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0. Introduction.

We shall consider linear algebraic groups defined over an algebraical-
ly closed field £ with an arbitrary characteristic p. For the simplicity,
we shall call them algebraic groups. Let G be an algebraic group and
let ¥ be a finite dimensional k-G-rational module. If G fixes a non-zero
vector e, of ¥V, then the associated representation of G is called an
M-representation (or the representation of M-type), and e, is called
the associated fixed point. Extend e, to a basis {ey, €y, .-, €,} of V.
Then, we have a matric representation p’: G—GL(V) under the basis

{eo, €1, -+, e,y of the following form

1 u(g)

0/(3' )= of g) s

where u(g) is a (1 X n)-matrix and o(g) is an (n X n)-matrix. Through

this representation of G, G acts rationally on the projective space P,
1

and fixes a point eo= 0 . Therefore, G acts rationally on the
0

polynomial ring k[ X, -.-, X, ] in the following way;

X§=Xo+ _Zj:lui(g)Xi
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Xf=2od)X, (A<i<n)

Under the above notation, the following conditions are equivalent
to each other.

(a) For any M-representation p’: G—GL(n+1, k), there exists a
G-invariant monic polynomial with respect to X,.

(b) For any M-representation p’: G—>GL(n+1, k), there exists a
G-stable hypersurface in P, which does not go through the associated
fixed point e, (i.e. there exists a G-stable affine open subset in P,
which contains ey).

(c) Let R and R’ be any G-rational k-algebras such that there is
a surjective G-algebra homomorphism ¢: R— R’. Then, for any G-
invariant element x of R’, there exists a G-invariant element y of R
and a positive integer m such that ¢(y)=x".

An algebraic group G which satisfies the above equivalent conditions
is called geometrically reductive (Seshadri [127]). In connection with
the construction of moduli space of curves over an arbitrary field,
D. Mumford [5] conjectured that a connected reductive algebraic group
is geometrically reductive. Moreover, this conjecture concerns with the
14th problem of Hilbert (Nagata [97]), the moduli space of stable vector
bundles over a non-singular complete curve (Seshadri [127]) and quotient
homogeneous spaces. In this paper, we shall prove the followings: Let
G be a connected reductive algebraic group. Then, for any M-represent-
ation p’: G>GL(n+1, k), there exists a G-stable closed subset in P,
(which may not be a hypersurface) which does not contain the associat-
ed fixed point. Furthermore, we shall discuss one question “Does this
property characterize reductive algebraic groups?” and consider one ap-
plication.

The author likes to express his sincere thanks to Professor
M. Nagata and Professor H. Hijikata for many valuable comments and

discussions.
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1. Geometrically reductive groups and semi-reductive groups

Definition 1.1. Let G be an algebraic group. If, for any M-
representation ¢': G—>GL(n+1, k), there exists a G-stable closed subset
in P, which does not contain the associated fixed point, then G is called

semi-reductive algebraic group.

Our aim of this section is to prove that a connected reductive
algebraic group is semi-reductive. We shall prepare some lemmas for

the purpose.

Lemma 1.2. Let G be a connected algebraic group and let B and
T(BDT) be a Borel subgroup of G and a maximal torus of G respec-
tively. If 0': G>GL(n+1, k) is an M-representation, then there is a
matrix S(EGL(n+1, k)) such that o"'=Sp’'S™! satisfies the following

conditions.

(1) 0" is an M-representation of G.

(2) p"(B)=A{0"(b)| b€ B} consists only of upper triangular ma-
trices and o' (T)={0"(t)|t € T} consists only of diagonal matrices.

1 u
Proof. Put p’=< > 0 is a representation of G.
0 o

Hence, there is a matrix S;(€GL(n, k)) such that =35, 087!
satisfies that p(B) (or p(T) respectively) are upper triangular matrices

A(2)
(or diagonal matrices respectively). Let p(t)= lZ(t).. 0 for
0 'x,,(t)
1 0---0
any element ¢t of T and put S;= 0 S: . Then we have p’
0
=8,0'S]'= (1) gfp;;;l)=<(1) Z), where Z=uS7!. Let Q; be the

connected component of Ker 4; at the unit element and I={i|Q;=T}.

Take an element t, of T such that the closed subgroup of T which
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contains to is T itself.

Put
- u’l(to) '32[
[ l o 7_ 1 (L )

(el

1 ay, .-, a,

and Sz=((:) E, , where E, is the unit matrix.
\ 0

Then S=S,;8, satisfies the Lemma 1.2. q.ed.

The following Lemma 1.3. is a key Lemma to prove that a connected

reductive algebraic group is semi-reductive.

Lemma 1.3. Let G be a connected algebraic group, o':G—
GL(n+1, k) an M-representation and let B be a Borel subgroup of G.

The following conditions are equivalent to each other.

(1) There exists a G-stable closed subset in P, which does not

contain the associated fixed point eg.
(2) There exists a point x(5=ey) in P, which is a B-fixed point
(3) Put p’=((1) l:)) For each element g of G, put H,
={y€P,_1|u(g) y=0} (this forms a hyperplane in P, ;). Then,
N\ Hy==¢ (B* being the unipotent part of B)
bEB®

" Proof. The equivalence of (1) and (2) is obvious. (2)—(3). Let
x(5~e,) be a B-fixed point. Put x=<i?), where x, is an element of
k and x'(5~0) is an (n X 1)-matrix. From the hypothesis, there is a

rational character A: B—k* such that

1 u(d)\ /%o X0
< >< >=/1(b)< ) for any element b of B.
0 o(d)/\« x’

Hence, xo+u(d)x'=4(b)x,. But A(d)=1 for any element & of
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B*. Thus x'€ N\ Hy and so /\ H, is not empty. (3)—>(2). Let T be
beB® bEBY
a maximal torus of G contained in B. By virtue of Lemma 1.2, we

may assume that the M-representation p’=<(1) Z) satisfies the condi-
tions (1) and (2) of Lemma 1.2. For any elements b, b’ of B* and ¢
of T,

u(bb’)=u(d")+u(b) o(8")
u(t™bt)=u(®) +u(t™'0) p(t)=u(t*b) 0(t)
= (u(b)+u(t™") (b)) 0(2)
=u(b)o(®).

Put H= "\ Hy(¢). For any element x’ of H, we have that
reBY

0=u(bd)x'=u(d) 2"+ u(d) o(b)x'=u(b) o(b")x’
0=u(t'bt) x'=u(b)p(t)x’

Hence, H is a B-stable linear subvariety of P,_;. By the theorem of
Lie-Kolchin, there exists a B-fixed element x'(s~0) in H. Put «

=(2,). Then we have,

<1 u(b)>< 0 > <u(b)x’> < 0 >
0 o)/ \x'/ \o(®)x'/ \o(b)x
for any element b of B, because u(b)x’=0 for any element b of B.

Thus, x» is a B-fixed point which is different from the associated fixed

point. g.e.d.

Corollary 1.4. For a connected solvable algebraic group G, the

Sfollowing conditions are equivalent to each other;
(1) G is geometrically reductive.
(2) G is reductive.

(3) G is semi-reductive.
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Proof. The equivalence of (1) and (2) is obvious. We have only
to prove that (3) implies (1). Let o:G—>GL(n+1,k) be an M-

representation of G. By virtue of Lemma 1.3, o’ is quivalent to an

1 0...0
M-representation of type | . Therefore, there exists a G-
0
stable hyperplane which does not contain the associated fixed point.

q.ed.

Corollary 1.5. Let G be a connected algebraic group and let N be
a closed connected subgroup of G such that B%=B*(B% being the
unipotent part of a Borel subgroup of N.) If N is semi-reductive, then
G is semi-reductive. In particular, if N is a closed connected normal
subgroup of G, if G/N is a torus group and if N is semi-reductive,
then G is semi-reductive.

Proof. The first part follows directly from Lemma 1.3. Since

G/N is a torus group, B% =B* and the second part is obvious. q.e.d.

Next we shall prove some propositions about semi-reductive groups.

Proposition 1.6. (1) Let G and G’ be algebraic groups. If there
is a surjective homomorphism from G to G' and if G is semi-reductive,

then G’ is semi-reductive.

(2) Let G be a connected algebraic group and let N be a closed
connected normal subgroup of G. If N is geometrically reductive and if

G/N is semi-reductive, then G is semi-reductive.

Proof. (1) is obvious. (2). Let ¢:G—>GL(n+1,k) be an M-
representation of G. There is an N-invariant monic homogeneous
polynomial F(xy, ---, x,) with respect to x, because NN is geometrically
reductive. Put V= ), Ff. Then ¥V is a finite dimensional G/N-

-{=Te

rational module. Put W= Vﬂ(; xi°k[ %9y -+, %5 ]). Then V=F-kDW
izl
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and V gives an M-representation of G/N. Let a be the ideal generated
by {F%}4e¢ in k[ x¢, --+, x, ). a is a G-stable ideal. If the associated
closed subset V' (a) in P, is non-empty, then V (a) is a G-stable closed
subset which does not contain the associated fixed point. Thus, we may
assume that V(a) is empty. Let {Fi, ..., F,} be a basis of W and
Fy=F. Then the map ¢: P, x=(x¢:---: 2,)>(Fo(x): ---: Fp(x)) EPp
is a non-constant morphism. Hence, dim(Img)=n. F;(x%)=F;(x)
(0<i<m) for any point x of P, and any g(€N), because F; is N-
invariant. Thus the orbit N(x) of x is contained in ¢~ '(¢(x)) for
any point x of P,. By the dimension theorem of morphisms, N(x)=:x
for a general point x of P, Therefore, o'| N is a unit representation
and so p’ is an M-representation of G/N. Hence, there exists a G-
stable closed subset in P, which does not contain the associated fixed

point. q.e.d.

Remark 1.7. Let G be a connected algebraic group and let N
be a closed normal subgroups of G (not necessarily connected). If N
is completely reducible (i.e. every rational representation of N is com-
pletely reducible.) and if G/N is semi-reductive, then we can prove
that G is semi-reductive by the same method as in the proof of Pro-
position 1.1 (2).

Proposition 1.8. Let G be a connected semi-simple algebraic group.

Then G is semi-reductive.

Proof. Let B and T be a Borel subgroup of G and a maximal
torus of G contained in B respcetively. Let ¢o: G—>GL(n+1,k) be an
M-representation of G which satisfies the conditions of Lemma 1.2.
Furthermore, Let r be dim T, > ={a} (or X o={ay, ---. &,} respectively)
be the positive root system of G (or fundamental root system respec-
tively) and let X be the rational character group of 7. Then
{ay, ---, a,} is a basis of X @Q over Q (Q being the rational number
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/

1
field.). Put p’=<(1) Z) and p’(t)z( 0

0...0
l’(t).. for each element

t of T. For any positive root «, tOhere is :”E)tr?é-parameter subgroup
T4t k— P, such that tto(x)t '=t(a(t)x) (t € T, x €k). Each element
b of B* can be written uniquely in the following way; b= [/ t.(x4)
(xo€k). Hence, we have that e
u(b)= 2 )c,",,]]x’&‘“ where c}, are elements of k& and m, are non-

m=(ma
negative integers. From this, we have the following;

u;(tbt'l)=u;(a/EZETa(a(t)xa))fh% )Cih/]a(t)’"“/]x’&'“
lLl(tbt_l)=/7.,71(t)u,~(b)=/1,71(t)m=§n )c,",,]]x’a'“.

Thus, if some c}, is not equal to zero, then —i;=7} mg . Put
a
4
Ai=Diriar(1<i<n), where r;, are rational numbers. If some r; is
E=1
n r n
positive, then u;=0 on B* Since G is semi-simple, 2 4;= 2 (XL rix)
i=1 k=1i=1

=0, and i ris=0 for all k. If each r; is not positive, then each r;
is equal 'tZ)I zero. In this case, o’ is a unit representation. By the
above argument, we can have that u;=0 for some i on B*. This and
Lemma 1.3 imply that there exists a G-stable closed subset which does

not contain the associated fixed point. q.e.d.

Theorem 1.9. Lot G be a connected reductive group. Then G is

semi-reductive.

Proof. By vitue of Corollary 1.5 or Proposition 1.6 (2), we can

easily prove Theorem 1.9.

Problem 1. Let G be a connected reductive algebraic group and
let ': G—>GL(n+1,k) be an M-representation of G. Assume that X
is a G-stable closed subvariety in P, which contains the associated fixed

point and dimension of X is greater than one. Then, does there exist
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a G-stable closed proper subset Y of X which does not contain the as-

sociated fixed point?

Remark 1.10. If Mumford conjecture is true, then we can easily

prove that problem 1 is true.
2. Reductive algebraic groups.

In this section, we shall consider the relation between reductive

algebraic groups and semi-reductive algebraic groups.

Lemma 2.1. (Steinberg [13]]) Let G’ be a connected simple alge-
braic group and let (G, w) be a central extension of finite type of G’
(m; G—>G' is a surjective homomorphism, Kerm is a central subgroup
of G and order of any element of Kerm is bounded). Then there is a
central extension (I', ') of G’ such that

(1) There is a group homomorphism ¢: 1" —G

(2) I's[I'yT] and n': I -G’ is an isogeny.

(3) The following diagram is commutative

/1

a
0 sKern »yG =G ——0.

We shall use this Lemma 2.1 to prove the following.

Proposition 2.2. Let G be a connected algebraic group and let
R be its rvadical. If R=R* dmR>1 and if R is a central subgroup
of G, then G+=[G, G.

Proof. If characteristic of k is zero, our assertion is obvious by
the Levi decomposition and we may assume that characteristic of & is
positive. We shall prove Proposition 2.2 by the induction on dimG.
If dimG=1, then G=R=R* is a commutative group, whence Proposi-
tion 2.2 is true. Assume that dimG>1 and put G'=G/R. If G’ is a
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simple algebraic group, then G=06(/")-R=R-0(I") by virtue of Lemma
2.1. Thus, [G,G]=[c(I),c(I")]=06(I")5~G. 1f G'=G/R is not simple,
then G'=G{-G1, where G] is a closed normal simple subgroup, G; is a
closed normal semi-simple subgroup of G’ and where (GiNG3) is a
finite group. Furtheoremore G; commutes with G;. Let 7:G—>G’
=G/R be a canonical homomorphism and let H be the connected
component of 7~ '(Gj) at the unit element. Then, dim H<dimG and
R is the radical of H. Hence the induction hypothesis implies that
H=+[H,H]. On the other hand, H=R-:[H,H] Thus we have
that RZ[H, H]. Put G'=G/[H,H] and R"=R-.[H, H]/[H, H]
=H/[H,H]. Then R” is the radical of G’,dimR”>1 and G'/R”
=~ G/H. Since G”/R" is simple, we have that G/[H, H]+[G/[H, H),
G/[H, H]]=[6G,G]/[H, H]. Therefore we have that G#[G, G].
q.e.d.

Corollary 2.3. Let G be a connected algebraic group and R be
the radical of G. If G=[G,G] and R be a central subgroup of G,

then G is semi-simple.

Proof. Put R=R*-R° where R* (or R®) is the unipotent part of
R (or the semi-simple part of R respectively). (R°N\[G, G]) is a finite
group, whence R*=(e). If dimR*=dimR>1, then G=[G, G] by
virtue of Corollary 2.3. Therefore R=R*=/(e). g.e.d.

By virtue of Proposition 2.2, we can show a necessary and suf-

ficient condition for semi-reductive algebraic groups to be reductive.

Theorem 2.4. Let G be a connected algebraic group. The follow-
ing conditions are equivalent to each other.

(1) G is reductive.

(2) G is semi-reductive and the unipotent radical of G is a central

subgroup.
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Proof. (1)—(2) is obvious. We shall prove (2)— (1) by the in-
duction on dimG. Let R be the radical of G and R° be the semi-
simple part of R. If dimR°*>1, then G/R® is reductive by the induc-
tion hypothesis. Hence R*=(e). If dimR*=0 and dim R*>1, then
G+[G,G] by virtue of Proposition 2.2. But this can not occur,
because G=R:[G, G| and G/[G, G] is a torus group. q.ed.

We shall show another condition next.

Theorem 2.5. Let G be a connected algebraic group and R be
the radical of G. The following conditions are equivalent to each other.

(1) G is reductive.

(2) G is semi-reductive and dim R* <1.

Proof. (1)—(2) is obvious. We shall prove (2)— (1) by the in-
duction on dimG. If dimG=1, then our theorem is obvious. Assuming
that dim R*=1, we shall derive a contradiction. Put 7:6> g ——
Int. g € Aut,ig.r. R*=k* (Int. g is the inner automorphism of G by g).
Furthermore, let G’ be the connected component of (Kerz) at the unit
element. Then G’ is a closed connected normal subgroup of G and
codimG’ <{1. Put R’ to be the connected component of (RNG’) at the
unit element. Then R’ is the radical of G’ and R'*=R*. Since R*
is a central subgroup of G, R’=R’*. R’* is commutative.

Hence R’® is a closed normal subgroup of G. If dim R’*>>1, then
G/R’* is reductive by the induction hypothesis and so R*=(e). There-
fore, we may assume that R’*=(e). Since dimR*=1, G'+=[G’, G'] by
virtue of Proposition 2.2. On the other hand, if [G', G']5~e, then
G'/[G’,G"] is reductive and R*<[G’,G’]. But G'=R'*-[G’,G’]. This
is a contradiction. Hence G’ is a commutative group and G is solvable.
By virtue of Corollary 1.4, G is torus group. This is also a contradic-

tion. q.ed.

Next we shall prove that semi-reductive algebraic groups are reduc-
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tive in the case of characteristic zero. At first, we shall prepare two

lemmas in order to prove it.

Lemma 2.6. (Mostow [6]) Let G be a connected algebraic group
and let R* be the unipotent radical of G. If characteristic of k is zero,
then for any maximal closed connected reductive subgroup G’ of G, we
have that G=R"-G'=G'+-R* (semi-direct).

Therefore, fiber space 7: G—G/R* has a global section which is a

group homomorphism.

Lemma 2.7. (Birula [27]) Let G be a connected algebraic group
and let H be a closed connected unipotent subgroup of G such that G/H
is affine. Then, for any k—H— rational module M, there is a k—G—
rational module N which satisfies,

(1) M is a k—H— rational submodule of N,
and

(2) MP=NCS where MP={meM|m"=m for every element h of
H} and N ={n €N |nf=n for every element g of G}.

Now we shall prove the following.

Theorem 2.8. In the case of characteristic zero, the following

conditions are equivalent to each other.
(1) G is geometrically reductive.
(2) G is reductive.

(3) G is semi-reductive.

Proof. It is well-known that (1) and (2) are equivalent to each
other (Nagata [10]). We have only to prove that (3) implies (2).
We shall prove it by the induction on dimG. If dimG=0 or 1, then
it is obvious. If every M-representation of two size of R* is trivial,

then R, is trivial. We shall prove that evely M-representation of two
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size of R* is trivial. Let V=eyk+ ek be an M-representation module
of R and let R*3>b lw~~—><(]5 ll)(b)>EGL(2, k) be the associated re-
presentation. By lemma 2.7, let W=) ef-k and let {e,, e1, ef?, ---,

gEG

ef"} (gi€G) be a basis of W. For any element b of R*,
et=v(b)ey+e;

efd=ef s = y(gbg Y eg el (i=2, ., m).

Therefore, we have an M-representation p'=<(1) Z)(EGL(m+1, k)) of

G and p’(b)z((l) %ib)) for any element & of R* Put G'=p'(G) and
G=0(G). If v=%0 on R, then G is reductive by the induction hypoth-
esis. Let ¢: G'> g'=((1) l;_> t———>Z€E€G be a canonical homomorphism.
Then Ker ¢p=R’* (R’ being the unipotent radical of G’ and R"*=p'(R¥))
because characteristic of % is zero. Thus G'/R’* is isomorphic to G.
By lemma 2.6, there exists a group homomorphism: G g va»—»((l) s(g )>
€G’ and s(g1* g2)=s(g2)+s(g1): g2 for every element gy and g, of G.

Let g'=((1) l;_) be an elment of G'.
<1 u) (1 s(g)><1 u—s(g‘))
o g/ \o g /o1

1 u—s(@
<0 1

and
> is an element of R’“

If dimR™=r, then there is an isomorphism a: R'*—k®" as algebraic
groups because R’* is commutative.

Let ¢:G' > g’ ———Int g’ € Autalgegr. (R"*)=Aut,1g.5r. (k®7). Since
characteristic of k is zero, Aut,ig...(A®)=GL(r,k). Thus ¢ is a
rational representation from G to GL(r, k) and Ker¢ contains R’*,
Hence we have a rational representation f from G to GL(r, k) such

that the following diagram is commutative.
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GI
[4

G'/R™* =G —E5GL(r, k).

By the above, we have a rational representation 7 from G’ to

GL(r+1, k).

1 1 u—s(g)
P L “(o 1 >
116 g= > €GL(r+1, k)
0

8 0 Bg)

Then 7-p’ is an M-representation of G and 7-p’ has no R*fixed point

which is not the associated fixed point. This is a contradiction. q.e.d.

Problem 2. Is a connected semi-reductive algebric group reduc-

tive?

3. Application.

We shall show an application of Proposition 1.8 in this section.
Let G be a connected algebraic group. It is well known that every
invertible regular function on G is a rational character up to a non-
zero constant (Rosenlicht [117). At first, we shall prove this fact
directly.

Lemma 3.1. Let T be a torus group. Then any invertible regular

Sfunction on T is a rational character up to a non-zero constant.

Proof. We can easily prove Lemma 3.1 by the induction of dim T.
q.e.p.

Definition 3.2. Let f be a regular function on G. For an
element g of G, we define 6f (or f® respectively) to be (°f)(g")=f(g'g)
(or fe(g")=f(g'g’) respectively) for any element g’ of G.

Lemma 3.3. Let G be a connected semi-simple algebraic group.
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Then any invertible regular function on G is a non-zero constant.

Proof. Let B, T and B_ be a Borel subgroup, a maximal torus of
G contained in B and the opposite Borel subgroup of B respectively.
Put

9: BEx Tx B*> (¥, t, b) 1—>b'-t-b €G.

Then ¢ is a morphism and Img is an affine open subset of G. Let
¢*: k[G] ~——k[ B* x T x B*] be the induced injective homomorphism.
If dim B*=n, then k[ B*x Tx B*]=k[ T](X1,,, Xn, Y1,,, Y, ], where
X; and Y; are indeterminates over k[ T]. Therefore, if f is an in-
vertible regular function on G, then ¢*(f) is an invertible element of
kLT]. In particular, °’f*=f for any element b (or 4") of B* (or B*
respectively). We may assume f(e)=1 where e is the unit element
of G, in order to prove that f is a non-zero constant. If we restrict
f on T, then it is a rational character on T by virtue of Lemma 3.1.
Put Q to be the connected component of Ker( f|T) at e. For any
element b of B* & of B* and ¢t of T,"f¥=f. Let ), ={a,,,a}
be a fundamental root system of G with respect to (B, T), G, the root
subgroup of G associated with «;(G,, being a connected semi-simple
subgroup and dimG,,=3), and P,, (or P_,, be a one-parameter subgroup
of G corresponding to a; (or—c;). Furthermore, let 4q,: k=5 Py, be
the isomorphisms and T,, be a maximal torus of G,, (dim T, =1).
Then,

1) T=T,. . -Ta,

(2) P_opta,(1)-P_yp1ta(—1)-P,, contains T,,.

Therefore, any element g of Im¢ can be written in the following way;
8= b/'z'a,(l) T—a;(x) fa,(—l)'t°b,

where '€ B%, b€ B*, t€Q and x€k. Thus f(g)=f(b'r,(1)r_s(x)
Ta(—1)tb)=f(t4,(1)7_o(x) 7o, (1)). But it is obvious that an in-
vertible regular function on P_, , is a non-zero constant. Hence f is a

non-zero constant. q.e.d.
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Now we can show the following Theorem 3.4.

Theorem 3.4. Let G be a connected algebraic group. Then any
invertible regular function on G is a rational character of G up to a

non-zero constant.

Proof. Let R be the radical of G and G'=G/R¥, where R* is the
unipotent part of R. Then G~ R*x G’ as algebraic varieties (Rosenlicht
[107], Grothendieck [47]). Thus, if n=dim R* then we have that k[ G ]
=k[G ][ X1, .-, X, ], where X; are indeterminates over k[ G']. Hence
we may assume that G is a reductive algebraic group in order to prove
Theorem 3.4. Then R is a central torus subgroup of G, G=R[G, G]
and [G,G] is a semi-simple algebraic group. Put ¢: Rx[G, G]
5(b, g) ~———b-g€G. Let ¢*: k[G]——k[Rx[G,G]] be the injec-
tive homomorphism induced by ¢. If f is any invertible regular func-
tion on G, then ¢*(f) is an invertible element of k[ R] by virtue of
Lemma 3.3. Thus, f is a rational character of G up to a non-zero

constant. g.e.d.

Corollary 3.5. Let G be a connected algebraic group whose
unipotent radical is trivial. Then any invertible vegular function on G

is a non-zero constant.
Proof. 1t is obvious.
Next, we shall show an application of Proposition 1.8.

Proposition 3.6. Let G be a semi-reductive algebraic group and f

be a non-constant regular function on G. Then V=73, f4k (or L 4fk)
geG gEeG

has a nonconstant Borel semi-invariant function on G.

Proof. If V=2 f%k has no constant function, then Proposition
gEG

3.6 is true by virtue by virtue of Lie-Kolchin’s theorem. We may
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assume that 7 has a non-zero constant function. Let {eq=1, ey, ..., ,}
be a basis of V. Then we have an M-representation of G. If we
write x=xpeo+x1€1+ -+ x,e,(x; €EL), then x is a constant function,
if and only if x1=---=x,=0. By virtue of Lemma 1.3, we have a
Borel semi-invariant point x=x,e¢+x,e1+:-+x,e, where some x;
#0 (1<<i<n). Therefore, V has a non-constant Borel semi-invariant

regular function on G. q.e.d.

Theorem 3.7. Let G be a connected seini-simple algebraic group

and f be a non-constant regular function on G. Then V=73, fk (or
» g€é

2.6fk) has a non-invertible Borel semi-invariant regular function on G.
g€G

Proof. 1t is obvious from Proposition 1.8, Proposition 3.6 and

Lemma 3.3. q.e.d.

Remark 3.8. Unfortunately, in Theorem 3.7 we can not say the
following. There exist finite elements {gi, .-, g»} of G and finite

elements {x,, ..., 2,} of k£ such that

1) {f®, ..., fé} is a bassi of V.

(2) 2 x:f® is a non-constant Borel semi-invariant regular func-
i=1

tion on G.
n
3 .leiﬁFO-
i<
In fact, we can easily make a counter example.
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