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Throughout this note a ring means a  commutative ring with iden-

tity elem ent. It is known that in a Macaulay local ring the number

o f th e  irreducible components o f a n  ideal generated by a  system of

parameters is an invariant of the ring. A Macaulay local ring is called

a Macaulay local ring of type n  if the invariant is equal to n .  (In

Bass [ 1 ]  it is called a  M C  n  ring.) I n  this note, w ith a Macaulay

ring R  we associate a  number called the global type given by the

definition :  the global type of R  is the supremum of the types of local

rings _1?, fo r  a ll prime ideals p in R .  The purpose o f this note is to

show that the property "a  Macaulay ring of global type at most n "  is

Iconserved under the transformation R  x  3x m l  of R by an R-sequence_
x x

{x , x 1 , • , x„,} (Thoerem  1).

1 .  We recall some basic facts for the irreducible ideals of a ring. Let

R  be a ring and a an ideal in R .  W e say that a  is irreducible in  R
if a  is not an intersection o f two properly larger ideals in  R .  We also

say that the representation a = hi n • • • nb„ is  a  longest irredundant re-

presentation if every ideal bi is irreducible and if any ideal IN does not

contain b 1 f l  b i _  n  bi ,  •  •  n  b„. I f  ci b i  (1 • • • n  bn is  a  longest irredun-

d a n t representation, th e number n  is  sa id  to  b e  th e length of the

representation. In  [ 5 ]  E . N oether showed that any two longest ir-

redundant representations of an ideal have the same length. Hence the
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length  of a  longest irredundant representation of a n  ideal is a n  in-

variant o f th e  ideal an d  is called th e  in d ex  o f reducibility according

to Northcott [6].
L et R  be a noetherian local ring with maximal ideal nt and let q

be an nt-primary ideal. It is know n that the index of reducibility of q
is equal to th e  dimension of the R/nt-vector space (q : 111)/q (cf. Satz
3 ,  [ 3 1). Hence q  is irreducible if  an d  only if  dim R/ :  1 0 / ( 1 = 1  (A
criterion of irreducibility o f a  primary ideal).

In order to see a  link with homological algebra we need the fol-

lowing

R ees ' Th eorem  (cf. [8 1). L et R  be a ring, le t N  be an R-module
and le t x l , x d  be elem ents o f  R  such  that th e  sequence {x i , x d }
is  an R -sequence and is also  an N -sequence. L et a  be the ideal gener-
ated by  x l , x d  an d  le t M  be  an R -m odule such  that a  is contained

in  th e  annihilator of  M . Then:

ExtiR (M , N ) .= 0 i f  i < d

and ExtiR(M, N) - -_ExtiR T A M , N  / aN ) if  i> d .

This theorem gives a  characterization of a M acaulay local ring as

follows:

L e t R  be a noetherian  local ring with maximal ideal in and of

Krull dimension d. For R  to be a M acaulay local ring it is necessary

and sufficient that

ExtiR (R / nt, R )= 0 if  i < d

and ExtdR(R/nt, R)  I  0.

Moreover, if  R  is a M acaulay local ring, then the length of a maximal

R-sequence is equal to d  and  every maximal R-sequence generates an

nt-primary ideal. H e n c e , i f  q  is such an  nt-prim ary ideal, by Rees'

theorem we have

Ex q(R /nt, (q: nt)/q.
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This shows that in a Macaulay local ring R  the index of reducibility

of an in-primary ideal which is generated by a  maximal R-sequence is

an invariant of R  and it is equal to the dimension of the On-vector

space Extl? (R/m, R ) .  This invariant is called the type of R, and we say

that R  is a Macaulay local ring of type n  i f  n =dim R i ,„Extl? (R/m,R).

We say that a  noetherian ring R  is a Macaulay ring if, for every

prime ideal p  in  R ,  the local ring R p is  a  Macaulay local ring. The

global type of a Macaulay ring R  is defined by the supremum of the

types of local rings R  for all prime ideals p in R.
Obviously the condition that R  is a  Gorenstein ring is equivalent

to that R  is a Macaulay ring of global type one.

A simple consequence of the definition is the following:

Let R  be a ring, let {x 1 , x d } be an R-sequence and set S-=/?/a
where a  is the ideal generated by x l , x d .  I f  R  is a  Macaulay ring

of global type a t m ost n ,  th en  so  is  S. I n  particular, if R  is  a

Macaulay local ring of type n , then so is S.
We shall use later this remark freely.

2 .  In  this section we shall prove the following:

Proposition 1 .  I f  R  is  a M acaulay  ring o f  global type at m ost
then  so  is the  polynom ial ring  R E X i , •.•, X m ]. In  p art ic u lar, i f  R

is  a Gorenstein ring, then R EX 1 , X„i l  is  a ls o  a Gorenstein ring.

The Gorenstein ring case of this proposition was given in  [9 ] .

Before proving the proposition we need following considerations:

L e t  R  b e  a  r in g  an d  le t R [X ]  be the polynomial ring in an

indeterminate X  over R .  L et U  be the set of polynomials whose coef-

ficients generate the unit ideal i n  R .  Since U  i s  a  multiplicatively

closed subset o f R E X ], we can consider the ring R IX 1 u ,  the quotient

rin g  o f R [X ]  with respect to  U , and we denote it by R ( X ) .  This

ring was firstly introduced by M. Nagata an d  th e  basic properties of

the ring and the relationship between the ideals in R  and the ideals in
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R (X ) a re  mentioned in  h is  book E C . W e  re c a ll h e re  so m e  o f  them:

(i) T h e  r in g  R (X ) contains R.
(ii) I f  p  i s  a  p r im e  ideal in  R , th e n  pR (X )  is  a lso  a  p r im e  ideal

i n  R (X )  a n d  p R (X )n R •= p . I f  q  i s  a  p-primary id e a l i n  R , then

q R (X ) i s  a l s o  a  pR(X )-prim ary id e a l i n  R ( X )  a n d  qR (X )nR =q.
Hence, fo r  p-primary ideals q  an d  q', if th e n  qR (X ),q 'R (X ).

(iii) I f  oh  •  ak a r e  ideals in  R , then (al r )  •  •  •  nak)R(x)-=ai R(X )
n • - • n a k  R(X ).

(iv) A n  ideal 'DI in  R (X ) is  a  m ax im al ideal in  R (X ) if  a n d  only

i f  there  ex ists a  m axim al ideal nt in  R  su c h  th a t '11/=n1R(X).
(v) R (X ) i s  a  f l a t  R-algebra and  therefore , i f  {x i , xd} i s  an

R-sequence, th e n  it  is  a lso  a n  R(X)-sequence.
(vi) I f  R  i s  a  noetherian lo c a l r in g  w ith  m ax im al idea l n t, then

R (X ) i s  t h e  noetherian loca l r in g  R  E X ILR txi. I n  th is  case  utR(X)
i s  the  m axim al ideal o f  R (X ), a n d  R  a n d  R (X ) h a v e  th e  sam e Krull
dimension.

F o r  th e  irreducibility o f  prim ary ideals w e h a v e  th e  following:

Lemma 1 .  L et R  be a  noetherian local rin g  w ith  m ax im al ideal
n t and  le t q  be a n  nt-primary ideal. Fo r q  to be irreducible in  R , it
is necessary  an d  suf f icient that qR (X ) is irreducible i n  R ( X ) .  More
generally , the index  of  reducibility  o f  qR (X ) is equal to  that o f  q.

P ro o f .  T h e  sufficiency follow s im m ediately from  ( i i )  a n d  (iii).

A ssum e th a t  q  is  irred uc ib le  in  R .  B y a  criterion o f  irreducibility of

a  prim ary ideal w e have (q: nt)/q_— _-_R / n t . H ence w e have (q : nt)R (X )
R (X )/n tR (X ) . O n  t h e  o th e r  h a n d , s in c e  R (X )  i s  R-flat,

w e  have  (q : nt)R (X )-=qR (X ): n tR (X ) . Therefore by a  criterion o f  ir-

reducibility o f  a  prim ary ideal qR (X ) is irreducible in  R(X ).
T o  se e  the  second  part it is  en ou g h  to  show  th a t  i f  q=ciin•• r\q,z

i s  a  lo n g e s t  irredundant re p re se n ta tio n , th e n  qR (X )=q i  R (X )n• •
nq n R (X ) i s  a l s o  a  lo n g est irredundant rep re sen ta tio n . T h is  follows

easily  from  th e  firs t p a r t  o f  th e  lem m a an d  fro m  ( ii)  an d  (iii). q . e . d .
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From Lemma 1  w e have the following:

Lemma 2 .  I f  R  i s  a  M acaulay  local ring o f  ty p e  n ,  then so is
R(X ).

P ro o f. From  (IT ) and ( v i )  it fo llow s  eas ily  th a t R ( X )  i s  a

Macaulay local ring. By Lemma 1 R  and R (X ) have the same type.

q.e.d.

Proo f o f  Proposition 1 .  It is sufficient to consider the case

when m = 1 .  Let ',13 be a prime ideal in  R [X ]  and p - T n R .  We

may assume that R  is  a local ring and p  is  its  maximal ideal. In

case when =pi? EX ], since R EX1 13 is  the local ring R (X ), Lemma 2
gives our assertion. W e  must therefore prove the proposition in case

when E X ] .  In  this case is a maximal ideal o f R E X ].  Let

{x i , x d}  be a  system o f parameters o f R .  Since {x i , ..• , x d }  is an

R EX ] $ -sequence, we may further assume that the Krull dimension of

R  is  zero. Hence to prove the proposition it is enough to show the

following:

L e t R  be a M acaulay  local rin g  w ith  m ax im al id e al u t  an d  of
Kr ull dimension zero. I f  'E l  is  a  m ax im al ideal in  R E X ] such  that
u t=an n R , th en  R E X I N i s  a M acaulay  local rin g  an d  has the  same
ty pe as that o f  R,

T h e  method o f  th e  proof is substantially th e  same a s  that of

Proposition 1  (P a rt II) in  [ 9 ] .  W e give here the proof for the con-

venience of the reader.

Since 931/n1R E X ] is  a non zero prim e ideal in  REX 1/11tREX ]
(R / m)EX1), 9.11= f (X ) R EX ] + tuR IX ] where f ( X )  is a monic poly-

nomial in  R E X ] such that all the coefficients of f ( X )  are units in  R.
Obviously f ( X )  i s  a  n o n  zero-divisor in  REX 1n . Since th e  Krull
dimension of R E X I 1 i s  one, R EX ]an i s  a Macaulay local ring and

f ( X )  generates an 9iiR [X -p rim ary  id ea l. H en ce  in  order to show

that R E X IR has the same type as that o f R , it is sufficient to see that

the dimension of the R [Xi/XI-vector space ( f  (X ) R [X ] T i : T IR [X ]m )
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f  (X ) R IX - 193,  i s  e q u a l  to  the dim ension of the R / m -vecto r space
(0: tit). Let {u 1 , un}  b e  a  system  of m inim al generators of the

id ea l (0 : n t). Assume t h a t  u i  gi(X )+ • • u 7, g,,(X )  i s  in  th e  ideal
f  (X) R E X ] w here  g 1 (X ) E R I X ] .  Let g 1(X )=h, (X  ) f  (X ) + r (X )
w here hi (X )  and r 1(X )  are  in  R I X ]  and the degree o f  ri (X ) <  the

degree of f  ( X ) .  Then uiri(X )+ • • • + u„r,(X ) is  in f  (X ) R E X ]. This

shows th a t  u iri(X)+ • • • + O. H e n c e , i f  a u  i s  the coefficient

o f th e  te rm  o f  degree j  in  ri (X ) , th en  u i  al; + • • • + u n ct,u= O. S in c e
1 , "• , L in  are linearly independent over RAI, we have au E pt. T h e re -

fore r 1(X ) E iitR E X ] and hence g 1(X ) E 9it. This shows th a t the resi-
due classes of u 1, • • •, u „ modulo f  (X ) R I X ]  are linearly independent
over R E X 1 /9 it. On the other hand it is known that (f (X )R  1X 7:

=f  (X )/? IX ] + (0 : ut) R I X ]  ( s e e  th e  proof of Proposition 1, Part

II, [9 1). T herefore th e  R EX 1/9it-v ector sp a c e  (f  (X  ) R [X l: an)
f (X ) R E X ]  h a s  dimension n. S in c e  ( f  (X ) R EX ]: T O R EX IN

= ( f  (X ) R EX ] : altR EX 1 9 y ), the dimension of the R [Xi/an-vector
space (f  (X ) R E X ] : JJR (X I m) / f (X )R [X I nm i s  e q u a l  t o  n .  Thus
our assertion is proved.

R e m a rk . (1 ) I f  R  i s  a Macaulay local ring of type n ,  then so

is  the formal power series ring REIX1, • • •,

For, by Rees' theorem we have

Ext is (V an, S )= 0 i f  i < m

and Extis(S/aJt, ExtiR-m(R/nt, R )  i f  i

where S.= R E X ], • • •, XII, a n  is  the maximal ideal o f S  and ut is  the

maximal ideal o f R . From this our assertion follows immediately.
( 2 )  Let R  be a  noetherian local ring and h  its com pletion . For

R  to  be a Macaulay local ring of type n ,  it is necessary and sufficient

th at h is  a Macaulay local ring of type n.

This fo llow s from  that Ext i
j .1 1 ) 'L 't  E x t iR (K , R ) oP and from

th a t  E x d (K , h )=  0  if a n d  o n ly  i f  ExtiR (K , R)-= 0  (because h i s  a

faithfully flat R -a lgeb ra ) where K  is  the residue field of R.
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3 .  Let R  b e  a ring and let i x ,  x i , • • , x , n }  be a  system  o f  elements
H ix X m l

in R  such that x  is  a non zero-divisor in  R .  Set S = Ri x '
a  subring of the total quotient ring of R , and P =R X m l, the

polynomial ring in in  indeterminates over R .  Let a , b e  the kernel of
Xi

the ring  homomorphism ç9: P—> S defined by go(X1) = .9 .

The a im  o f  th is  section is to  prove the following theorem which
is partly  a more precise result than Theorem 2.4 in  Ratliff [7 ].

Theorem 1 .  I f  R  is  a M acaulay  ring of  global ty pe at m o st n
x i

an d  if  lx , x i , • • oc„3. is  an  R-sequence, then the  ring  S= RL—  ..•" xn-1x x
is  als o  a M acaulay  ring of  global type at m ost n. In  particu lar, if  R
is  a  Gorenstein ring , then  so  is  S.

First w e need the following :

Lemma (Davis [2 1). W ith th e  sam e notation  as above, le t R  be
an  arbitrary  r i n g .  I f  { x , x i, • ,  x „ , }  is  an  R-sequence, then the kernel

a  o f  the  map go: P—> S is generated by  x X i — x i , xX,n -

By this lem m a and b y Proposition 1, in order to prove Theorem 1
it is enough to  show the following :

Proposition 2. W ith  th e  sam e no tation  as above, l e t  R  b e  an
arbitrary  r i n g .  I f  {x , x i , • • •, xm}

x n , }  i s  a  P-sequence.* )

i s  a n  R-sequence, th e n  {xXi— x i,

P r o o f .  S e t  Y i= x X ,- -x i . L e t  a k  b e  th e  ideal generated  by

• • •, Yk and ,a0= (0). Obviously and a * P .  Hence, for the

proof it is sufficient to show that (a k  :  Y k + i )= k  for k =0, • • •, m — 1.

Let f  ( X ) E  (a k :  y k ,i)  and write f  (X )= 8•1(X)Xl-F1 - r• • • • - I-  g o (X ), g (X )
E  REX - 1 , • • ,  X ,  X k +2) • •  X m l .  W e sh a ll f irs t show th a t  g t(X )E  ,a k •

*) C f. Theorem  2.4 o f R a tliff [7 ] , w here R  is assumed to be a Macaulay ring.
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X X k
Let ç 9  k : A  

i 
, —x --, .21k 0, • • Xm l  be the ring homomorphism de-

fined by çok (X i ) = x- i  for i = 1, k  and çok (X j ).= X i fo r  i =k  + 1, m

and  let çoo  : b e  th e identity m ap. S in ce  { x , x l , x k }  i s  an

R-sequence, by the a b o v e  le m m a  w e  se e  th a t k  is  the kernel o f V  le.

T hus çok(f(X ) YIN  1) = 0 and from  th is it fo llow s that xçok(gt (X ))= O.
W rite  g t (X ) -= E h.,(x„ xk )m,(x) where M s (X )  are monomials in
X k + 2, • • • , a n d  h s (X i , ,  X k ) E REX - 1 , X .  T h e n  w e  have

"  )=- 0  and hence k ,(X i , Xk) E k . This shows thatx x
g t (X ) E k .  N e x t ,  se t f  i ( X ) = ( X ) —  gt(X )XL, S in ce  f  1( Yk f

E ak, b y the same argument as above, we have g t _ i (X )E k . Whence
b y  induction w e  c a n  show th a t  g 1(X )E 1 ' 1, fo r  a l l  i. Therefore we
have f(X) E Z5'1, and h en ce  (k :  1 )  k .  Since the opposite inclusion

is obvious, the proof is complete.

Let R  be a  noetherian ring and let a b e  an ideal in  R  which is
generated by a l , a m . L e t  t b e  an  indeterminate and set u = t .

Th e graded noetherian ring R I ta i ,

o f  R  w ith  respect t o  a. If {ai,
{u, a l , • .., a m } i s  an  R rul-sequence.

Theorem 1 w e have the following :

•, ta m , u ]  is called  the Rees ring

a m } i s  a n  R-sequence, then
Hence by Proposition 1 and by

C oro lla ry . I f  R  is  a M acaulay  ring of  global ty pe at m ost n  and
i f  /La i , a m }  is  an R -sequence, then  th e  R ees ring R [ta i , • .., ta m ,  u ]

is  also  a M acau lay  rin g  of  global ty pe at m ost n.

W e end th is section with a few remarks for complete intersections.

Let R  be a  r in g . W e say that R  is  a  complete intersection if R  is  a
residue ring of a regular ring A  by an ideal which is generated by an

A-sequence. H ence i f  R  i s  a  complete intersection, th en  fo r  every
prime id ea l p  in  R  the local ring R o i s  a  complete intersection in

ordinary sense.

The following results follow directly from the definition :
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L e t  R  b e  a  r i n g  a n d  a  a n  ideal which is generaed by a n  R-

sequence. I f  R  is a  complete intersection, then so is R /a.
I f  R  i s  a  complete intersection, then so is the  polynom ial ring

REX i , X„,
In  fa c t , le t  R=- A /a where A  is a  regular r in g  a n d  a is t h e  ideal

generated by a n  A-sequence {x i , , x d }. It is well known that the

polynom ial ring A [X 1 , ,  X m ]  is a  regular r i n g .  Since A [X i , X„,1

is A-flat, {x i , • •  • ,  x d } is  a ls o  a n  A [X i , X „jsequence. Hence our

asse rtio n  fo llow s from  t h e  fa c t th a t A LX 1 , . , X ,,1/aA EX -
1 , ,  X „,1

"  5 Xn3
From these a n d  from  Proposition 2 we h a v e  th e  following similar

result to Theorem 1:

Theorem  2 .  I f  R  is  a  complete intersection and i f  { x , x i , •..,.x .}
[ x i is  an R-sequence, then R , ,••• x

x l i s  also a  complete intersection.
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