On the degree of singularity of one-dimensional analytically irreducible noetherian local rings

By

Tadayuki Matsuoka

(Communicated by Professor M. Nagata, February 10, 1971; Revised, April 17, 1971)

Let R be the local ring of an algebraic curve at a point, \overline{R} its integral closure and c the conductor of R in \overline{R} . The length $l(\overline{R}/R)$ of the R-module \overline{R}/R is called the *degree of singularity* of R, and it has been proved by many algebraic geometers that if R is a Gorenstein ring, then the following equality holds:

(1)
$$l(\bar{R}/R) = l(R/c)$$
, or equivalently $2l(\bar{R}/R) = l(\bar{R}/c)$

(cf. the Introduction in [2]). Recently, in the case where R is a one-dimensional analytically irreducible (not necessarily geometric) local ring such that R and \overline{R} have the same residue field, E. Kunz has proved that R is a Gorenstein ring if and only if the value semigroup of R is symmetric. In the course of the proof it is implicitly demonstrated that R is a Gorenstein ring if and only if the equality (1) holds (cf. [4]).

In this paper, under the same assumption as in the above result of Kunz, we shall prove the following theorem which contains the above result as a special case:

If R is a Macaulay local ring of type μ (i.e., $MC\mu$ ring in the

sence of H. Bass [1], cf. [5]), then the following inequalities hold:

$$d \leq \delta \leq \mu d$$
, or equivalently $2d \leq c \leq (\mu+1)d$

where $\delta = l(\bar{R}/R)$, d = l(R/c) and $c = l(\bar{R}/c)$ (Theorem 2 in §3).

§1. Preliminary.

Let R be a one-dimensional analytically irreducible noetherian local ring with maximal ideal in. Let \overline{R} be the integral closure of R in the quotient field K and C the conductor of R in \overline{R} . It is known that \overline{R} is a finitely generated R-module and is a discrete valuation ring (for instance, see Exercise 1, §33, Chap. V, [6]). Let v be the valuation of K with the valuation ring \overline{R} . We will use the following notations: For a subset S of K, $v\{S\} = \{v(x) | x \in S - 0\}$ and $v(S) = \inf\{v(x) | x \in S\}$. For an ideal C in C i

Let A be an r-dimensional Macauly local ring with maximal ideal \mathfrak{n} . We say that A is a Macaulay local ring of type μ if $\mu = l(\operatorname{Ext}_A^r(A/\mathfrak{n},A))$. Hence A is a Gorenstein local ring if and only if A is a Macaulay local ring of type one.

We shall use later the following Rees' theorem (cf. [2] or [7]): Let A be a noetherian local ring and a an ideal in A. Let x_1, \dots, x_n be an A-sequence in a and b the ideal generated by x_1, \dots, x_n . Then:

$$\operatorname{Ext}_A^{\,p}(A/\mathfrak{a},A) = \left\{ \begin{array}{ll} 0, & 0 \leq p < n \\ \operatorname{Hom}_A(A/\mathfrak{a},A/\mathfrak{b}), & p = n \end{array} \right.$$

Throughout this paper, R is a one-dimensional analytically irreducible noetherian local ring such that R and \overline{R} have the same residue field, and we will use constantly the same notation as above.

§2. The type of R.

Although the following two lemmas are contained in [4], we give

the proofs for the convenience of the reader.

Lemma 1. If v(x)=v(y) for x and y in K, then v(x-ay)>v(y) for some unit a in R.

Proof. Since x/y is a unit in \overline{R} and since R and \overline{R} have the same residue field, there is a unit a in R such that x/y-a is in the maximal ideal of \overline{R} . Hence we have v(x-ay)>v(y).

Lemma 2. Set c = v(c). Then $c = \{x \in K | v(x) \ge c\}$ and $v\{R\}$ $\supseteq \{c+n | n=0, 1, 2, ...\}$. Moreover, c-1 is the largest integer not belonging to $v\{R\}$.

Proof. The proof of the first part is easy and we omit it. Suppose that $c-1 \in v\{R\}$. Let t be an element in \overline{R} such that v(t)=1. By Lemma 1 we have $v(x-at^{c-1})>c-1$ for some x in R and for some unit a in R. Hence we have $t^{c-1} \in R$. Let y be an element in \overline{R} . By Lemma 1 there is an element z in R such that v(y-z)>0. Then $(y-z)t^{c-1} \in R$ because $v((y-z)t^{c-1}) \ge c$. Hence we have $yt^{c-1}=(y-z)t^{c-1}+zt^{c-1} \in R$. This shows that $t^{c-1} \in c$. Therefore $c-1 \ge v(c)=c$. This is a contradiction. q.e.d.

Lemma 3. Let M be an R-module such that $K \supseteq M \supseteq R$. If $v\{M\} = v\{R\}$, then M = R.

Proof. Let x be an element in M. Since v(x) = v(y) for some y in R, by successive applications of Lemma 1 there is an element z in R such that $v(x-z) \ge c$ where c = v(c). Hence by Lemma 2 we have $x \in R$.

We remark that if M is a finitely generated R-module contained in K, then v(M) is an integer. In this case $v\{M\}-v\{R\}$ is a finite set.

Lemma 4. Let M be a finitely generated R-module such that $K \supseteq M \supseteq R$ and $M \ne R$. Let $v\{M\} - v\{R\} = \{m_1, \dots, m_{\lambda}\}, m_1 < \dots < m_{\lambda}$, and set $M'_i = \{x \in M | v(x) \ge m_i\}$. Let M_i be the R-module generated by M'_i and R. Then $v\{M_i\} = \{m_i, \dots, m_{\lambda}\} \cup v\{R\}$ and $M_1 = M$.

Proof. Let x be an element in M_i and x=x'+y, $x'\in M_i'$ and $y\in R$. Since v(x)=v(y) or $v(x)\geq v(x')\geq m_i$, we have the first assertion. Let x be an element in M such that $v(x)< m_1$. Since $v(x)\in v\{R\}$, by Lemma 1 we have $v(x-y)\geq m_1$ for some y in R. Hence we have $x-y\in M_1'$ and therefore we have $x\in M_1$.

Proposition 1. Let M be a finitely generated R-module such that $K \supseteq M \supseteq R$. Then $l(M/R) = \sharp (v\{M\} - v\{R\})$.

Proof. Set $\lambda = \#(v\{M\} - v\{R\})$. We proceed by induction on λ . In case when $\lambda = 0$, by Lemma 3 our assertion is obvious. Assume that $\lambda > 0$. Let $v\{M\} - v\{R\} = \{m_1, \dots, m_{\lambda}\}, m_1 < \dots < m_{\lambda}$, and let M_i be the R-module defined in Lemma 4. Let N be a submodule of Msuch that N contains M_2 properly. We first show that $v\{N\} = v\{M\}$. Let x be an element in N such that $x \notin M_2$. Suppose that $v(x-y) \neq m_1$ for any γ in R. Since $v(x) \in v(R)$, by Lemma 1 we have $v(x-z) \ge m_2$ for some z in R. Hence we have $x \in M_2$. This is a contradiction. Therefore $v(x-y)=m_1$ for some y in R, and this shows that $v\{N\}$ $= v\{M\}$. Next we show that N=M. Let x be an element in M such that $v(x) < m_2$. If $v(x-y) = m_1$ for some y in R, then there is an element z in N such that v(x-y)=v(z). By Lemma 1 we have $v(x-u) \ge m_2$ for some u in N, and hence we have $x \in N$. If v(x-y) $\neq m_1$ for any y in R, then $v(x) \in v(R)$, and hence by Lemma 1 there is an element z in R such that $v(x-z) \ge m_2$. Whence we also have $x \in \mathbb{N}$. This shows that N=M. Therefore we have $l(M/M_2)=1$. On the other hand, by Lemma 4 $v\{M_2\} - v\{R\} = \{m_2, \dots, m_{\lambda}\}$. Hence, by our induction hypothesis, $l(M_2/R) = \lambda - 1$. Therefore we have l(M/R) $=\lambda$. q.e.d. **Corollary.** Let M be a finitely generated R-module such that $K \supseteq M \supseteq R$. Then for every submodule N of M such that $N \supseteq R$, $l(M/N) = \sharp (v\{M\} - v\{N\})$.

Remark. Let r and s be integers in $v\{R\}$ such that $r \le s$. Set $a = \{x \in R \mid v(x) \ge r\}$ and $b = \{x \in R \mid v(x) \ge s\}$. For a and b, by the same way as the proof of Proposition 1, we have $l(a/b) = \#(v\{a\} - v\{b\})$.

Theorem 1. R is a Macaulay local ring of type $\#(v\{\mathfrak{m}^{-1}\}-v\{R\})$.

Proof. Since R is a one-dimensional noetherian local integral domain, R is a Macaulay local ring. Let a be a non-zero element in m. Then $(aR:m)=am^{-1}$ (cf. Rechenregel 4, §1, [3]). Hence by Rees' theorem we have:

$$\operatorname{Ext}_{R}^{1}(R/\mathfrak{m}, R) \simeq (aR:\mathfrak{m})/aR = a\mathfrak{m}^{-1}/aR \simeq \mathfrak{m}^{-1}/R.$$

This shows that $l(\operatorname{Ext}_R^1(R/\mathfrak{m}, R)) = l(\mathfrak{m}^{-1}/R)$. Therefore our assertion follows from Proposition 1. q.e.d.

§3. The degree of singularity.

Let $v\{R\} = \{v_0, v_1, \cdots, v_{d-1}\} \cup \{n \in Z \mid n \geq c\}, \ 0 = v_0 < v_1 < \cdots < v_{d-1} < c = v(c), \ \text{where } Z \text{ is the set of integers. Set } \alpha_i = \{x \in R \mid v(x) \geq v_i\} \text{ and } \alpha_d = c.$ Obviously α_i is an ideal in R and $\alpha_0 = R$, $\alpha_1 = m$. Next we remark that $c^{-1} = \overline{R}^{1}$. In fact, let x be an element in c^{-1} . Suppose that $x \notin \overline{R}$. Since v(x) < 0, we have $c - 1 - v(x) \geq c$. Let t be an element in \overline{R} such that v(t) = 1. By Lemma 2 we have $z = t^{c-1-v(x)} \in c$. Since $xc \subseteq R$, we have $xz \in R$. Hence $c-1=v(x)+v(z) \in v\{R\}$. This contradicts Lemma 2. Therefore $c^{-1} \subseteq \overline{R}$. Since the opposite inclusion is obvious, we have $c^{-1} = \overline{R}$.

Consider the following ascending chain of (fractional) ideals:

$$(2) c = a_d \subset a_{d-1} \subset \cdots \subset a_1 \subset R \subset a_1^{-1} \subset \cdots \subset a_{d-1}^{-1} \subset a_d^{-1} = \overline{R}.$$

¹⁾ We can show that the ideal a_i is divisorial, i.e., $a_i = (a_i^{-1})^{-1}$ for every i.

Since $v\{\alpha_{i-1}\}-v\{\alpha_i\}=\{v_{i-1}\}$, we have $l(\alpha_{i-1}/\alpha_i)=1$ by the remark after Corollary to Proposition 1. Hence we have l(R/c)=d. We also remark that $l(\overline{R}/c)=c$ because R and \overline{R} have the same residue field. Set $\delta=l(\overline{R}/R)$ and $\delta_i=l(\alpha_i^{-1}/\alpha_{i-1}^{-1})$. By the above chain (2) the following equalities hold:

(3)
$$c = d + \delta$$
 and $\delta = \sum_{i=1}^{d} \delta_{i}$.

Proposition 2. With the same notation as above, $c-1-v_{i-1}$ is the largest integer belonging to $v\{\alpha_i^{-1}\}-v\{\alpha_{i-1}^{-1}\}$. Therefore $\delta_i \geq 1$.

Proof, Set $w=c-1-v_{i-1}$. By Lemma 2 $w+v_{i-1}=c-1\notin v\{R\}$, and hence we have $w\notin v\{\alpha_{i-1}^{-1}\}$. Let x be an element in K such that v(x)=w. Let y be an element in α_i . If $v(y)=v_j$ for some $j,i\leq j\leq d-1$, then $v(x\,y)=c-1+(v_j-v_{i-1})\geq c$. If $v(y)\geq c$, then obviously $v(x\,y)\geq c$. Hence by Lemma 2 we have $x\,y\in R$ and whence $x\in\alpha_i^{-1}$. This shows that $w\in v\{\alpha_i^{-1}\}$. Therefore we have $w\in v\{\alpha_i^{-1}\}-v\{\alpha_{i-1}^{-1}\}$. Next we have to show that if $n\in v\{\alpha_i^{-1}\}-v\{\alpha_{i-1}^{-1}\}$, then $n\leq w$. In order to see this, it is enough to show that if n>w, then $n\in v\{\alpha_{i-1}^{-1}\}$. Assume that n>w. Let z be an element in K such that v(z)=n. Let y be an element in α_{i-1} . If $v(y)=v_j$ for some $j,i-1\leq j\leq d-1$, then $v(z\,y)=n+v_j>w+v_j\geq c-1$. If $v(y)\geq c$, then $v(z\,y)\geq c$. Hence by Lemma 2 we have $z\,y\in R$, and whence $z\in\alpha_{i-1}^{-1}$. This shows that $n\in v\{\alpha_{i-1}^{-1}\}$. The second part follows from the first part and Corollary to Proposition 1.

Corollary. With the same notation as above, the integer c-1 belongs to $v\{\mathfrak{m}^{-1}\}-v\{R\}$. Moreover, R is a Gorenstein ring if and only if $v\{\mathfrak{m}^{-1}\}=\{c-1\}\cup v\{R\}$.

Proof. The first part is a special case of Proposition 2. The second part follows from the first part and Theorem 1. q.e.d.

Proposition 3. With the same notation as above, if R has type μ , then the inequality $\delta_i \leq \mu$ holds for every i.

Proof. Since $l(\alpha_{i-1}/\alpha_i)=1$, α_{i-1}/α_i is isomorphic to R/m as R-modules. Hence we have the exact sequence

$$0 \to R/\mathfrak{m} \to R/\mathfrak{a}_i \to R/\mathfrak{a}_{i-1} \to 0$$
.

This exact sequence gives us the following long exact sequence:

$$\cdots \to \operatorname{Hom}_{R}(R/\mathfrak{m}, R) \to \operatorname{Ext}_{R}^{1}(R/\mathfrak{a}_{i-1}, R) \to$$

$$\operatorname{Ext}_{R}^{1}(R/\mathfrak{a}_{i}, R) \to \operatorname{Ext}_{R}^{1}(R/\mathfrak{m}, R) \to \cdots.$$

Since the conductor $\mathfrak c$ contains a non-zero element a, by Rees' theorem we have

$$\operatorname{Ext}_{R}^{1}(R/\mathfrak{a}_{i}, R) \simeq (aR: \mathfrak{a}_{i})/aR = a\mathfrak{a}_{i}^{-1}/aR \simeq \mathfrak{a}_{i}^{-1}/R$$

and $\operatorname{Hom}_R(R/\alpha_j, R) = 0$ for every j. Therefore the above long exact sequence is reduced to the following exact sequence:

$$0 \rightarrow \alpha_{i-1}^{-1}/R \rightarrow \alpha_{i}^{-1}/R \rightarrow \mathfrak{m}^{-1}/R \rightarrow \mathfrak{m}^{-1}/R \rightarrow \cdots$$

This shows that $\alpha_i^{-1}/\alpha_{i-1}^{-1}$ is isomorphic to a submodule of \mathfrak{m}^{-1}/R .²⁾ Therefore we have $\delta_i \leq \mu$.

Theorem 2. With the same notation as above, if R has type μ , then the following inequalities hold:

$$2d \leq c \leq (\mu+1)d$$
.

Proof. Since $1 \le \delta_i \le \mu$ by Propositions 2 and 3, our assertions follow directly from the equalities (3).³⁾ q.e.d.

²⁾ In the proof of Lemma 1 in [8] P. Roquette proved this fact by a method different from ours.

³⁾ In [4] E. Kunz proved the inequality $2d \le c$ by considering the value-semigroup of R, and in [9] P. Samuel had already pointed out that if the embedding dimension of R is greater than two, it may happen the strict inequality 2d < c.

Corollary. With the same notation as above, R is a Gorenstein ring if and only if the equality $2\delta = c$ holds.

Proof. The only if part follows from Theorem 2 and (3). Assume that $2\delta = c$. By (3) we have $d = \sum_{i=1}^{d} \delta_i$. Since $\delta_i \ge 1$, we have $\delta_i = 1$ for every i and hence $\mu = \delta_1 = 1$.

§4. Examples.

In general, the equality $c=(\mu+1)d$, or equivalently $\delta=\mu d$, in the second inequality in Theorem 2 does not hold. However, it may happen that the equality does hold even if R is not a Gorenstein ring. Note that $\delta=\mu d$ if and only if $\delta_i=\mu$ for all i. Hence, for instance, if d=1, then the equality $\delta=\mu d$ trivially holds. To see these facts we give the following examples.

Let k be an algebraically closed field and t an analytically independent element over k. Let n_1, \cdots, n_q be positive integers such that $\gcd(n_1, \cdots, n_q) = 1$. Set $x_i = t^{n_i}$, $i = 1, \cdots, q$. Let C be the affine algebraic curve with generic point (x_1, \cdots, x_q) over k and R the local ring of C at the origin. Then R is an analytically irreducible local ring and the integral closure \overline{R} in the quotient field K(=k(t)) is the regular local ring $k [t]_{(t)}$. Hence R and \overline{R} have the same residue field k. Let r be an integer in $v\{R\}$. Set $\alpha = \{x \in R \mid v(x) \geq r\}$ and $I(\alpha) = \{n \in Z \mid n+v\{\alpha\} \subseteq v\{R\}\}$. We show that

(4)
$$v\{a^{-1}\}=I(a).$$

Proof of (4): Let y be an element in α and write y=f/g where f and g are in $k[x_1, ..., x_q]$ and $g \neq 0$ at the origin. We first note that two monomials in $x_1, ..., x_q$ coincide with each other if and only if they have the same value. Hence we can write

$$f = b_1 m_{r_1}(x) + \cdots + b_s m_{r_s}(x)$$

where $b_i \in k$, $b_1 \neq 0$, $m_{r_i}(x)$ is a monomial in x_1, \dots, x_q with value r_i , and $v(y) = r_1 < \dots < r_s$. Since the value of $m_{r_i}(x)$ is not less than

 $r, m_{r_i}(x) \in \mathfrak{a}$, whence r_1, \dots, r_s are in $v\{\mathfrak{a}\}$. Let n be an integer in $I(\mathfrak{a})$. Since $n+r_i \in v\{R\}$, $t^n m_{r_i}(x) = m_{n+r_i}(x)$. Therefore $t^n f = \sum b_i m_{n+r_i}(x) \in R$, that is, $t^n y \in R$. This shows that $t^n \in \mathfrak{a}^{-1}$, whence $n \in v\{\mathfrak{a}^{-1}\}$. Thus we have $I(\mathfrak{a}) \subseteq v\{\mathfrak{a}^{-1}\}$. Since the opposite inclusion is obvious, we have the assertion.

By using (4) we can compute δ_i and μ because $\delta_i = \#(v\{\alpha_i^{-1}\})$ $-v\{\alpha_{i-1}^{-1}\}$.

Example 1. In case where q=3 and $n_1=3$, $n_2=4$, $n_3=5$, we have $v\{R\} = \{0\} \cup \{n \in Z | n \ge 3\}$, c=3, d=1, $\mu = \delta_1 = 2$.

Example 2. In case where q=3 and $n_1=3$, $n_2=10$, $n_3=11$, we have $v\{R\}=\{0,3,6\}\cup\{n\in Z|n\geq 9\}$, c=9, d=3, $\mu=\delta_i=2$ for i=1,2,3.

Example 3. In case where q=4 and $n_1=11, n_2=12, n_3=13, n_4=15$, we have $v\{R\}=\{0,11,12,13,15,22,23,24,25,26,27,28,30\} \cup \{n\in Z|n\geq 33\}, c=33, d=13, \mu=\delta_1=\delta_5=3, \delta_4=\delta_{12}=\delta_{13}=2$ and the others δ_i are all equal to 1.

In Examples 1 and 2, the equality $c = (\mu + 1)d$ holds, though R is not a Gorenstein ring. In Example 3, the equality does not hold. The author knows few of examples such that R is not a Gorenstein ring and d > 1, $c = (\mu + 1)d$.

Addendum: Theorem 2 and Corollary to Theorem 2 can be generalized to the analytically unramified local ring case. We shall give the proof in a forthcoming paper.

EHIME UNIVERSITY

References

[1] H. Bass, Injective dimension in noetherian rings, Trans. Amer. Math. Soc. 102 (1962), 18-29.

- [2] H. Bass, On the ubiquity of Gorenstein rings, Math. Zeitschr. 82 (1963), 8-28.
- [3] R. Berger, Über eine Klasse unvergabelter lokaler Ringe, Math. Ann. 146 (1962), 98-102.
- [4] E. Kunz, The value-semigroup of a one-dimensional Gorenstein ring, Proc. Amer. Math. Soc. 25 (1970), 748-751.
- [5] T. Matsuoka, Some remarks on a certain transformation of Macaulay rings,J. Math. Kyoto Univ. 11 (1971), 301-309.
- [6] M. Nagata, Local rings, Interscience, New York, 1962.
- [7] D. Rees, A theorem of homological algebra, Proc. Camb. Phil. Soc. 52 (1956), 605-610.
- [8] P. Roquette, Über den Singularitätsgrad eindimensionaler Ringe. II, J. Reine Angew. Math. 209 (1962), 12-16.
- [9] P. Samuel, Singularités des variétés algébriques, Bull. Soc. Math. France 79 (1951), 121-129.

Added in Proof: During the symposium on algebraic geometry held on September 6-9, 1971, at Zaô, Yamagata, Mr. K. Watanabe kindly informed me that the results of the present paper are closely related to Herzog and Kunz's latest work, Die Wertehalbgruppe eines lokalen Rings der Dimension 1, S.-B. Heidelberger Akad. Wiss. Math. -naturw. 1971, 2 Abh.. And I found that my paper has some considerable overlap with theirs, but my investigation had been done independently of this Herzog-Kunz's paper.