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Let R be the local ring of an algebraic curve at a point, R its
integral closure and c¢ the conductor of R in R. The length I[(R/R)
of the R-module R/R is called the dégree of singularity of R, and it
has been proved by many algebraic geometers that if R is a Gorenstein

ring, then the following equality holds:
(1) L(R/R)=1(R/c), or equivalently 20(R/R)=1(R/c)

(cf. the Introduction in [27]). Recently, in the case where R is a
one-dimensional analytically irreducible (not necessarily geometric) local
ring such that R and R have the same residue field, E. Kunz has
proved that R is a Gorenstein ring if and only if the value semi-
group of R is symmetric. In the course of the proof it is implicit-
ly demonstrated that R is a Gorenstein ring if and only if the equality
(1) holds (cf. [4]).

In this paper, under the same assumption as in the above result of
Kunz, we shall prove the following theorem which contains the above

result as a special case:

If R is a Macaulay local ring of type # (i.e., MCyu ring in the
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sence of H. Bass [17], cf. [5]), then the following inequalities hold:
d <6 <ud, or equivalently 2d <c <<(u+1)d

where 6 =1(R/R), d=1(R/c) and c¢=1(R/c) (Theorem 2 in §3).

§1. Preliminary.

Let R be a one-dimensional analytically irreducible noetherian local
ring with maximal ideal m. Let R be the integral closure of R in
the quotient field K and ¢ the conductor of R in R. It is known that
R is a finitely generated R-module and is a discrete valuation ring
(for instance, see Exercise 1, §33, Chap. V, [6]). Let v be the valua-
tion of K with the valuation ring R. We will use the following
notations: For a subset S of K, v{S}={v(x)|x€S—0} and v(S)
=inf{v(x)|x € S}. For an ideal a in R,a'={x€K|xaS R} a frac-
tional ideal of R in K. For an R-module M, [(M)=the length of M.
For a finite set F, #F=the number of the elements of F.

Let A be an r-dimensional Macauly local ring with maximal ideal n.
We say that 4 is a Macaulay local ring of type u if x#=I1(Ext,(4/n, A)).
Hence A4 is a Gorenstein local ring if and only if A4 is a Macaulay
local ring of type one.

We shall use later the following Rees’ theorem (cf. [2] or [7]):

Let A be a noetherian local ving and a an ideal in A. Let
X1y -y X be an A-sequence in a and b the ideal genervated by xi, .-, %,

Then:
0, 0<p<n
Ext4(A/a, A)=
Homy(4/a, A/0), p=n.

Throughout this paper, R is a one-dimensional analytically ir-
reducible noetherian local ring such that R and R have the same

residue field, and we will use constantly the same notation as above.

§2. The type of R.

Although the following two lemmas are contained in [4], we give
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the proofs for the convenience of the reader.

Lemma 1. If v(x)=uv(y) for x and y in K, then v(x—ay)>v(y)
for some unit a in R.

Proof. Since x/y is a unit in R and since R and R have the
same residue field, there is a unit ¢ in R such that x/y—a is in the

maximal ideal of R. Hence we have v(x—ay)>v(y). q.ed.

Lemma 2. Set c=v(c). Then c={x€K|v(x)>c} and v{R}
O{c+n|n=0,1,2,...}. Moreover, c—1 is the largest integer not

belonging to v{R}.

Proof. The proof of the first part is easy and we omit Iit.
Suppose that ¢—1€w{R}. Let ¢t be an element in R such that
v(t)=1. By Lemma 1 we have v(x—at°})>c—1 for some x in R
and for some unit @ in R. Hence we have t°"'€R. Let y be an
element in K. By Lemma 1 there is an element z in R such that
v(y—2z)>0. Then (y—z)t°"'€R because v((y—z)t°"")>>c. Hence
we have yt° '=(y—2z)t°'+zt°'€R. This shows that ¢°'€Ec.
Therefore ¢—1_>wv(c)=c. This is a contradiction. q.ed.

Lemma 3. Let M be an R-module such that K2MDR. If
v{M} =v{R}, then M=R.

Proof. Let x be an element in M. Since v(x)=v(y) for some y
in R, by successive applications of Lemma 1 there is an element z in
R such that v(x —z)>c where c=v(c). Hence by Lemma 2 we have
x €R. q.e.d.

We remark that if M is a finitely generated R-module contained
in K, then v(M) is an integer. In this case v{M} —v{R} is a finite
set.
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Lemma 4. Let M be a finitely generated R-module such that
KoM2R and M=~=R. Let v{M} —v{R}={my, .., my}, m1<---<m,,
and set Mi={x€ M|v(x)>m;}. Let M; be the R-module generated by
M! and R. Then v{M}={m; ..., my}\Jv{R} and M,=M.

Proof. Let x be an element in M; and x=x"+1y, x'€M; and
y€R. Since v(x)=v(y) or wv(x)>v(x)>m; we have the first
assertion. Let x be an element in M such that v(x)<m;. Since
v(x)€v{R}, by Lemma 1 we have v(x—y)>m; for some y in R.
Hence we have x— y&€ M; and therefore we have x € M. q.e.d.

Proposition 1. Let M be a finitely generated R-module such that
KoM2R. Then [((M/R)=8w{M}—v{R}).

Proof. Set A=#(w{M} —v{R}). We proceed by induction on Z.
In case when 1=0, by Lemma 3 our assertion is obvious. Assume
that A>0. Let v{M}—v{R}={m,, ..., my}, m;<---<m,, and let M;
be the R-module defined in Lemma 4. Let N be a submodule of M
such that N contains M; properly. We first show that v{N}=v{M}.
Let x be an element in N such that x ¢ M,. Suppose that v(x — y)7=m;
for any yin R. Since v(x)€v{R}, by Lemma 1 we have v(x —z)>m;
for some z in R. Hence we have x € M,. This is a contradiction.
Therefore v(x — y)=m, for some y in R, and this shows that v{N}
=p{M}. Next we show that N=M. Let x be an element in M
such that v(x)<msz. If v(x—y)=m, for some y in R, then there is
an element z in N such that v(x— y)=wv(z). By Lemma 1 we have
v(x—u)>m; for some u in N, and hence we have x €N. If v(x—y)
#m; for any y in R, then v(x)E€v{R}, and hence by Lemma 1 there
is an element z in R such that v(x —z)>m,. Whence we also have
x €N. This shows that N=M. Therefore we have [(M/M;)=1. On
the other hand, by Lemma 4 v{M,} —v{R}={ms, .-, m,}. Hence, by
our induction hypothesis, [(M;/R)=24—1. Therefore we have I(M/R)
=4 q.e.d.
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Corollary. Let M be a finitely generated R-module such that
K2oM2R. Then for every submodule N of M such that N 2R,

I(M/N)=4({M} —v{N}).

Remark. Let r and s be integers in v{R} such that r<ls. Set
a={x€R|v(x)>r} and b={x €R|v(x)>s}. For a and b, by the
same way as the proof of Proposition 1, we have [(a/b)=*#(v{a} —v{b}).

Theorem 1. R is @ Macaulay local ring of type H(v{m='} —v{R}).

Proof. Since R is a one-dimensional noetherian local integral
domain, R is a Macaulay local ring. Let a be a non-zero element in
nt. Then (eR: m)=am™! (cf. Rechenregel 4, §1, [37]). Hence by Rees’

theorem we have:
Extk(R/m, R)~(aR: m)/aR=am™'/aR~m"'/R.

This shows that I(Extk(R/m, R))=I(m"'/R). Therefore our assertion

follows from Proposition 1. q.e.d.

§3. The degree of singularity.

Let v{R}=A{vo, v1, - va_1} I{n EZ|n>c}, 0=0o<0, < - <w4_1
<c=uw(c), where Z is the set of integers. Set a;={x € R|v(x)>v;}
and az=c. Obviously a; is an ideal in R and ay=R, a;=m. Next we
remark that ¢’*=R"Y. In fact, let x be an element in ¢'. Suppose
that x ¢ R. Since v(x)<0, we have ¢c—1—uwv(x)>>c. Let ¢ be an
element in R such that »(¢)=1. By Lemma 2 we have z=¢°"1""® gg,
Since xS R, we have xz€ R. Hence c—1=uv(x)+v(z)€v{R}. This
contradicts Lemma 2. Therefore ¢'C R. Since the opposite inclusion
is obvious, we have ¢ !=R.

Consider the following ascending chain of (fractional) ideals:

(2) c=a;Cag1 - CayCRCa' C- CaglyCazl=R.

1) We can show that the ideal a, is divisorial, i.e., a;=(a7!)"! for every i.
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Since v{a;_1} —v{a;} ={vi_1}, we have [(a;_;/a)=1 by the remark
after Corollary to Proposition 1. Hence we have [(R/c)=d. We also
remark that [(R/c)=c because R and R have the same residue field.
Set 0=I(R/R) and ¢;=I(a;'/a;!;). By the above chain (2) the fol-

lowing equalities hold:

(3) c=d+0 and 6= 306,
.1

Proposition 2. With the same notation as above, c—1—v; 1 is

the largest integer belonging to v{a;'} —v{a;l,}. Therefore 0;>1.

Proof, Set w=c—1—v;_y;. By Lemma 2 w+v;_y=c—1¢v{R},
and hence we have w¢ v{a;!;}. Let x be an element in K such that
v(x)=w. Let y be an element in a;. If v(y)=v; for some j,i<j
<d—1, then v(xy)=c—1+4(v;—v;_1) >c. If v(y)>c, then obviously
v(xy)>c. Hence by Lemma 2 we have x y€ R and whence x €a;.
This shows that w€v{a;'}. Therefore we have wev{a;'} —v{a;l;}.
Next we have to show that if n€wv{a;'} —v{a;l;}, then n<<w. In
order to see this, it is enough to show that if n>w, then n €v{a7!;}.
Assume that n>w. Let z be an element in K such that v(z)=n.
Let y be an element in a;_;. If v(y)=v; for some j, i—1<j<d—1,
then v(zy)=n+v;,>w+v;>c—1. If v(y)>c, then v(zy)>>c. Hence
by Lemma 2 we have zy€R, and whence z€ajl,. This shows that -
n €v{a;l;}. The second part follows from the first part and Corollary

to Proposition 1. q.e.d.

Corollary. With the same notation as above, the integer c—1
belongs to v{m '} —v{R}. Moreover, R is a Gorenstein ring if and
only if v{m}={c—1}Uv{R}.

Proof. The first part is a special case of Proposition 2. The

second part follows from the first part and Theorem 1. g.e.d.
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Proposition 3. With the same notation as above, if R has type
U, then the inequality 0; < pu holds for every i.

Proof. Since Il(a;_1/a;)=1, a;_1/a; is isomorphic to R/m as R-

modules. Hence we have the exact sequence
0—->R/m—R/a;— R/a;_1—0.
This exact sequence gives us the following long exact sequence:
-+»—>Homg(R/m, R)— Extk(R/a;_1, R)—
Extk(R/a;, R) > Extk(R/m, R)—--.

Since the conductor ¢ contains a non-zero element a, by Rees’ theorem
we have

Extk(R/q;, R)~(aR: a;)/aR=aa;'/aR>=a;!/R
and Homg(R/aj, R)=0 for every j. Therefore the above long exact

sequence is reduced to the following exact sequence:

0—>a;ly/R—>a;)/R—>m'/R—>-.

This shows that a;'/a;!; is isomorphic to a submodule of m~!/R.?
Therefore we have 0; < x. q.e.d.

Theorem 2. With the same notation as above, if R has type u,
then the following inequalities hold:

2d <c<(u+1)d.

Proof. Since 1<0;<u by Propositions 2 and 3, our assertions
follow directly from the equalities (3).® g.e.d.

2) In the proof of Lemma 1 in [8] P. Roquette proved this fact by a method
different from ours.

3) In [4] E. Kunz proved the inequality 2d <c¢ by considering the value-
semigroup of R, and in [9] P. Samuel had already pointed out that if the embed-
ding dimension of R is greater than two, it may happen the strict inequality
2d<ec.
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Corollary. With the same notation as above, R is a Gorenstein

ring if and only if the equality 20=c holds.

Proof. The only if part follows from Theorem 2 and (3). Assume
d

that 20=c. By (3) we have d= };0;. Since 0;>>1, we have §;=1
i=1

for every ¢ and hence u#=0,=1. g.e.d.

§4. Examples.

In general, the equality ¢c=(x#+1)d, or equivalently 0=ud, in the
second inequality in Theorem 2 does not hold. However, it may happen
that the equality does hold even if R is not a Gorenstein ring. Note
that 0=ud if and only if 0;=x for all i. Hence, for instance, if
d=1, then the equality 0= ud trivially holds. To see these facts we
give the following examples.

Let £ be an algebraically closed field and ¢t an analytically in-
dependent element over k. Let ny, ..., n, be positive integers such that
gcd(ny, -y ng)=1. Set x;=t",i=1,...,q. Let C be the affine algebraic
curve with generic point (xi, ..., x,) over k and R the local ring of C
at the origin. Then R is an analytically irreducible local ring and
the integral closure R in the quotient field K(=k(¢)) is the regular
local ring k[¢]y;. Hence R and R have the same residue field £.
Let r be an integer in v{R}. Set a={xE€R|v(x)>r} and I(a)
={ne€Z|n+v{a} Sv{R}}. We show that

4 v{a"1} =I(a).

Proof of (4): Let y be an element in a and write y= f/ g where
f and g are in k[xy,..., x,] and g=0 at the origin. We first note
that two monomials in xi, ..., £, coincide with each other if and only

if they have the same value. Hence we can write
f=bl mr,(x)+"'+bs m,‘(x)

where b;€k, by#0, m,(x) is a monomial in xy, ..., x, with value r;,

and v(y)=r<--<r,. Since the value of m,(x) is not less than
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r,m,(x)€a, whence ry, ..., 7, are in v{a}. Let n be an integer in I(a).
Since n+r; € v{R}, t"m, (x)=mau.,(x). Therefore t"f= 2 bim,,, (%) ER,
that is, t"y€R. This shows that t"€a”!, whence n €v{a™'}. Thus
we have I(a) Cwv{a~'}. Since the opposite inclusion is obvious, we have
the assertion.

By using (4) we can compute 0; and # because 0;=#(v{a7!}

—vfaili ).

Example 1. In case where ¢=3 and n1=3, nz=4, n3=5, we
have v{R}={0}\J{n €Z|n>3}, c=3, d=1, u=0,=2.

Example 2. In case where ¢=3 and n;=3, n2=10, n3=11, we
have v{R}={0, 3,6\ J{n €Z|n>9}, c=9,d=3, u=0;,=2 for i=1,2,3.

Example 3. In case where ¢g=4 and n;=11, n,=12, n3=13,
nys=15, we have
v{R} =40, 11, 12, 13, 15, 22, 23, 24, 25, 26, 27, 28, 30}\J{n € Z|n >33},
¢=33,d=13, y=0,=05=3, 04=012=013=2 and the others §; are all
equal to 1.

In Examples 1 and 2, the equality ¢c=(#+1)d holds, though R is
not a Gorenstein ring. In Example 3, the equality does not hold. The

author knows few of examples such that R is not a Gorenstein ring and
d>1, c=(u+1)d.

Addendum: Theorem 2 and Corollary to Theorem 2 can be
generalized to the analytically unramified local ring case. We shall

give the proof in a forthcoming paper.
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During the symposium on algebraic geometry

held on September 6-9, 1971, at Zad, Yamagata, Mr. K. Watanabe

kindly informed me that the results of the present paper are closely

related to Herzog and Kunz’s latest work, Die Wertehalbgruppe eines
lokalen Rings der Dimension 1, S.-B. Heidelberger Akad. Wiss. Math.

-naturw. 1971, 2 Abh..

And I found that my paper has some consider-

able overlap with theirs, but my investigation had been done independ-

ently of this Herzog-Kunz’s paper.



