On the unique factorization theorem for formal power series II

By
Hajime Nishimura
(Communicated by Professor Nagata, July 31, 1972)

Let R be a ring, ${ }^{1)} X=\left\{x_{1}, x_{2}, \cdots, x_{n}, \cdots\right\}$ be a set of infinitely many independent variables over R. We have two notions of formal power series with coefficients in R and variables in $X,[1, \mathrm{p} .152]$. The one called $\boldsymbol{\aleph}_{0}$-series, is a formal sum of X-monomials with coefficients in R. The other, called usual formal power series, is such a $\boldsymbol{\aleph}_{0}$-series whose homogeneous part of degree n is a finite sum for all n.

We denote by $R\{X\} \boldsymbol{\aleph}_{0}$ the ring of $\boldsymbol{\aleph}_{0}$-series, and by $R\{X\}$ the ring of usual formal power series, which is a subring of $R\{X\} \aleph_{0}$. In other words, $R\{X\}$ means the (X)-adic completion of the polynomial ring $R[X]$, where (X) is the ideal generated by the set X.

In this note, we shall prove that the unique factorization theorem still holds for $R\{X\}$, if R satisfies the following condition:
(*) $R\left\{x_{1}, \cdots, x_{n}\right\}$ is a unique factorization domain, for any n (finite). The idea of the proof is as follows: Given $F \in R\{X\}$, we factorize F viewed as an element of $R\{X\} \boldsymbol{\kappa}_{0}$ into irreducible factors. Here we note that $R\{X\} \aleph_{0}$ is a unique factorization domain, provided R satisfies (*), [1, Theorem 1]. Then we connect each irreducible factor of F, which is an $\boldsymbol{\aleph}_{0}$-series, to a usual formal power series

[^0](Proposition 1 and 2 below).
In our theorem, X need not be a countable set, but card. X may be arbitrary. Later we shall reduce the general case to the case where card. $X=\boldsymbol{\kappa}_{0}$, until then we assume X is a countable set.

1. Let f be an element of $R\{X\} \boldsymbol{\aleph}_{0}$, then f is written $f=f_{0}+f_{1}+\cdots$, where f_{j} is the homogeneous part of degree j in $f, f_{0} \in R$ is the constant term of f. The following reduction of f to a certain special type of $\boldsymbol{\aleph}_{0}$-series is our essential tool. First we define

Definition. Let $f \in R\{X\}{ }_{\aleph_{0}} \cdot f$ is said to be reduced in $R\{X\}_{\boldsymbol{N}_{0}}$, when $f_{0} \neq 0$ and any coefficient of monomial of degree $\geqslant 1$ which actually appears in f is not divisible by f_{0}.

Lemma 1. Let $f \in R\{X\}{ }_{\aleph_{0}}$ with $f_{0} \neq 0$. Then there exists a reduced element g in $R\{X\}{ }_{\aleph_{0}}$ such that $f \sim g$. ${ }^{2)}$

Proof. As in [1], we order all X-monomials by their degree and then for X-monomials of the same degree we order lexicographically. Since X is countable, all X-monomials are arranged in this order

$$
m_{0}=1<m_{1}<\cdots<m_{\nu}<\cdots
$$

By induction on ν, we shall define a sequence of units $\left\{h_{\nu}\right\}_{\nu-1,2, \ldots}$, $h_{\nu} \in R\{X\}{ }_{\boldsymbol{\kappa}_{0}}$ such that
(i) the coefficient $a_{\nu} \in R$ of m_{ν} in $f \cdot h_{1} \cdots h_{\nu}$ is not divisible by f_{0}, if $a_{\nu} \neq 0$; and
(ii) h_{ν} has the form $h_{\nu}=1+c_{\nu} \cdot m_{\nu}, c_{\nu} \in R$.

Assume we have defined $h_{1}, \cdots, h_{\nu-1}$. If the coefficient of m_{v} in $f \cdot h_{1} \cdots h_{\nu-1}$ is not divisible by f_{0}, then define $h_{\nu}=1$. If the coefficient of m_{ν} in $f \cdot h_{1} \cdots h_{\nu-1}$ is $f_{0} b_{\nu}$, with $b_{\nu} \in R$, then we define $h_{\nu}=1-b_{\nu} \cdot m_{\nu}$; if follows that $f \cdot h_{1} \cdots h_{\nu-1} \cdot h_{\nu}$ does not contain the monomial m_{ν}.
2) $f \sim g$ means f and g are associates with each other.

Now, we consider the formal product $\prod_{\nu=1}^{\infty} h_{\nu}$. It is clear by (ii) above that, for any monomial m_{μ}, the coefficient of m_{μ} in a finite product $\prod_{\nu=1}^{\rho} h_{\nu}$ with $\rho \geqslant \mu$ is independent of the length ρ. Therefore, infinite product $\prod_{\nu=1}^{\infty} h_{\nu}$ defines just an element of $R\{X\} \aleph_{0}$, which we denote by h. We note that h, with constant term 1 , is a unit of $R\{X\}{ }_{\boldsymbol{S}}^{0}$.

Set $f \cdot h=g$. Then g has the required properties; because $f \sim g$ and, for any monomial m_{μ}, the coefficient of m_{μ} in g is equal to that in $f \cdot{ }_{\nu=1}^{\mu} h_{\nu}$.
q.e.d.

The following lemma may be well-known in the case of a finite number of variables, e.g. [2, Theorem 3]. We extend for $\boldsymbol{\aleph}_{0}$-series, with characteristic arbitrary.

Lemma 2. Let R be an integral domain, and K be its quotient field. Let p be the characteristic of R and ν be a natural number such that $p \nmid \nu .{ }^{3)}$ Then for any element h of $R\{X\} \boldsymbol{\aleph}_{0}$ with constant term 1, there corresponds unique $k \in K\{X\} \boldsymbol{\aleph}_{0}$ with constant term 1 such that $h=k^{\nu}$, i.e. $k=h^{1 / p}$.

Proof. Let $h=1+h_{1}+h_{2}+\cdots, k=1+k_{1}+k_{2}+\cdots$. The condition that $h=k^{\nu}$ is satisfied if and only if

$$
\begin{equation*}
h_{1}=\nu k_{1}, \quad h_{j}=\nu k_{j}+f_{\nu, j}\left(k_{1}, \cdots, k_{j-1}\right) \quad j=2,3, \cdots, \tag{1}
\end{equation*}
$$

where $f_{\nu, j}$ is an appropriate polynomial in k_{1}, \cdots, k_{j-1} with integral coefficients. Since $p \nmid \nu$, we can solve these equations successively for k_{1}, k_{2}, \cdots :

$$
\begin{equation*}
k_{1}=\frac{1}{\nu} h_{1}, k_{2}=\frac{1}{\nu} h_{2}-\frac{1}{\nu} f_{\nu, 2}\left(\frac{1}{\nu} h_{1}\right), \cdots . \quad \text { q.e.d. } \tag{2}
\end{equation*}
$$

It is noted that by (2) we see also $h^{1 / \nu} \in R[1 / \nu]\{X\} \aleph_{0} \cdot$
For a fixed n, let $R_{1}=R\left\{x_{1}, \cdots, x_{n}\right\}$; and let $\rho_{n}: R\{X\}{ }_{\aleph_{0}} \rightarrow R_{1}$

[^1]be the ring homomorphism to take the residue class of each element of $R\{X\}{ }_{\aleph_{0}}$ modulo the ideal generated by $\left\{x_{n+1}, x_{n+2}, \cdots\right\}$ as in [1, (4)]. Let $i: R_{1} \rightarrow R\{X\} \boldsymbol{\aleph}_{0}$ be natural injection. Let $Y=\left\{y_{1}, y_{2}, \cdots\right\}$ be a countable set of independent variables over R_{1}. We consider the ring $R_{1}\{Y\}{ }_{\boldsymbol{N}_{0}}$, the following is immediate.

Lemma 3. There is a unique ring isomorphism $\iota: R_{1}\{Y\} \aleph_{0}$ $\rightarrow R\{X\}{ }_{\boldsymbol{\aleph}_{0}}$, such that $\iota \mid R_{1}=i$ and $\iota\left(y_{j}\right)=x_{n+j}$ for $j=1,2, \cdots$. Moreover, $R_{1}\{Y\}$ is isomorphic to $R\{X\}$ by e.

We may assume that $R\{X\}{ }_{\boldsymbol{\aleph}_{0}}$ is identified with $R_{1}\{Y\}_{\boldsymbol{N}_{0}}$, by virtue of the above isomorphism c. For any element $f \in R\{X\} \boldsymbol{\aleph}_{0}$, we may regard f also as an element of $R_{1}\{Y\} \kappa_{0}$ and write

$$
\begin{equation*}
f=f_{0}+f_{1}+\cdots+f_{r}+\cdots, \tag{3}
\end{equation*}
$$

where f_{r} is the homogeneous part of f (may be an infinite sum) of degree r in variables y 's, coefficients in R_{1}. We note that $f \in R\{X\}$ $=R_{1}\{Y\}$ if and only if every f_{r} in (3) is a finite sum of Y-monomials.

The following two lemmas give sufficient conditions for f $\in R\{X\}{ }_{\boldsymbol{N}_{0}}$ to be in $R\{X\}$.

Lemma 4. [1, Lemma 2] Let R be an integral domain and $f \in R\{X\}{ }_{\boldsymbol{N}_{0}}, F \in R\{X\}$. If $f \cdot F \in R\{X\}$, then $f \in R\{X\}$.

Lemma 5. Let R be an integral domain, p be its characteristic. Let ν be a natural number such that $p \nmid \nu$. For any $f \in R\{X\} \aleph_{0}$, if $f^{\nu} \in R\{X\}$ then $f \in R\{X\}$.

Proof. We may assume $f \neq 0$. It is clear that if n is sufficiently large, $\rho_{n} f \neq 0$ in $R_{1}=R\left\{x_{1}, \cdots, x_{n}\right\}$. We fix such a n, and identify $R\{X\}{ }_{\boldsymbol{\aleph}_{0}}$ with $R_{1}\{Y\} \boldsymbol{\aleph}_{0} \cdot$ Set $f^{\nu}=F \in R_{1}\{Y\}$. We have in $R_{1}\{Y\}{ }_{\boldsymbol{N}}^{0}$

$$
\left\{\begin{array}{l}
f=f_{0}+f_{1}+\cdots+f_{r}+\cdots, \quad \rho_{n} f=f_{0} \neq 0 \tag{4}\\
F=F_{0}+F_{1}+\cdots+F_{s}+\cdots .
\end{array}\right.
$$

Assume $f \notin R_{1}\{Y\}$. Let f_{r} be the first term in f which is not a finite sum.

Take the homogeneous part of degree r in both sides of $F=f^{\nu}$, and we have

$$
\begin{equation*}
F_{r}=\nu f_{0}^{\nu-1} f_{r}+\sum f_{j_{1}} \cdots f_{j_{\nu}}, \tag{5}
\end{equation*}
$$

where \sum means the summation taken over all lists of ν indices (j_{1}, \cdots, j_{ν}) such that $j_{1}+\cdots+j_{\nu}=r, 0 \leqslant j_{1}<r, \cdots, 0 \leqslant j_{\nu}<r$.

Each of $F_{r}, f_{j_{1}} \cdots f_{j_{\nu}}$ in (5) is a finite sum of Y-monomials; while, $\nu f_{0}^{\nu-1} f_{r}$ is not a finite sum, since $p \nmid \nu$ and $\nu f_{0}^{\nu-1} \neq 0$; a contradiction.
q.e.d.
2. Throughout this section we shall assume that R satisfies the condition (*). We use the fact that $R\{X\} \boldsymbol{N}_{0}$ is a unique factorization domain, [1, Theorem 1]. Recall that, for given $f \in R\{X\}{ }_{\aleph_{0}}$, the factorization of f into irreducible factors is obtained in accordance with that of $\rho_{n} f$ in $R_{1}=R\left\{x_{1}, \cdots, x_{n}\right\}$ with $n \gg 0$. In particular, the following statements hold true:

$$
\left\{\begin{array}{l}
\text { a) } f \text { is irreducible in } R\{X\} \aleph_{0} \text { if and only if } \rho_{n} f \tag{6}\\
\quad \text { is so in } R_{1} \text { for } n \gg 0 . \\
\text { b) } f, g \text { are relatively prime in } R\{X\} \aleph_{0} \text { if and only } \\
\\
\text { if } \rho_{n} f, \rho_{n} g \text { are so in } R_{1} \text { for } n \gg 0 .
\end{array}\right.
$$

Lemma 6. Let $f=f_{0}+f_{1}+\cdots, g=g_{0}+g_{1}+\cdots$ be elements of $R_{1}\{Y\}_{\aleph_{0}}$ with $f_{0} \neq 0, g_{0} \neq 0$. If f, g satisfy the following conditions:
i) $f \cdot g \in R_{1}\{Y\}$,
ii) f_{0}, g_{0} are relatively prime in R_{1}, and
iii) f is reduced in $R_{1}\{Y\}_{\boldsymbol{N}_{0}}$;
then both f and g are in $R_{1}\{Y\}$.
Proof. Put $f \cdot g=F \in R_{1}\{Y\}$. Assume that either f or $g \notin R_{1}\{Y\}$, then by Lemma 4 both $f \notin R_{1}\{Y\}$ and $g \notin R_{1}\{Y\}$. Let $f_{r}\left(, g_{s}\right)$ be the homogeneous part of the least degree which is not a finite sum,
in the $\boldsymbol{\aleph}_{0}$-series $f(, g$ respectively).
Taking the homogeneous part of degree r in $F=f \cdot g$, we have

$$
\begin{equation*}
F_{r}=f_{r} \cdot g_{0}+\left(f_{r-1} g_{1}+\cdots f_{1} g_{r-1}\right)+f_{0} g_{r} \tag{7}
\end{equation*}
$$

If $r \neq s$, say $r<s$, all terms except for $f_{r} g_{0}$ in both sides of (7) contain only a finite number of variables. Nevertheless, since $g_{0} \neq 0$, $f_{r} g_{0}$ is not a finite sum of monomials, a contradiction.

If $r=s$, there exists a monomial m which appears in f_{r} with non-zero coefficient, but not in each of $F_{r}, f_{r-1} g_{1}, \cdots, f_{1} g_{r-1}$. Let the coefficients of m in f_{r}, g_{r} be $a, b \in R_{1}$ respectively, with $a \neq 0$. From (7) we have $0=a \cdot g_{0}+b \cdot f_{0}$. Since f_{0}, g_{0} are relatively prime, it follows $f_{0} \mid a$, which contradicts the assumption iii). q.e.d.

Proposition 1. Let $f, g \in R\{X\} \boldsymbol{\aleph}_{0}, f \neq 0, g \neq 0$ and f, g be ralatively prime. If $f \cdot g \in R\{X\}$, then there exist $F, G \in R\{X\}$, such that $f \sim F, g \sim G$.

Proof. By (6. b), $\rho_{n} f \neq 0, \rho_{n} g \neq 0$ are relatively prime in $R_{1}=$ $R\left\{x_{1}, \cdots, x_{n}\right\}$, if n is sufficiently large. We fix such a n, and identify $R\{X\}{ }_{\boldsymbol{N}_{0}}=R_{1}\{Y\} \boldsymbol{\aleph}_{0}, R\{X\}=R_{1}\{Y\}$, by Lemma 3. We write $f=f_{0}$ $+f_{1}+\cdots, g=g_{0}+g_{1}+\cdots$ viewed as elements in $R_{1}\{Y\} \aleph_{0}$, where f_{0} $=\rho_{n} f, g_{0}=\rho_{n} g$.

By Lemma 1, there exists a unit $h \in R_{1}\{Y\}{ }_{\boldsymbol{N}_{0}}$ such that $f^{\prime}=h f$ is reduced in $R_{1}\{Y\}{ }_{\kappa_{0}}$. Let $g^{\prime}=h^{-1} \cdot g$. Then the assumptions i), ii), iii) of Lemma 6 are all fulfiled by f^{\prime}, g^{\prime}. Thus we have $f \sim f^{\prime}$ $\in R_{1}\{Y\}=R\{X\}, g \sim g^{\prime} \in R_{1}\{Y\}=R\{X\}$, as was to be proved.
q.e.d.

Proposition 2. Let $f \in R\{X\}{ }_{\aleph_{0}}, f \neq 0$. If some power f^{ν} is an associate of an element of $R\{X\}$, then so is f itself.

Proof. By Proposition 1, we may assume that f is irreducible in $R\{X\} \boldsymbol{\aleph}_{0}$, without loss of generality.

By (6. a), $\rho_{n} f \neq 0$ is irreducible in $R_{1}=R\left\{x_{1}, \cdots, x_{n}\right\}$, if n is
sufficiently large. As before, fix such a n, identify $R\{X\} \boldsymbol{\aleph}_{0}=R_{1}\{Y\}{ }_{\boldsymbol{N}_{0}}$, $R\{X\}=R_{1}\{Y\}$.

By Lemma 1, there exists a reduced element $g \in R_{1}\{Y\} \boldsymbol{\kappa}_{0}$ such that:

$$
\left\{\begin{array}{l}
f \sim g=g_{0}+g_{1}+\cdots+g_{r}+\cdots, \quad g \text { is reduced }, \tag{8}\\
f_{0}=\rho_{n} f \sim g_{0} \text { in } R_{1}, \\
\text { and hence } g_{0} \text { is irreducible. }
\end{array}\right.
$$

By the assumption of our proposition, there is a unit h in $R_{1}\{Y\} \boldsymbol{\aleph}_{0}$ such that:

$$
\left\{\begin{array}{l}
h g^{\nu} \in R_{1}\{Y\}, \tag{9}\\
h=h_{0}+h_{1}+\cdots, \quad h_{0} \text { is a unit in } R_{1} .
\end{array}\right.
$$

For our purpose, it is enough to show that $g \in R_{1}\{Y\}$.
(i) Assume $\nu=p^{c}$, where p is the characteristic of R.

From (8), we have

$$
\begin{equation*}
g^{\nu}=g_{0}^{p^{\boldsymbol{p}}}+g_{1}^{p^{c}}+\cdots \tag{10}
\end{equation*}
$$

It is readily seen that g^{ν} is also a reduced element, since any coefficient in $g_{j}^{p^{\circ}}$ is $a^{p^{\circ}}$ where a is some coefficient in g_{j}. Now apply Lemma 6 for h and g^{ν}, and we see $g^{\nu} \in R_{1}\{Y\}$. Therefore in (10) each $g_{j}^{p^{\circ}}$ is a finite sum, and hence g_{j} is so. Thus we see $g \in R_{1}\{Y\}$.
(ii) Assume $p \nmid \nu$.

If f is an associate of an element of R (constant), the assertion of our proposition is trivial; so we may assume $f \sim$ an element of R. It follows from this $g_{0} \sim \rho_{n} f \sim$ an element of R, if $n \gg 0$. Since any irreducible factor of $\nu \in R^{4)}$ in R_{1} is an associate of an element of R, we have $g_{0} \nmid \nu$.

We write the unit h of (9) as $h=h_{0} h^{\prime}$, where $h^{\prime}=1+h_{0}^{-1} \cdot h_{1}+$ $\cdots \in R_{1}\{Y\}{ }_{\boldsymbol{N}_{0}}$. By Lemma 2, there corresponds $k=h^{\prime / \nu} \in R_{1}[1 / \nu]\{Y\}_{\aleph_{0}}$. Then by (9), $h^{\prime} g^{\nu}=(k g)^{\nu} \in R_{1}\{Y\} \subset R_{1}[1 / \nu]\{Y\}$. Using Lemma 5

[^2]for the element $k g$ of $R_{1}[1 / \nu]\{Y\} \aleph_{0}$, we see that $k g \in R_{1}[1 / \nu]\{Y\}$.
By Lemma 2, k is expressed as
\[

$$
\begin{equation*}
k=1+k_{1}+\cdots+k_{s}+\cdots, \tag{11}
\end{equation*}
$$

\]

where k_{j} is a homogeneous form of degree j with coefficients in $R_{1}[1 / \nu]$. Assume $g \notin R_{1}\{Y\}$. Then by Lemma 4 also $k \notin R_{1}[1 / \nu]\{Y\}$. In (8) (, in (11) respectively) let $g_{r}\left(, k_{s}\right)$ be the first term which is not a finite sum. Taking the homogeneous part of degree r in $k g=G \in R_{1}[1 / \nu]\{Y\}$, we have

$$
\begin{equation*}
G_{r}=g_{r}+\left(k_{1} g_{r-1}+\cdots\right)+k_{r} g_{0} . \tag{12}
\end{equation*}
$$

If $r \neq s$, say $r<s$, all terms except for g_{r} in both sides of (12) contain only a finite number of variables, which leads to a contradiction.

If $r=s$, there is a monomial m which appears in g_{r} with nonzero coefficient, but not in each of $G_{r}, k_{1} g_{r-1}, \cdots, k_{r-1} g_{1}$. Let the coefficients of m in g_{r}, k_{r} be $a,\left(1 / \nu^{t}\right) b$ respectively, where $a \in R_{1}$, $a \neq 0, b \in R_{1}$ and ν^{t} is some power of ν. By (12) we have
so that

$$
0=a+\left(1 / \nu^{t}\right) b g_{0},
$$

Since g_{0} is irreducible by (9), and $g_{0} \nmid \nu$; we have $g_{0} \mid a$; which contradicts the fact that g is reduced. Hence we conclude $g \in R_{1}\{Y\}$.

Thus we have established Proposition 2 in the cases (i), (ii). Let in general, $\nu=d p^{e}, p \nmid d$, suppose $\left(f^{p^{e}}\right)^{d} \sim$ an element of $R\{X\}$. We use the result for (ii), and then that for (i), and we see $f \sim$ an element of $R\{X\}$, as was to be shown. q.e.d.

Theorem. Let R be a ring, and X be a set of independent variables over R. Let card. X be arbitrary. If R satisfies the condition (*), then $R\{X\}$ is a unique factorization domain.

Proof. We may assume card. $X=\boldsymbol{\aleph}_{0}$. Indeed, if card. $X>\boldsymbol{\aleph}_{0}$, letting Y run over all those subsets of X whose cardinality is $\boldsymbol{\aleph}_{0}$, we have $R\{X\}=\cup R\{Y\}$. It is clear that any finite number of
elements of $R\{X\}$ can be contained in a suitable $R\{Y\}$, and that $F \in R\{Y\}$ is irreducible in $R\{X\}$ if and only if F is so in $R\{Y\}$. From this we see that if each $R\{Y\}$ is a unique factorization domain then so is $R\{X\}$.

First we shall show
UF 1. Every element $F \neq 0$ of $R\{X\}$ is expressed as a product of a finite number of irreducible elements.

By means of [1, Theorem 1], we factorize F in $R\{X\} \boldsymbol{\aleph}_{0}$

$$
\begin{align*}
& \left\{\begin{array}{l}
F=h \prod_{i=1}^{m} q_{i}^{q_{i}} \quad h, q_{i} \in R\{X\} \\
h \text { is a unit, } q_{i} \text { is an irreducible non-unit such that } \\
q_{i} \propto q_{j} \text { for } i \neq j .
\end{array}\right. \tag{13}
\end{align*}
$$

By using Proposition 1 and 2 repeatedly, we can find $Q_{i} \in R\{X\}$, such that $q_{i} \sim Q_{i}$ for $1 \leqslant i \leqslant m$. Then if follows $F=H \prod_{i=1}^{m} Q_{i}^{c_{i}}$, where H is a unit in $R\{X\}{ }_{\kappa_{0}}$, and hence $H \in R\{X\}$ by virtue of Lemma 4.

Now each Q_{i} is irreducible in $R\{X\}$, because if it were not, Q_{i} would be factorized into two non-units in $R\{X\}$, and hence in $R\{X\} \boldsymbol{N}_{0}$ a fortiori. This completes the proof of UF 1.

Remark. The following is also a consequence of the argument above.
$Q \in R\{X\}$ is irreducible in $R\{X\}$ if and only if it is so in $R\{X\}{ }_{\boldsymbol{N}_{0}}$.

Proof. It is enough to show "only if" part. Suppose that Q $\underset{m}{\text { is not irreducible in } R\{X\}} \boldsymbol{\aleph}_{0}$. Then as in (13), $Q=h \prod_{i=1}^{m} q_{i}^{e_{i}}$ with $\sum_{i=1}^{m} e_{i}>1$. As above, we can find an irreducible non-unit $Q_{i} \in=R\{X\}$ $1 \leqslant i \leqslant m$, so that we have $Q=H \prod_{i=1}^{m} Q_{i}^{e_{i}}, \sum e_{i}>1$; which shows Q is not irreducible in $R\{X\}$.

Finally we shall show
UF 2. If $P \mid F \cdot G$ with $P, F, G \in R\{X\}$ and if P is irreducible, then either $P \mid F$ or $P \mid G$.

Indeed, from the assumption P is irreducible also in $R\{X\}{ }_{\aleph_{0}}$, by means of Remark above. From $P \mid F \cdot G$, we have in $R\{X\}{ }_{\boldsymbol{N}_{0}}$ either $P \mid F$ or $P \mid G$, since $R\{X\}{ }_{\aleph_{0}}$ is a unique factorization domain. From this it follows that either $P \mid F$ or $P \mid G$ in $R\{X\}$ by Lemma 4. This completes the proof of UF 2, and hence of our theorem.

Yoshida College, Kyoto University

References

[1] H. Nishimura, On the unique factorization theorem for formal power series, J. Math. Kyoto Univ., 7 (1967), 151-160.
[2] Ivan Niven, Formal power series, Amer. Math. Monthly, 76 (1969), 871-889.

[^0]: 1) A ring in this note always means a commutative ring with unity.
[^1]: 3) The characteristic $p \nmid \nu$ means either $p=0$, or $p>0$ and $p \nmid \nu$.
[^2]: 4) We regard ν as $\nu=\nu \cdot 1 \in R$, where 1 is the unity of R. We note that $\nu \neq 0$ since $p \nmid \nu$.
