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Introduction

Our immediate motivation for this paper was a wish to produce
a proof entirely within the framework of complex bordism of a crucial
lemma found in [11; 5.10]. We explain in section 4 how this follows
from our principal result.

We aim here to show that for a certain type of complex, X,
having four cells, hom.dim. v 2%(X) <{2. Specifically, stable homotopy
classes [ f]€n3,_1, [g]E€ m5nu-1, together with an integer ¢, are chosen
so that the Toda bracket <g¢, [ g], [ f]> is defined and congruent to

0. We then form a complex, in stable form,
Y—SOU C‘.!mUFC'JnHZn
- g

using a coextension F of f. We find that the vanishing of the bracket
implies the existence of a stable map Q: Y— S° having degree g in

dimension 0. This leads us to the final complex
X: SOUQC( Y) — SOU(:IUCZ”HI\chm +2n &1‘

We prove that if ¢ is odd then hom.dim.g?Q2Y%(X)<2.
From a broader viewpoint we are seeking some techniques which
can yield an upper bound on the value of the homological dimension of

a bordism module. This appears to us now as the key problem in the
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study of the relation of stable homotopy to complex bordism. Our
present approach differs quite sharply from the arguments in [11].
First, we avoid the formation of Toda brackets in £2%/" and also, we
make no appeal to Adams’ formula for ec<gq, [g], [ f]>. Although
section 5 of this note is concerned with technical calculations it should
be possible to expand our approach into a considerably more general
theorem as suggested in the closing paragraph of section 6.

The paper is divided into sections as follows:
Some Invariants
On Two and Three Cell Complexes
On Three and Four Cell Complexes
More on Three and Four Cell Complexes

Some Characteristic Number Arguments

S 9ok W

Still More on Three and Four Cell Complexes.

§1. Some Invariants

Suppose that X is a finite complex. There are the natural maps

(see [4] particularly for notations)
u: UX)—> Hy(X; Z)
7 k(X)) > H(X; Z)
which upon application of Serre's mod % theory are seen to have finite
cokernels. Therefore
w;=order of coker {2V(X)->H(X; Z)}
&; =order of coker {k;(X)—>H(X; Z)}
are well defined integers. It is convenient to define
&;=w;—1, Ei=K;—1
and introduce the invariants
£(X)= ; Bix

t€Z[x]
(B(X)=;a‘y,-x’



On the complex bordism of complexes with few cells 317

of the complex X. Concerning these invariants we have:

Theorem 1.1: Let X be a finite complex. Then
B(X)=a(X) iff hom.dim. g?2(X) <2.

Proof: From the commutative diagram

-Q*(X)\
H.(X; 2z
k*(X)/ *( )

we see that £(X)=a&(X) if Impu=Im7.
Suppose now that hom.dim. ,¢2%(X)<<2. Then [4; 10.6]]

€1 R4(X) > ki (X)
is epic. Therefore Im#=Im% and hence £(X)=a&(X).

Next suppose conversely that £(X)=a&(X). Then Img=Imzy.
Recall that there is an exact sequence [9] 0= Z&® 7k (X)—> Hy(X; 4)
—Tor%253(Z, ky(X))—>0. Thus we have a diagram

24040 <3
e T
wherein # is epic and 7 is iso. Hence of course
£ ZQoUR2H(X) > ZQ 7111k 5(X)
is also epic. Therefore

maps a set of £2Y-generators for £2Y(X) onto a set of Z[¢] generators
for k4(X), and hence

€ 2%(X) > ky(X)
is epic. Therefore by [8] hom.dim.g?Q%(X) <2, sx

Theorem 1.2: Suppose that X is a finite complex. Then
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B(X)=0 iff @(X)=0 iff hom.dim.v2Y(X)<1.

Proof: Observe that £(X)=0 #f
7 ky(X) > Hy(X; Z)
is epic. Similarly &(X)=0 iff
1 QLX) - Hy (X5 Z)

is epic. The result now follows from [8; Corollary 5].

Suppose now that X is a “small” CW-complex, that is, is composed
of only a few cells. It then makes sense to ask for computations of
£(X) and &(X) in terms of the attachment data for X. In this way
we can hope to relate £(X) and &(X) to other invariants of the at-
tachment data. The next section illustrates what we have in mind.

§2. On Two and Three Cell Complexes

Suppose given [ f]€m§, ;. Form the stable complex
Y(f)=S"Uye?"

Let now ¢ be an integer such that ¢[ f]=0€n35,.,. We may thus
form an extension

Q=ext(q): Y(f)—S*
of the map

q:S°—>S8°

of degree ¢. Let

X(f)=8"Uexe@CY(f)
be the mapping cone of ext (¢). Thus we have a cofibration

Y(f)L S X(f).

Note that

X(f)=8"U,elupe’!
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where
F: 8% 8% et

is a suitable coextension of f.

Denote by o€ ko(X(f)) the canonical class and by A(0)CZ[¢]
the annihilator ideal of . We propose to show how E(X(f)) is related
first of all to A(g) and secondly to ec(f). (See [2][15] for informa-

tion about the invariant) ec(f).)

Convention: We will fix throughout the remainder of this section
the notations of the preceeding discussion.
Let us begin by choosing generators for ky (Y (f)). To this end

observe that we have a cofibration
SH— S Y ().
Note that
Sat Ex (871 > kg (S°)
is the zero map, so we obtain an exact sequence
0> k4 (S°) 2 ks (Y (f)) 5 Fu(S** 1) > 0.

Denote by i, € k,(S*) the canonical generator. We may then choose

classes
€ EO(Y(j)) Q= C*(io)
Az, € EZ?L(Y(I)) : 0* a2n=’:2n—1

which generate k(Y (f)) as a Z[t]-module. Observe that «y, is unique
only up to an element of the form t"ay € k(Y (f)).

Consider next the cofibration
Y(f)JL»S"—LX(f).
We find

Q*(ao)=qio
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Q*(“Zn) =rt"i,

for a suitable integer r. Note that r is uniquely determined mod gq.

The following is now clear:

Proposition 2.1: With the notations preceeding we have

A(o)=(q, ret").
Proof: We have an exact triangle

F(Y (f)) 25 Ex(S°)

P

kx(X(f))

from which it is clear that ImQy=ker Py. But as Py(i;)=a we have
ker P,= A(0) and the result follows. *:x

Theorem 2.2: With the notations preceeding, we have

ec(f)=+r/qeQ/Z.

Proof: Let us begin with a description of ec(f) suitable to our

purposes. Let

chiky( )= Hy( 5 Q)

be the homology Chern character. Denote by e, € H(S*; Z) a homology

generator, and by e} its dual cohomology generator. Returning to the

cofibration
S SO Y (f)
we see that we may choose unique classes
ay € ro(Y(f) Z): cxep=ay
an € Hou(Y(f); Z): 04a2n=e24-1.

The homology of Y (f) is free abelian and these classes are generators.
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Then we have
Chao—_—ao
chag,,z lao—l-az,,: AEQ.

As usual, one finds A is unique in Q/Z, i.e., its residue mod Z is in-
dependent of the choice of @y, Qan @, az,. According to [7] the
Spanier-Whitehead dual of Y (f) is again Y (f). Thus applying Spanier-
Whitehead duality to the above construction and recalling the relation
of k*( ) to K*( ) (see for example [4; §107]) we find from [2] [15]
that A=ec(f)€Q/Z.

Introduce now the diagram of cofibrations

SZn—l__,EZn_,Szn

Vf xRl
SO 4,8° 5% Je!
lc lid Ti a

Y(f)-58° 2 X(f).
Applying the functor k4( ) to this diagram we obtain

. .EZn(SZn-l)___,Ezn(EZn)__,kzn(SZn).”

| 4 J
"'kfn(so) _’an(So) _’an(SOUel)"'
i ! !
. "];271+1(X(f)) A_*’EZM( Y(f))Q_*’E2n<SO) —*EZn(X (f)) .
v

% ¥
kzn_l(SZn—l) :

which is seen to be isomorphic to the diagram

0 0 4
y Y ¥
0—Zt"y —L— Zt"iy—Z,—0

Lok lia A
027 gn11" 25 Zt"to @ Ztn B2 Zt"i0—— Z y t”

V2. v

Zizn 0 0

v

0

The following formulas are clear
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Pyt"ay=qt"i,
Py, =rt"i
and hence
dy12n1=At"co+ Baay,
where
Aq+ Br=0.

Thus if we write ch;(x) for the component of degree i of ch(x) we
find

0=440=dychi(r2+1) =cho(At"ao+ Bazn)

= Aaoy+ Bec(f)ao
because Hy(X(f); Z)=0. Hence
A+ Bec(f)=0
ie.,
ec(f)=—4/B.

Recalling that Aq+Br=0 we find that A4/B= —r/q and the result

follows upon substitution. s*x*

Remark: Suppose given the space X(f), but not necessarily the
cofibrations required to describe its attachment data. Then on general
grounds we find that 4(0)=(q, st”). However s is unique only up to
a unit in Z, At any rate ¢/(q,s)€Z is uniquely determined by
0E€ko(X(f)). We then have:

Corollary 2.3: With the notations preceeding the ovder of ec(f)
in Q/Z is q/(g, s). **

A more succinct way to state the preceeding corollary is to consider
the annihilator ideal A4(0)CZ of the canonical class ¢ € Ko(X(f)),
regarding K (X (f)) as Zj-graded. One easily sees by localization and
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degrading [4; §107] that A(0) is generated by (¢, r). Thus we have:

Corollary 2.4: Let
X(f)=S°quIUFcz"+l
be the stable complex where q is a positive integer and
F: 8% — S0 ¢!

is a coextension of [ f1€n§, 1. Let 0€ Ko(X(f)) denote the canonical
class and A(0) CZ its annihilator ideal. Then ec(f)=i/q where i is
the index of A(0) in Z. *x

Return now to the complex X(f) and the invariant £(X(f)), which
we will write £(f) for short.

Proposition 2.5: E(f)=(lec(f)| —1)x*"*, where |ec(f)| de-
notes the order of ec(f) in Q/Z.

Proof: Recall that

A(O-) = (Qa rt”)s

where ¢ € I?O(X(f )) is the canonical class. Consider the exact sequence

(9]
wkon A (XN Han st (X(f) 5 Z)~ B o(X(f)) 2 E2n(X(f)).
Clearly
cokergy y17=Tmay,1 d=kers,_om;
while

kery,_pm;=subgroup of Z,[t] generated by rt”""'. Therefore
|kerz,_2m;| =q/(q, r), where | | denotes order, and the result follows
from (2.3). #x%

Theorem 2.6: With the notations preceeding we have
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ec(f)=0&hom.dim. v QUX(f)) < 1.
Proof: Suppose that
hom.dim. g7 RY(X () <1.
Then [4; 3.11]
wi QUX(f) > H(X(f); Z)

is epic. From the commutative diagram

QUX(f)) s
e FH(; 2)
kX))

we therefore find

7: k(X (f) > H(X(f); Z)
is epic. Henec £(f)=0 and therefore by (2.5) ec(f)=0€Q/Z.

Conversely, suppose ec(f)=0€Q/Z. Then E(f)=0 by (2.5), and
the result follows from (1.2). *x*

The preceeding discussion should be compared to [5; §7] where
(2.6) was originally obtained by employing complex cobordism only.
For reference in future sections we summarize briefly the connection
between ky( ) and RQY%( ) as applied to the study of X(f). Let
ac !?f,’(X(f)) denote the canonical class and A (a) C LY its annihilator
ideal. Then A(a)=(q,[M]) where [M]€ £Y, may be determined
uniquely modulo ¢£2Y¥,. According to [4;5.10] hom.dim.?Q%(X(f))
<{2. Therefore by [4; §12] the natural mapping

€ Ala) — A(0)
is epic. Hence we may assume that Td[ M?"]=r and thus we obtain

[5;7.2]

Corollary 2.7: With the notations preceeding,
ec(f)=Td[M*]/q. *x
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Finally we note that as hom.dim. o?Q2%(X(f)) <2 the map
C: 2FX(f) > k(X ()

is epic. Therefore the commutative diagram

Py
¢ ;
N e

yields [5; §7 ]
Corollary 2.8: a(f)=(|ec(f)] S sk

§3. On Three and Four Cell Complexes

In this section we will commence our study of the complex bordism
of three and four cell complexes and its relation to the (stable) at-
tachment data of such complexes. Our first task will be to describe
the attachment data in the manner most suited to our study.

We will suppose given homotopy classes [ f]€ 73,1, [g]€ T§m-1

and an integer ¢ such that
qLgl=0=[glLf]
0e <q¢, L&l LfI>-
We may then form the complexes
Y(g)=S8"U,e*”
Y(g f)=S"U,e*™Upe?m+?"
where
F: S+l ¥ ()

is a coextension of f. (Such a coextension exists since [ g][ f]=0).
We let

Q:Y(g)—>S°

be an extension of the map of degree g on the bottom spheres (recall
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qLg]1=0). Then
QF: SZm»Zn—l_,y(g)__)So

is a representative of the Toda bracket <¢, [g], [ /]> and hence we
may assume that choices have been made such that QF is null homo-

topic. Thus we may construct a mapping
H:Y(g f)—S°

of degree ¢ on the bottom sphere. We let X(g, /) be the mapping
cone of H. The complex X (g, f) will be the main object of study,
and its attachment data consists of ¢, [ g], [ /] and the various condi-
tions needed to form the extensions and coextensions to manufacture

X (g, f) from this deta. The following cofibration sequences

Y(g, ) S" 1 X(g& f)
S'GY (g H— DY)
will also prove useful. Note also that
X (g, f)=S"U e\ Uge? 1\ pe?n it
and therefore
Z;w i=0
F[;(X(g,f);Z)z Z . i=2m+1, 2n+1
0 : otherwise.

Let us proceed by choosing generators for !?E,{(Y(g, f)) as an QY-

module. From the cofibrations
Sl — S0 e, Y(g)
SZm ren-1__, Y(g)ib Y(g, f)

we find that it is possible to choose classes roeﬁg’(Y(g, N rem
€ 29, (Y(g, f) and Tami2a € 2Y,42:(Y (g, f)) such that

To=cCx00
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_ ’
Tom= d*T 2m
0*r2m+2n:62m 12n—1

where 0;€ 27(S?) denotes the canonical generator and 7'z, € 2%(Y (g)) a
class such that 047 sm=02m_1€ 2Y,_1(S?"~1). Note that 7s, is unique-
ly determined up to an element of the form [ A*"r,, [ A*™] € 2Y, while
Tamion is uniquely determined up to an element of the form [ B2y,
+LC*" ) rom [ B *" )€ £Y, 0, [C*"]€ 2Y,. These classes freely gener-
ate 2UY (g, [)) over 24,

Notations: Throughout the remainder of our discussion of three
and four cell complexes we will fix the notations preceeding. In addi-
tion we will denote by a=[S° L]€ 2%(X(g, f)) the canonical class.
The annihilator ideal of « is denoted by A(x). Similarly we have
the canonical class 0=¢(a)€ k(X (g, f)) and its annihilator ideal
A(e)CZ[t].

Proposition 3.1: With the notations preceeding we have
Al@)=(g, [Vl VD
where (V€ 29, is uniquely determined in 2Y/(q) and [V]€ 2Y,.s,
is uniquely determined in 2%/(q, [Vg]).

Proof: Note that
A (a) :kerL*:Im H*.

Recall that .Q{i(Y(g, f)) is freely generated by the classes 7o, Toms Toms2n

which have the required uniqueness properties. *x
In a similar manner we also obtain:

Proposition 3.2: With the notations preceeding we have

A(0)=(q, at™, bt"*™)
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where a € Z is uniquely determined in Z, and b is uniquely determined

in Zg,ae **

Remark: Note that in view of our discussion of how our genera-
tors for f!f,{(Y(g, f)) were chosen and the work of section 2 we may
assume that a=Td[V,] and ec(g)=a/q.

Definition: With the notations preceeding let

leo(g, f)| =order of (V7] in 24/(y, [V,

and

le(g, f)| =order of b in Z,a.

Proposition 3.3: The natural map
Ala) =45 A(0)

is epic.

Proof: Consider the cofibration

Y(g ) S X(g /).

Recalling that A(a)=ImH, and similarly for A4(6), we obtain the

diagram
FUY (g, )~ 4(@) =0
E*(Xl(;n R —>A(i)—>0-
Since Hy(Y (g, f)) is a free Z-module, the map
¢: QUY (g, )= E(Y (g )

is epic [4; 10.1] and the result follows from commutativity. #x*

Corollary 3.4: With the notations preceeding we may assume
b=Td[V]. *x
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Corollary 3.5:

e(g, f)l =order TALV ] in Zyu- **

Theorem 3.6: With the notations preceeding we have

a(X(g, £)=ec()| =1 x> +(lealg, 1) 1) gEmrnrl

and

E(X(gﬁ ./)):(l(»’(,(g)| —-l)xz’"“—{-(| e(g’ f)l _l)xl’:m»r2n+1.

Proof: Introduce again the cofibration

Y(g H-m S’ X (g [

In a standard manner we obtain the cofibration

S’ X(g 2 Y(g f)

Thus we may regard ), Y(g, f) as obtained from X(g, f) by at-
taching a cell along a map that represents a & !?E,’(X(g, f)) as a spheri-
cal bordism class. Thus we may apply [4; 12.3] to conclude

coker {2%,, 1 2,+1(X(g 1)) = Hems2ni1(X (g, )5 Z)}
= [Z®Q[,/A(a):|2m+2n-

(Recall that A (3 (Y(g, f)); Z) is a free Z-module and [4; 3.11].)
Next note that [Z&gUA(c)Jomiz2n is cyclic with generator [V which
has order |eq(g, f)|. If we now note that the 2m+2n skeleton of
X(g, f) is X(g) we may combine our above observation with (2.8) to

obtain a(X (g, £))=(lec(®)| —1) x> +(lea(g, f)] —1)x*"****1. The
ks«( ) theory result is completely analogous and its proof is omitted. *x

Corollary 3.7: With the notations preceeding we have

le(g, f)l=leo(g, )| iff hom.dim.uQ%(X (g, f))<2.

Proof: This is immediate from (3.6) and (1.1). *x

Thus, unravelling some of our notation, we have arrived at the
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following criteria for 2Y%(X(g, f)) to have homological dimension at

most 2 as an £2Y-module.

Corollary 3.8: With the notations prececding,
hom.dim. oYQY(X(g, f))<<2 iff the order of TA[ V] in Zy.. is exactly
equal to the order of [V] in 2Y%/(q, [Vg]). ==

It is clear that our next task must be to investigate the problem
of if and when hom.dim.o"R2%(X (g, f)) can exceed 2. It is evident
from [4;5.10] and (2.6) that we must at least have ec(g) #<0€Q/Z.

It is perhaps worthwhile to record this observation.

Proposition 3.9: With the notations precceding, suppose that
ec(g)=0. Then hom.dim. 2"Q%U(X (g, f)) <2, #x

We return now to the question of if and when hom.dim. ;7 2%(X(g, f))
can exceed 2. We will present a semi-complete answer to this question
that leans heavily on the criteria of (3.8) and characteristic number
arguments. The following section is devoted to a reduction of (3.8) to
a characteristic number criterion. The ensuing characteristic number
arguments are quite involved and occupy a section of their own. In
section 6 we will return to apply them to the study of 2Y(X(g, f)).
It is perhaps therefore best to close this section with an example bor-
rowed form [5;8.17] in the hopes that it sheds light on the general

case.

Example: We choose [g]=7+0€ni, [ f]l=vEni where v is

the map of Hopf invariant one mod 2, and ¢=2. Observe that
29=0=79v
<2, 7, v> Cmi=0.

Thus we may form the complex X (7, v). With ae€ 2§(X(y, v)) the
canonical class it was shown in [5; 8.1 that A(a@)=(2, [CP(1)],[V®])
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where [V%]€ QY is a Milnor manifold for the prime 2. In [5] we
then went on to show that hom.dim.ZRQY¥(X (%, v))>3. In terms of
our present discussion this may be seen as follows: By replacing [V o]
by [V]—Td[V°®][CP(1)]® we may assume that Td[/°®]=0, and
hence by (3.5) that |e(y, v)| =0. On the other hand [¥®] is an ac-
ceptable polynomial generator for 2%/(2) in degree 6. Thus |eg(7, v)|
=2. Hence hom.dim. @?R2Y(X (5, v))>2 by (3.7). Finally observe that

X, v)=X(\Use”
where
p: S5 X(@p)

is a suitable coextension of y and represents the bordism element
[V®]a, which has order 2, as a spherical class. Since 2 is a prime
we may apply [4;5.12] to conclude that hom.dim.RY(X (7, v))=3
exactly.

§4. More on Three and Four Cell Complexes

We shall continue to employ the notations of section 3. We recall

the two basic cofibrations
Y(g ) S' X8 1)
S' — V(g e LY ().
We have the generators 7o, Tams 7Tomd 2,;6!?1( Y(g, f)) with
Hyro=q0,
Hyram=[Vg]0,: [Vele 2%,
Hyromizn=LV100:  [VIE€ QY10

Of course A(a)=(q, [ V,],[ V' ]) where € f)f{(X(g, f)) is the canonical
class. Our main concern in this section is to better pin down the
manifold V via characteristic numbers. It is convenient to introduce

another manifold [ V;]€ 29, as follows. Choose an integer ¢’ such that
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¢Lf1=0€rs,, and let

0 Y(f)—>S°

be an extension of the map of degree ¢ on the bottom sphere.

then have the composite

D:Y(g ) Z"Y(Hgmg ™
Note that
Dyro=0
Dyvom=q'0om
Dytomizn=[Vs102m
where [ V;]e€ 2Y, is well determined modulo ¢'2Y%.

For our study ¢, [V,], [V] and [V] are critically related.

exact value of ¢’ is not immediately relevant.

Notation: Denote by

the natural forgetful map.

We

The

Proposition 4.1:  With the notations preceeding suppose that ¢ is

odd. Then
[Vs]=¢'[0] mod torsion

for some (U, fr)-manifold [0].

Proof: Observe that there is a cofibration

Y(f)y o S" 7 X

and that 4(8)=(¢’, [Vs]) where BE.@’J(X(f)) is the canonical class

[S° P Hence by [12; A.2]

3.(r)[Vr]=0 mod ¢
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for all non-empty partitions . An application of the main result of
[10] now completes the proof. s

The following constitutes our main technical result.

Theorem 4.2: With the notations preceeding we have the follow-

ing K-theory number congruences
sV I=Td[Vg]s.(r)[0] modg

Sfor all non-empty partitions o.

Preoof: We have the diagram

Y(g, /) S°
2
SZm

from which we obtain
Hyyomizn=[V]0,
Dytamian=LV;s]02m
Represent 7g,.2, by
e LS Y (g, ).
Then we have [5; §27] the following formulas
5NV 1= <@ H(g— D s [L7+#7], [L2]>
NV = <@ D= 1)su () L1, [L2+] >

where 7€ K(S%*) is the canonical Bott generator. Now we must recall

that we may choose classes
ac€ (Y (g, f); Z)
a2 € Hen(Y (g, ) 2)
Aome2n € ﬁ2m+2n(y(ga i)
such that
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ChH'(W—l)quo‘i‘le:Vg] g'.'m‘l"rd[V] g’.’nHZn'

We now apply the RR theorem [14] to convert a K-theory computa-

tion to a cohomology computation and we find
so(r)LV = <ch(¢'H'(y—1)s,(LLDTA[L], [L]>
= <¢*(qgo+Td[Vlgem~+TdLV Jgzmszn) chs,(r)(L)TA(L), [L]>
Td[V]<@*gemchs,(r) (L) Td(L), [L]>
for dimensional reasons provided that w==@. On the other hand
so(1 V)= <ch(¢'D'(n—1)s.(r) (L) Td (L), [L]>
= <¢*(q gon+Td[ V] gemszn) chiso(r) (L) Td(L), [L]>
=¢'<¢*gamchs,(r) (L) Td(L), [L]>
again provided w==@. Thus we find
(%) ¢'soMLVI=TALV Js.(r) V5] modg.
By (4.1)
D[ Vs]=¢'[60] mod torsion
and hence

s.(1[0]= &U(T_)q[ﬂ

provided w==@. Upon substituting this back into (%) the result fol-
lows. **

Although it is somewhat premature at this point to do so, we can
handle a class of spaces X(g, f) at this time simply with the aid of
(4.2). We do so in the expectation that the technical difficulties of the
general case will become apparent and our main line of argument can

be discerned through the tedious calculations of the next section.

Theorem 4.3: In the wnotations preceeding suppose given a
space X(g, f) where ec(g)=1/p for some odd prime p. Then
hom.dim. g2vR2¥(X (g, 1)) <2.



On the complex bordisin of complexes with few cells 335

Proof: By localization techniques (see §6) we may assume that
q=p' for some integer t. Then according to (2.7) Td[V,]=p'"'. By
appealing to [12; A.7] we find that m=0 mod p—1 and we may as-
sume that [V, ]=p' '[CP(p—1)]""*"".

Let p® denote the order of Td[ V] in Z,-. We must show that

pLVile@, LVed)

for then (3.8) will yield the desired conclusion. According to the de-

finition of ¢ we have
Td[VJ]=0 mod p'~'7%.

As ec(g)€(Q/Z has odd order it follows from (3.9) and localization that
we may assume [ f]€ m§,-, has odd order. Applying (4.2) we obtain

a

the basic set of equations

(A) so(P LV ]=p' s, (r)[0] modp': w0

where [0]€ 2¥,/".
Next we apply the results of [10] to find a closed manifold C*”,

and integers a, b, such that
(B) 2¢ [szb[Ebz]_l_m[CZn]

where [E*"] denotes the (U, fr) bordism class of the 2n-cell with the
special (U, fr) structure described in [10]. Thus we may rewrite our

basic equations as

© 2%, (LY I=0bp' 's (N LE* 1+ p'~ s,() LC**] mod pf
for all non-empty partitions w. Next recall that

(D) Td[V]=0 modp' "¢

Combining these two facts we find that

(E) s.(1)[¥]=0 mod p'~'~¢

for all partitions. Hence by the Stong [13]-Hattori [ 6] theorem

) CV=p' V] B
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for a suitable closed U-manifold ¥. Thus our basic equations may be

written as

© pIVI=p 07

and hence our basic equations lead to

H) 2%V ]=bs,(E*T+5.([C] modp: 00

Now let ¢ be chosen such that ¢2“=1 modp, and let

)] [V]=[V]—c[C*] [crP(p—1)7".

Observe that by the product formula for K-numbers
su(O)[CILCP(p— 1T =51 [C*]

o + 2 s NLC* T (DICP(p— 1T

o’ w

0" %¢

=s5,(r)[C*] mod p: 0 +0
since
(XK) 5o(P)[CP(p—1)1°=0 modp: w=+0
for any positive integer s. Thus we find
@ 2%, (N LV ]=bs,(N[E*] modp: 050.
Now note according to [137] [14; pp. 121-124]
(M) sp-n(N[MJ=0 modp

for any closed U-manifold M, while according to [10]

N) spo1(1)[E*]=+1 modp.

Thus putting w=(p—1) into (L) and using (M), (V) we obtain
(0) 0=2% -, (1 [V I=bse-1, (1) [E*]=b modp.
Therefore

) b=0 mod p.

Hence putting (P) into (L) leads to
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Q) s. ([ V]=0 mod p: » Q.
Therefore by [11; 5.6 |

plLA] ! m+n70 modp—1,
(R) V1= min
pLAJ+TALV][CP(p—1)]p~1: m+n=0 modp—1.

Recalling (G) and (I) and m=0mod p—1 we find
P'LA] : n5%0 modp—1
V= PLAT L ET 4 TEP (= DT CP(p— 15
n=0 modp—1

and so p‘[V]e(p', p' '[CP(p—1)]""""") in all cases, as was to be

shown. %

Notation: Let a;€ 7§, 3, p an odd prime, be the class introduc-
ed by Toda [15] [16] of order p and Hopf invariant 1 mod p. Fol-
lowing [117] write 7 (1/2) for the stable complex Y(a;). Denote by
7€ 20(V(1/2)) the canonical class.

Corollary 4.4: With the notations preceeding suppose that [ M ]
€ 2Y,, k>0, and

[M]reIm{@y(V(1/2))—> 24V (1/2)}.

Then [M]y=0€ 2%V (1/2)).

Proof: Represent [ M ] by
F: S5y (1/2).

Observe by [12; A.5] that we may assume A>2p—2. Write k=2n
+(2p—2) and introduce

1: Szn+(2p-2)_F, V(1/2) — S§2p-1,

collapse

Then we readily see that
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X=V(1/2)Ure** 1 =X (ay, A).

Therefore by (4.3) hom.bim. ;v 2Y(X)<{2. Let us write 7€ 8Y(X) for

the canonical class. Clearly
A@)=(p, LCP(p—1)], [M].

According to [4;5.3] the girth of the ideal A(F) is at most 2.
Since (p, [CP(p—1)]) is a prime ideal in Q¥ this implies that
[(M]e(p, [CP(p—1)])=A(r) and the result follows. *x

Note that (4.4) provides an alternate proof of the key result
[11; 5.107] without (direct) recourse to Toda brackets and the numerous
unpleasant cases and computations of [11; §5]. It was primarily to
accomplish just this that the present study was undertaken.

It is to be hoped that the reader will bhear the outline of the
preceeding arguments in mind through the tedious characteristic number

arguments of the next section.

§5. Some Characteristic Number Arguments

Our objective in this section is to provide the technical results
concerning characteristic numbers that are needed to complete our
study. It is convenient to state the main result now, although its

proof requires many preliminary maneuvers.

Theorem 5.1: Let p be an odd prime and r, s, i, j integers

satisfying the following conditions
0<s<r,i,j>0
i, j=0 mod p—1
s < w,(3)

where v,(i) denotes the power of p in i. Suppose that [V ]€ 2Y;.;
and [0]€ 247 are such that

se(M LV 1=p  “s.(r)[6] modp™*!,

for all non-empty partitions .
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Then the order of [V ]in QY/(p™*', p"*LCP(p—1)J"*7") is equal
to the order of TA[ V] in Z,r-s.

The proof of this theorem will occupy the entire section. As we
shall employ the results of [10] at several key points in the argument
we begin by recalling these results in the form most convenient to our

needs.

Recollections on the structure of 29" /Torsion: Let
0 (EZ", 82’7_1)-—)(BU, *)

be a map representing 1€ my,(BU, *). Then ¢ induces a complex
bundle & over E? with a compatible framing on S?"~!. Clearly re-
garded simply as a bundle over E?", ¢ is trivial. Thus we may regard
& as providing (E®", S**~!) with the structure of a (U, fr)-manifold.
Denote by [ %] € 2Y.fr the bordism class of (E?", S?*~') with the
(U, fr) structure & (This is the same manifold denoted by [E*] in

the previous section.) According to [10] we then have:

Theorem: There is a basis for [ 2%, /Torsion]|QZ[1/27] consist-
ing of [ %] and closed manifolds. *x.

The K-theory characteristic numbers of [ %*] were computed as
a key step in the proof of the preceeding theorem. Among these

results [10] we have:

Propositon: Let p be an odd prime, n a positive integer with
n=0 modp—1. Then sp_1)(¥)[ 2" J=(—1)"* mod p. *x

This should be contrasted with the result of Stong [14; pp. 121-
1247 that for a closed U-manifold [C7], s,-1(7)[C]=0 mod p regardless
of the dimension of [C]. (Of course this may also be deduced from
the two results of [ 107] preceeding.)

Combining the preceeding Proposition with [11;5.7] and [12;
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Appendix | we find:

Proposition: Let p be an odd prime and n a positive integer
satisfying n=0mod p—1. Then there exists integers ¢'(n), ¢"'(n) rela-
tively prime to p such that p''*v™q¢'(n)[ 1% is (U, fr) cobordant to
¢"(m)[CP(p—1)T""7". #x

Corollary: Denote by @: 2Y— QL the standard forgetful homo-
morphism. Then @(CP(p—1)T") is divisable by p'**+™ and no higher

power of p. xx%
We are now prepared to begin the proof of Theorem 5.1.

Proof of Theorem 5.1. It is convenient to divide the proof into
two cases, depending on s <{v,(j) or s>v,(j). The first of these is by

far the easier case and so we will begin with it.

Case I: s<v,(j).
It is then clear that s<Cmin{v,(i), v,(j)} and hence in view of

[10] the following lemma is clear.

Lemma 5.2: The manifolds [CP(p—1)]"*"',[CP(p—1)'"",
[CP(p—1)T*'1*"* are all divisable by p*** in QYFr.

Proof: One has merely to note that

Vp(l)"l‘ 1
s+1<min{y,(2), vo(NF+ 1w +))+1 <
vo(+1

and apply [10]. #x
Since we are ignoring the prime 2 we find according to [107] that

we may write
Lo]=m[X¥]+0[C¥]

where C¥ is a closed U-manifold.
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Lemma 5.3: With the notations preceeding we may assume that
Td[C%¥]=0.

Proof: Let us set
[C¥]=[C¥1-Ta[C¥ILCP(p— 1T

Note that Td[C*]=0. Next observe that as [CP(p—1)]""""' is
divisible by p**' in £%f* we must have [10]

s.(r)[CP(p—1)]"""'=0 mod p**!
for all non-empty partitions. Thus we have
5.(N LC¥]=5,(r)[C¥] mod p**': w0
and hence
s NV I=p  ms (DL L] +p ~*s.()[€¥] mod p’*"
=p " *ms,(P) ¥ ]+p *s.(r)[C*¥] mod p™*!

as required. k%
Henceforth we will therefore assume that [C*]=[C?%7], that is,
that Td[C¥]=0.

Lemma 5.4: Let

CW1=LV]-pLCP(p—1)T"*'[C¥].
Then

se(MIWI=p" *ms, ([ Z¥] modp™*':  w+0.

Proof: By the product formula for K -theory numbers we obtain
s (1) [CP(p— 1) ' [C¥]=Td[CP(p—1)]"* " s,(r) [C*]

+ 3 s ANLCP(p— DI L)€ V]
o' +¢

+s.(NLCP(p—1)J"*- Td[C¥].

From (5.2) it follows that
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so(PLCP(p—1)T"'=0 modp**': a0
and from (5.3) that
Td[C¥]=0.
Thus we have for w==0
so(N LCP(p—1) " '[C¥]=s,(r)[C¥] mod p"*Y,
and therefore for all w=~0
P s (NLLCP(p—1)F* [C¥]=p*s,(r) [C¥] mod p"*™.
Return now to the basic equation
soMLV]=p *ms(NLE¥]+p"*s,(r) [C¥] mod p™*!

valid for all non-empty partitions . According to our preceeding

discussion we thus find
sV ]I=p " *ms,(NLLY]
+p s (DILCP(p—DIPLCT] mod pr*!
and hence for w=~=0
pms (DL ¥ )=s, LV 1—p"*LCP(p—1)""""J[C¥]] modp™**
=s.(W7] modp'™!

as was to be shown. *x
Lemma 5.5: Td[ W ]=Td[ V]

Proof: Immediate from the fact that Td[C¥]=0. x*
Let p' be the order of Td[W ] in Z,+-.. Note that 0<I<r—s
and that p'Td[ W ]=p" N for some integer N.

Lemma 5.6: Let
[X]=p'LW]—p"*N[CP(p—D)J+I"1,

Then
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Td[X]=0
and for all non-empty partitions

so( X D=p"'ms,(r)[Z¥] modp™*t.

Proof: First of all we have
Td[X]=p'Td[ W ]—p"*N=0.
Next observe that for all non-empty partitions
s.(1)[CP(p—1)]*"""'=0 mod p**'
by (5.2) and [10]. Therefore
so(P X I=plsa W 1=p"* " ms, (N[ X¥] modp™*?,

by (5.4) and the result follows. *x

Lemma 5.7: Let p be an odd prime, n a positive integer satisfy-

ing n=0mod p—1. Suppose that B is a closed U-manifold satisfying
s, [Bl=gs.(r)[ 2] modp': w0

for some integer ¢ and non-negative integer t. Then ¢=O0modp. If

moreover Td[ B]=0 then g=0 mod p'.

Proof: Let w=(p—1). Then we have
0=sp-1y(P)[Bl=¢(=D"*" mod p
which shows that ¢=0 modp. Thus
s.(r)[B]=0 modp: wF=0.

If now Td[B]=0 then we may conclude by the Stong [ 137]-Hattori
[6] theorem that [ B]=p[ B"]. Moreover if ¢t>1 and we write ¢=pgq’

we have

s.(N[B'J=¢'s.(")[ 2] mod p'~!

for all non-empty partitions ®, and as Td[ B’']=0 we may repeat the
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above procedure, etc. *x*
Lemma 5.8: [X]ep ™ '2Y; ;.

Proof: According to (5.6) we have
Td[X]=0
solMX1=p" ' ms(NLDY] modp™:  0#0.
Suppose first that r+1<r—s+1I. Then clearly
so(y)[X]=0 modp™*': all .

Hence by the Stong-Hattori theorem we have [X]€ p™*'2Y.; as

required. On the other hand suppose that r+1>r—s+4/[. Then first
of all

s.(P)[X]=0 modp”~**:  all w.

Hence by the Stong-Hattori theorem there exists a closed U-manifold
Y such that

[XJ=p~ [ V],
Of course

0=Td[X]=p"**Td[ Y]
and so Td[ Y]=0. Moreover the equations

soMLXJ=p" ' ms,(NLXZ¥] modp™':  0£0

imply that for all non-empty partitions

so(M LY J=ms,(r) [ X*] modp*~'*L.
According to (5.7) we then have
m=0 modp*~‘*'.

Therefore

s.(r)LY]=0 modp*+': 0=+=0
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and since Td[ Y ]=0 we may apply the Stong-Hattori theorem to con-

clude
[¥]=p*+(Z]
for some closed U-manifold Z. Thus
[X:l___pr—s+l[Y:|:Pr—s+lps—!+1|:Z]
and hence [X]€p™*'2Y;.,, in this case also. *x
We are now able to complete the proof of (5.1) Case I as follows.

According to (5.5) the order of Td[ ¥ ] in Z,r-« is p'. We must there-
fore show that p'Td[V]e (p™*!, p"*[CP(p—1)]'*""). According to
(5.4) we have

[V]=[W3] mod(p"*, p’°LCP(p—1)]"*"")
and so it will suffice to show that p'[ W]e (p™'!, p"*[CP(p—1)J"*"1).
According to (5.6)

PLWI=[X] mod(p™*', p’*[CP(p—1)T"*"1)
and hence it will suffice to show that [X]€ (p™*!, p"*[CP(p—1)J"*71).

However this last inclusion is clearly a consequence of (5.8). Thus we
have completed the proof of (5.1) under the assumption that s<v,(j).
We are now left to deal with the case s>,(j).

Case II: s>v,(j).
As in the preceeding case we shall require numerous preliminary

facts and figures. Our starting point will again be the basic equations

sl LV I=mp™ s, (N[N ¥]+p  *s,(1) [C¥] mod p™*',
for all non-empty partitions, obtained by writing

[0]=m[Z¥]+0[C¥]
with the aid of [10].

Lemma 5.9: Let
Lw]=LV] _Pf—s[:CP(P_l)ji/p—ltczj].
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Then
s LW I=p" *ms,(P)L L] mod p"'L.

Proof: First of all recall that s <{v,(i). Therefore

s.(1)[CP(p—1)J"*"'=0 mod p***

for all non-empty partitions w. Hence by the product formula for K-

theory numbers

so(N[LCP(p— DT '[C¥]]=5,(r)[C¥] mod p**.
Thus we find for any non-empty partition
(DLW 1=,V I—p s [LCP(p—1)J"*~'[C¥]]
=5, [V 1—p"*s.(NLC¥] mod p™**
=p"*ms, () [ LY ]+p"*s.(1) [C*]
—p"~*5,(r)[C¥] mod p™**

=p’*ms.()[5¥] modp’**

as required. *x
Let ¢ be the smallest integer such that p'mTd[ Y%7 has denomi-
nator prime to p. Thus there is an integer ¢ =0, relatively prime to

p, such that
gp'm[E¥)=q'[CP(p—1)]"*"
for some integer ¢ relatively prime to p.

it
-1

Lemma 5.10: s, (r)[CP(p—1)]r-T=s,(r)[CP(p—1)}'"*! modp®+!
for all non-empty partitions.
Proof: By the product formula for K-theory numbers we have

so()[CP(p—1)J 1P~
=2 se(NLCP(p— 1)J7-1s,(r) [CP(p—1)]7*-L,
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Now recall that as s <v,(i)
s.(rLCP(p—1)]"""1=0 modp‘*"lz 0 +£=Q.

Substituting and recalling Td[CP(p—1)]"""'=1 now yields the re-

sult. %

Lemma 5.11: Let
[D)=gp' T W 1=¢'p~[CP(p— DT
Then
s.(r)[D]=0mod p"*': o .

Proof: By direct computation (5.9) and (5.10) we obtain

so(N[D]=qp"s.(r) LW ]—q'p"*s.(r) LCP(p—1)]+!*7!
=qp'p"*ms (NLZY]—q¢'p"*s.(r)[CP(p—1)]"*"" mod p™*!
=p" (¢p's.(N[Z¥]—q's.(r) [CP(p—1)]/*~") mod p”**
=p""*(0)=0 mod p"*!

as required. #*
Lemma 5.12: p'[V]e(p’*!, p"*[CP(p—1)]"*1)

Proof: Since
LVI=LW] mod(p”*t, p"*[CP(p—1)]"*~1)

it will suffice to show that p‘[W]e(p™*', p"*[CP(p—1)]'*~").
Since ¢ is relatively prime to p it is equivalent to show gp'[ W]
e(p*, prLCP(p—1)J"*"']) and hence in view of (5.11) that
[(D]e(p™*!, p" *[CP(p—1)]"*""). However according to (5.11) and
[12; A.5, A.6] we have

[(D]=p"*'[4]+Td [DJCcP(p— 1)+

and
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Td[D]=0 mod p”*1-1-»i+h),
Now recall that we are assuming
(1) <s <wy(i).
Therefore
(i) =vy(j) <s.
Hence
r=v,(i+j)>r—s.
Thus we may write
Td[D]=p"~*d
and so
[D]=p"*'[A]+dp ~*[CP(p—1)]*/I*-1,

Thus by inspection [D]e (p"*!, p"*[CP(p—1)]"*"1).
Lemma 5.13: p'Td[V]=0 modp" .

Proof: According to (5.12) we may write

[V]=p*'[4]+p *[BI[CP(p—1)]'*-!
and so
Td[V]=p" ' Td[A]+p"*Td[ B]

from which the result follows. *x

Thus if we denote by p', 0<{I/<(r—s, the order of Td[ V] in
Zy-s we have [<t. Thus the proof of (5.1) Case II will be
completed (in view of (5.12)) if we can show [>>¢. That is it will

suffice to show that there exists an integer ¢, prime to p, such that
gp'mTd[ L ]e Z.

Lemma 5.14: The order of TA[L W] in Zyr-+ is equal to p'.
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Proof: This follows from the definition of [ W] given in
(5.9). *x

Lemma 5.15: p'[ W ]=p"*[B] for some closed U-manifold B
of dimension 2i+2j.

Proof: According to (5.9)
Po W I=p'p’ > ms, (N[ Z¥] modp”?,
for all non-empty partitions w. By definition of [
pP'TA[ W ]=0 modp"*.
Therefore
Pls(r)[W]=0 modp’~*

for all partitions w and thus an application of the Stong-Hattori theorem

is all that is required to complete the proof. **

Lemma 5.16: Let p be an odd prime, a, b, positive integers
satisfying a, b=0mod p—1. Suppose that [ A]€ 2Y, satisfies

5.1 [4]=gs.(r)[2*"] modp': wF0

for some integers q and t with t <1+v,(a). Then ¢=0 mod p'.

Proof: Recall that [107] [1; 2.67] (or [[12; Appendix |)
s.(P)[CP(p—1)]"*7'=0 mod p'**r@: wF=0.
Thus of course
so(NCP(p—1)]"""1=0 modp': w+0.
Let

C4]=[4]-Td[4][CP(p—1)]*"*".
Observe that
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se(N[A]=s.N[4]=gs.,(NLZ*] modp’:  w+0.

On the other hand Td[A]=0. An application of (5.7) completes the

proof. kk

Lemma 5.17: There cxists an integer q relatively prime to p
such that gp'm Td[ L ¥]€ Z.

Proof: Combining (5.10) and (5.15) we obtain for non-empty

partitions
P D LBI=pp s (NLE ] modp .
Therefore
so(N[BJ=p'ms,(NLL¥] modp**!.

Recall that as we are assuming v,(;j)<s we must have v,(i4)=v,(})

<s. Hence of course
so() [ B]=p' ms,(r)[ %] mod p*r+N+1,

Applying (5.16) we obtain

1+ Vp(i+j),

p'm=0 modp

and since v,(i+;)=v,0i)

14y ,(0)

p'm=0 modp

Therefore according to [10] and [1;2.6] we find that p'mTd[ ;]
has denominator prime to p which implies the desired conclusion. #:x

Thus we have [>t. Hence as noted prior to (5.14) we have
completed the proof of (5.1). #x

To complete this section we shall discuss the computation of the
order of Td[ V] in Zpr-s

We have employed the homomorphism Td: 27:f* —>(Q in the fol-
lowing context. For a fixed odd prime, p, let Q) CQ be the subring
of rationals with denominator prime to p. There is induced by com-

position the homomorphism td: 2%, >Q/Q¢,. It is a corollary of the
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results proved in [10]] and discussed at the beginning of this section
that the image of td: £¥;f* —>(Q/Q«, is a cyclic group generated by
td[ 22**] and having, if n=0 modp—1, order p*»**",

Corollary 5.18: Under the hypothesis of (5.1), Case Il, the order
of TA[V] in Zpyr-s is equal to the order of td(0) in Q/Qp).

Our proof of (5.1) in Case II consisted of showing that p' is the
least power of p for which there is an integer ¢, prime to p, with
gp'mTd[5%]e€ Z. Since Td(@)=mTd(3¥) in Q/Qy) the corollary
follows.

In Case I the situation is not as simple. It will be recalled, (5.4),
that in Case 1 we replace [V ] with [ W] so that Td[V ]=Td[ W],
[V 1=[W] modulo the ideal (p"*', p"*[CP(p—1)]"*"") and

so(r) LW J=p"*ms,(r) LL¥] mod p™**
for all w==@. In particular, s,(y)[W]=0 modp”™* for all w=+@.
According to [10] again there is, therefore 0'€ £Y:ff;, for which
O[ W ]=p" °0¢’. Surely the order of Td[ W ]=Td[ V€ Zy-+ is then
equal to the order of td(0")€Q/Q». In addition
5u(1) 0’ =ms (V[ L] mod p**!

for all ws=@. Since we are neglecting 2 we may as before write

olzwI:D'.‘(Hj)]_{_k[Z 20 u-j)].

As always it is convenient to have Td[ D?*“*9]=0. Since we are in
Case 1 then as noted in (5.2) O[CP(p—1) /""" ep QY fr. Thus
[D*¢*)7] may be replaced by

[DZ(HJ')] —Td [DZ(HJ’)] [CP(]J _ 1)]:’—11//)—1
therefore without loss of the congruence modulo p**!, Td[ D?¢+)]=0,

Lemma 5.19: If ¢t <s+1 then m=0 modulo p' if and only if
k=0mod p*.
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Proof: The congruence, for w=~,

so(NLD* )+ ks (L X2 ]=ms,(r) L2 %] mod p**!
yields upon specialization to w=(p—1) the relation
ksp—1(7) [z g(”j)] =msp_1 (N2 zj] mod p

since s, 1[D***]=0 mod p.

As s,o1(N[X?]=(—1"""modp when n=0modp—1 we may
conclude that k=0 modp if and only if m=0 modp. Suppose k=pk;,
m=pm; then for v==0

so(N[D* 7 ]=p (s, (NLEY ]~ k15, LEP]) mod p+h.

Because Td[D*®*)]=0 we then see from the Stong-Hattori theorem
that there is a [D?Y*"]€ QY;,; with Td[D}¥*?]=0 and p[D3%+"]
=[D*¥+)7,  Of course this immediately yields

so() D2+ )+ by s, (P [ 2 J=my 5,(r) [ 2 %] mod p°.

We may proceed inductively to establish the lemma as long as
t<s+1. *x

Lemma 5.20: If v,(m)<s+1 then vy(k)=v,(m).

Proof: Since m=0 modp*»™ and v,(m)<s+1 it follows from
(5.11) that kEO modp"‘p(’”) (m) +1

(m)+1

also. If k=0 mod p*» however we see

that m=0 modp’» , which is a contradiction of the definition of
yy(m). %%

Now the value of v,(m), or vu(k), determines the order of

mtd[ 2%, or td(0)=ktd[ 2%, in Q/Qp). In other words, if
()

m=p»"q, (¢ p)=1 then p»"’qtd[X%] has order p*»N=*s(m+1,
Similarly td(0) has order p*»¢+)=*»M 1

Corollary 5.21: Under the hypothesis of (5.11) Case 1, if the
order of td(0) €Q/Qq, is at least p*»P~°*' then the order of Td[ V]
in Zpr—s is

P”F(i+j)_”9(j)ord(td(@)). *%
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Since ord(td(0))=mtd]>%]) is at least p*»)=**! it follows that

vy(m)<s+1 and thus by (5.20), v,(k)=v,(m). Hence ord(td(0"))
=ktd[26]) = pralisd vl — pualed=vyDprpD=ml — puplith=vy(i)
ord (td(6)). As we noted at the beginning the order of Td[ V] in
Zyr-s is equal to the order of td(6") in Q/Q(y).

If the order of td() is less than p*»?~**! in this case we can
only conclude that v,(k)>>s+1 so that the order of Td[ /] will not

exceed p*#it)7s,

§6. Still More on Three and Four Cell Complexes

We now have available the tools to settle the problem undertaken
at the end of section 3. Our semi-complete solution may be stated as

follows:

Theorem 6.1: Suppose given homotopy classes [ fl€ w1, [g]

€ §y—1 and an integer q such that
qlg]=0=Lgllf]
0e<g Lgh [fI1>.

Form the complex X(g, f) as in section 3. If q is odd then
hom.dim. (v 2%(X (g, 1)) <2.

Proof: Let p be a prime and denote by Z[1/p"] the subgroup of

the rational numbers ) with denominators prime to p. Let

250)QZ[1/p']: X— 23(X)Q2Z[1/p"]

denote the bordism functor with coefficients in Z[1/p”]. This localized
theory has coefficient ring R%&®Z[1/p"]. Elementary facts [ 3] about

localizations show that
hom.dim. gz2%(X (g, /) <26
hom.dim. g7gzr1/,1R2%(X (g, /)RZ[1/p"]1<2  for all primes p.

Suppose that ¢ is relatively prime to p. Then
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Z,QZ[1/p]=0
and one sees
QY(X (g, NRZL1/p =258 Y (INRZ[1/p"]
~ QUSSR Z1/p]
as QY®Z[1/p']-modules. Hence
hom.dim. gug 211 2%(X (g fHRZL1/p'1=0: (p, 9)=1.

Suppose next that (p, ¢)=p”*', r=>0. Then p is odd. Let g, and f,
denote the p-components of g and f. Observe that we may form the

7+1

complex X (g, f») using p for g. Observe that

QU(X (g MRZ[1/p 1= BUX (g [)IRZ[1/p']
as 2Y®Z[1/p"J-modules. Hence it will suffice to show that
hom. dim. g% zr1/y1 %X (g5 fENRZ[1/p']<2.

Since Z[1/p"] is a flat Z-module it is sufficient to show

hom. dim. o7 QY(X (g, f5)) < 2.

In view of (3.9) it is therefore sufficient to consider the case
ec(gy)#0. Let us assume that ec(g,)=1/p‘*!, which we may do
without loss. In the notations of section 3 we obtain from (4.2) the

equations (recall remark following (3.2))

so(P)[V1=p *s.(r)[0] modp”*

for some (U, fr) manifold 6 of dimension 2n. Assume that n=0mod
p—1 As ec(g,)séO it follows that m=0modp—1 also. Hence ac-
cording to (5.1) the order of [V ] in 2%/(p"*', p"*[CP(p—1)J"*"1) is
exactly equal to the order of Td[ V] in Z,-s». An appeal to [12;
Appendix | shows that we may assume without loss of generality that
[Ve,J=p °[CP(p—1)]""*"". Thus the criteria of (3.8) applies to
show hom.dim. ov 2%(X(gp, f»)) <2 as required.

It remains finally to consider the case n3%:0modp—1. According

to (4.1) and [12; A.6] (recall ¢’=p’) it follows that we may assume
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0 is a closed U manifold. Note that s<(y,(m) and hence

so()[CP(p—1)]""""'=0 modp**': w+£0.
Thus by the product formula for K-theory numbers

p s (1) [OILCP(p—1)T"* " =p"*s,(r)[0] mod p”**
for all non-empty partitions. (Recall 6 is closed). Hence
s (NP 1—p = TOICCP(p— D" ]=0 modp’**: w0

so by [12; A.7]

[V]—p —LoILCP(p—1)J"*-t=p™'[4].
(Note n+mz~0modp—1.) Thus

[Ve(p™, p*[CP(p—1)]""™)

and an application of (3.8) yields that hom.dim. o7R% (X (g f3)) <2 in

this case also. *x*
With the aid of (6.1) and the type of argument employed in (4.4)

it is possible to describe

Im{2§(X(g)—> 24X ()}

The details are left to the reader.
The preceeding result suggest that one try to study complexes of

the form
X= gou eIUcZ”"’ 1U62n2+1 U(,an 1
= S a »

where ¢ is odd and n;<n;<---<nj and try to show hom.dim. o72%(X)
<2. We have no idea how to deduce such a general result with our

present techniques.

Added in Proof. Some results on the annihilator ideal of the
canonical class in 2Y(X) may be found in a publication of the second

author that is to appear in the Indiana Journal of Math.

TrE UNIVERSITY OF VIRGINIA
Vircinia, U.S. A.
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