A remark on Gaussian sums and algebraic groups

By

Takashi Ono

(Communicatel by Professor Nagata, July 25, 1972)

1. Let f(X) be a non-constant polynomial in $\mathbb{Z}[X]$, $X=(X_1, \dots, X_n)$. Denote by $f_p(X)$ the polynomial in $\mathbb{Z}_p[X]$ obtained from f(X) by reducing the coefficients modulo p, where \mathbb{Z}_p means the residue field. Let x_p be a non-trivial character of the additive group of the field \mathbb{Z}_p , e.g. $x_p(a) = \exp(2\pi i p^{-1}a)$. We shall put

(1.1)
$$G_{\mathfrak{p}}(\xi) = \mathfrak{p}^{-n} \sum_{x \in \mathbb{Z}_{\mathfrak{p}}^{n}} \mathfrak{X}_{\mathfrak{p}}(f_{\mathfrak{p}}(x)\xi), \ \xi \in \mathbb{Z}_{\mathfrak{p}},$$

and call this the Gaussian sum with respect to f(X) at p. Clearly we have $|G_{p}(\xi)| \leq 1$ and $G_{p}(0) = 1$. It is Gauss's classical formula that

(1.2)
$$|G_{p}(\xi)| = p^{-1/2}$$
 when $n=1, f(X) = X^{2}, p \neq 2$ and $\xi \neq 0$.

It is our purpose to generalize (1, 2) to the case where f(X) appears as a semi-invariant of an arbitrary connected algebraic group defined over Q having a non-trivial character defined over Q.

2. For $\xi \in \mathbb{Z}_p$, denote by $N_p(\xi)$ the number of $x \in \mathbb{Z}_p^n$ such that $f_p(x) = \xi$. It is easy to verify the relation

(2.1)
$$G_{\mathfrak{p}}(\xi) = p^{-1} \sum_{\eta \in \mathbb{Z}_{\mathfrak{p}}} p^{1-\eta} N_{\mathfrak{p}}(\eta) \chi_{\mathfrak{p}}(\xi\eta)$$

and the inversion

(2.2)
$$p^{1-n}N_p(\eta) = \sum_{\xi \in \mathbb{Z}_p} G_p(\xi)\overline{\chi}_p(\xi\eta).$$

It follows from either (2.1) or (2.2) the following Parseval's relation:

Takashi Ono

(2.3)
$$\sum_{\xi \in \mathbf{Z}_{p}} |G_{p}(\xi)|^{2} = p^{-1} \sum_{\xi \in \mathbf{Z}_{p}} (p^{1-n} N_{p}(\xi))^{2}.$$

By induction on n, one can prove easily that there is a positive constant c_1 depending only on f(X) and not on p such that

(2.4)
$$N_p(\xi) \leq c_1 p^{n-1}$$
 for all p and $\xi \in \mathbb{Z}_p$.

Substituting (2.4) in (2.3), we get

(2.5)
$$\sum_{\xi \in \mathbb{Z}_p^{\times}} |G_p(\xi)|^2 \leq c_2 \text{ for all } p,$$

where $Z_{p}^{\star} = Z_{p} - \{0\}$.

3. From now on, we shall consider a triple (G, ω, f) consisting of a connected algebraic group G defined over Q, a non-trivial character ω of G defined over Q and a non-constant polynomial f in $\mathbb{Z}[X]$ such that

(3.1)
$$f(tx) = \omega(t)f(x), x \in \Omega^n, t \in G,$$

where Ω means a universal domain containing Q.

We denote by G_{ρ} the algebraic group defined over Z_{ρ} obtained from G by the reduction modulo p. For almost all p, G_{ρ} remains connected, the reduced map ω_{ρ} remains to be a non-trivial character of G_{ρ} defined over Z_{ρ} and we have, for almost all p,

$$(3.2) f_p(tx) = \omega_p(t)f_p(x), x \in \mathcal{Q}_p^n, t \in G_p,$$

where Ω_{ρ} means the universal domain over Z_{ρ} obtained from Ω . Denote by $G_{\rho,Z_{\rho}}$ the finite subgroup of G_{ρ} consisting of points rational over Z_{ρ} . Using (3.2), we see that

$$(3.3) N_{\rho}(\omega_{\rho}(t)\xi) = N_{\rho}(\xi), \ \xi \in \mathbb{Z}_{\rho}, \ t \in G_{\rho,\mathbb{Z}_{\rho}}.$$

From (2.1), (3.3), we get

(3.4)
$$G_{\mathfrak{p}}(\omega_{\mathfrak{p}}(t)\xi) = G_{\mathfrak{p}}(\xi) \quad \xi \in \mathbb{Z}_{\mathfrak{p}}, \ t \in G_{\mathfrak{p},\mathbb{Z}_{\mathfrak{p}}}.$$

Let

$$(3.5) Z_{p} = K_{0} + K_{1} + \dots + K_{r_{p}}, K_{0} = \{0\},$$

be the decomposition of Z_p into the orbits under the action of the group G_{p, \mathbb{Z}_p} . Denote by ω_{p, \mathbb{Z}_p} the homomorphism $G_{p, \mathbb{Z}_p} \rightarrow \mathbb{Z}_p^{\times}$. Since Z_p is a field, the cardinality of K_i for $1 \leq i \leq r_p$ is independent of i and is equal to $[\operatorname{Im}(\omega_{p, \mathbb{Z}_p})]$, here and from now on [S] means the

140

cardinality of a finite set S. Therefore we have the relation

(3.6) $p-1=r_p[Im(\omega_{p,z_p})],$

which implies also that

(3.7)
$$\boldsymbol{r}_{p} = [\operatorname{Cok} \boldsymbol{\omega}_{p, \boldsymbol{Z}_{p}}].$$

From (2.5), (3.4), (3.5), (3.6), we get

(3.8)
$$r_{\rho}^{-1}(p-1)\sum_{i=1}^{\gamma} |G_{\rho}(\xi_i)|^2 \leq c_2, \ \xi_i \in K_i.$$

In particular, in view of (3.7), we have, for almost all p,

(3.9)
$$|G_{\rho}(\xi)|^{2} \leq c_{3} p^{-1} [\operatorname{Cok} \omega_{p, \mathbb{Z}_{\rho}}], \xi \neq 0.$$

We now claim that

$$(3.10) \qquad [\operatorname{Cok} \omega_{p, \mathbf{Z}_{p}}] \leq c_{4}.$$

To prove (3.10), we first recall the Levi-Chevalley decomposition of G over Q: G = UTS, where U is the unipotent radical of G, R = UT is the radical of G, A = TS is reductive, T is a torus defined over Q which is the identity component of the center of A, S is a semi-simple group which is the derived group of A. Since U, Shave no non-trivial characters, the non-triviality of ω implies that ω induces on T a non-trivial character ω_T . Now, let $T = T_0 T_1$ be the decomposition where T_0 is the maximal Q-trivial torus and T_1 is the torus having no non-trivial characters defined over Q. Then, clearly, ω_T induces on T_0 a non-trivial character ω_{T_0} . Finally, T_0 must contain a one dimensional Q-trivial torus $T_2 = G_m$ on which ω_{T_a} induces a non-trivial character ω_{T_2} : $T_2 = G_m \rightarrow G_m$. Hence $\omega_{T_2}(t) = t^c$ for some $e \ge 1$. Now, for almost all $p, \omega_p: G_p \to G_{m,p}$ induces on $T_{2,p} =$ $G_{m,p}$ the character $t \to t^{\epsilon}$ as above. Since $G \supset T_2$, $[\operatorname{Cok} \omega_{p, \mathbf{Z}_p}]$ is a divisor of $[\operatorname{Cok}(\omega_{T_2})_{p, \mathbf{Z}_p}] = (e, p-1) \leq e$. Therefore the proof of (3.10) is complete.

Substituting (3.10) in (3.9) we obtain the following

Theorem. Let (G, ω, f) be a triple of connected algebraic group G defined over Q, a non-trivial character ω of G defined over Q Takashi Ono

and a non-constant polynomial $f \in \mathbb{Z}[X]$ satisfying (3.1). Then, we have $|G_{\mathfrak{p}}(\xi)| \leq c \mathfrak{p}^{-1/2}$ for all \mathfrak{p} and $\xi \in \mathbb{Z}_{\mathfrak{p}}^{\times}$, where c is a positive constant depending only on the triple and not on \mathfrak{p} .

The Johns Hopkins University