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Let R be a ring,” X= {4, x5, >+, %., *=*} be a set of infinitely
many independent variables over R. We have two notions of formal
power series with coefficients in K and variables in X, [1, p. 152].
The one called N,-series, is a formal sum of X-monomials with coeffi-
cients in R. The other, called usual formal power series, is such a
Ni-series whose homogeneous part of degree » is a finite sum for all
n.

We denote by R{X} 8, the ring of N,-series, and by R{X} the
ring of usual formal power series, which is a subring of R{X} 8,
In other words, R{X} means the (X)-adic completion of the poly-
nomial ring R[X], where (X) is the ideal generated by the set X.

In this note, we shall prove that the unique factorization theorem
still holds for R{X}, if R satisfies the following condition:

(%) R{xy, -+, x.} is a unique factorization domain, for any n ( finite).

The idea of the proof is as follows: Given FER{X}, we factorize
F viewed as an element of R{X} N, into irreducible factors. Here
we note that R{X} N, is a unique factorization domain, provided R
satisfies (x), [1, Theorem 1]. Then we connect each irreducible
factor of F, which is an Nyseries, to a usual formal power series

1) A ring in this note always means a commutative ring with unity.
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(Proposition 1 and 2 below).

In our theorem, X need not be a countable set, but card. X may
be arbitrary. Later we shall reduce the general case to the case where
card. X=N,, until then we assume X is a countable set.

1. Let f be an element of R{X}No’ then f is written f=fo+fi+ -,
where f; is the homogeneous part of degree j in f, f,€R is the
constant term of f. The following reduction of f to a certain special
type of N,-series is our essential tool. First we define

Definition. Let fER{X}m' f is said to be veduced in
R{X}No’ when f,#0 and any coefficient of monomial of degree
>1 which actually appears in f is not divisible by f,.

Lemma 1. Let feR{X}:,go with fo#0. Then there exists a
rveduced element g in R{X} N, such that f~g®

Proof. As in [1], we order all X-monomials by their degree
and then for X-monomials of the same degree we order lexicographi-
cally. Since X is countable, all X-monomials are arranged in this

order
mMoy=— 1<m1< Ry // R

By induction on », we shall define a sequence of units {/.},_ys,.,
hueR{X}ﬂ such that
0

(i) the coefficient @, R of m, in f:h,---h, is not divisible by
fo, if @,#0; and
(ii) 4, has the form A,=1+c¢,-m,, c.ER.

Assume we have defined A4, -+, h._;. If the coefficient of m, in
f+hy---h,_, is not divisible by fo, then define s,=1. If the coefficient
of m, in f-hy--h,_s is fob,, with b, €R, then we define 2, =1—b,-m,;
if follows that f-%,---h, s+ &, does not contain the monomial #,.

2) f~g means f and g are associates with each other.
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Now, we consider the formal product ff[h,. It is clear by (ii)
above that, for any monomial #,, the coei;ﬁ_clzient of m, in a finite
product Hh with p>p is independent of the length p. Therefore,
infinite product Hh defines just an element of R{X }N , which we
denote by A. We note that A, with constant term 1, is a unit of
R{X} 8,

Set f-h=g. Then g has the required properties; because f~g
and, for any monormial mu, the coefficient of wm, in g 1is equal to

that in f- Hh q.ed.

The following lemma may be well-known in the case of a finite
number of variables, e.g. [2, Theorem 3]. We extend for N-series,
with characteristic arbitrary.

Lemma 2. Let R be an integral domain, and K be its quotient
field. Let p be the characteristic of R and v be a natural number
such that ptv.® Then for any element h of R{X} N, with constant
term 1, there corresponds unique ke K{X }80 with constant term 1
such that h=F, ie k=h"".

Proof. Let h=1+h,+h,+--+, k=1+Fk+k,+---. The condition
that Z=F" is satisfied if and only if
(1) hlzvkl, hj:ij+ﬁ/,j(k1y AR k}-I) ]:2’ 3’ EREY

where f,,; is an appropriate polynomial in £k, -+, k;; with integral
coefficients. Since p 4w, we can solve these equations successively
for kl, kz, cee

@ bi=Lh, khp=Ln, L (ih) qed.
v v 14 4
It is noted that by (2) we see also A" R[1/v] {X}N .
0

For a fixed »n, let Ri=R{x,, -+, x,}; and let p,: R{X}N—JQ1
0

3) The characteristic p v means either p=0, or p>>0 and p{ ».
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be the ring homomorphism to take the residue class of each element
of R{X}:,g0 modulo the ideal generated by {¥,.1, X.s2, -=-} as in [1,
4)]. Let i: R—R{X} 8, be natural injection. Let Y= {3, ¥,, ---}
be a countable set of independent variables over R,. We consider
the ring R, {Y} 8, the following is immediate.

Lemma 3. There is a unique ring isomorphism ¢: R (Y} N,
—»R{X}NO, such that ¢|Ri=1i and ¢(y;) =%..; for j=1,2, ---.
Moreover, R, {Y} is isomorphic to R{X} by ..

We may assume that R{X}No is identified with RI{Y}N , by

0
virtue of the above isomorphism ¢ For any element feR{X }8’
0

we may regard f also as an element of R,{Y} 8, and write

) f=fotfit ot fitmy

where f, is the homogeneous part of f (may be an infinite sum) of
degree 7 in variables y’s, coefficients in R;. We note that feR{X}
=R,{Y} if and only if every f, in (3) is a finite sum of Y-mono-
mials.

The following two lemmas give sufficient conditions for f
ER{X}NO to be in R{X}.

Lemma 4. [1, Lemma 2] Let R be an integral domain and
feR{X}go, FeR{X). If f-FER{X}, then feR{X}.

Lemma 5. Let R be an integral domain, p be its characteristic.
Let v be a natural number such that ptv. For any feR{X} 8,
if f*eR{X} then feR{X}.

Proof. We may assume f#0. It is clear that if # is sufficiently
large, p.f#0 in Ry=R{x, -, x,}. We fix such a #, and identify
R{X}R with R‘{Y}So' Set f*=FeR,{Y}. We have in RI{Y}&,

0

{ f=fotfittfib pf=f#0

@ F=F,+Fi+-+F+--.
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Assume feR,{Y}. Let f, be the first term in f which is not a
finite sum.

Take the homogeneous part of degree 7 in both sides of F=f,
and we have

(5) Fo=f s+ S fa

where 3] means the summation taken over all lists of v indices (J,,
«+,7,) such that ji+--+j,=7, 0<j:<<r, -, 0<j,<<r.

Each of F,, f,-f; in (5) is a finite sum of Y-monomials;
while, vf§7'f, is not a finite sum, since ptv and vfi'+#0; a contra-
diction. q.ed.

2. Throughout this section we shall assume that R satisfies the
condition (x). We use the fact that R{X }80 is a unique factori-
zation domain, [1, Theorem 1]. Recall that, for given feR{X} 8,
the factorization of f into irreducible factors is obtained in accordance
with that of p.f in R;=R{xy, ---, x,} with #>>0. In particular, the
following statements hold true:

a) f is irreducible in R{X}Ro if and only if o.f
© is so in R, for n>0.
b) f, g are velatively prime in R{X} N, if and only

if o.f, 0.8 ave so in Ry for n>0.

Lemma 6. Let f=f,+fit+:-, g=go+g1+---be elements of R‘{Y}No
with f,#0, g.#0. If f, g satisfy the following conditions:
D f-geRAY},
i) fo, Qo ave relatively prime in R., and
iii) f is reduced in R‘{Y}No;
then both f and g ave in R,{Y}.

Proof. Putf-g=FeR,{Y}. Assume that either f or g& R, {Y},
then by Lemma 4 both feR,{Y} and g&R,{Y}. Let f,(, g.) be
the homogeneous part of the least degree which is not a finite sum,
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in the N,series f(, g respectively).
Taking the homogeneous part of degree 7 in F=f-g, we have

(7) F,=f,~go+(f,v_1g1+~-f1g,-1) +fog,-

If r+#s, say »<<s, all terms except for f,g, in both sides of (7)
contain only a finite number of variables. Nevertheless, since g,#0,
f.&g0 is not a finite sum of monomials, a contradiction.

If r=s, there exists a monomial m which appears in f, with
non-zero coefficient, but not in each of F,, f,_.gy, -**, f1g,-1. Let
the coefficients of m in f,, g, be a,bE R, respectively, with a=0.
From (7) we have O=a-g,+b-f,. Since f,, go are relatively prime,
it follows f,|a, which contradicts the assumption iii). q.e.d.

Proposition 1. Let f’gER{X}No’ f#0, g#0 and f, g be
ralatively prime. If f-g€R{X}, then there exist F,GeR{X},
such that f~F, g~G.

Proof. By (6.b), 0.f#0, p,g+0 are relatively prime in R,=
R{x,, -, x,}, if n is sufficiently large. We fix such a #, and identify
R{X}Ro:R‘{Y}&,’ R{X}=R,{Y}, by Lemma 3. We write f=f,
+fi+, g=go+ g1+ viewed as elements in RI{Y}NO’ where f,

=0.f, §o=0.8.
By Lemma 1, there exists a unit heli’l{Y}N such that f'=hf
0

is reduced in R,{Y} R, Let g’=h"-g. Then the assumptions i),
ii), iii) of Lemma 6 are all fulfiled by f’, g’. Thus we have f~f’
eR,{Y}=R{X}, g~g’'eR,{Y}=R{X}, as was to be proved.
q.ed.
Proposition 2. Let fER{X}No’ f#0. If some power [’ is
an associate of an element of R{X}, then so is f itself.

Proof. By Proposition 1, we may assume that f is irreducible
in R{X }N , without loss of generality.
0
By (6.a), p.f#0 is irreducible in R,=Rf{xy, ---, x,}, if n is
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sufficiently large. As before, fix such a #, identify R{X} No:R’ {Y} 8,
R{X} =R.{Y}.
By Lemma 1, there exists a reduced element g€ R,{Y} R, such
that:
f~g=got+ g+ +g+, g is reduced,
® o=p.f~& in Ry,
and hence g, is irveducible.

By the assumption of our proposition, there is a unit % in
RI{Y}N such that:
0

{ hg'eR.{Y},

9
( ) h:ho+h1+“', ho is a unit in R1.

For our purpose, it is enough to show that geR,{Y}.
(i) Assume y=p°, where p is the characteristic of R.

From (8), we have
(10) g =gy +gt+--.

It is readily seen that g” is also a reduced element, since any coeffi-
cient in g! is ¢ where a is some coefficient in g;. Now apply
Lemma 6 for & and g7, and we see g'€R,{Y}. Therefore in (10)
each g}’ is a finite sum, and hence g; is so. Thus we see g R,{Y}.

(ii) Assume p f».
If f is an associate of an element of R (constant), the assertion of
our proposition is trivial; so we may assume f~ an element of R.
It follows from this go~p,f~ an element of R, if #>>0. Since any
irreducible factor of y&R*® in R, is an associate of an element of
R, we have go}y.

We write the unit 2 of (9) as h=hoh’, where B’ =14 hy'-h+
- eR{Y} 8, By Lemma 2, there corresponds k=h"""€ R,[1/v]1{Y} N,
Then by (9), Wg'=(kg)’'eR,{Y}CR,[1/v]{Y}. Using Lemma 5

4) We regard v as v=v-1€R, where 1 is the unity of R. We note that v0 since
p}u.
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for the element kg of R,[1/y] {Y}No’ we see that kg R,[1/,]{Y}.

By Lemma 2, k£ is expressed as
1) k=1+k+ -+ b+,

where k; is a homogeneous form of degree j with coefficients in

R,[1/v]. Assume g&£R,{Y}. Then by Lemma 4 also k& R,[1/v]{Y}.

In (8 (, in (11) respectively) let g,(, k) be the first term which

is not a finite sum. Taking the homogeneous part of degree 7 in

kg=GeR,[1/v]{Y}, we have

(12) G =g+ (kg st )+kg.

If r+#s, say r<Zs, all terms except for g, in both sides of (12) con-

tain only a finite number of variables, which leads to a contradiction.
If »=s, there is a monomial m which appears in g, with non-

zero coefficient, but not in each of G,, kg, 4, -+, k181 Let the

coefficients of m in g,, k be a, (1/v)b respectively, where ¢=R;,
a#0, bR, and »' is some power of . By (12) we have

O=a+ (l/XJl)bgo,
so that av'=—bg,.

Since g, is irreducible by (9), and g.fv; we have g,|a; which con-
tradicts the fact that g is reduced. Hence we conclude g€ R,{Y}.

Thus we have established Proposition 2 in the cases (i), (ii).
Let in general, v=dp°, ptd, suppose (f*)°~ an element of R{X}.
We use the result for (ii), and then that for (i), and we see f~

an element of R{X}, as was to be shown. q.ed.

Theorem. Let R be a ving, and X be a set of independent
variables over R. Let card. X be arbitrary. If R satisfies the
condition (x), then R{X} is a unique factorization domain.

Proof. We may assume card. X=N,. Indeed, if card. X>N,,
letting Y run over all those subsets of X whose cardinality is N,
we have R{X}=UR{Y}. It is clear that any finite number of
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elements of R{X} can be contained in a suitable R{Y}, and that
FeR{Y} is irreducible in R{X} if and only if F is so in R{Y}.
From this we see that if each R{Y} is a unique factorization domain
then so is R{X]}.

First we shall show

UF 1. Every element F#0 of R{X} is expressed as a product
of a finite number of irreducible elements.

By means of [1, Theorem 1], we factorize F in R{X }8
0

F=hIlgr hgeR(X}y,

(13) i=1 0
h is a unit, q; is an irrveducible non-unit such that
gi~q; for i+#j.

By using Proposition 1 and 2 repeatedly, we can find Q. €R{X},

such that ¢;~@; for 1<i<m. Then if follows F=HIIQ;, where

i=1
H is a unit in R{X}& , and hence He R{X} by virtue of Lemma 4.
0
Now each @; is irreducible in R{X}, because if it were not, @;

would be factorized into two non-units in R{X7}, and hence in R{X }N
1]
a fortiori. This completes the proof of UF 1.

Remark. The following is also a consequence of the argument
above.

QeR{X} is irreducible in R{X} if and only if it is so in
R{X}xo.

Proof. 1t is enough to show “only if” part. Suppose that @
is not irreducible in R{X} N - Then as in (13), Q@=hIlq: with
m 0 i=1
Zl‘e;>1. As above, we can find an irreducible non-unit @, € R{X}

1<e<{m, so that we have QzHi”’I Qi, >le;>1; which shows @ is
il

not irreducible in R{X}.
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Finally we shall show
UF 2. If P|F-G with P,F,GER{X} and if P is irreducible,
then either P|F or P|G.

Indeed, from the assumption P is irreducible also in R{X}R’ by
0
means of Remark above. From P|F-G, we have in R{X} N either
0
P|F or P|G, since R{X} R, is a unique factorization domain. From

this it follows that either P|F or P|G in R{X} by Lemma 4. This
completes the proof of UF 2, and hence of our theorem.
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