A remark on Gaussian sums and algebraic groups

By
Takashi Ono
(Communicatel by Professor Nagata, July 25, 1972)

1. Let $f(X)$ be a non-constant polynomial in $\boldsymbol{Z}[X], X=\left(X_{1}\right.$, $\left.\cdots, X_{n}\right)$. Denote by $f_{p}(X)$ the polynomial in $\boldsymbol{Z}_{p}[X]$ obtained from $f(X)$ by reducing the coefficients modulo p, where Z_{p} means the residue field. Let χ_{p} be a non-trivial character of the additive group of the field \boldsymbol{Z}_{p}, e. g. $\chi_{p}(a)=\exp \left(2 \pi i p^{-1} a\right)$. We shall put

$$
\begin{equation*}
G_{p}(\xi)=p^{-n} \sum_{x \in Z_{p}^{n}} \chi_{p}\left(f_{p}(x) \xi\right), \xi \in Z_{p} \tag{1.1}
\end{equation*}
$$

and call this the Gaussian sum with respect to $f(X)$ at p. Clearly we have $\left|G_{p}(\xi)\right| \leqq 1$ and $G_{\triangleright}(0)=1$. It is Gauss's classical formula that

$$
\begin{equation*}
\left|G_{p}(\xi)\right|=p^{-1 / 2} \text { when } n=1, f(X)=X^{2}, p \neq 2 \text { and } \xi \neq 0 . \tag{1.2}
\end{equation*}
$$

It is our purpose to generalize (1.2) to the case where $f(X)$ appears as a semi-invariant of an arbitrary connected algebraic group defined over \boldsymbol{Q} having a non-trivial character defined over \boldsymbol{Q}.
2. For $\xi \in \boldsymbol{Z}_{p}$, denote by $N_{p}(\xi)$ the number of $x \in \boldsymbol{Z}_{p}^{n}$ such that $f_{p}(x)=\xi$. It is easy to verify the relation

$$
\begin{equation*}
G_{p}(\xi)=p^{-1} \sum_{\eta \in \boldsymbol{Z}_{p}} p^{1-n} N_{p}(\eta) x_{p}(\xi \eta) \tag{2.1}
\end{equation*}
$$

and the inversion

$$
\begin{equation*}
p^{1-n} N_{p}(\eta)=\sum_{\xi \in Z_{p}} G_{p}(\xi) \bar{x}_{p}(\xi \eta) \tag{2.2}
\end{equation*}
$$

It follows from either (2.1) or (2.2) the following Parseval's relation:

$$
\begin{equation*}
\sum_{\xi \in \boldsymbol{Z}_{p}}\left|G_{p}(\xi)\right|^{2}=p^{-1} \sum_{\xi \in \boldsymbol{Z}_{p}}\left(p^{1-n} N_{p}(\xi)\right)^{2} . \tag{2.3}
\end{equation*}
$$

By induction on n, one can prove easily that there is a positive constant c_{1} depending only on $f(X)$ and not on p such that

$$
\begin{equation*}
N_{p}(\xi) \leqq c_{1} p^{n-1} \text { for all } p \text { and } \xi \in \boldsymbol{Z}_{p} . \tag{2.4}
\end{equation*}
$$

Substituting (2.4) in (2.3), we get

$$
\begin{equation*}
\sum_{\xi \in \mathbb{Z}_{\phi}^{\star}}\left|G_{p}(\xi)\right|^{2} \leqq c_{2} \text { for all } p, \tag{2.5}
\end{equation*}
$$

where $\boldsymbol{Z}_{p}^{\star}=\boldsymbol{Z}_{p}-\{0\}$.
3. From now on, we shall consider a triple (G, ω, f) consisting of a connected algebraic group G defined over \boldsymbol{Q}, a non-trivial character ω of G defined over \boldsymbol{Q} and a non-constant polynomial f in $\boldsymbol{Z}[X]$ such that
(3.1) $\quad f(t x)=\omega(t) f(x), x \in \Omega^{n}, t \in G$,
where Ω means a universal domain containing \boldsymbol{Q}.
We denote by G_{p} the algebraic group defined over \boldsymbol{Z}_{p} obtained from G by the reduction modulo p. For almost all p, G_{p} remains connected, the reduced map ω_{p} remains to be a non-trivial character of G_{p} defined over \boldsymbol{Z}_{p} and we have, for almost all p,

$$
\begin{equation*}
f_{p}(t x)=\omega_{p}(t) f_{p}(x), x \in \Omega_{p}^{n}, t \in G_{p}, \tag{3.2}
\end{equation*}
$$

where Ω_{p} means the universal domain over Z_{p} obtained from Ω. Denote by $G_{p, Z_{p}}$ the finite subgroup of G_{p} consisting of points rational over \boldsymbol{Z}_{ϕ}. Using (3.2), we see that

$$
\begin{equation*}
N_{p}\left(\omega_{p}(t) \xi\right)=N_{p}(\xi), \xi \in \boldsymbol{Z}_{p}, t \in G_{p, Z_{p}} . \tag{3.3}
\end{equation*}
$$

From (2.1), (3.3), we get

$$
\begin{equation*}
G_{p}\left(\omega_{p}(t) \xi\right)=G_{p}(\xi) \xi \in Z_{p}, t \in G_{p, Z_{p}} . \tag{3.4}
\end{equation*}
$$

Let

$$
\begin{equation*}
\boldsymbol{Z}_{p}=K_{0}+K_{1}+\cdots+K_{r p}, K_{0}=\{0\}, \tag{3.5}
\end{equation*}
$$

be the decomposition of \boldsymbol{Z}_{p} into the orbits under the action of the group $G_{p, Z_{p}}$. Denote by $\omega_{p, Z_{p}}$ the homomorphism $G_{p, Z_{p}} \rightarrow \boldsymbol{Z}_{p}^{\times}$. Since \boldsymbol{Z}_{p} is a field, the cardinality of K_{i} for $1 \leqq i \leqq r_{p}$ is independent of i and is equal to $\left[\operatorname{Im}\left(\omega_{p, Z_{p}}\right)\right]$, here and from now on $[S]$ means the
cardinality of a finite set S. Therefore we have the relation

$$
\begin{equation*}
p-1=r_{p}\left[\operatorname{Im}\left(\omega_{p, Z_{p}}\right)\right], \tag{3.6}
\end{equation*}
$$

which implies also that

$$
\begin{equation*}
r_{p}=\left[\operatorname{Cok} \omega_{p, Z_{p}}\right] . \tag{3.7}
\end{equation*}
$$

From (2.5), (3.4), (3.5), (3.6), we get

$$
\begin{equation*}
r_{p}^{-1}(p-1) \sum_{i=1}^{r p}\left|G_{p}\left(\xi_{i}\right)\right|^{2} \leqq c_{2}, \xi_{i} \in K_{i} . \tag{3.8}
\end{equation*}
$$

In particular, in view of (3.7), we have, for almost all p,

$$
\begin{equation*}
\left|G_{p}(\xi)\right|^{2} \leqq c_{3} p^{-1} \quad\left[\operatorname{Cok} \omega_{p, Z_{p}}\right], \xi \neq 0 . \tag{3.9}
\end{equation*}
$$

We now claim that
$\left[\operatorname{Cok} \omega_{p, Z_{p}}\right] \leqq c_{4}$.

To prove (3.10), we first recall the Levi-Chevalley decomposition of G over $\boldsymbol{Q}: G=U T S$, where U is the unipotent radical of G, $R=U T$ is the radical of $G, A=T S$ is reductive, T is a torus defined over \boldsymbol{Q} which is the identity component of the center of A, S is a semi-simple group which is the derived group of A. Since U, S have no non-trivial characters, the non-triviality of ω implies that ω induces on T a non-trivial character ω_{T}. Now, let $T=T_{0} T_{1}$ be the decomposition where T_{0} is the maximal \boldsymbol{Q}-trivial torus and T_{1} is the torus having no non-trivial characters defined over \boldsymbol{Q}. Then, clearly, ω_{T} induces on T_{0} a non-trivial character $\omega_{T_{0}}$. Finally, T_{0} must contain a one dimensional Q-trivial torus $T_{2}=G_{m}$ on which $\omega_{T_{0}}$ induces a non-trivial character $\omega_{T_{2}}: T_{2}=G_{m} \rightarrow G_{m}$. Hence $\omega_{T_{2}}(t)=t^{c}$ for some $e \geqq 1$. Now, for almost all $p, \omega_{p}: G_{p} \rightarrow G_{m, p}$ induces on $T_{2, p}=$ $G_{m, p}$ the character $t \rightarrow t^{t}$ as above. Since $G \supset T_{2},\left[\operatorname{Cok} \omega_{p, z_{p}}\right]$ is a divisor of $\left[\operatorname{Cok}\left(\omega_{\tau_{2}}\right)_{p, Z_{p}}\right]=(e, p-1) \leqq e$. Therefore the proof of (3.10) is complete.

Substituting (3.10) in (3.9) we obtain the following

Theorem. Let (G, ω, f) be a triple of connected algebraic group G defined over \boldsymbol{Q}, a non-trivial character ω of G defined over \boldsymbol{Q}
and a non-constant polynomial $f \in \boldsymbol{Z}[X]$ satisfying (3.1). Then, we have $\left|G_{p}(\xi)\right| \leqq c p^{-1 / 2}$ for all p and $\xi \in Z_{p}^{\times}$, where c is a positive constant depending only on the triple and not on p.

The Johns Hopkins University

