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Let R  be the local ring of an algebraic curve at a point, R  its
integral closure and c  the conductor o f  R  in  R .  The length l(R/R)
of the R-m odule R/R is called the degree o f singularity  o f  R , and it

has been proved by many algebraic geometers that if R  is a Gorenstein

ring, then the following equality holds :

(1) l(R/ R) (R/ c), or equivalently 21 (R/R) =  1 (R/c)

(cf. the Introduction in [2 1). Recently, in  the case where R  i s  a

one-dimensional analytically irreducible (not necessarily geometric) local

ring such that R  and R  have the same residue field, E. Kunz has

proved that R  i s  a  G orenstein  r in g  if an d  on ly if the value semi-

group o f  R  is sym m etric. In the course of the proof it is implicit-

ly demonstrated that R  is a  Gorenstein ring if and only if the equality

(1 )  holds (cf. [41).

In  this paper, under the same assumption as in the above result of

Kunz, we shall prove the following theorem which contains the above

result as a special case :

I f  R  is  a Macaulay local ring of type (i.e., M C it ring in the
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sence o f H . Bass [ 1 ] ,  cf. [51 ), then the following inequalities hold :

d <d < / id ,  or equivalently 2d  < c < (,a +1) d

where d =l(R/ R), d=l (R/c) and c =  ( R / c )  (Theorem 2  in  § 3).

§ 1 .  Preliminary.

Let R  be a one-dimensional analytically irreducible noetherian local

ring w ith  maximal id ea l m . L e t  R  b e  the integral closure o f R  in
the quotient field K  and c  the conductor o f R  in  R .  It is known that
R  i s  a  fin itely generated R-module and i s  a  discrete valuation ring

(for instance, see Exercise 1, § 33, Chap. V, [ 6 1 ) .  Let v  be the valua-

tio n  o f  K  w ith  th e  valuation r in g  R .  W e  w i l l  use the following

notations: F o r  a  subset S o f K, vIS1 -= {v (x )lx  ES —  O} a n d  v (S)
= inf {v(x) I x E SI . For an ideal a  in  R, ct- 1 =- E K I x a  R I  a  frac-
tional ideal o f R  in  K .  For an  R-module M , (M )=  the length o f M.

For a finite set F,#F=the number of the elements o f F.
Let A  be an r-dimensional Macauly local ring with maximal ideal rt.

W e say that A is  a Macaulay local ring of type du i f  ict /(Ext51(A /n, A)).

Hence A  i s  a  Gorenstein local ring if and on ly  i f  A  is  a Macaulay

local ring of type one.

W e shall use la ter the following Rees' theorem (c f. [2 1  or D O :
L e t  A  b e  a  noetherian local ring and a  a n  ideal in  A . L e t

x n  be an A-sequence in a and b  the ideal generated by x i , x n .
Then:

E x t  (A /a, A ) =  
0, 0 < p < n

H om A (A /a , A /b), p = n .

Throughout th is paper, R  i s  a  one-dimensional analytically ir-
reducible noetherian local ring su ch  th a t R  and R  have the same
residue field, and w e w ill use constantly the same notation as above.

§ 2 .  The type of R.

Although the following two lemmas are contained in  D J, w e g ive
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the proofs for the convenience of the reader.

Lemma 1. If v (x )=v (y ) for x  and  y  in  K , then v(x — a y)> v(y)
fo r some unit a in R.

P ro o f .  Since x / y i s  a  u n it in  R  and since R  and R  have the

same residue field, there is a  u n it a  in  R  such that x/y—a i s  in the

maximal ideal o f R .  Hence we have v(x —a y)> v(y). q.e.d.

Lemma 2. S e t  c = v (c ) .  Then c=  E K iv ( x )>  c l  and v {R }
n=O , 1, 2 , •• 1.

 Moreover, c —1 i s  th e  largest integer not

belonging to v{R} .

P ro o f. T h e  proof o f  th e  f irs t part i s  e a s y  and  w e  omit it.

Suppose th a t  c — 1 E v {R}. L e t  t b e  a n  element in  R  such that
v (t)=  1. By Lemma 1  w e  have v(x —atc - 1 ) > c — 1  fo r  some x  in  R
and for some u n it a  in  R .  Hence we have tc - 1  E R .  L e t  y  be an

element in  R .  By Lemma 1  th e re  is  an element z  in  R  such that
v( y— z)>  O. T h e n  (y— z)tc - 1  E R  because v((y— z)tc - 1 ) > c .  Hence
w e  h a v e  yte - 1 =(y— z)tc - 1 + ztc - 1  E R .  Th is  sh ow s t h a t  tc- 1  E c.

Therefore c — 1> v (c)=  c. This is  a contradiction. q . e . d .

Lemma 3 .  L e t  M  b e  an R-module such  tha t K D M Q  R .  I f

v IM I= v {R } ,  then M = R .

P ro o f .  Let x  be an element in M .  Since v (x )= - v( y) for some y
in  R , by successive applications of Lemma 1  there is an element z  in

R  such that v(x — z )> c  where c =  v (c ).  Hence by Lemma 2 w e have

x E R. q.e.d.

W e rem ark that i f  M  i s  a  finitely generated R-module contained
in K , then v (M ) is  an in teger . In  th is case v {M} — v {R}  i s  a  finite
set.
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Lemma 4 .  L e t  M  b e  a  f initely  generated R -m odule such that
R  and R .  L et v{M} —  v {R}  = {mi, • • • mx}  mi< • • <mx,

and set .111;=  E MI v (x )> m1}. L e t  M i b e  the  R -m odule generated by
11/1 and  R . T h e n  v  =  • • • , nix,} UV {R} an d  M 1 =M .

P ro o f . Let x  b e  an element in  M i a n d  x = x ' y ,  x ' E  M ; and
y E R .  Since v ( x ) = v ( y )  o r  v ( x ) >  v (x ')>  m i , w e  have the first
assertion. Let x  b e  an  element in  M  such that v ( x ) < mi. S in c e
v(x) E v {R } , by Lem m a 1 w e have v(x —  y )> rn i  f o r  some y  in R.
Hence we have x — yE M . and therefore we have x  E M 1 . q.e.d.

Proposition 1. L et M  be a f initely  generated R -m odule such that
R . T hen l(M / R )-=#(v{ M }  —  v{ R } ).

P ro o f . Set 2= (v  { M }  —  v { R } ). W e  proceed by induction on 2.
In case w hen 2= 0, by Lem m a 3  our assertion is  obv ious. Assume

th a t 2 > 0. L e t  v{M } — v {R} = {mi, • • • , m } , m i<• • • <m x ,  and let M i

b e the R-m odule defined in  Lemma 4. Let N  be a  submodule of M
such that N  contains M 2  properly. W e first show that v {N} =v {M} .
Let x  be an element in N  such that x  M 2 .  Suppose that v(x — y)/=m i

for any y  in  R .  Since v(x) E v {R }, by Lemma 1 we have v(x — z)> n2•2
fo r  some z  in  R .  Hence we have x E M 2 .  This i s  a contradiction.

Therefore v(x —  y)=  m i for some y  in  R ,  and th is shows that v{N}
==v { M } . N ext w e show th a t N = M .  L e t x  b e  an element in  M
such that v (x )< m 2 .  I f  v(x —  y) -= m I fo r  some y in  R , then there is
an element z  in  N  such that v (x  —  y )=v (z ). By Lemma 1 w e have
v(x — u) > m 2 fo r some u  in N , and hence we have x  E N .  If v(x — y)
* I n i  fo r any y in  R , then v(x) E v {R}, and hence by Lemma 1 there
is  an element z  in R  such that v(x — z )>  m 2 . Whence we also have

x E N .  This shows that N = M .  Therefore we have /(M/M2)= 1. On

the other hand, by Lemma 4 v{/1/2 } — v {R} = {m 2 , • • • , mx }. Hence, by
our induction hypothesis, /(M2/R)= 2— I. Therefore we have l(M/ R)
=2. q . e . d .
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Corollary. L e t  M  b e  a  f initely  generated R-module such  that
K.QMQ R .  T h e n  f o r  ev ery  submodule N o f  M  s u c h  th a t  N  R,

l(M/ N)=#(v {M} — v {N}).

Rem ark. Let r  and s  be integers in v  IR I such that r s. S e t

a= { x E  v (x )>  r }  and b = ix  E RI v ( x ) >  .  For a and b ,  b y  the

same way as the proof of Proposition 1, we have /(c-t/b)=#(v {a} — y {b} ).

Theorem 1 .  R  is a M acaulay  local ring of  type #(v{m - 1 } — v {R}).

P ro o f . S ince R  i s  a  one-dimensional noetherian  local integral
domain, R  i s  a Macaulay local ring. Let a be a non-zero element in
nt. Then (aR: m )  = a m  (cf. Rechenregel 4, §1, [3 1). Hence by Rees'
theorem we have :

Extl? (R/m, (aR: at)/aR = ant - 1 /a R

This shows that /(Extj? (R /m , R ))= /(111- 1 / R ) .  Therefore our assertion

follows from Proposition 1. q.e.d.

§ 3 . The degree of singularity.

Let v {R} = Ivo, v1, • • •, vd-il in  E Zi n >lc} , 0=  vo < vi < • • • <vd-i
< c -= v(c), where Z  i s  the set of in tegers. Set ai =  ix  E R v (x )>  vil
and ad c .  Obviously ai i s  an ideal in R  and a o = R, ai =1 -n. Next we
remark that c l  R 1 ) . In fact, let x  b e an element in S u p p o s e
th a t x  R .  Since v (x )<  0 ,  w e  have c  — 1 —  v (x )> c . L e t t  b e  an

v(xelement in R such that v(t)=- 1. By Lemma 2  we have z = -
t c-i- ) E  c .

Since x c  R , w e have xz E R .  Hence c -1 = v (x )d -v (z ) E v {R} . This
contradicts Lemma 2. Therefore g R .  Since the opposite inclusion
is obvious, we have c- 1 = R.

Consider the following ascending chain o f (fractional) ideals:

(2) c=adEctd-i.C•••CaiCR(cti-ic

1) We can show that the ideal at is  divisorial, i.e., a t -=(aT') - i  for every i.
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Since v — v = {vi_1}, w e  h a v e  /(ai_ i/cti) = 1 by the remark

after Corollary to Proposition 1. Hence we have l(R /c)=  d . We also

remark that l(ri/c)=-- c because R  an d  R  h ave  th e  same residue field.
S e t  a= /(R/R) an d  d i = 1(ci7 1 /a iJ 1 ). B y  th e  above chain (2 )  th e  fol-

lowing equalities hold:

( 3 )
d

c =  d + 6  a n d  S = E 6 i .i=1

Proposition 2. W ith the sam e notation as above, c —1— v is
the largest integer belonging to v {a il } — y {a7_1

1 } . T heref ore  i >1.

P ro o f , S e t w= c— 1 By Lemma 2  w+vi_ i = c - 1  v{R} ,
and hence we have w  v {a -

i 1 } .  L et x  be an  element in  K  such that

v (x )= w . L e t  y  be a n  element i n  c i .  I f  v( v i  fo r  some j ,  i  < j

< d -1 ,  then v(x y).= c — 1 + (v1 — vi _ 0 >  c .  If v ( y ) > c ,  then obviously

v ( x  >  c. Hence by Lemma 2  we have x yE R and whence x E ail.

This show s that w E v {a7 1 } . Therefore we have w E v —  v  .
N ext w e have to  show  that i f  n E v —  v  l a i _ 1

1 1 ,  then n  < w .  In
order to see this, it is enough to show that i f  n > w, then n E y 07_1

1 1.
Assume that n  >  w . L e t  z  b e  a n  element in  K  such that v ( z ) = n .
L e t  y  be an  element in  a i _1 . If v( y)= . vi  fo r  some j ,  i - 1 < j< d  — 1,
then v(zy)= n  v i >  w  v. ;  >  c — 1. If v ( y ) > c ,  then v (z  y )>  c. Hence

by Lemma 2  w e h ave xyE R , and whence z Ectil l . This shows that

n E v 071 1 1. The second part follows from the first part and Corollary

to Proposition 1. q.e.d.

Corollary. W ith  th e  sam e notation as above, th e  integer c - 1

belongs to v 1m- 1 1 — v . M oreover, R  i s  a  Gorenstein ring i f  an d  _
only  i f  v {m- 1 }  = {c -1 } .

P ro o f. T h e  first p a r t  is  a  special case of Proposition 2. The
second part follows from the first part and Theorem 1. q.e.d.
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Proposition 3. W ith the sam e notation as abov e, if  R  has type

,a, then the inequality  6 i < ,ci holds fo r  every i.

P ro o f . Since /(a1_1/a 1)= 1 , a i_dai is isomorphic to R / m  a s  R-
modules. Hence we have the exact sequence

0 — ).R/n -r— ).R/a 1 — >R/a 1_1 — ›- 0.

This exact sequence gives us the following long exact sequence:

• • •— *Hom R (R/m , R)—>Extj? (R/a i _i , R)—>

Ext 1
R (R/a 1, R)—>Ext 1

R (R/m, R)—>....

Since the conductor c  contains a non-zero element a ,  by Rees' theorem

we have

ExtigR/aJ , (aR: ai )/aR =aail/aR _'a i-
1/R

and HomR (R/a i ,  R ) = 0  fo r every j .  Therefore th e  above long exact
sequence is reduced to the following exact sequence:

0 —a71- 1/R —>ail/R —>ut - 1 /R—>• • •.

This shows that « j 1/a 1 is isom orphic to a  submodule o f iii /R. 2

Therefore we have 61 < ii. q.e.d.

Theorem 2. W ith the sam e notation as above, i f  R  has type it,
then the follow ing inequalities hold:

2d < c < (11+ 1)d.

P ro o f . Since 1<a i <,a  by Propositions 2  an d  3 ,  our assertions
follow directly from the equalities (3). 3 )q . e . d .

2) In the proof o f Lemma 1 in [8] P. Roquette proved this fact by a  method
different from ours.

3) In  [4 ]  E . Kunz proved th e  inequality 2d <  c  by considering th e  value-
semigroup o f R , and in [9] P. Samuel had already pointed out that if the embed-
ding dimension of R  is greater than tw o, it m ay happen th e  s tric t inequality
2d<c.
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Corollary. W ith the  sam e notation as above, R  i s  a  Gorenstein

ring if  and only  if  the equality  26 = e holds.

P ro o f . The only if part follows from Theorem 2  and (3). Assume
d

that 21= c. B y  ( 3 )  w e have d = E d i . Since Oi > 1 ,  w e have di =1
=1

for every i  and hence /1=6 1 =1 . q.e.d.

§ 4. Examples.

In general, the equality c = Ca + 1 ) d ,  or equivalently S= / id , in the
second inequality in Theorem 2  does not h o ld . However, it may happen
that the equality does hold even i f  R  is not a  Gorenstein ring. Note
that a=  i t d  if  a n d  on ly i f  ai = i t  for a l l  i. Hence, for instance, if
d =1, then the equality = a d  trivially holds. To see these facts we
give the following examples.

L e t k  b e  a n  algebraically closed fi e ld  an d  t  an  analytically in-
dependent element over k. Let n 1 , • ,  n ,  be positive integers such that
gcd(n 1 , n , ) =  1 .  Set x =  t ' ,  1=1 , • ,  q .  Let C be the affine algebraic
curve with generic point (x i , x )  over k  and R  the local ring of C

a t  th e  o r ig in . Then R  i s  a n  analytically irreducible local ring and
the integral closure R  in the quotient field K (= k ( t) )  i s  the regular
local ring  k D I ) . H e n c e  R  and  R  h ave th e  same residue field k.

L e t  r  b e  a n  in teger in  y  { R } .  S e t a=  { x  E R I v ( x ) > r }  an d  I (a)
-= E  Z i  n  7 )  {a} g  { R } }  .  We show that

(4) y la - 1 1 = I (a).

Proof  of  ( 4 ) :  L e t y  be an element in a and w rite y =f /g -  where
f  and g  are in  k [x i ,  •  .., x ,1  and g O  a t  the o rig in . W e first note
that two monomials in  xi, x ,  coincide with each other if and only
if  they have the same v a lu e . Hence we can write

f = b i m r,(x )+•••+b ,m ,,(x )

where bi E k , bi * O , m r , ( x )  i s  a  monomial in  x i, • • • , x ,  with value r i ,
an d  v ( y ) =r 1 <• • • <r s . Since th e  v a lu e  o f mr , ( x )  is no t less than
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r, m r i (x )E a, whence ri, • • •, r, are in v {a}. Let n be an integer in I(a).

Since n + r i E v{R}, t n n ir (x )= m n + r,(x ). Therefore Of = E bintnfr(x)E R ,
th at is, t n yE R .  This shows th at tn E a - 1 , whence n E v {a - 1 } .  Thus

w e have I(a) v 0 - 1 1. Since the opposite inclusion is obvious, we have

the assertion.

B y  u s in g  (4 )  w e can com pute Si a n d  i t  because Si =#(v{ ail}

E x am p le  1 .  In case where q= 3 and n = 3, nz = 4, n 3 = 5 ,  we
have v {R } = {0} {n E Z I n> 3}, c= 3, d=1, /1=6 1 =2.

E x am p le  2 .  In case where q = 3  and n1=3, nz =10, n 3 =11, we
have v{R}={0, 3, 6}U{n E ZI n >9}, c =9, d= 3, =  6 i=  2  fo r i =1, 2, 3.

E x a m p le  3 .  In  case w here q = 4  and ni =11, n2=12, n3=13,

n4 =15, w e have

v {R} = {0, 11, 12, 13, 15, 22, 23, 24, 25, 26, 27, 28, 30} {n  E  Z I n  > 3 3 },
c=33, d=13, ici=61=65=3, 64=612=613=2 and the others 61 are all
equal to 1.

In Examples 1  and 2, the equality c =( ,a+1 )d  holds, though R  is
not a Gorenstein ring. In Example 3, the equality does not hold. The

author knows few of examples such that R  is not a Gorenstein ring and
d>1, c =( ,a+l)d .

A d d e n d u m : Theorem 2  and Corollary to Theorem 2  can be
generalized to the analytically unramified local ring case. We shall
give the proof in a forthcoming paper.
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Added in  P ro o f: During the sym posium  on algebraic geometry

h e ld  o n  Sep tem ber 6-9 , 1971 , at Z a6 , Y am agata, M r . K . Watanabe

kindly informed m e  th a t th e  resu lts o f  th e  present paper a re  closely

re la ted  to  Herzog and K unz's latest w ork, Die Wertehalbgruppe eines

lokalen Rings der D im ension 1, S.-B. Heidelberger Akad. W iss. Math.

-naturw . 1971, 2 A bh.. A nd I found that my paper has some consider-

able overlap with theirs, but m y  investigation had been done independ-

ently of this Herzog-Kunz's paper.


