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Throughout this note a ring means a commutative ring with iden-
tity element. It is known that in a Macaulay local ring the number
of the irreducible components of an ideal generated by a system of
parameters is an invariant of the ring. A Macaulay local ring is called
a Macaulay local ring of type n if the invariant is equal to n. (In
Bass [1] it is called a MC n ring.) In this note, with a Macaulay
ring R we associate a number called the global type given by the
definition: the global type of R is the supremum of the types of local
rings R, for all prime ideals p in R. The purpose of this note is to
show that the property “a Macaulay ring of global type at most n” is
conserved under the transformation RF}’, . —;—’”] of R by an R-sequence
{x, xy, -y At (Thoerem 1).

1. We recall some basic facts for the irreducible ideals of a ring. Let
R be a ring and a an ideal in R. We say that a is irreducible in R
if a is not an intersection of two properly larger ideals in R. We also
say that the representation a=0;N\---NDb, is a longest irredundant re-
presentation if every ideal b; is irreducible and if any ideal b; does not
contain by N\--b;_1N\b;.1---Nb,. If a=b\---Nb, is a longest irredun-
dant representation, the number n is said to be the length of the
representation. In [5] E. Noether showed that any two longest ir-

redundant representations of an ideal have the same length. Hence the
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length of a longest irredundant representation of an ideal is an in-
variant of the ideal and is called the index of reducibility according
to Northcott [6].

Let R be a noetherian local ring with maximal ideal nt and let g
be an ni-primary ideal. It is known that the index of reducibility of q
is equal to the dimension of the R/ut-vector space (q: m)/q (cf. Satz
3, [3]). Hence q is irreducible if and only if dimg..(q: m)/q=1 (A
criterion of irreducibility of a primary ideal).

In order to see a link with homological algebra we need the fol-

lowing

Rees’ Theorem (cf. [8]). Let R be a ring, let N be an R-module
and let x., ..., xq be elements of R such that the sequence {xi, ..., xq}
is an R-sequence and is also an N-sequence. Let a be the ideal gener-
ated by xy, ---, xq and let M be an R-module such that a is contained

in the annihilator of M. Then:
Exth(M, N)=0 if i<d
and Exth(M, N) = Exti4(M, N/aN) if i>d.

This theorem gives a characterization of a Macaulay local ring as
follows:

Let R be a noetherian local ring with maximal ideal nt and of
Krull dimension d. For R to be a Macaulay local ring it is necessary

and sufficient that
ExthL(R/m, R)=0 if i<d
and Ext4(R/m, R)==0.

Moreover, if R is a Macaulay local ring, then the length of a maximal
R-sequence is equal to d and every maximal R-sequence generates an
m-primary ideal. Hence, if q is such an m-primary ideal, by Rees’

theorem we have

Ext4(R/m, R)>=(q: m)/q.
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This shows that in a Macaulay local ring R the index of reducibility
of an m-primary ideal which is generated by a maximal R-sequence is
an invariant of R and it is equal to the dimension of the R/ni-vector
space Ext4(R/m, R). This invariant is called the Zype of R, and we say
that R is a Macaulay local ring of type n if n=dimg,,Ext4(R/u,R).

We say that a noetherian ring R is a Macaulay ring if, for every
prime ideal p in R, the local ring R, is a Macaulay local ring. The
global type of a Macaulay ring R is defined by the supremum of the
types of local rings R, for all prime ideals p in R.

Obviously the condition that R is a Gorenstein ring is equivalent
to that R is a Macaulay ring of global type one.

A simple consequence of the definition is the following:

Let R be a ring, let {x1, ..., x4} be an R-sequence and set S=R/a
where a is the ideal generated by x,, ..., x4. If R is a Macaulay ring
of global type at most n, then so is S. In particular, if R is a
Macaulay local ring of type n, then so is S.

We shall use later this remark freely.

2. In this section we shall prove the following:

Proposition 1. If R is a Macaulay ring of global type at most
n, then so is the polynomial ring R[ Xy, .-, Xn]. In particular, if R

is a Gorenstein ring, then R[ Xy, .-, X,] is also a Gorenstein ring.

The Gorenstein ring case of this proposition was given in [9].

Before proving the proposition we need following considerations:

Let R be a ring and let R[ X ] be the polynomial ring in an
indeterminate X over R. Let U be the set of polynomials whose coef-
ficients generate the unit ideal in R. Since U is a multiplicatively
closed subset of R[ X], we can consider the ring R[ X |y, the quotient
ring of R[ X ] with respect to U, and we denote it by R(X). This
ring was firstly introduced by M. Nagata and the basic properties of

the ring and the relationship between the ideals in R and the ideals in
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R(X) are mentioned in his book [4]. We recall here some of them:

(i) The ring R(X) contains R.

(ii) If p is a prime ideal in R, then pR(X) is also a prime ideal
in R(X) and pR(X)NR=p. If q is a p-primary ideal in R, then
qR(X) is also a PR(X)-primary ideal in R(X) and qR(X)NR=q.
Hence, for p-primary ideals q and ¢, if q&=¢q’, then qR(X)Eq R(X).

(iii) If ai, .-, a; are ideals in R, then (a; N\ Na,) R(X)=a, R(X)
N--Na, R(X).

(iv) An ideal M in R(X) is a maximal ideal in R(X) if and only
if there exists a maximal ideal m in R such that WM=mR(X).

(v) R(X) is a flat R-algebra and therefore, if {xi, ..., x4} is an
R-sequence, then it is also an R(X)-sequence.

(vi) If R is a noetherian local ring with maximal ideal 1, then
R(X) is the noetherian local ring R[ X Jurrxj. In this case mR(X)
is the maximal ideal of R(X), and R and R(X) have the same Krull
dimension.

For the irreducibility of primary ideals we have the following:

Lemma 1. Let R be a noetherian local ring with wmaximal ideal
nt and let q be an wm-primary ideal. For q to be irreducible in R, it
is mecessary and sufficient that qR(X) is irreducible in R(X). More
generally, the index of reducibility of qR(X) is equal to that of q.

Proof. The sufficiency follows immediately from (i1) and (iii).
Assume that q is irreducible in R. By a criterion of irreducibility of
a primary ideal we have (q: ut)/q~= R/m. Hence we have (q: nm) R(X)
/qR(X)~ R(X)/mR(X). On the other hand, since R(X) is R-flat,
we have (q: m) R(X)=qR(X): mR(X). Therefore by a criterion of ir-
reducibility of a primary ideal qR(X) is irreducible in R(X).

To see the second part it is enough to show that if q=qiN\---N\qn
is a longest irredundant representation, then qR(X)=qR(X)N:---
N, R(X) is also a longest irredundant representation. This follows

easily from the first part of the lemma and from (ii) and (ili). q.e.d.
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From Lemma 1 we have the following:

Lemma 2. If R is a Macaulay local ring of type n, then so is
R(X).

Proof. From (v) and (vi) it follows easily that R(X) is a
Macaulay local ring. By Lemma 1 R and R(X) have the same type.
g.e.d.

Proof of Proposition 1. It is sufficient to consider the case
when m=1. Let  be a prime ideal in R[X] and p=PNR. We
may assume that R is a local ring and p is its maximal ideal. In
case when P=pR[ X ], since R[ X ]y is the local ring R(X), Lemma 2
gives our assertion. We must therefore prove the proposition in case
when PRpR[X]. In this case ¥ is a maximal ideal of R[ X ]. Let
{x1, ---, x4} be a system of parameters of R. Since {x,,..., x4} is an
R[ X ]y-sequence, we may further assume that the Krull dimension of
R is zero. Hence to prove the proposition it is enough to show the
following :

Let R be a Macaulay local ring with wmaximal ideal W\ and of
Krull dimension zero. If W is a maximal ideal in R[ X ] such that
m=MNR, then R[X |w is a Macaulay local ring and has the same
type as that of R,

The method of the proof is substantially the same as that of
Proposition 1 (Part II) in [9]. We give here the proof for the con-
venience of the reader.

Since M/MR[X] is a non zero prime ideal in R[ X ]/mR[X]
(=(R/m)[X]), M=f(X)R[X]+mR[X] where f(X) is a monic poly-
nomial in R[ X ] such that all the coefficients of f(X) are units in R.
Obviously f(X) is a non zero-divisor in R[X Jo. Since the Krull
dimension of R[ X |y is one, R[ X J» is a Macaulay local ring and
f(X) generates an IR[ X Jy-primary ideal. Hence in order to show
that R[ X J; has the same type as that of R, it is sufficient to see that
the dimension of the R[ X_]/M-vector space (f(X)R[X Jm: MR[X Jm)
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/f(X)R[XJwm is equal to the dimension of the R/m-vector space
(0:m). Let {uy, -, u,r be a system of minimal generators of the
ideal (0:m). Assume that u;g1(X)+ -+ u,g.(X) is in the ideal
F(X)RLX] where gi(X)€R[X]. Let g(X)=h,(X)f(X)+r(X)
where h;(X) and r;(X) are in R[X ] and the degree of r;(X)< the
degree of f(X). Then uiri(X)+ -4 u,r(X) is in f(X)R[X]. This
shows that wiri(X)+ - +uw,r,(X)=0. Hence, if a; is the coefficient
of the term of degree j in ri(X), then wiai;+ - +u,a,;=0. Since
Ui, .- U, are linearly independent over R/ui, we have a;;€ni.  There-
fore r(X)€mR[X] and hence g;(X)€i. This shows that the resi-
due classes of ui, .-, u, modulo f(X)R[X] are linearly independent
over R[X]/M. On the other hand it is known that (f(X)R[X]: M)
=f(X)R[X]+(0: m)R[X] (see the proof of Proposition 1, Part
II, [9]). Therefore the R[X_]/M-vector space (f(X)R[X]: M)
/f(X)R[X] has dimension n. Since (f(X)R[X]: M) R[X Im
=(f(X)R[Xm: MR[ X Jn), the dimension of the R[X]/M-vector
space (f(X)R[ X Jm: MR(XJw)/f(X)R[X ]y is equal to n. Thus

our assertion is proved.

Remark. (1) If R is a Macaulay local ring of type n, then so
is the formal power series ring R[[ Xy, -+, X ]l

For, by Rees’ theorem we have
Ext{(S/M, S)=0 if i<m
and Exti{(S/M, S)~Extiy™(R/m, R) if i>m

where S=R[[ Xy, ..., X,,]], D is the maximal ideal of S and m is the
maximal ideal of R. From this our assertion follows immediately.

(2) Let R be a noetherian local ring and R its completion. For
R to be a Macaulay local ring of type n, it is necessary and sufficient
that R is a Macaulay local ring of type n.

This follows from that Extj‘e(K, I%):Ext}'e(K, R)(%ﬁ and from

that Ext%(K, R)=0 if and only if Exti(K, R)=0 (because R is a
faithfully flat R-algebra) where K is the residue field of R.
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3. Let R be a ring and let {x, x1, .-, x,; be a system of elements

in R such that x is a non zero-divisor in R. Set SZRI:%, “"fc_m}
a subring of the total quotient ring of R, and P=R[ Xy, .., X,, ], the

polynomial ring in m indeterminates over R. Let & be the kernel of
the ring homomorphism ¢: P— S defined by go(X,-)——-x—’.

The aim of this section is to prove the following theorem which

is partly a more precise result than Theorem 2.4 in Ratliff [7].

Theorem 1. If R is a Macaulay ving of global type at most n
and if {x, x1, .-, xn} is an R-sequence, then the ring SzR[%, ey jz—mi|
is also a Macaulay ring of global type at most n. In particular, if R

is a Gorenstein ring, then so is S.
First we need the following:

Lemma (Davis [27]). With the same notation as above, let R be
an arbitrary ring. If {x, x1, -, Xxn} is an R-sequence, then the kernel

X of the map ¢: P— S is generated by xX1—x1, -y xXpn— 2.

By this lemma and by Proposition 1, in order to prove Theorem 1

it is enough to show the following:

Proposition 2. With the same notation as above, let R be an
arbitrary ring. If {x, x1, -, xm} is an R-sequence, then {xX,—x,,

vy x X — %,y is a P-sequence.®

Proof. Set Y;=xX;—=x; Let & be the ideal generated by
Yy, -, Y, and Jo=(0). Obviously &,= and X=P. Hence, for the
proof it is sufficient to show that (J4: Yie1)=% for k=0, ..., m—1.
Let f(X)€(Sh: Vi1 and write £(X)=g(X) X}y -+ go(X), gi(X)
ER[Xy, ., Xpy Xiyo, -+, Xo]. We shall first show that g(X)e€ Jw.

*) Cf. Theorem 2.4 of Ratliff [7], where R is assumed to be a Macaulay ring.



308 Tadayuki Matsuoka

x x
Let ¢,: P—»R':;l, . x—k, Xirls o X,,,] be the ring homomorphism de-

fined by @u(X)="" for i=1, ...,k and ¢u(X)=X; for i=k+1, ..., m
and let ¢o: P—>P be the identity map. Since {x, xi, -.., x;} is an
R-sequence, by the above lemma we see that Y, is the kernel of ¢,.
Thus ¢(f(X)Y,,1)=0 and from this it follows that x¢,(g.(X))=0.
Write g(X)=2h(Xy, ..., Xp) M;(X) where M (X) are monomials in
Xes2s s X and A(Xy, -, Xp)ER[ Xy, ..., X} . Then we have
xhs(%,~-~, i—}i>=0 and hence h. (X, ..., X;)€S4. This shows that
g(X) €I Next, set f1(X)=f(X)—g(X)X}.;. Since [i1(X)Yy,,
€ 4, by the same argument as above, we have g,_1(X)€ J:. Whence
by induction we can show that g(X)€J, for all i. Therefore we
have f(X)€J: and hence (Ji: Yii1) S I Since the opposite inclusion

is obvious, the proof is complete.

Let R be a noetherian ring and let a be an ideal in R which is
generated by aj, .-, @, Let ¢ be an indeterminate and set w=¢"'.
The graded noetherian ring R[tai, .-, ta,, u ] is called the Rees ring
of R with respect to a. If {ay, ---, an} is an R-sequence, then
{u, ai, ---, @} is an R[u ]-sequence. Hence by Proposition 1 and by

Theorem 1 we have the following:

Corollary. If R is a Macaulay ring of global type at most n and
if {a1, -+, an}t is an R-sequence, then the Rees ring R[tay, -y tay, u ]

is also a Macaulay ring of global type at most n.

We end this section with a few remarks for complete intersections.
Let R be a ring. We say that R is a complete intersection if R is a
residue ring of a regular ring A by an ideal which is generated by an
A-sequence. Hence if R is a complete intersection, then for every
prime ideal p in R the local ring R, is a complete intersection in
ordinary sense.

The following results follow directly from the definition:
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Let R be a ring and a an ideal which is generaed by an R-
sequence. If R is a complete intersection, then so is R/a.

If R is a complete intersection, then so is the polynomial ring
R Xy, .., X,

In fact, let R=A/a where A is a regular ring and a is the ideal
generated by an A-sequence {xi, .-, x4t. It is well known that the
polynomial ring A[ X, -.., X, ] is a regular ring. Since A[ Xy, .-, X»n]
is A-flat, {xy, ..., x4} is also an A[ Xy, ..., X, |-sequence. Hence our
assertion follows from the fact that A[ X, ..., X,]/ad[ X1, - X ]
~R[Xy, - Xl

From these and from Proposition 2 we have the following similar

result to Theorem 1:

Theorem 2. If R is a complete intersection and if {x, %1, -+, Xm}
is an R-sequence, then R[x—l, . ;@} is also a complete intersection.
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