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§0. Introduction

The purpose of this paper is to prove some theorems on the

finite-dimensionality of the cohomology groups attached to systems
of linear differential equations with real analytic coefficients. More
precisely, we prove the finite-dimensionality of the cohomology groups
of the differential complex defined by the system of linear differential
equations under consideration, while the cohomology groups of differ-
ential complex sometimes turn out to  b e  the cohomology groups
having the solution sheaf of the system o f linear differential equa-
tions as their coefficients. Our proof relies on the micro-local study of
the structure of the microfunction solution sheaf o f th e system of
linear differential equations and on the comparison o f th e  linear
topological structures which are naturally induced to the cohomology
groups under consideration. The micro-local analysis, i. e., the local
analysis on the cotangential sphere bundle, has been recently devel-
oped in Sato, Kawai and Kashiwara [20] , [21] , and it is effectively used
to prove the coincidence of the two topological structures induced to
the cohomology groups. W e also use the local analysis concerning
the boundary value problems developed by Komatsu and Kawai [15]
and Kashiwara [9] . See also Sato, Kawai and Kashiwara [21] . We
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note that Guillemin [6] has recently announced results close to  ours
by the so-called sub-elliptic estimates. We also note that the employ-
ment of hyperfunctions allows us to treat much more general systems
of linear differential equations than those treated in Guillemin [6] ,
though in compensation for it we should restrict ourselves to the
consideration of the problems in real analytic category, i. e., the system
of linear differential equations has real analytic coefficients, the mani-
fold on which it is defined is real analytic and so forth.

The author expresses his heartiest thanks to Professor Y. Akizuki,
who has been constantly encouraging the author from the d ay  of
student. The auther also expresses his heartiest thanks to M r. M.
Kashiwara for many valuable discussions concerning the theory of

derived category.
The results of this paper have been announced in  Kawai [11] .

See also Kawai [10].

§ 1 . Finite-dimensionality of cohomology groups attached to
systems of linear differential equations defined on a compact
manifold

To begin with, we prepare some notations. Throughout this
paper M  denotes a compact, oriented, real analytic manifold and A ,

_Of and .W denote the sheaf of germs of real analytic functions, hyper-
functions, linear differential operators of finite order and linear differential
operators of infinite order on a real analytic manifold, respectively.
We also denote by C and g)  the sheaf of microfunctions and pseudo-
differential operators of infinite order respectively. Here we emphasize
the importance of the employment o f  linear (pseudo-)differential
operators o f  inf inite order in the treatment o f general system of
linear (pseudo-)differential equations even o f  f in ite  o rd e r. About
the theory o f linear (pseudo-)differential operators o f infinite order
we refer the reader to Sato, Kawai and Kashiwara [21] . We also note
that linear differential operators of infinite order cannot operate either
on the sheaf of germs of C -  functions or on that of distributions, while



Finite-dimensionality o f cohomology 75

they naturally operate on that of real analytic functions and that of

hyperfunctions as sheaf homomorphisms by the definition. Let a
be a system o f linear differential equations defined on  M, i. e., let
a/ be a left ID-Module. Throughout this paper we assume that .51/
is  admissible, i.e., fo r any x  in  M  there exist an openneighbour

hood U  of x  and a coherent left gf-Module defined on U such

that

(1.1)

holds. Roughly speaking this condition on a implies that the sys-
tem a is defined essentially by linear differential equations o f finite
order and it allows us to consider its characteristic variety V= S. S.
a  of the system a . (Cf. Sato, Kawai and Kashiwara [21] . Note
that S. S. ,2  is  S u p p (T  a ) by definition, where n  denotes the

7r- ig)
canonical projection from the pure imaginary cotangential sphere
bundle /— 1 S *M  to  M . )  Moreover we always assume that the
system al has a free resolution by 2

Po
(1. 2)

where Ø i  denotes the r,-tuple of g .  Clearly the above free resolu-
tion gives rise to the differential complexes accompanied with the
system

(1. 3)
Po P i

(1. 4) grol").°

and

(1.5) GBA-g) 1°.* (g / a )  1.22 (g/ ( 1 ) r 2- >

where g / a  denotes the quotion sheaf of g  by a  and a r i , and
( /LA) ' i  denote the r f tuple of a, g  and .B/LA  respectively. Using
th e  above reso lution o f  <31, Ext i

g (M ; a ,  LA), Ex -C.0 (M; 5W , g )  and
E x t(M ; L51, g /LA) a r e  given by the j-th cohomology groups of
the following complexes (1. 6), (1. 7) and (1. 8) respectively.

Po(1.6)a ( m y . (m),----›„.7(m)r2-- .......
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(1. 7) g(M )rolA .B (M )ril± 1>g(M )'2,

(1.8) (g/A )(111)'°±>' ( g /A ) ( M ) " -
l i l ›( -B /A )(M ) . . . . .  •

Note that sheaf g  is flabby and that sheaf A  is cohomologically
trivial (Grauert [31), hence the quotient sheaf g/.__y7 is flabby. To
state our theorems we should introduce the notion of generalized
Levi form of the system a by making use of the assumption that
a is  admissible. Though the definition of the generalized Levi form
(of a system of pseudo-differential equations) is given in Sato, Kawai
and Kashiwara [21] Chapter II, we repeat it here for the reader's con-
venience. Recall that the pseudo-differential operators and the sheaf
of microfunctions are defined on S *M , where X  denotes
the complexification of M  and S Z X  denotes the conormal spherical
bundle. For an analytic function A (x, C) defined on U c  — 1  S *M
we define A' (x, C) by A x , —C), w hich  is defined on P ,  the anti-
podal set of U.

Definition 1. 1. (Generalized Levi form) Let V be the charac-
teristic variety of 0  a in P* X .  Assume that for a point x:=-

7r- i.0
(x°,v . )  in 1/ -1  S * M  there exists a complex neighbourhood w
of x : where V has the form

{(z, C ) P *xi pi (z, c) • • • ---pd(z, c) -ol,
where p,(z , C ) is a holomorphic functions defined on w c P * X .  Then
the generalized Levi form L ( V ) a t x : is by definition the hermitian
form ( {Ph (x, V —1 7))) defined on w, where {p1,p;} denotes

the Poisson bracket of P, and yk, i . e., E ( aP , aP'k ac, az, az, ac, •
After these preparations we obtain the following

Theorem  1. 2. Assume that the generalized Levi form  L (V )
attached to the system al has always at least q negative eigenvalues
on V nV  — 1S *M . Then

(1. 9) dime Exti (m ;A ) = d i m c  Ext i
g (m ; g )< o .
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holds fo r  j< q .

P ro o f .  There is nothing to prove i f  q = 0 , hence we may

assume that q> 0 in the sequel. To begin with, we have the follow-

ing long exact sequence (1 .11 ) from the short exact sequence

(1.10) :

(1.11)
Exeo (M ; al, A ) Ext!g (m ; g)--->Exesp ( M ; a, g / A )

--->Extig (m ; a, A) —> • • • --->Ext"g5'( m ; g / A )
Ex-1'0 (M; 31, A) --->Ext' (M; g)—>Ext1D (m; a, ..BAA)

—> E xtli(M ; ,A) —> • • •

On the other hand the micro-local analysis of systems of pseudo-

differential equations developed in Sato, Kawai and Kashiwara [21]
Chapter II proves that

(1.12) (2  0 c) =0
7c- '2

holds for j < q  under the assumption o f the theorem. Theorefore
the microfunction solution sheaf of the system o f pseudo-differential
equations g  7r- 131 vanishes. In fact it is nothing but

(g ) c) = 2 ( g )  0 5lI c).
7r-'2 7,-12

Taking into account of the flabbiness of sheaf C  (Kashiwara [8] , see
also Sato, Kawai and Kashiwara [21] Chapter II for the simple proof
using the theory o f elliptic pseudo-differential operators), we may
use the de Rham theorem and find that

(1.13) E x t - (V -1  S * M ; g C) = 0
re- 1 0

holds for j < q .  This is equivalent to say that

(1.14) Extio(m; g /A) = 0

holds for j< q ,  since the system .512 is admissible and since rc,,,C=-
g/ A .

Therefore, using the exact sequence (1 .11 ), we conclude that

(1.15) Exti2(M; Extl2(m; g )
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holds, at least algebraically, for j< q .
Now we recall the fact that A(M ), the space o f real analytic

functions on M , and g(m ), that of hyperfunctions on M , form
a DFS-space and an FS-space respectively and that there exists a
natural pairing between them, since M  is  compact and oriented.
(Sato [19] . See also Komatsu [14] . We also refer the reader to
Grothendieck [4] and Komatsu [12] , [14] Malgrange [16] etc. about
the theory and applications of (D)FS-spaces.) Hence Ext-1

0 (M; a, „A)
is  a quotient space of a DFS-space by a subspace (not necessarily
closed, a priori) and Ext i

0 (M; ,51, 2 )  is a quotient space of an FS-
space by a subspace (not necessarily closed), because Exti (m; 5W, ,A)
(resp. Ex -C (M; g ) )  is isomorphic to

Ker ( M )  i (M )

(resp. Ker(g(M)r , --4P  ..B (M )r , , i ) / I m (2 (M ) ' , -iP± - 4 ( M ) r i ) )

and because linear differential operators operate continuously on
A(M ) (resp. g ( M ) )  and because a closed subspace of a DFS-space
(resp. FS-space) becomes a DFS-space (resp. FS-space) by the induced
topology. We endow Ex -C.0 (M; ,1 ) and Ext-(M; 5lt, g ) with
natural these quotient topology. Then the map

ExV0  (m; (m; _B),
which is induced from the natural injection e : , ,I ( M ) c - , B (M), is
clearly continuous by the definition of the quotient topology. Now
we want to prove that map i  is  a topological isomorphism for j< q .

In  passing a  theorem of Grauert [3] (Proposition 7.) asserts
that there exists a complexification X  o f M  such that M  has a
countable fundamental system of Stein neighbourhoods {U,} in X.
Clearly we may assume th a t Uk-1C Uk•

Now consider the following map (1. 16) induced from P " , where

(A (M ) ' , )P i denotes Ker (A (M )r , P  A (M )r , , i).

(1. 16) g(M)r,-, x (A (M )r ,) ' ,1 ( g ( M ) r i r i

( u ,  v ) ->P;_i u+ v
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Then the algebraic isomorphism (1. 15) asserts that the above defined
map iî i s  surjective for j < q .  U ntil the end of the proof of

Theorem 1. 2 we always assume that j < q .  Since the coefficients of

the differential operator P i  and P f _i  are real analytic, we may assume

without loss of generality that they are defined on  111 . Therefore
we have a topological isomorphism
(1. 17) (c_A (M ) lim (0 ( U  i ) P 1

k—>o=
where the inductive lim it in the right hand side m eans that o f lo-
cally convex linear topological spaces. Note th at 0( U,), the space
of holomorphic functions on U,„ is  an FS-space by the natural topo-
logy and that its closed subspace (0 (U 0 ) )  ' i  becomes an FS-space.
Hence a theorem of Grothendieck [5] (p. 16 Theoreme A.) concerning
the map from a inductive lim it of Fréchet spaces onto (a continuous
image of) a Fréchet space asserts that w e can find an index Igo

such that

(1.17) g (M ) ' i - '  x (0(Uko)'') P ? 'i - 4 -B (M )'') P '

is  surjective.
On the other hand the natural injection ce:O(U,„) — > g(M ) is

a compact operator by the Ascoli-Arzelà theorem, hence the natural
injection c",:: (0 ( U k o ) r ' ) P ' - - - - > ( - - B

 ( M ) ' i ) i  i s  a ls o  a compact operator.
Then we apply the classical theorem of Schwartz on compact pertur-
bation (Schwartz [22] ) and find that

(1. 18) g (M )',P-±: (-B (M Y  i) P

is  a operator with closed range, because the map

g ( M ) ' , --i x (0 ( U 0 5 ) P ' - - *(-B(11/)'') P i
U.)

( u ,  v )  v

is  a compact operator from a Fréchet space to a Fréchet space as
shown above. Therefore Ext4 (Ay ;  g )  is an FS-spase, since it is
a quotient of an FS-space by its closed subspace. At the same time
this fact proves that the inverse image of 0 of Ext .6(M ; g )  by
i 1 is closed since i ,  is continuous. On the other hand (1. 15) asserts
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that the inverse image of 0 by i ,  consists of 0 in Exeg ,(M; a, a).
It means that the linear topological space Ext i

g ,(M; a, a ) endowed
with its natural quotient topology is Hausdorff. Therefore the denomi-

Pi _inator of the quotient space, i.e., Im (a (M )r , -i— > a (M )r i) is closed
in  Ker(a(M)ri , a(m)r , .). H ence it is a DFS-space as a closed
subspace of a DFS-space. Thus Extig (M; a, a) is seen to be a
DFS-space as a quotient of DFS-space. Then, taking account of the
algebraic isomorphism (1. 15), we may apply the open mapping thorem
of Ptak (or the closed graph theorem of Robertson and Robertson)
to our situation and find that the map i ,  is a topological isomorphism.
(About the above quoted open mapping thorem or closed range theorem
we refer to Komatsu [14] Ch. 4. §3., for example.)

Therefore ExtL (M; 5f1, ,A ) E x t  ( M ; g )  is a DFS-space and,
a t the same time, i s  an FS-space. O n  t h e  other hand, a linear
topological space which is both DF and F becomes a Banach space,
as is  w ell know n . T hus ExtL(M; „q>=Ex t (m ; Sf1, g )  i s  a
Schwartz space which is a Banach space. Then clearly such a space
becomes a finite-dimensional linear space by the well-known fact that
a locally compact Hausdorff linear topological space is finite-dimen-
sional. This completes the proof of Theorem 1. 2.

Remark. In order to prove Theorem 1. 2, it  is  crearly sufficient
to assume the following condition (1. 2), instead of (1. 2)
(1. 2), The system  a  h as  a free resolution of length q  by 2,

i. e., we have the following exact sequence:
 P o P i P 0 _ 1

 'q

In Theorem 1. 4 we can also relax the condition (1. 25) a little
in an analogous way to the above and the remark of the same type

clearly applies to Theorem 2. 1 and Theorem 2. 3 also, though we
will not repeat it there.

Using essentially the same arguments, we can prove the follow-
ing
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Theorem 1. 3. Assume that there exists an integer q which
is equal to or larger than

sup( d i m u  v = i n )  P r o i  (2  0  7C- 1

4j )) - P.
(x, V -1 ?I) Uxt

for any x: = (x°,V —1e) ev nv -1 s* m, where U4 is a suitable
neighbourhood of x: and p  is equal to or smaller than the number
of positive eigenvalues in U 4; of the generalized Levi fo rm  L (V )
attached to th e  system a .  H ere dim , P r o i  (2  0  7r- J5J1)

denotes the Projective dimension at (x,-1/ —172) of the left 2-Module
2 0 ir 1 S11 T h e n

7s- 1 0

(1 . 19) dimc Ext.' (M; A) = climc  Exti (m; a, g)< .0
holds for j>q +1 and
(1. 20) d im c E xt'(m ; g)<00
holds.

P ro o f. We first prove (1 . 1 9 ). As in the proof of the preced-
ing theorem we begin our reasoning by showing the existence of
the algebraic isomorphism between Ex -ti

f f ) (M ; a l, A ) and Extig (M;
B) for j> q + 1 .  In this case the micro-local analysis of pseudo-

differential equations developed in Sato, Kawai and Kashiwara [21 ]
Chapter II tells us that

(1. 21) flabby-dim R :%6 -mg ,(2  i r a , C )Sq

holds, that is, there exists a complex o f sheaves X  on V — 1 S *M
such that quasi-isomorphic to R ge,,g ) (2  0 I'51, C ) and that all

7r- 1 0
.--C ` are flabby and that J 1 =0 for i> q .  (Here and in the sequel
we frequently use the notions and notations in the theory of derived
category. As for the theory of derived category, we refer the reader
to  the detailed exposition of Hartshorne [7] ). The relation (1. 21)
immediately implies that

(1. 22)E x t - 1 2  ( -1/ —1 S *M ; .g) 7 r - i < 3 1 ,  C )  =0

holds for j > q .  Then clearly we find that
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(1.23)E x t i g ) ( M ;  a ,  gA A ) = 0

holds for j>q .
Now we combine (1. 23) with the long exact sequence (1. 11).

Then we find that

(1.24) Ext.' (m ;, A ) = - . E x t i2 (M ; a, g )

holds, at least algebraically, for j > q + 1 .  Therefore we can proceed
just in the same way as in the proof of the preceding theorem using
(1. 24) as a substitute for (1 . 15 ), that is, w e can  prove that the
above isomorphism (1 . 24) is not only algebraic but also topological
i f  Ext.' (m ; a, ,A )  and Exqp(M; a, g )  are endowed with the
natural quotient topology as before. Then the same reasoning as that
given in the last part of the proof of the previous theorem applies
to our situation and we finally find that

dimc  E x t  (m; W ,  J)= dirric  ExtL(m ; 5J1, ) g<0o

holds for j>q + 1. This proves (1. 19).
Now we go on to the proof o f (1. 2 0 ) .  In this case, the results

of micro-local analysis, i. e ., (1 . 21), hence (1. 23), only asserts that
the natural map

ExtZ i(m ; ,A) — > E xt'(m ; 5f1, g)
is  surjective. But this seemingly rather weak assertion is sufficient
to prove that the map d e f i n e d  in (1 . 16 ) i s  surjective for j =
q +1 , whence by the same reasoning as in the proof of the preceding
theorem o n e  can  verify  Im (Pg : g(M )'— >g3(M )r , i) is closed in
K er(P , 1 :23(M)• , , , i— >g(M ' , .2). Therefore w e see that E xtV (m ;

fI, B) i s  a FS-space. We want to prove that this space is topologi-
cally  isom orph ic to  a  D FS-space. I f  it i s  p r o v e d ,  the finite-
dimensionality of the space under consideration follows by the same
arguments as above. For the sake o f simplicity of notations we
abbreviate K er(P ,,, : I m ( P q  :
, i ( M ) ' , )  and E xtV (M ; ..B) to Z, B  and H  respectively. Let p

be the projection from Z  to Z / B . Denoting by N  the kernel of the
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m ap i„ , ,  we define a  subspace A  o f Z  b y  {z G Z  p (z+b ) N  for

some b in B} . Clearly ZD AD B  and A/B is algebraically isomor-
phic to N . Let n and 0) denote the projection from Z  to  Z/A and

projection from Z  to Z/B respectively. W e also denote by p  the

natural surjection from Z/B to Z / A . Evidently Ker p is algebraically
isomorphic to A /B . On the other hand the definition of the quotient

topology immediately proves that n and 0) are topological homomor-

phisms, i.e., continuous and open. Therefore the map p is easily seen
to  be an open map. Hence the following algebraic isomorphism "p"
induced from p

-
16:(Z/B)1(A/B)=.Z/A

is  an open map. This is equivalent to  say that a= ( b) - ' is conti-

nuous. On the other hand, the following algebraic isomorphism rg + ,
induced from i„ ,

(Z/B)/(A/B)=>.H
in clearly continuous since i g  „  is continuous. Therefore the composed
algebraic isomorphism 4+ , 0 : Z/A=>II is continuous.

Now recall the fact that H=ExtZ 1 (M; g )  is  an FS-space,

especially a Hausdorff space. Therefore the continuity of the above
defined algebraic isomorphism -4,,0d proves that the space Z/ A  is
Hausdorff. It is equivalent to say that subspace A  is c losed in Z.
Since Z=Ker(P,, i  :,A (M )' ,, , , , , q ( m ) , 0  is a  DFS-space, its quo-
tient by its closed subspace A  is a DFS-space. Then we apply the
open mapping theorem as before and find  that the above defined
algebraic isomorphism ,i 0o. is a  topological isomorphism. Thus we
have proved that ExtZ l (M; g ) ,  which is an FS-space as proved
before, is topologically isomorphic to a  DFS-space. Therefore it is
finite -dimensional by what we explained before. This proves (1. 20)
and at the same time it completes the proof of the theorem.

Now we investigate the cohomology group o f M  which has the
(hyperfunction) solution sheaf B) o f  t h e  s y s t e m  a  as
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i t s  coefficients. F o r  that purpose we impose in the rest o f this
section the following additional condition (1. 25) on the system a,
which is not a severe one from the analytical view point. In fact
condition (1. 25) is obviously a  corollary of the classical Cauchy-
Kowalevsky theorem (even for linear differetial equations). We refer
to Quillen [18] , Spencer [23], Palamodov [17] and Kashiwara [9] about
the detailed arguments concerning condition (1. 25).

(1.25) E x t l o ( a ,  x) =0 f o r  j  *0,

where Ox denotes the sheaf of holomorphic functions on X , a  sui-
table complexification of M . In other words, taking account of the
free resolution (1. 2) of the system a l  w e assume in the re st of
this section that the analytic solution sheaf S = :57(„:„, 0 (a ,  a )  has
the following resolution by the a id  of the sheaf o f real analytic
functions.

Po
(1. 26)0  — > S a

Now under the above defined additional condition (1. 25) we
have the following

Theorem 1. 4. Assume that the generalized Levi form  L (V )
attached to the system a  has always at least q  negative eigen-
values on V ni/ — 1 S *M . Then

(1.27) d i m c  Hi (M, S) <00

holds fo r j< q ,  where S  denotes the hyperfunction solution sheaf
o f  th e  system a  o f  linear differential equations, j. e., S-=-

.B).

P r o o f .  I f  q = 0, then there is noth ing to  prove. Hence we
assume in the sequel that q > 0 .  Since the sheaf o f germs o f real
analytic functions is cohomologically trivial (Grauert [13] ), we can
calculate the cohomology group H' ( M, S ')  of the manifold M  having
the real analytic solution sheaf S ' as its  coefficients by the de Rham
cohomology group induced from (1. 26), that is, we have the follow-
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ing isomorphism

(1.28) Hl(M, S')
_Ker (P1 : .1(1W )' , -->a(M )r ,  d) /Im (P ."  :

In other words the isomorphism

(1.29)H '  (M , Extio (M; 5l1, a )

holds.
On the other hand, the proof o f Theorem 1. 2 shows that we

have the isomorphism

(1. 30) a).--=-4 0 (a, g9)

since we have assum ed that q>0. The isomorphism (1. 30) immedi-
ately implies that

(1.31)S ' ) S)

holds for any j .  Therefore, combining th e  isomorphisms (1. 29) and
(1. 31), we conclude that

(1. 33) Hi (M, S) -- , ----Ext ig(m ; 5Ii, A )

holds for any j. On the other hand, Theorem 1. 2 asserts that the
right hand side o f (1 . 33) is finite-dimensional for j < q .  Thus we
have completed the proof of the theorem.

In the same way as above we can prove the following

Theorem 1. 5. Assume that the system ,qt o f linear differen-
tial equations satisfies the conditions imposed in  Theorem 1. 3 and
the additional condition (1. 25). Then

(1. 34) d im e  (M, S) < 0 0

holds for j> q+ 1 .

P ro o f. Combining (1. 26) w ith  (1 . 19), w e can  verify (1. 34)
by the same reasoning in  the proof o f th e  preceding theorem. We
leave the details to the reader.
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§ 2 .  Finite-dimensionality o f  cohomology groups attached to
the system o f linear differential equations defined on an
open manifold

Theorems in §1 give m any results on the finite-dimensionality
of cohomology groups, which may be considered as a  generalization
of the corresponding results for elliptic operators on a compact mani-
fold (see Akizuki [1] Ch. 4 , for exam ple). But, if w e abandon the
assumption that the base manifold M  is compact, then such theorems
seem  not to be expected at first sight. In fact, the space o f all
harmonic functions on an open ball is clearly infinite-dimensional, for
exam ple. W e know, however, the following trivial but suggestive
example o f th e finite-dimensionality o f  cohomology groups on an
open manifold:

dimc ili(S2, C) < 0 0  for any j ,  if D is relatively compact and not too
"wild".

Recall the fac t th a t the constant sheaf C  is nothing but the
solution sheaf of the de Rham equation du= O. W h a t is  the difference
between this example and the preceding example of the space of
all harmonic functions on an open ball? Our answer is the following:

Consider the tangential system o f linear differential equations
induced from the de Rham equation onto the boundary OD o f S2,
assuming that 812 is  regu lar. T h en  the tangential system is also
e llip tic . On the other hand, the tangential equation induced from a
single differential equation such as Laplacian is a trivial one, as is
well known. Threfore it will be natural to guess that, the "nearer"
to the elliptic system the tangential system is, th e  more chomology
groups will be finite-dimensional.

The purpose of this section is  to  g iv e  the precise formulation

of the above speculation and to prove it. T h e  proof essentially
relies on the local study of the solution sheaves of linear differential
equations near the boundary, which has been done in  Komatsu and
K awai [15] and K ashiw ara [9] . Note that it is another version of
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the Cauchy-Kowalevsky theorem from the analytical view point. We
also note that the employment of hyperfunctions plays its essential
ro le  in  the above quoted papers in  the sense that we need not
impose any growth conditions on the behaviour of solutions near the

boundary. See also Sato, Kawai and Kashiwara [21] Chapter II.
We first prepare some notations used in  th is  section. Let L

be a compact, oriented, real analytic manifold and N  b e  an open
subset of L  whose boundary aN is  rea l ana lytic . The boundary aN
is clearly compact and oriented. W e denote aN b y  M .  Let 12 be
an admissible system o f linear differential equations defined on L.
Throughout this section w e alw ays assume th a t the system  37 is
elliptic, i.e., S.S. ̀ 17 (1 V —1 S*L=0. Since the boundary of N is regular,
the ellipticity assumption on J l  allows us to concider the tangential
system of linear differential equations induced from the system  71
onto m=aN. We denote the tangen tia l system  by a l. W e refer
the reader to K ashiw ara [9] and Sato, Kawai and Kashiwara [21]
about the algebraically rigorous treatment of the notion of the
tangential system of linear (pseudo-)differential equations.

In this section we use the sym bols A , g  and g  to denote the
sheaf of germs of real analytic functions, hyperfunctions and linear
differential operators defined on L ,  not those on M .  The corre-
sponding objects defined on M  (w ith  one variable less than those
defined on L ) will be denoted and

After these preparations our results read as follows.

Theorem 2. 1. Assume that the tangential system al induced
from  31 onto M  satisfies the conditions in Theorem 1. 2. Then

(2. 1) dime Ext.' ( N; 7/, A ) =dimc  Extig  (N; 71, g )< 0 , -,

holds fo r j<q.

Theorem 2. 2. Assume that the tangential system a induced
from al onto M  satisfies the conditions in Theorem 1. 3. Then
(2. 2) dime Exti ( N ; T ,  A ) dime  Exti (N; J7, g )< 0 0
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holds fo r j> q .

Theorem 2. 3. Assume that the tangential system a induced
from 32 onto M satisfies conditions in Theorem 1. 2  and that the
original system 32 satisfies condition (1 . 25 ) (of course, taking X
to be a complexification of N, not that o f  M ) .  Then

(2. 3) d i m c  1 1 1 (N, S)<00

holds fo r  j< q , where S denotes the (hyperfunction) solution sheaf
of the system

Theorem 2. 4. Assume that the tangential system a induced
from gl onto M satisfies conditions in Theorem 1. 3 and that the
original system 77 satisfies condition (1 . 2 5 ) (taking X  to be a
complexification of N). Then

(2.4) d i m c  ( N, S) <00

holds fo r  j> q , where S denotes the (hyperfunction) solution sheaf
of the system 31.

It is obvious that Theorem 2 . 3  and Theorem 2 . 4  follow from
Theorem 2. 1 and Theorem 2 . 2  respectively i f  we adopt the same
arguments as in the last part of § 1 .  Hence we leave the detailed proof
o f Theorem 2 . 3  and Theorome 2. 4 to  the reader. We only call
the reader's attention to  the fact that lia+1 (N , S )  is also finite-
dimensional in Theorem 2. 4  (Cf. Theorem 1. 5).

Now we give the proof of Theorem 2. 1.

Proof o f  Theorem 2. 1. To begin with, we recall the follow-
ing canonical isomorphism (2 . 5 )  in  the derived category, which
Kashiwara [9] has proved for general system o f linear differential
equations by reducing the problem to the case of single linear
differential equations treated in Komatsu and Kawai [15] by the aid

o f th e  theory o f  derived category. (See also Sato, K aw ai and
Kashiwara [20] Part II, where another proof is given by the aid of
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"Preparation Theorem" fo r linear differential operators o f  infinite
order.)

(2.5)R 'g) [ - 1] Ocomath:
=

>
-
 RP m R g (a  g )  ,

where com and  (0L denote the orientation bundle of M  and  L  respec-
tively. I t is  o b v io u s th a t w e  sh o u ld  pose some non-characteristic
conditions on M  with respect to th e  system  37 in  order to obtain
(2. 5), but the ellipticity assumption on 31 which we have assumed
ensures that the isomorpism (2. 5) holds everywhere on M.

Now we apply to (2. 5) the cohomological functor which maps
th e  triangulated category to th e  abelian category o f  cohomology
groups. Then we obtain the isomorphism

(2. 6) Ext.7/2)(M; 41,  i g ) Extig ,  m (L ; 37, g)

for any j.  On the other hand we have the following general long
exact sequence (2. 7) which connects the relative cohomology groups
and absolute cohomology groups.

(2.7) 0—>Ext°D, m (L;32, 23) —>Exeg  (L;37,g)---Ext° (L— M; J7,)
—>Ext'a  m (L ;37, g)

, .......

M;31, g)

-->Extlg , m (L;37, g) —>Extig  (L;37,g) Extl (L—  M ;31 ,g )
—›Extal m (L; 37, _B), ..........................................................

Moreover it is clear that

(2.8)E x t i g ( L —  M ; 7 , g )
=-Extlg (N ; 37, g)(1)Extig (L— (NUM); 32, g),

holds for any j.  Therefore, if  we prove that

(2. 9), dimcExtkg(L ; 37, g)< 00
and
(2. 10), dim(' ExtZ,:m (L ; 37, g)<00 ,

then we easily see from (2. 8) and  the long exact sequence (2. 7)
that
(2. 11), dimcExtVN; 37, g)<0.0
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holds.
On the other hand, the method of the proof o f Theorem 1. 2

clearly shows that

(2. 12) dimc Ext jo (L ; J2, g ) <c o

holds for any j ,  since L  is  compact and since the system J1 of linear
differential equations is ellipic. In fact the ellipticity assumption on

implies in virtue of Sato's fundamental theorem on regularity of
solutions of (pseudo-)differential equations that

(2.13) K/Ig(g) c) =0

holds for any j ,  and it is sufficient to prove (2. 12) if we adopt the
same reasoning as in  the proof o f  T heorem  1. 2 . About Sato's
fundamental theorem on regu larity w e refer the reader to  Sato,
Kawai and Kashiwara [21] Chapter II and references cited there. Thus
(2. 9), holds for an y  k. Moreover the isomorphism (2. 6) tells us
that (2. 10), is equivalent to

(2. 14), dimc Exeg (M; ' ) <°°

Since M  is  compact and oriented and since the system a  of
linear differential equations satisfies all the conditions in Theorem
1. 2 as a left 'g-Module, Theorem 1. 2 asserts that

(2. 15) d im cE xt6(M ; 5l1, 'g )< -
for j < q ,  that is, (2. 14), holds for k < q .  Therefore (2. 10),, hence
(2. 11), holds for k < q .  This completes the proof of Theorem 2. 1

Lastly we give

P ro o f  o f  T h e o re m  2 . 2 . The reasoning given above applies
to this case without any essential changes. In fact we clearly see
by the same reasoning that the proof of the finite-dimensionality of
Extig ) ( N ; 71, g) for j > q  is reduced to the proof of (2. 14), for k>q,
while Theorem 1. 3 asserts that (2. 14), for k >q  is  true under the
assumption o f Theorem 2. 2. Therefore what remains to prove is
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the finite-dimensionalyty of Ext i  (N; 37, A ) for j > q .  Here we use

the ellipticity assumption on 37. Since (2 .13 ) clearly proves the

vanishing of ExqD(N ; 31, g /A ) for any j ,  we find in  virtue of the

long exact sequence (1. 1 1 ) that

(2.16) E x t i s p ( N ;  37, Extig(N; 37, g)

holds any j .  About the proof of the vanishing of Extio ( N,37,g/A),

we refer to the reasoning by which we have proved (1 .1 4 ). Note

that the vanishing of Ext!o (N ; 37, g/ A ) has nothing to do with the

(non-)compactness of the base manifold N , but that it concerns
on ly the micro-local property of the microfunction solution sheaf
,r7K;.,

9 ( g ) Ø v 5l1, C). Thus (2.14), and (2.16) prove that

dimc Exti ( N; 37, A) ( N; 37, g) <00

holds for j > q .  This completes the proof of Theorem 2.2.

§ 3 .  A  remark on the notion of convexity for systems of linear
differential equations with constant coefficients

Ehrenpreis [2] and Malgrange [16] have given  a penetrating
study on the "convexity" for system o f linear differential equations
w ith  constant coefficients b y  th e  so-called "pie-nibbling" method
(in  the terminology of Ehrenpreis [2 ] ). Their method essentially
relies on the reduction of the problem to that of the adjoint system,
which is again with constant coefficients b y  the definition. Though
their analysis is very interesting and far-reaching in its nature, their
resu lts seem  to  be too  abstract a s  Professor Malgrange himself
confesses in h is  lecture (Malgrange [16] ). As far as the present
writer feels, it is m ainly because they reduce all the problems to
the adjoint system and do not pay any attention to  the tangential
system , at least explicitly. Of course, the explicit use of the tangen-
tial system causes a great difficulty because the tangential system
is  not with constant coefficients even when the original system is
so, and perhaps this will be the main reason why Professor Ehren-
preis and Professor Malgrange do no t use the tangential system
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explicitly.
The purpose of this section is to present a  theorem concerning

the notion of "convexity" for system o f linear differential equations
with constant coefficients, which provides us abundant examples as
its coro llary. In fact the theorem is stated using the word of the
generalized Levi form of the tangential system, and the investigation
o f th e generalized Levi form o f th e tangential system  is only a
problem of "calculation" in its nature, as Professor Hironaka says at
the occasion of h is sem inar at RIMS, Kyoto Univ. (1971). (For
the justification of the above employed terminology "convexity", we
c a l l  th e reader's attention t o  the following celebrated existence
theorem for systems of linear differential equations of finite order and
with constant coefficients, which is due to Ehrenpreis and Malgrange:
Let 37 b e  a  system  o f linear differantial equations o f finite order
and w ith  constant coefficients defined on  R". L e t  S ' denote the
C - -solution sheaf of the system 37, e., SE= e ) ,  where
e denotes the sheaf of germs of C - -functions defined on R " .  Then
for any convex open set D in R",

W(9, S E) =0

holds for an y j > 0 .  As is quoted from Komatsu [13] , [14] in the
proof o f  Theorem 3.1, the corresponding result for hyperfunction
solution sheaf holds also.) Though the following theorem is essen-
tially a very special case of Theorem 2.4 in its  nature, we present it
here independently of Theorem 2 .4  in  o rd er to  lay  stress on the
fact that it is better to investigate the system o f general (pseudo-)
differential equations even when one is concerned only w ith the
system of linear differential equations with constant coefficients.

Theorem 3. 1. Let 37 be an admissible elliptic system of linear
differential equations with constant coefficients defined on R " . Let
N be a  relatively compact open subset o f  R". A ssum e that the
boundary  M  o f  N  def ines a  real analy tic manifold. Assume
f u rth er th at the tangential system  a  induced from  37 onto M
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satisfies the condition in Theorem 1.3 with q > 0 .  Then

(3. 1) d i m c  ( N, S)<00

holds fo r  j> q , where S  denotes the (hyperfunction) solution sheaf
of the system T.

P roo f. To begin with, we recall the following existence theorem
of Komatsu [131, [14 ] concerning admissible system o f linear differ-
ential equations with constant coefficients:

(3.2)H ' ( 5 2 ,  S )  = 0  for j> 0

for any convex open set in R ". Hence the system 77 clearly satisfies
condition (I. 2 5 ) .  It implies that we have the isomorphisms

(3. 3) ( N; 31, g)

for any j. Thus it is sufficient to prove the finite-dimensionality of
Ext.' ( N ,37, g) for j > q ,  w h ile  it  c an  b e  p ro v ed  b y  the same
reasoning as in the previous section. In fact, the long exact sequence
(2. 7) combined with (3. 2) proves that

(3.4)E x t '  (R"— M; 31, g)=- - >Extil m (R"; 11, g )

holds for and the isomorphism (2 . 6 )  shows th a t the right
hand side o f (3. 4) is isomorphic to E x t ;  (M; 5I1 ,  'g ) .  it is finite-
dimensional for j > q  in  virtue o f  Theorem 1. 3. Since w e have
assumed that q> 0 , E x t i

g (R"—M; 31, g )  is thus seen to be finite-
dimensional for j > q .  Then clearly Extlg ( N ; 37, g )  i s  finite-dimen-
sional for j > q .  This completes the proof of the theorem.

Remark. W e do not present here the theorem corresponding
to Theorem 2 . 3 , because it covers on ly the trivial case of the
m axim ally overdetermined system  under the assumption that the
system 31 is  with constant coefficients.

R R SE A R C H  IN ST ITU TE  FO R  M ATH EM ATIC AL SCIENSES,

K Y O T O  UNIVERCITY

A dded in p ro o f . The results in this paper have been recently
improved in some points. As for the improved version, we refer to
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Kawai, T.: Theorem on the finite-dimensionality of the cohomology
groups, I I I  (to  appear in  Proc. Japan Academ y) and Kawai, T.:
Some applications of micro-local analysis to the global study of linear
differential equations, to appear in  Proc. Colloque sur les équations
aux dérivées partielles linéaires (Orsay, 1972).
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