'=(R/M,) x (R'/P)) as R x F'-modules.
(q.e.d.)
Now we see that RX R =L PL.D---DL,, where L. are the local
rings and d is the number of prime divisors of zero.
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Lemma 4. Let M be one of maximal ideals in RX R and p«
the maximal ideal of L.. Then we can see that there is a suitable
8 such that (R X P)w=(LB)pﬂ.

Proof. We can assume that M=LPLD---PLs1PpsDLs.:P
--@L,, therefore (RX ﬁ)sm:(/:a)pﬂ for suitable B.

Lemma 5. Let (NQNR)DRXK =N.DN,D---DN,, then each
Ny contains a unique minimal ideal in L., and conversely, a minimal
ideal in Rx R is contained in one of N, for suitable B.

Proof. By Lemma 3, we see that (.QN)RxR=(R/M,)
X (R'/I) as R x R'-modules. Since R/M; and R'/M; are fields (R'/M;
being finitely generated), we see that (R/M;) X (R'/IM;) is Gorenstein.
Therefore each N, contains a unique ideal in Lx. A minimal ideal
in RxX R is contained in (@) R X R, hence contained in some
N. (q.e.d.)

Let & be the Jacobson radical of RX R’ and set = (,%". Then
complete tensor product RQR = (the completion of RX R'/®) is a
semi-local ring, because every maximal ideal of RQR’ has a finite
basis.

Thus, we can get the next theorem.

Theorem 6. RQR’ is Gorenstein ring, provided that R’/
is finitely genevated for every j.

Corollary 7. Under the same assumplions as above, let R” be
the semi-local ring which is a dense subspace of RQR’, then R’
is Gorenstein.
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