On h-isotropic and $\boldsymbol{C}^{\boldsymbol{h}}$-recurrent
 Finsler spaces

By
Makoto Matsumoto

(Received May 13, 1970)

The purpose of the present paper is to consider a Finsler space, characterized simply by the equations

$$
R_{h}{ }^{i}{ }_{j k}=R\left(g_{h j} \delta_{k}^{i}-g_{h k} \delta_{j}^{i}\right), \quad C_{h j \mid k}^{i}=C_{h j}^{i} K_{k},
$$

where the euclidean connection of E. Cartan [4] is treated. The first equation means that the Finsler space F^{n} is h-isotropic [1, p. 43-49], [6], [7, §39], and Akbar-Zadeh proves that the scalar R is constant. On the other hand, the second equation means that the torsion tensor C of F^{n} is recurrent with respect to the covariant differentiation due to E. Cartan. A generalization of the concept of recurrence was first introduced by A. Moór [9], who treated the recurrence of $R_{h}{ }^{i}{ }_{j k}$ and gave some interesting results.

An interesting example of a Finsler space which is characterized by some simple conditions imposed upon the curvature and torsion has been given by Gy. Soós [11]. His conditions are expressed by

$$
C_{i} R_{0 j k}^{i}=0, \quad C_{h j \mid k}^{i}=0, \quad\left(C_{i}=C_{i j}^{j}\right) .
$$

Similar to the Finsler space due to Gy. Soós, the Finsler space under consideration in the present paper is a simple generalization of Riemannian or Minkowskian spaces, because the former is characterized by $C_{h i}^{i}=0$, and the latter is done by $R=0$ and $K_{k}=0[4$, p. 39], [10,
p. 136], [5], [8].

§ 1. Fundamental tensors and important formulas

Let us consider an n-dimensional Finsler space F^{n}, equipped with the euclidean connection of E. Cartan [4]. If we denote by $g_{i j}(x, y)$ the components of the metric tensor derived from the Finsler fundamental function $L(x, y)$, and if we put

$$
\begin{aligned}
& \gamma_{j k}^{i}=\frac{1}{2} g^{i n}\left(\frac{\partial g_{j h}}{\partial x^{k}}+\frac{\partial g_{k h}}{\partial x^{j}}-\frac{\partial g_{j_{k}}}{\partial x^{h}}\right), \\
& N_{j}^{i}=\frac{\partial}{\partial y^{j}}\left(\frac{1}{2} \gamma_{k l}^{i} y^{k} y^{l}\right), \\
& \frac{\delta}{\delta x^{i}}=\frac{\partial}{\partial x^{i}}-N_{i}^{j} \frac{\partial}{\partial y^{j}},
\end{aligned}
$$

then the parameters ($F_{j k}^{i}, C_{j k}^{i}$) of the euclidean connection are given by

$$
\begin{aligned}
& F_{j k}^{i}=\frac{1}{2} g^{i n}\left(\frac{\delta g_{j_{h}}}{\delta x^{k}}+\frac{\delta g_{k h}}{\delta x^{j}}-\frac{\delta g_{j_{k}}}{\delta x^{h}}\right) \\
& C_{j k}^{i}=\frac{1}{2} g^{i h}\left(\frac{\partial g_{j_{h}}}{\partial y^{k}}+\frac{\partial g_{k h}}{\partial y^{j}}-\frac{\partial g_{j_{k}}}{\partial y^{h}}\right)=\frac{1}{2} g^{i h} \frac{\partial g_{j_{h}}}{\partial y^{k}} .
\end{aligned}
$$

According to our theory of Finsler spaces based on connections in fibre bundles [7], we shall use the following terminologies and notations throughout the paper. First of all, let T_{j}^{i} be components of a (1, 1). tensor field, and we have three kinds of covariant derivatives of T_{j}^{i} as follows.

$$
\begin{aligned}
& T_{j \mid k}^{j}=\frac{\delta T_{j}^{i}}{\delta x^{k}}+T_{j}^{h} F_{h k}^{i}-T_{h}^{i} F_{j k}^{h} \cdots \cdots h \text {-cov. derivative }, \\
& \left.T_{j}^{i}\right|_{k}=\frac{\partial T_{j}^{i}}{\partial y^{k}}+T_{j}^{h} C_{h k}^{i}-T_{h}^{i} C_{j k}^{h} \cdots \cdots v \text {-cov. derivative } \\
& T_{j \| k}^{j}=\frac{\partial T_{j}^{i}}{\partial y^{k}} \quad
\end{aligned}
$$

Now, there are three kinds of curvature tensors:
$R_{j k l}^{i} \ldots \ldots h$-curvature tensor,
$P_{j k l}^{i} \ldots \ldots h v$-curvature tensor, $S_{j k l}^{i} \ldots \cdots v$-curvature tensor,
and five torsion tensors in general. In the case of the euclidean connection of Cartan, two of them vanish and

$$
\begin{aligned}
& R_{j k}^{i}=y^{h} R_{h j k}^{i} \cdots \cdots(v) h \text {-torsion tensor, } \\
& P_{j k}^{i}=y^{h} P_{h j k}^{i} \cdots \cdots(v) h v \text {-torsion tensor, } \\
& C_{j k}^{i} \quad \cdots \cdots(h) h v \text {-torsion tensor. }
\end{aligned}
$$

The following expressions are well-known.

$$
\begin{gather*}
P_{i j k l}\left(=g_{j h} P_{i k l}^{h}\right)=S_{i j}\left\{C_{j k l \mid i}+C_{i k h} C_{j l \mid 0}^{h}\right\}, \tag{1.1}\\
P_{i j k}\left(=g_{i h} P_{j k}^{h}\right)=C_{i j k \mid 0}, \tag{1.2}\\
S_{j k l}^{i}= \tag{1.3}\\
S_{k l}\left\{C_{j l}^{h} C_{h k}^{i}\right\}=S_{k l}\left\{\frac{1}{2} C_{j k \| l}^{i}\right\},
\end{gather*}
$$

where the index 0 means contraction by y^{i}, and $S_{i j}\{\ldots\}$ does interchange of indices i, j and subtraction.

Next, the Ricci identities for a tensor T_{j}^{i} will show the role of curvatures and torsions as follows.

$$
\begin{gather*}
T_{j|k| l}^{i}-T_{j|l| k}^{i}=T_{j}^{h} R_{h k l}^{i}-T_{h}^{i} R_{j k l}^{h}-\left.T_{j}^{i}\right|_{h} R_{k l}^{h}, \tag{1.4}\\
\left.T_{j \mid k}^{i}\right|_{l}-\left.T_{j}^{i}\right|_{l \mid k}=T_{j}^{h} P_{h k l}^{i}-T_{h}^{i} P_{j k l}^{h}-T_{j \mid h}^{i} C_{k l}^{h}-\left.T_{j}^{i}\right|_{h} P_{k l}^{h}, \tag{1.5}\\
\left.\left.T_{j}^{i}\right|_{k}\right|_{l}-\left.\left.T_{j}^{i}\right|_{l}\right|_{k}=T_{j}^{h} S_{h k l}^{i}-T_{h}^{i} S_{j k l}^{h} . \tag{1.6}
\end{gather*}
$$

Finally, the Bianchi identities of curvature tensors are expressed by

$$
\begin{gather*}
S_{j k l}\left\{R_{i j k l l}^{h}+P_{i j m}^{h} R_{k l}^{m}\right\}=0, \tag{1.7}\\
S_{k l}\left\{P_{i k j \mid l}^{h}+R_{i l m}^{h} C_{k j}^{m}+P_{i l m}^{h} P_{k j}^{m}\right\}+\left.R_{i l k}^{h}\right|_{j}+S_{i j m}^{h} R_{l k}^{m}=0, \\
S_{k l}\left\{\left.P_{i j k}^{h}\right|_{l}-P_{i m l}^{h} C_{j k}^{m}-S_{i m l}^{h} P_{j k}^{m}\right\}+S_{i k l \mid j}^{h}=0,
\end{gather*}
$$

$$
\begin{equation*}
S_{j k l}\left\{\left.S_{i j k}^{h}\right|_{l}\right\}=0, \tag{1.10}
\end{equation*}
$$

where $S_{j k l}\{\ldots\}$ means cyclic permutation of indices j, k, l and summation. The identity (1.1) is thought of as a Bianchi identity of the $(h) h v$-torsion tensor $C_{j k}^{i}$. The other Bianchi identities will be obtained from (1.7), (1.8), (1.9) by contracting by y^{i}. For the later use, we shall here write one of them, derived from (1.8):

$$
\begin{equation*}
S_{k l}\left\{P_{h k j l}+R_{h l m} C_{k j}^{m}+P_{h l m} P_{k j}^{m}\right\}+\left.R_{h l k}\right|_{j}-R_{j h l k}=0 \tag{1.11}
\end{equation*}
$$

§2. C-recurrent Finsler spaces

Definition. A Finsler space F^{n} will be called C^{h} - or C^{v} - or C^{0}. recurrent, if the (h) $h v$-torsion tensor $C_{j k}^{i}$ satisfies the equation

$$
\Delta_{l} C_{j k}^{i}=C_{j k}^{i} K_{l},
$$

where we denote by Δ_{l} the h - or v - or 0 -covariant differentiation respectively, and $K_{l}=K_{l}(x, y)$ is a covariant vector field.

In this section, we shall be concerned with v - and 0 -recurrences only. From the following proposition, we are not interested in these concepts.

Proposition 1. If a Finsler space F^{n} is C^{v} - or C^{0}-recurrent, then F^{n} is essentially Riemannian.

Proof. If F^{n} is C^{v}-recurrent, then

$$
\begin{equation*}
\left.C_{j k}^{i}\right|_{l}=C_{j k}^{i} K_{l}, \tag{2.1}
\end{equation*}
$$

and hence the identity $\left.C_{j k}^{i}\right|_{l}=\left.C_{j}^{i}\right|_{k}$ gives immediately

$$
C_{j k}^{i} K_{l}=C_{j l}^{i} K_{k}
$$

By contracting these two equations by y^{l}, we obtain $-C_{j k}^{i}=C_{j k}^{i} K_{0}$ and $C_{j k}^{i} K_{0}=0$, which imply $C_{j k}^{i}=0$.

Next, if F^{n} is C^{0}-recurrent, then

$$
\begin{equation*}
C_{j k \| l}^{i}=C_{j k}^{i} K_{l} \tag{2.2}
\end{equation*}
$$

and hence (1.3) leads us to

$$
S_{j k l}^{i}=\frac{1}{2}\left(C_{j k}^{i} K_{l}-C_{j l}^{i} K_{k}\right) .
$$

Similar to the above case, contractions of these equations by y^{l} give us $C_{j k}^{i}=0$ easily.

§3. $\quad C^{\boldsymbol{h}}$-recurrent Finsler spaces

The remainder of the present paper will be devoted to studying C^{h}-recurrent Finsler spaces. First of all, we shall give two notes. The first is that any essentially Riemannian F^{n} is C^{h}-recurrent, because of $C_{j k}^{i}=0$. The second is that any 2 -dimensional F^{2} is also C^{h}-recurrent, because $C_{i j k}$ is then written in the form $C_{i j k}=C h_{i} h_{j} h_{k}$, where h_{i} is orthogonal to y^{i} and h-covariant constant [2], [10, p. 253].

Now, assume that F^{n} is C^{h}-recurrent:

$$
\begin{equation*}
C_{h i j \mid k}=C_{h i j} K_{k} . \tag{3.1}
\end{equation*}
$$

Then, the expressions (1.1), (1.2) and (1.3) lead us to

$$
\begin{gather*}
P_{i j k l}=K_{i} C_{j k l}-K_{j} C_{i k l}-K_{0} S_{i j k l}, \tag{3.2}\\
P_{i j k}=K_{0} C_{i j k} \tag{3.3}
\end{gather*}
$$

Differentiating (3.3) h-covariantly, we obtain

$$
\begin{equation*}
P_{i j k \mid l}=C_{i j k}\left(K_{0 \mid l}+K_{0} K_{l}\right), \tag{3.4}
\end{equation*}
$$

from which we conclude as follows.

Proposition 2. Assume that F^{n} is C^{h}-recurrent. Then, the v curvature $S_{\text {hijk }}$ is also recurrent with respect to the h-covariant differentiation, that is,

$$
S_{h i j k \mid l}=2 K_{l} S_{h i j k .}
$$

If $K_{0}=0$, then the hv-curvature $P_{i j k l}$ is expressed

$$
P_{i j k l}=K_{i} C_{j k l}-K_{j} C_{i k l},
$$

and the (v)hv-torsion $P_{i j k}$ vanishes. If $K_{0} \neq 0$, then the (v)hv-torsion $P_{i j k}$ is recurrent, that is,

$$
P_{i j k \mid l}=P_{i j k}\left(K_{l}+\frac{K_{0 \mid l}}{K_{0}}\right) .
$$

Next, it follows from (3.1) and the Ricci identity (1.4) that

$$
\begin{equation*}
C_{h i j} K_{k l}=-C_{m i j} R_{h k l}^{m}-C_{h m j} R_{i k l}^{m}-C_{n i m} R_{j k l}^{m}-\left.C_{h i j}\right|_{m} R_{k l}^{m}, \tag{3.5}
\end{equation*}
$$

where $K_{k l}=K_{k \mid l}-K_{l \mid k}$. In order to treat (3.5) in detail, we shall assume that F_{n} is h-isotropic [1], [6], which is characterized by

$$
R_{h i j k}=R\left(g_{h j} g_{i k}-g_{h k} g_{i j}\right),
$$

where R is a scalar. Akbar-Zadeh proves that R is constant, provided that $n \geqq 3$. It is remarked that the concept of h-isotropy does not coincide with that of constant curvature due to L. Berwald [3].

For the h-isotropic F^{n}, the equation (3.5) is simply expressed as

$$
\begin{equation*}
C_{h i j} K_{k l}=R S_{h i j}\left\{C_{k h i} g_{j l}-C_{l h i} g_{j k}\right\}+R S_{k l}\left\{\left.C_{h i j}\right|_{k} y_{l}\right\} . \tag{3.5'}
\end{equation*}
$$

Then, contraction of (3.5') by y^{l} gives us

$$
\begin{equation*}
\left.R L^{2} C_{h i j}\right|_{k}=C_{h i j} K_{k 0}-R\left(C_{k i j} y_{h}+C_{k j h} y_{i}+C_{k h i} y_{j}+C_{h i j} y_{k}\right), \tag{3.6}
\end{equation*}
$$

where L is the Finsler fundamental function, namely, $L^{2}=g_{i j} y^{i} y^{j}$. Substituting (3.6) into (3.5'), we obtain

$$
\begin{equation*}
C_{h i j}\left(L^{2} K_{k l}-K_{k 0} y_{l}+K_{l 0} y_{k}\right)=R S_{h i j}\left\{C_{k h i} b_{j l}-C_{l h i} b_{j k}\right\}, \tag{3.7}
\end{equation*}
$$

where $b_{j k}=L^{2} g_{j k}-y_{i} y_{k}$. If we contract (3.7) by $g^{h i}$ and then by $C^{j}=g^{i k} C_{i k}^{j}$, we obtain

$$
\begin{gather*}
C_{j}\left(L^{2} K_{k l}-K_{k 0} y_{l}+K_{l 0} y_{k}\right)=R\left(C_{k} b_{j l}-C_{l} b_{j k}\right), \tag{3.8}\\
C_{j} C^{j}\left(L^{2} K_{k l}-K_{k 0} y_{l}+K_{l 0} y_{k}\right)=0 . \tag{3.9}
\end{gather*}
$$

If $C_{j} C^{j}=0$, that is, $C_{j}=0$, then Deicke's theorem shows that F^{n} is essentially Riemannian. Therefore, assume that F^{n} is not so, and (3.8), (3.9) lead us to

$$
\begin{gather*}
R\left(C_{k} b_{j l}-C_{l} b_{j k}\right)=0, \\
L^{2} K_{k l}-K_{k 0} y_{l}+K_{l 0} y_{k}=0 .
\end{gather*}
$$

It will be seen from (3.8') that, if F^{n} is essentially Finsler and $R \neq 0$, then there exists such a scalar α that $b_{i j}=\alpha C_{i} C_{j}$, which implies $n=2$. If F^{n} is essentially Finsler and $R=0$, then it is observed from (3.5') that $K_{k l}=0$, and (3.9') is reduced to the trivial equation.

Summarizing the above, we have

Proposition 3. All of h-isotropic and C^{h}-recurrent Finsler spaces are divided into one of the following three classes.
(1) Riemannian space of constant curvature,
(2) essentially Finsler space of 2-dimensions,
(3) essentially Finsler space of dimension $n \geqq 3$ with vanishing scalar curvature R, and $K_{i \mid j}=K_{j \mid i}$.

In the remainder of the paper, we shall treat only the interesting case (3). In this case, $R_{i j k l}=0$ and hence $R_{i j k}=0$. Therefore, (1.11) is reduced to

$$
S_{k l}\left\{P_{h k j l l}+P_{h l m} P_{k j}^{m}\right\}=0,
$$

which is, in virtue of (3.3), (3.4), (1.3), rewritten in the form

$$
K_{0}^{2} S_{h j k l}=S_{k l}\left\{\left(K_{0 \mid k}+K_{0} K_{k}\right) C_{h j l}\right\} .
$$

$S_{h j k l}$ are skew-symmetric with respect to indices h, j, while the righthand side of the above equation are symmetric with respect the same indices, and hence we obtain

$$
\begin{equation*}
K_{0}^{2} S_{h j k l}=0, \tag{3.10}
\end{equation*}
$$

$$
\begin{equation*}
S_{k l}\left\{\left(K_{0 \mid k}+K_{0} K_{k}\right) C_{h j l}\right\}=0 . \tag{3.11}
\end{equation*}
$$

It follows from (3.10) and (3.2) that $P_{i j k l}=K_{i} C_{j k l}-K_{j} C_{i k l}$. On the other hand, if $K_{0} \neq 0$, then $S_{h j k l}=0$ from (3.10). Next, it is seen from (3.11) that, if $\beta_{k}=K_{0 \mid k}+K_{0} K_{k} \neq 0$, then there exists a scalar C that $C_{i j k}=C \beta_{i} \beta_{j} \beta_{k}$.

Summarizing all the above results, we conclude

Theorem. Let F^{n} be an essentially Finsler space of dimension $n \geqq 3$. If F^{n} is h-isotropic and C^{h}-recurrent (3.1), then

$$
K_{i \mid j}=K_{j \mid i},
$$

h-curvature $R_{i j k l}=0, \quad(v) h$-torsion $R_{i j k}=0$,
$h v$-curvature $P_{i j k l}=K_{i} C_{j k l}-K_{j} C_{i k l}$,
(v)hv-torsion $P_{i j k}=K_{0} C_{i j k}$.

Moreover, if $K_{0} \neq 0$, then
v-curvature $S_{i j k l}=0$,
(h)hv-torsion $C_{i j k}=C \beta_{i} \beta_{j} \beta_{k}, \beta_{i}=K_{0 \mid i}+K_{0} K_{i}$.

From the expression of $P_{i j k l}$ given in Theorem, K_{i} will be easily eliminated and we obtain

$$
\begin{equation*}
S_{h i j}\left\{P_{h m r s} P_{i j k l}+P_{h m k l} P_{i j r s}\right\}=0 . \tag{3.12}
\end{equation*}
$$

Yoshida College, Kyoto University

References

[1] Akbar-Zadeh, M.H.: Les espaces de Finsler et certaines de leurs généralisations. Ann. scient. Éc. Norm. Sup. (3), 80, 1-79 (1963).
[2] Berwald, L.: On Finsler and Cartan geometries III. Two-dimensional Finsler spaces with rectilinear extremals. Annals of Math., 42, 84-112 (1941).
[3] Berwald, L.: Ueber Finslersche und Cartansche Geometrie IV. Projektivkrümmung allgemeiner affiner Räume und Finslersche Räume skalarer Krümmung. Annals of Math., 48, 755-781 (1947).
[4] Cartan, E.: Les espaces de Finsler. Actualités 79, Paris, 1934.
[5] Heil, E.: Eine Charakterisierung lokal-Minkowskischer Räume. Math. Annalen, 167, 64-70 (1966).
[6] Matsumoto, M.: A geometric meaning of a concept of isotropic Finsler spaces. J. Math. Kyoto Univ., 9, 405-411 (1969).
[7] Matsumoto, M.: The theory of Finsler connections. Publ. of the Study Group of Geometry 5, College of Liberal Arts and Sci., Okayama Univ., Japan, 1970.
[8] Matsumoto, M.: On some transformations of locally Minkowskian spaces. Tensor (N. S.), 22, 103-111 (1971).
[9] Mobr, A.: Untersuchungen über Finslerräume von rekurrenter Krümmung. Tensor (N. S.), 13, 1-18 (1963).
[10] Rund, H.: The differential geometry of Finsler spaces. Springer-Verlag, Berlin, 1959.
[11] Soós, Gy.: Über einfache Finslersche Räume. Publ. Math. Debrecen, 7, 364373 (1960).

