On the unique factorization theorem for formal power series II

By

Hajime NISHIMURA

(Communicated by Professor Nagata, July 31, 1972)

Let R be a ring,¹⁾ $X = \{x_1, x_2, \dots, x_n, \dots\}$ be a set of infinitely many independent variables over R. We have two notions of formal power series with coefficients in R and variables in X, [1, p. 152]. The one called \aleph_0 -series, is a formal sum of X-monomials with coefficients in R. The other, called *usual formal power series*, is such a \aleph_0 -series whose homogeneous part of degree n is a finite sum for all n.

We denote by $R\{X\}_{\aleph_0}$ the ring of \aleph_0 -series, and by $R\{X\}$ the ring of usual formal power series, which is a subring of $R\{X\}_{\aleph_0}$. In other words, $R\{X\}$ means the (X)-adic completion of the polynomial ring R[X], where (X) is the ideal generated by the set X.

In this note, we shall prove that the unique factorization theorem still holds for $R\{X\}$, if R satisfies the following condition:

(*) $R\{x_1, \dots, x_n\}$ is a unique factorization domain, for any n (finite).

The idea of the proof is as follows: Given $F \in R\{X\}$, we factorize F viewed as an element of $R\{X\}_{\aleph_0}$ into irreducible factors. Here we note that $R\{X\}_{\aleph_0}$ is a unique factorization domain, provided R satisfies (*), [1, Theorem 1]. Then we connect each irreducible factor of F, which is an \aleph_0 -series, to a usual formal power series

¹⁾ A ring in this note always means a commutative ring with unity.

(Proposition 1 and 2 below).

In our theorem, X need not be a countable set, but card. X may be arbitrary. Later we shall reduce the general case to the case where card. $X = \aleph_0$, until then we assume X is a countable set.

1. Let f be an element of $R\{X\}_{\aleph_0}$, then f is written $f=f_0+f_1+\cdots$, where f_j is the homogeneous part of degree j in f, $f_0 \in R$ is the constant term of f. The following reduction of f to a certain special type of \aleph_0 -series is our essential tool. First we define

Definition. Let $f \in R\{X\}_{\aleph_0}$. f is said to be reduced in $R\{X\}_{\aleph_0}$, when $f_0 \neq 0$ and any coefficient of monomial of degree ≥ 1 which actually appears in f is not divisible by f_0 .

Lemma 1. Let $f \in R\{X\}_{\aleph_0}$ with $f_0 \neq 0$. Then there exists a reduced element g in $R\{X\}_{\aleph_0}$ such that $f \sim g^{(2)}$

Proof. As in [1], we order all X-monomials by their degree and then for X-monomials of the same degree we order lexicographically. Since X is countable, all X-monomials are arranged in this order

$$m_0 = 1 < m_1 < \cdots < m_\nu < \cdots$$

By induction on ν , we shall define a sequence of units $\{h_{\nu}\}_{\nu-1,2,\cdots}$, $h_{\nu} \in R\{X\}_{S_{\alpha}}$ such that

(i) the coefficient $a_{\nu} \in R$ of m_{ν} in $f \cdot h_1 \cdots h_{\nu}$ is not divisible by f_0 , if $a_{\nu} \neq 0$; and

(ii) h_{ν} has the form $h_{\nu}=1+c_{\nu}\cdot m_{\nu}, c_{\nu}\in R$.

Assume we have defined $h_1, \dots, h_{\nu-1}$. If the coefficient of m_{ν} in $f \cdot h_1 \dots h_{\nu-1}$ is not divisible by f_0 , then define $h_{\nu} = 1$. If the coefficient of m_{ν} in $f \cdot h_1 \dots h_{\nu-1}$ is $f_0 b_{\nu}$, with $b_{\nu} \in R$, then we define $h_{\nu} = 1 - b_{\nu} \cdot m_{\nu}$; if follows that $f \cdot h_1 \dots h_{\nu-1} \cdot h_{\nu}$ does not contain the monomial m_{ν} .

150

²⁾ $f \sim g$ means f and g are associates with each other.

Now, we consider the formal product $\prod_{\nu=1}^{m} h_{\nu}$. It is clear by (ii) above that, for any monomial m_{μ} , the coefficient of m_{μ} in a finite product $\prod_{\nu=1}^{n} h_{\nu}$ with $\rho \gg \mu$ is independent of the length ρ . Therefore, infinite product $\prod_{\nu=1}^{n} h_{\nu}$ defines just an element of $R\{X\}_{\aleph_0}$, which we denote by h. We note that h, with constant term 1, is a unit of $R\{X\}_{\aleph_0}$.

Set $f \cdot h = g$. Then g has the required properties; because $f \sim g$ and, for any monomial m_{μ} , the coefficient of m_{μ} in g is equal to that in $f \cdot \prod_{\nu=1}^{\mu} h_{\nu}$. q.e.d.

The following lemma may be well-known in the case of a finite number of variables, e.g. [2, Theorem 3]. We extend for \aleph_0 -series, with characteristic arbitrary.

Lemma 2. Let R be an integral domain, and K be its quotient field. Let p be the characteristic of R and ν be a natural number such that $p \nmid \nu^{3}$ Then for any element h of $R\{X\}_{\aleph_0}$ with constant term 1, there corresponds unique $k \in K\{X\}_{\aleph_0}$ with constant term 1 such that $h = k^{\nu}$, i.e. $k = h^{1/\nu}$.

Proof. Let $h=1+h_1+h_2+\cdots$, $k=1+k_1+k_2+\cdots$. The condition that $h=k^{\nu}$ is satisfied if and only if

(1)
$$h_1 = \nu k_1, \quad h_j = \nu k_j + f_{\nu,j}(k_1, \cdots, k_{j-1}) \quad j = 2, 3, \cdots,$$

where $f_{\nu,j}$ is an appropriate polynomial in k_1, \dots, k_{j-1} with integral coefficients. Since $p \nmid \nu$, we can solve these equations successively for k_1, k_2, \dots :

(2)
$$k_1 = \frac{1}{\nu} h_1, \ k_2 = \frac{1}{\nu} h_2 - \frac{1}{\nu} f_{\nu,2} \left(\frac{1}{\nu} h_1 \right), \ \cdots.$$
 q.e.d.

It is noted that by (2) we see also $h^{1/\nu} \in \mathbb{R}[1/\nu] \{X\}_{\mathbf{X}}$.

For a fixed *n*, let $R_1 = R\{x_1, \dots, x_n\}$; and let $\rho_n: R\{X\}_{\bigotimes_0} \rightarrow R_1$

³⁾ The characteristic $p \nmid v$ means either p=0, or p>0 and $p \nmid v$.

be the ring homomorphism to take the residue class of each element of $R\{X\}_{\aleph_0}$ modulo the ideal generated by $\{x_{n+1}, x_{n+2}, \cdots\}$ as in [1, (4)]. Let $i: R_1 \rightarrow R\{X\}_{\aleph_0}$ be natural injection. Let $Y = \{y_1, y_2, \cdots\}$ be a countable set of independent variables over R_1 . We consider the ring $R_1\{Y\}_{\aleph_0}$, the following is immediate.

Lemma 3. There is a unique ring isomorphism $\iota : R_1 \{Y\}_{\aleph_0}$ $\rightarrow R\{X\}_{\aleph_0}$, such that $\iota | R_1 = i$ and $\iota(y_j) = x_{n+j}$ for $j = 1, 2, \cdots$. Moreover, $R_1\{Y\}$ is isomorphic to $R\{X\}$ by ι .

We may assume that $R\{X\}_{\aleph_0}$ is identified with $R_1\{Y\}_{\aleph_0}$, by virtue of the above isomorphism ι . For any element $f \in R\{X\}_{\aleph_0}$, we may regard f also as an element of $R_1\{Y\}_{\aleph_0}$ and write

$$(3) f=f_0+f_1+\cdots+f_r+\cdots,$$

where f, is the homogeneous part of f (may be an infinite sum) of degree r in variables y's, coefficients in R_1 . We note that $f \in R\{X\}$ = $R_1\{Y\}$ if and only if every f, in (3) is a finite sum of Y-monomials.

The following two lemmas give sufficient conditions for $f \in R\{X\}_{\aleph_0}$ to be in $R\{X\}$.

Lemma 4. [1, Lemma 2] Let R be an integral domain and $f \in R\{X\}_{\mathcal{H}_{\alpha}}$, $F \in R\{X\}$. If $f \cdot F \in R\{X\}$, then $f \in R\{X\}$.

Lemma 5. Let R be an integral domain, p be its characteristic. Let ν be a natural number such that $p \nmid \nu$. For any $f \in R\{X\}_{\aleph_0}$, if $f^{\nu} \in R\{X\}$ then $f \in R\{X\}$.

Proof. We may assume $f \neq 0$. It is clear that if *n* is sufficiently large, $\rho_n f \neq 0$ in $R_1 = R\{x_1, \dots, x_n\}$. We fix such a *n*, and identify $R\{X\}_{\bigotimes_0}$ with $R_1\{Y\}_{\bigotimes_0}$. Set $f^{\nu} = F \in R_1\{Y\}$. We have in $R_1\{Y\}_{\bigotimes_0}$.

(4)
$$\begin{cases} f = f_0 + f_1 + \dots + f_r + \dots, & \rho_n f = f_0 \neq 0 \\ F = F_0 + F_1 + \dots + F_s + \dots. \end{cases}$$

Assume $f \notin R_1\{Y\}$. Let f_r be the first term in f which is not a finite sum.

Take the homogeneous part of degree r in both sides of $F=f^{\nu}$, and we have

(5)
$$F_r = \nu f_0^{\nu-1} f_r + \sum f_{j_1} \cdots f_{j_{\nu}},$$

where \sum means the summation taken over all lists of ν indices (j_1, \dots, j_{ν}) such that $j_1 + \dots + j_{\nu} = r$, $0 \leqslant j_1 \leqslant r$, \dots , $0 \leqslant j_{\nu} \leqslant r$.

Each of F_r , $f_{j_1} \cdots f_{j_\nu}$ in (5) is a finite sum of Y-monomials; while, $\nu f_0^{\nu-1} f_r$ is not a finite sum, since $p \nmid \nu$ and $\nu f_0^{\nu-1} \neq 0$; a contradiction. q.e.d.

2. Throughout this section we shall assume that R satisfies the condition (*). We use the fact that $R\{X\}_{\aleph_0}$ is a unique factorization domain, [1, Theorem 1]. Recall that, for given $f \in R\{X\}_{\aleph_0}$, the factorization of f into irreducible factors is obtained in accordance with that of $\rho_n f$ in $R_1 = R\{x_1, \dots, x_n\}$ with $n \gg 0$. In particular, the following statements hold true:

(6) $\begin{cases} a) \quad f \text{ is irreducible in } R\{X\}_{\aleph_0} \text{ if and only if } \rho_n f \\ \text{ is so in } R_1 \text{ for } n \gg 0. \end{cases}$ b) $f, g \text{ are relatively prime in } R\{X\}_{\aleph_0} \text{ if and only} \\ \text{ if } \rho_n f, \rho_n g \text{ are so in } R_1 \text{ for } n \gg 0. \end{cases}$

Lemma 6. Let $f = f_0 + f_1 + \cdots$, $g = g_0 + g_1 + \cdots$ be elements of $R_1 \{Y\}_{\aleph_0}$ with $f_0 \neq 0$, $g_0 \neq 0$. If f, g satisfy the following conditions:

i) $f \cdot g \in R_1\{Y\}$,

ii) f_0 , g_0 are relatively prime in R_1 , and

iii) f is reduced in $R_1{Y}_{\aleph}$;

then both f and g are in $R_1{Y}$.

Proof. Put $f \cdot g = F \in R_1\{Y\}$. Assume that either f or $g \notin R_1\{Y\}$, then by Lemma 4 both $f \notin R_1\{Y\}$ and $g \notin R_1\{Y\}$. Let $f_r(, g_s)$ be the homogeneous part of the least degree which is not a finite sum,

in the \aleph_0 -series f(, g respectively).

Taking the homogeneous part of degree r in $F=f \cdot g$, we have

(7)
$$F_r = f_r \cdot g_0 + (f_{r-1}g_1 + \cdots + f_1g_{r-1}) + f_0g_r$$
.

If $r \neq s$, say r < s, all terms except for $f_r g_0$ in both sides of (7) contain only a finite number of variables. Nevertheless, since $g_0 \neq 0$, $f_r g_0$ is not a finite sum of monomials, a contradiction.

If r=s, there exists a monomial m which appears in f_r with non-zero coefficient, but not in each of $F_r, f_{r-1}g_1, \dots, f_1g_{r-1}$. Let the coefficients of m in f_r, g_r be $a, b \in R_1$ respectively, with $a \neq 0$. From (7) we have $0 = a \cdot g_0 + b \cdot f_0$. Since f_0, g_0 are relatively prime, it follows $f_0 | a$, which contradicts the assumption iii). q.e.d.

Proposition 1. Let $f, g \in R\{X\}_{\aleph_0}$, $f \neq 0$, $g \neq 0$ and f, g be ralatively prime. If $f \cdot g \in R\{X\}$, then there exist $F, G \in R\{X\}$, such that $f \sim F, g \sim G$.

Proof. By (6.b), $\rho_n f \neq 0$, $\rho_n g \neq 0$ are relatively prime in $R_1 = R\{x_1, \dots, x_n\}$, if *n* is sufficiently large. We fix such a *n*, and identify $R\{X\}_{\bigotimes_0} = R_1\{Y\}_{\bigotimes_0}$, $R\{X\} = R_1\{Y\}$, by Lemma 3. We write $f = f_0 + f_1 + \dots$, $g = g_0 + g_1 + \dots$ viewed as elements in $R_1\{Y\}_{\bigotimes_0}$, where $f_0 = \rho_n f$, $g_0 = \rho_n g$.

By Lemma 1, there exists a unit $h \in R_1\{Y\}_{\aleph_0}$ such that f' = hfis reduced in $R_1\{Y\}_{\aleph_0}$. Let $g' = h^{-1} \cdot g$. Then the assumptions i), ii), iii) of Lemma 6 are all fulfiled by f', g'. Thus we have $f \sim f' \in R_1\{Y\} = R\{X\}, g \sim g' \in R_1\{Y\} = R\{X\}$, as was to be proved.

Proposition 2. Let $f \in R\{X\}_{\aleph_0}$, $f \neq 0$. If some power f^{ν} is an associate of an element of $R\{X\}$, then so is f itself.

Proof. By Proposition 1, we may assume that f is irreducible in $R\{X\}_{\mathbf{N}_{a}}$, without loss of generality.

By (6.a), $\rho_n f \neq 0$ is irreducible in $R_1 = R\{x_1, \dots, x_n\}$, if *n* is

154

sufficiently large. As before, fix such a *n*, identify $R\{X\}_{\aleph_0} = R_1\{Y\}_{\aleph_0}$, $R\{X\} = R_1\{Y\}$.

By Lemma 1, there exists a reduced element $g \in R_1\{Y\}_{\aleph_0}$ such that:

(8)
$$\begin{cases} f \sim g = g_0 + g_1 + \dots + g_r + \dots, & g \text{ is reduced}, \\ f_0 = \rho_n f \sim g_0 \text{ in } R_1, \\ and \text{ hence } g_0 \text{ is irreducible.} \end{cases}$$

By the assumption of our proposition, there is a unit h in $R_1\{Y\}_{S_0}$ such that:

(9)
$$\begin{cases} hg^{\nu} \in R_1\{Y\}, \\ h=h_0+h_1+\cdots, \quad h_0 \text{ is a unit in } R_1 \end{cases}$$

For our purpose, it is enough to show that $g \in R_1\{Y\}$.

(i) Assume $\nu = p^{e}$, where p is the characteristic of R. From (8), we have

(10)
$$g^{\nu} = g_0^{p^{\bullet}} + g_1^{p^{\bullet}} + \cdots$$

It is readily seen that g^{ν} is also a reduced element, since any coefficient in $g_j^{p^*}$ is a^{p^*} where a is some coefficient in g_j . Now apply Lemma 6 for h and g^{ν} , and we see $g^{\nu} \in R_1\{Y\}$. Therefore in (10) each $g_j^{p^*}$ is a finite sum, and hence g_j is so. Thus we see $g \in R_1\{Y\}$.

(ii) Assume $p \neq \nu$.

If f is an associate of an element of R (constant), the assertion of our proposition is trivial; so we may assume $f \sim$ an element of R. It follows from this $g_0 \sim \rho_n f \sim$ an element of R, if $n \gg 0$. Since any irreducible factor of $\nu \in R^{(4)}$ in R_1 is an associate of an element of R, we have $g_0 \not\mid \nu$.

We write the unit h of (9) as $h = h_0 h'$, where $h' = 1 + h_0^{-1} \cdot h_1 + \dots \in R_1\{Y\}_{\aleph_0}$. By Lemma 2, there corresponds $k = h'^{1/\nu} \in R_1[1/\nu]\{Y\}_{\aleph_0}$. Then by (9), $h'g^{\nu} = (kg)^{\nu} \in R_1\{Y\} \subset R_1[1/\nu]\{Y\}$. Using Lemma 5

⁴⁾ We regard ν as $\nu = \nu \cdot 1 \in \mathbb{R}$, where 1 is the unity of \mathbb{R} . We note that $\nu \neq 0$ since $p \nmid \nu$.

for the element kg of $R_1[1/\nu] \{Y\}_{\aleph_0}$, we see that $kg \in R_1[1/\nu] \{Y\}$.

By Lemma 2, k is expressed as

(11)
$$k=1+k_1+\cdots+k_s+\cdots,$$

where k_j is a homogeneous form of degree j with coefficients in $R_1[1/\nu]$. Assume $g \notin R_1\{Y\}$. Then by Lemma 4 also $k \notin R_1[1/\nu]\{Y\}$. In (8) (, in (11) respectively) let $g_r(, k_s)$ be the first term which is not a finite sum. Taking the homogeneous part of degree r in $kg = G \in R_1[1/\nu]\{Y\}$, we have

(12)
$$G_r = g_r + (k_1 g_{r-1} + \cdots) + k_r g_0.$$

If $r \neq s$, say $r \ll s$, all terms except for g_r in both sides of (12) contain only a finite number of variables, which leads to a contradiction.

If r=s, there is a monomial m which appears in g, with nonzero coefficient, but not in each of G_r , k_1g_{r-1} , \cdots , $k_{r-1}g_1$. Let the coefficients of m in g_r , k_r be a, $(1/\nu')b$ respectively, where $a \in R_1$, $a \neq 0$, $b \in R_1$ and ν' is some power of ν . By (12) we have

> $0 = a + (1/\nu')bg_0,$ $a\nu' = -bg_0.$

Since g_0 is irreducible by (9), and $g_0 \nmid \nu$; we have $g_0 \mid a$; which contradicts the fact that g is reduced. Hence we conclude $g \in R_1\{Y\}$.

Thus we have established Proposition 2 in the cases (i), (ii). Let in general, $\nu = dp^e$, $p \nmid d$, suppose $(f^{p^e})^d \sim$ an element of $R\{X\}$. We use the result for (ii), and then that for (i), and we see $f \sim$ an element of $R\{X\}$, as was to be shown. q.e.d.

Theorem. Let R be a ring, and X be a set of independent variables over R. Let card. X be arbitrary. If R satisfies the condition (*), then $R\{X\}$ is a unique factorization domain.

Proof. We may assume card. $X = \aleph_0$. Indeed, if card. $X > \aleph_0$, letting Y run over all those subsets of X whose cardinality is \aleph_0 , we have $R\{X\} = \bigcup R\{Y\}$. It is clear that any finite number of

156

so that

elements of $R\{X\}$ can be contained in a suitable $R\{Y\}$, and that $F \in R\{Y\}$ is irreducible in $R\{X\}$ if and only if F is so in $R\{Y\}$. From this we see that if each $R\{Y\}$ is a unique factorization domain then so is $R\{X\}$.

First we shall show

UF 1. Every element $F \neq 0$ of $R\{X\}$ is expressed as a product of a finite number of irreducible elements.

By means of [1, Theorem 1], we factorize F in $R\{X\}_{\aleph_0}$

(13)
$$\begin{cases} F = h \prod_{i=1}^{m} q_i^{e_i} & h, q_i \in R\{X\}_{\aleph_0}, \\ h \text{ is a unit, } q_i \text{ is an irreducible non-unit such that} \\ q_i \sim q_j \text{ for } i \neq j. \end{cases}$$

By using Proposition 1 and 2 repeatedly, we can find $Q_i \in R\{X\}$, such that $q_i \sim Q_i$ for $1 \leq i \leq m$. Then if follows $F = H \prod_{i=1}^{m} Q_i^{c_i}$, where H is a unit in $R\{X\}_{\aleph_0}$, and hence $H \in R\{X\}$ by virtue of Lemma 4.

Now each Q_i is irreducible in $R\{X\}$, because if it were not, Q_i would be factorized into two non-units in $R\{X\}$, and hence in $R\{X\}_{\aleph_0}$ a fortiori. This completes the proof of UF 1.

Remark. The following is also a consequence of the argument above.

 $Q \in R\{X\}$ is irreducible in $R\{X\}$ if and only if it is so in $R\{X\}_{\aleph_{\alpha}}$.

Proof. It is enough to show "only if" part. Suppose that Q is not irreducible in $R\{X\}_{\aleph_0}$. Then as in (13), $Q = h \prod_{i=1}^m q_i^{e_i}$ with $\sum_{i=1}^m e_i > 1$. As above, we can find an irreducible non-unit $Q_i \in R\{X\}$ $1 \leq i \leq m$, so that we have $Q = H \prod_{i=1}^m Q_i^{e_i}$, $\sum e_i > 1$; which shows Q is not irreducible in $R\{X\}$.

Finally we shall show

UF 2. If $P|F \cdot G$ with $P, F, G \in R\{X\}$ and if P is irreducible, then either P|F or P|G.

Indeed, from the assumption P is irreducible also in $R\{X\}_{\aleph_0}$, by means of Remark above. From $P|F \cdot G$, we have in $R\{X\}_{\aleph_0}$ either P|F or P|G, since $R\{X\}_{\aleph_0}$ is a unique factorization domain. From this it follows that either P|F or P|G in $R\{X\}$ by Lemma 4. This completes the proof of UF 2, and hence of our theorem.

Yoshida College, Kyoto University

References

- H. Nishimura, On the unique factorization theorem for formal power series, J. Math. Kyoto Univ., 7 (1967), 151-160.
- [2] Ivan Niven, Formal power series, Amer. Math. Monthly, 76 (1969), 871-889.