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0. Introduction

Hirzebruch and Kodaira [4] have given characterizations of the
complex projective spaces. A similar characterization for the complex
hyperquadrics has been given by Brieskorn [1]. (See also a recent
paper of Morrow [8] on these topics.) The purpose of the present
paper is to give slightly different characterizations of these spaces.
Our motive is to give characterizations which will be useful in differ-
ential geometry of compact Kihler manifolds of positive curvature.
Our results are expressed in terms of the first Chern class of a mani-
fold. The first Chern class is closely related to the Ricci curvature
of a manifold. We refer the reader to the paper [6] for an appli-
cation of results of this paper to 3-dimensional compact Kihler mani-
folds of positive curvature. A similar characterization has been used
recently by Howard [5] in his work on positively pinched Kihler
manifolds.

Results which can be found in Hirzebruch’s book [3] are used
freely often without explicit references.

The cohomology of M with coefficients in the sheaf 2(F) of
germs of holomorphic sections of a line bundle (or a vector bundle)
F will be denoted by H*(M; F) instead of H*(M; 2(F)). In
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particular, H*(M; 1) means H*(M; 2), where £ is the sheaf of
germs of holomorphic functions.

1. Characterization of the projective spaces

The purpose of this section is to prove the following

Theorem 1.1. Let M be an n-dimensional compact irreducible
complex space with an ample line bundle F. If

1 (e [M]=1,
(2) dimH(M; F)=n+1,

then M is biholomorphic to a complex projective space P, of di-
mension n.

Corollary. Let M be an n-dimensional compact complex mani-
fold with an ample line bundle F. If
a(M)=(n+1)a(F),

then M is biholomorphic to a complex projective space P,.
Proof. We need the following lemma.

Lemma 1. Let V be a compact irreducible complex space. Let
E and F be line bundles over V. Let s be a nontrivial section of
F and put S=Zero(s)=4{x€V; s(x)=0}. Write S as a sum of
irreducible divisors S;, ie., S=>.S;. If these S; are all distinct,
ie., no S: appears with multiplicity greater than 1, then the
following sequence of sheaf homomorphisms is exact:

u oA
0— 2(F) — Q(EF) — 2s(EF) — 0,

where () n is the multiplication by s, (ii) J/J\S(EF ) is the sheaf
N AN

defined by 9s(EF)|s=82(EF)|s and 2s(EF)|,s=0, (iii) p is the

“restriction” map.

The proof is given in [3; p. 130] under the assumption that V'
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and S are both non-singular. But it is trivial to generalize it to
obtain the result stated in Lemma 1. In this section, we shall use
Lemma 1 only when S is irreducible. The general case will be needed
in the following section.

Let ¢i, -, ¢.;1 be linearly independent elements of H°(M; F)
and define divisors D, -+, D,,; by

Dj:Zero(qu) j:]., 2,"', n+1.

Since dim H°(M; F)=2, each D, is nonempty. We define complex
subspaces
M=V oV, >V, .22 V,DV,,

where
%—k:-Dlmpzn"'ﬂDk k=1,2,'“, n+1.

Lemma 2. For each r, 0<r=<n,
1) V.., is irreducible of dimension n—r with dual (¢,(F))’;
(2) The sequence

0—> (o1, =+, 0,) — H'(M; F) 2 H(V,_,; F)

is exact, wheve (¢, -+, ¢,) is the subspace of H'(M; F) spanned
by the sections ¢, -+, 0, and o is the restriction map.

Proof of Lemma 2. The proof is by induction on 7. The case
r=0 is trivial. Assume the lemma for »—1. Since V,_,,, is irre-
ducible and ¢, is nontrivial on V,_,,, by (2), it follows that V,_,
defined as the set of zeroes of ¢, on V,_,,, is a positive divisor of
V.s1 and is a sum of irreducible complex subspaces of dimension
n—r. Put

f=a(F).

Since f"* is the dual of V,_,; and f is the dual of D,, it follows
that f7 is the dual of V,.,=V,,,ND,. Assuming that V,_ is
reducible, we write

Vi,=V'+V" (with nontrivial V’ and V”).
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Since f” is the dual of V,_,, we have

L=f* (M) = (F ™) LML =f+ Vo = V] £ 1V,
(The first equality is by assumption (1) of Theorem 1.1 and the
third equality is by duality). Since F'is ample, f*[V’] and " [V"']
are positive integers. Hence, f"[M] is at least 2. This is a contra-
diction, thus proving that V,_, is irreducible.
To prove (2), we apply Lemma 1 to V=V,_,,,, E=1 and s=g,.
Then S=V,.,. The exact sequence in Lemma 1 induces the following

exact sequence:
0— H'(V, ;1) — H'(V,u; F) — H(V,_,; F).
This means that the kernel of the restriction map
H(Vioppi; F) — H'(V,_,; F)

is spanned by ¢, (or more precisely, the restriction of ¢, to V,_.1).
Combining this with (2) of Lemma 2 for »—1, we obtain (2) for
7. This completes the proof of Lemma 2.

By setting r=# in Lemma 2, we see that V, is a single point
and ¢,,; does not vanish at V,. This proves the following

Lemma 3. H°(M; F) has no base points, i.e., the holomorphic
sections of F has no common zeroes.

It is now easy to see that dim H°(M; F)=n+1. Let P, be the
complex projective space of dimension # defined as the set of hyper-
planes through the origin in H°(M; F), or equivalently, as the set
of lines through the origin in the dual vector space of H°(M; F).

We define a holomorphic mapping
j:M— P,

by setting, for each x€ M,
Jj(x) ={ecH (M; F); ¢(x)=0}.

(Since H°(M; F) has no base points, j(x¥) is a hyperplane in
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H°(M; F)). Let G be the tautological ample line bundle over P,;
the fibre of G at yE P, is the quotient of H°(M; F) by the hyper-
plane corresponding to y. We have also a natural bundle map
j: F—G

defind as follows. For each #< F., consider an element ¢ of H°(M; F)
such that ¢(x)=u. This element ¢ is determined uniquely up to a
section vanishing at x. Hence, as an element of the fibre of G at
y=j(x), this element ¢ is well determined and is denoted by j(u).

Lemma 4. The mapping j: M—P, is bijective.

Proof of Lemma 4. Let y be a point of P,. It is a hyper-
plane in H°(M; F) and let ¢, -+, ¢, be a basis for this hyperplane.
From the definition of the mapping j, it is clear that a point x of
M is mapped into y by j if and only if ¢, -, ¢, vanish at x.
Applying Lemma 2 for »=#x, we see that such a point x exists and
is unique. This completes the proof of Lemma 4, and also that of
Theorem 1. 1.

To prove Corollary, we prove first

Lemma 5. Let M be an n-dimensional compact complex mani-
fold with an ample line bundle F. If c¢:(M)=n+1)c,(F), then

dim H°(M; F*)=dim H°(P,; G") for all integers k=0,

where G is the tautological ample line bundle over P,.

Proof of Lemma 5. Put
pR)=x(M; F*)=>(—1)'dim H'(M; F*),
q(k) =x(P,; G")=>(—1) dim H'(P,; G*).

Then p(k) and g(k) are polynomials of degree » in k, (see [3;
p. 150]):

p(R)=a+ak+-+ak with n!'a,=(c,(F))"[M],
q(k)=by+bk+--+b.k" with n!b,=(c,(G))"|P.].
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To prove that these two polynomials coincide, it suffices to show that
they coincide at #z+1 distinct points £=0,— 1, -, —#. By the
Kodaira vanishing theorem, we have (using ¢,(M)>0)

H(M; 1)=0 for i>0.

Hence,

p(0)=x(M; 1)=dim H°(M; 1) =1,

q(0) =x(P,; 1) =dim H*(P,; 1)=1.
Since ¢;(F)>0 and ¢,(G)>0, the vanishing theorem implies

HM; F Y=H'(P,; G")=0 for £~>0 and 0<i<n—1.

Since ¢,(M)—Fk-c,(F)>0 and c¢;(P,)—k-¢;(G)>0 for k<mu, the
vanishing theorem implies

H'(M; FHY=H"(M; F*Ky) =0 for k<m,

H'(P,; GH=H'(P,; G*K;)=0 for k<w,
where K, and Kp, Aenote the canonical line bundles of M and P,.
Hence, p(—k)=q(—k) for k=0,1,2, ---, n. This shows

1(M; F*)=x(P,; G*) for all integers k.
If k is a nonnegative integer, then H'(M; F*)=H'(P,; G*)=0 for
i=>0 by the vanishing theorem. Hence,

dim H°(M; F*)=x(M; F*)=x(P,; G*) =dim H*(P,; G*) for k=0.

This completes the proof of Lemma 5. In the course of the proof,

we have established p(k) =g (k) for all k and, in particular, a,=b,.
This implies

Lemma 6. Under the same assumption as in Lemma 5, we
have (¢,(F))"|M] =1.

Lemma 6 implies Assumption (1) of Theorem 1.1. Setting k=1
in Lemma 5, we obtain Assumption (2) of Theorem 1.1, in fact,
dim H°(M; F)=n+1. Now Corollary follows immediately from
Theorem 1. 1.
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2. Characterization of the hyperquadrics
In this section we shall prove the following
Theorem 2.1. Let M be an n-dimensional compact irvreducible
complex space with an ample line bundle F. If

1) (aE@)'M] =2,
(2) dimH°(M; F)=n+2,
3) H(M; F"=0  for =0 and 0<i<n—1,
then M is biholomorphic with a hyperquadric in P,...
If M is non-singular, condition (3) is redundant.
Corollary. Let M be an n-dimensional compact complex mani-

fold with an ample line bundle F. If
a(M)=n-c.(f),
then M is biholomorphic to a hyperquadric in P,,.
Proof. Let ¢i, ", ¢n;» be linearly independent elements of
H°(M; F) and define divisors D; by
D;=Zero(p;) for j=1,2, -, n+2.
Let d be the largest integer such that
V.=M,V,,=D,, V,.,=D,ND,, -+, V,_,=D:N\D,N+-ND,
are all irreducible. Then
Lemma 1. For each r, 0<r=<d,

(1) V.., is irreducible of dimension n—r with dual (c.(F))";
(2) The sequence

0 —> (g1, = 0,) — H'(M; F) 5 H'(V,_; F)

is exact, where (o1, -, ¢,) is the subspace of H'(M; F) spanned
by the sections ¢y, -+, ¢, and p is the vestriction map;
(3 H(V,.,; F")=0 for >0 and 0<i<n—r—1.
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Proof of Lemma 1. The proof of (1) and (2) is essentially
the same as that for Lemma 2 in the proof of Theorem 1.1, but is
a little simpler since V,, ---,V,_, are irreducible by assumption.

To prove (3), we apply Lemma 1 in the section 1 to V=V,_ 4,
E=F"**' F=F and s=¢,. Then we have the following exact
sequence:

0 —> @(F™") —> Q(F™) — 2,,.,(F*) —0
of sheaves over V,_ ... From this we obtain the following co-
homology exact sequence:
HV, ; F Y —>HV,_; F*) — H"(V,_,.u; F7").
Now (3) follows from the inductive assumption of (3) for »—1.
This completes the proof of Lemma 1.

Lemma 2. The integer d in Lemma 1 is less than n.

Proof of Lemma 2. Otherwise, V, would be irreducible of di-
mension 0, i.e., a single point (without multiplicity) with dual
(c.(F))". Hence,

(c:(F)"[M] =1[V,] =1,
condtradicting (1) of Theorem 2.1. This completes the proof of
Lemma 2.

Lemma 3. Assume d<n—2. Then W=V, ,N\ D, is reducible
and is of the form
W=Ww'+W",
where W' and W' are mutually distinct irreducible complex sub-
spaces of dimension n—d—1 satisfying
1) (@@E) W = (aF) W] =1;
(2) dimfplw; o€ H(M; F)}=n—d,
(hence, dim H*(W'; F)=n—d),
dim{p|w; o€ H'(M; F)} =n—d,
(hence, dim H*(W"; F)=n—d).
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Proof of Lemma 3. We put

f=ca(F).
Since f is the dual of D, and f* is the dual of V,,, f*" is the
dual of W. Hence,
2=f"[M] =(ffr ) [ M]=f""[W].
By our definition of the integer d, W is reducible. But the equality
above shows that W can have at most two irreducible components.
Hence, it is a sum of two irreducible components:
W=w'+W".
Clearly, the equality
2:fn [M] :fn—d—l |'W] ______fn—d—l [W/] +fn—d—1 [W//]
implies
fn—d—l [W/] :fﬂ—d—l [W//] ___1.
To prove that W’ and W” are distinct, we consider them as

divisors in V,_,. Let F’ and F” be the line bundles over V,_, defined
by divisors W’ and W, respectively, and put

f'=c(F") and f"=c(F").
Then
F=F'F” and f=f'+f" on V,_,.
We have
2=f"[M] =(fif) M) =f[V..]=(f"+f") " [V.d].

If f'=f" and n—d =2, then the right hand side would be at least
4. Hence, f'#f", which implies W' #W".

To prove (2), we apply Lemma 1 in the proof of Theorem 1.1
to V=V,., E=1, F=F and s=¢,,, so that S=W=W’'+ W’. Then

0—H(V, 1) — H'(V,_i; F) — H'(W; F)
is exact. This means that the kernel of the restriction map

H V., s F) — H(W; F)
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is spanned by ¢,,; (more precisely, by its restriction to V,.,). Hence,
the kernel of the restriction map

H'M; F) — H(W; F)

is spanned by ¢i, @2, ***, Qas1.
Put
A=W'NW".

We prove that A is a complex subspace of codimension 1 in W’
and W'. To see that A is nonempty, it suffices to show that W is
connected, i.e., dimH°(W; 1)=1. To see this, we apply Lemma 1
in the proof of Theorem 1.1 to V=V, ,, E=F™, F=F and s=¢,,
so that S=W=W’'+W”. Then

0_>H0(Vﬂ_d; F—l)'—"HO(Vn—d; 1H—H"(W; 1)_>H1(Vn—d§F_l)

is exact. Making use of (3) of Lemma 1 of this section (in the case
r=d, h=1, {=0 and 1), we obtain dimH°(W; 1) =dim H*(V,_,; 1)
=1. This shows that W is connected and hence A=W'NW" is
nonempty. Since F” is the line bundle defined by the divisor W”
of V.., there is a natural section ¢”"€H*(V,.,; F””) such that
Zero(¢”)=W". Then

A=W'NW"=W’'NZero(¢") = {x€W’; ¢ (x) =0}

and hence A is of codimension 1 in W’. Similarly, A is of codimen-
sion 1 in W”.

We shall show next that if o= H'(M; F) is in the kernel of
the restriction map

o H(M; F) — H'(W’; F),

then either ¢ is a linear combination of ¢, -+, ¢arn 0¥ W\ Zero(yp)
=W’. If ¢ vanishes on W’ as well as on W', then it vanishes on
W and, hence, is a linear combination of ¢y, ¢, ***, 0ssx by (2) of
Lemma 1. So assume thst ¢ does not vanish identically on W”.
Then the set

W' N Zero(p) = {xeW"; o(x) =0}
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is a complex subspace of codimension 1 in W' and contains A. Since
frt W N Zero()] =f 41 W] =1,

it follows that W’/ (\Zero(e) is irreducible. Since dim[W"' (N Zero(y)]
—dimA and W”(\Zero(p) contains A, we may conclude that

W' N\ Zero(p) = A.
This implies
W\ Zero(p) =W".
We shall now prove that the kernel of the restriction map
o H'(M; F) — H*(W'; F),
which contains the subspace (o1, **, ¢asr), 1S 0f dimension at most
d+2. Let y,y.€H(M; F) be sections which are in the kernel
of ¢/ but are not in (g, ***, ¢ss1). Then
W Zero(yry) = W Zero(yr,) = W',

Let x, be any point in W”—A. Then v(%,)#0 and (%) #O0.
Choose nonzero constants @; and @, such that anr (%) +axyr.(%,) =0
and put

‘p:a1\l/‘1+az\l"2 .
Then ¢ is in the kernel of o’ and
W Zero(p) DW'U {x.}.

Hence, ¢ is a linear combination of ¢i, ***, psrs. This proves our
assertion.

Hence,
dimp'(H'(M; F))=dim H*(M; F)—(d+2)=n—d.
Similarly,
dimp”’(H°(M; F))=dimH(M; F)—(d+2)=n—d,

where o’ : H'(M; F)->H'(W"; F) is the restriction map. This
completes the proof of Lemma 3.
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Applying results in section 1 to W’ and W, we see that
dim H"(W’'; F)=dimW’'+1=n—d,
dim H*(W”; F)=dimW"+1=n—d
and hence that the restriction maps
o H'(M; F) — H'(W'; F)
and
o2 H'(M; F) — H'(W"; F)
are both surjective. Since H'(W’; F) and H°(W’; F) have no
base points (by Lemma 3 of section 1 applied to W’ and W”), it
follows that H°(M; F) has no base points. We have just proved

Lemma 4. If d<n—2, then H*(M; F) has no base poinis.

We shall now prove that H°(M; F) has no base points even
when d=#n—1. In this case, V; is an irreducible curve. By Lemma 1,
dim H°(V;; F)=3 and the three sections ¢., ¢..1, ¢..2, restricted to
Vi, are linearly independent. Let ¢ be any nonzero element of
H°'(M; F) which is a linear combination of ¢,, @.11, @ue. Set Voo
=ViNZero(p). Since f"* is the dual of Vi, it follows that f" is
the dual of Vi, and

1{Vog] =f"[M] =2,

which means that V,, consists of either two distinct points or a
single points with multiplicity 2. Hence the set of base points of
H°(M; F) consists of at most two points. Take two points p and
q on the curve V; which are not base points. Let A, 4, 4 be three

complex numbers, not all zero, such that

10%(1’) +31§0~+1(.b) +'12(pﬂ+2(p) :O:

AD(P;:(‘]) +ll P (q) +12(0,,+2(q) :0°
Set
o=do.Fthotho.€cH(M; F).

Suppose H°(M; F) has base points. Then ¢ must vanish at the base
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points in addition to the two points p and ¢g. On the other hand,
we have shown that V;, cannot contain more than two points. Hence,

we have proved the following
Lemma 5. In all cases, H'(M; F) has no base points.

Let P, be the complex projective space defined as the set of
hyperplanes through the origin in H°(M; F), or equivalently, as the
set of lines through the origin in the dual vector space of H°'(M; F).
We define a holomorphic mapping

j : M_) Pn+l
by setting, for each x in M,
j@)={ecH'(M; F); ¢(x)=0}.

Let G be the tautological ample line bundle over P,,, so that we
have a natural bundle map (see Section 1)

j:F—G (ie, j*G=F).

Lemma 6. The mapping j: M—P,,, has the property that, for
each yEP,.., 77'(y) is a finite set.

Proof of Lemma 6. Let S be any connected component of
77'(¥). Since j*G=F, it follows that F|s is a trivial line bundle.
On the other hand, since F is ample, its restriction F|s to S is also
ample. Hence, S must reduce to a single point. This proves Lemma 6.

Let @, be the image j(M) of M in P,,,. It is an irreducible
closed complex subspace of P,.,, (see for instance [2]), of dimension
n (by Lemma 6). We claim that @, is not a hyperplane in P,,;.
If it were, the construction of j shows that there would be a non-
trivial element ¢ of H°(M; F) which vanishes identically on M.
This is absured. Hence, @, is a hypersurface of degree m=2. For
each x& M, the rank of j at x which is by definition the codimension
of 7'(j(x)) in M is equal to » by Lemma 6. In general, if j is
a holomorphic mapping of a complex space X into a complex space
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Y of dimension # and the rank of j is # everywhere on X, then j
is an open mapping (see [9; Satz 28]). Hence,

Lemma 7. The mapping j: M—Q, is open.

For each y=@,, let s, denote the number of points in the set
77'(»). By Lemma 7, s, is a lower semi-continuous function of .
Since @, is a hypersurface of degree m=2, a generic complex line
in P,,, meets @, at m points, say ¥, -, ¥.. Then the same complex
line meets M at s, +-:-+s,, points (under 7). This means that if
¢1, ***, ¢, are independent generic elements of H'(M; F'), then the
common zeros of these sections consist of s,+::-+s,, points. On
the other hand, since f"[M] =2, it follows that

Syt e+, 2.

This together with the inequality m=2 implies =2 and s,,=s,,=1.
This proves that @, is a hypersurface of degree 2 and that s,=1
for a generic y€@,. Since s, is lower semi-continuous in j, it follows
that s,=1 for all y, i.e., j is a bijective holomorphic mapping from
M onto @,. By Lemma 7, j':Q,—M is also holomorphic (see also
[9; Satz 32]).

If M is non-singular, condition (3) follows from the Kodaira
vanishing theorem. This completes the proof of Theorem 2. 1.

To prove Corollary, we show

Lemma 8. Let M be an n-dimensional compact complex mani-
fold with an ample line bundle F. If c:(M)=n-c,(F), then
c(F)'[M] =2 and

dim H'(M; F*) =dim H°(Q,; G*) for all k=0.
Proof of Lemma 8. The proof is similar to that of Lemma 5
in Section 1. We put
p(R) =x(M; F*)=3(—1)" dim H'(M; F*),
g(kB)=x(Q.; GHN=>(—-1)"dim H'(Q.; G*).
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Then p(k) and q(k) are polynomials of degree z in k:
pB)=avtak+-+ak  with nla,=(c.(F))"[M],
q(k) =bo+bk+--+b.F with n!b,= (c:(G))"(@.].
Since ¢;(M)=n-c,(F)>0, the Kodaira vanishing theorem implies
H((M; 1)=0 for i>0

and
p(0)=x(M; 1)=dim H*(M; 1) =1,
q(0)=x(Q.; 1) =dimH*(@.; D=1

Since ¢;(F)>>0 and ¢,(G)>0, the vanishing theorem implies
H(M; F* )=H(Q.; G*)=0 for k>0, 0<G<n—1.

Since ¢;(M) —k-c;(F)>0 and ¢, (@) —k-¢c.(G)>0 for k<n—1, the

vanishing theorem and the duality theorem imply
H'(M; F*)=H"(M; F*Ky) =0 for k<n—1,
H(Q.,; G"H=H(Q.; G'K,,) =0 for k<n—1,

where K, and K,, denote the canonical line bundle of M and @,.
Since ¢,(F'Ky)=n-¢;(F)—¢,(M)=0 and M has no Picard variety
(H'(M; 1)=0 by the vanishing theorem), we may conclude that
F'Ky=1. Similarly, we have also G"K,,=1. It follows that

dimH"(M; F™)=dim H'(M; F*Ky) =dim H°(M; 1) =1,
dim H"(Q.; G™) =dim H*(Q.; G'K,,) =dim H°(Q,; 1) =1.
Hence,
p(—k)=q(—k) for £=0,1,2,---, n.
This implies that p(k)=q(k) for all integers &, i.e.,
x(M; F*)=x(Q.; G" for all integers k.

The rest of the proof is the same as in that of Lemma 5 in section
1. QED.



46 Shoshichi Kobayashi and Takushiro Ochiai

3. Remarks

Let M be a compact Kihler manifolds. Denote by H*(M; Z)
the subgroup of H"'(M; C) consisting elements which come from
H*(M; Z). In other words, if j:H*(M; Z)—H*(M; C) is the
natural homomorphism, then H**(M; Z)=j(H*(M; Z))H"*(M; C).
An element of H"'(M; Z) is said to be positive if it is representable
by a positive closed (1,1)-form. If F is a line bundle over M, its
characteristic class ¢,;(F') is an element of H**(M; Z). By a theorem
of Kodaira, F' is ample if and only if ¢,(F) is positive. Every element
of H“'(M; Z) is the characteristic class ¢;(F) of some line bundle
F according to a result of Kodaira and Spencer. It is therefore
possible to state the corollaries to Theorem 1.1 and Theorem 2.1
without referring to ample line bundles:

Corollary to Theorem 1.1. Let M be an n-dimensional com-
pact Kihler manifold. If theve exists a positive element ac H"'
(M; Z) such that

a(M)=(n+1a,
then M is biholomorphic to a complex projective space P,.
Corollary to Theorem 2.1. Let M be an n-dimensional com-

pact Kahler manifold. If there exists a positive element ac H''
(M; Z) such that

(M) =na,
then M is biholomorphic to a hyperquadric in P,...
The following result is perhaps not of interest by itself but is

necessary in our paper [6]. The proof is contained in those of
Theorems 1.1 and 2.1.

Proposition 3.1. Let M be an n-dimensional compact irre-
ducible complex space with an ample line bundle F.
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@ I
(ex(F))' [M] =1 and dimH'(M; F)=n,

then the set of base points (i.e., common zeros) of H°(M; F) is
either empty or a singleton.
@ If
(e(F))'[M] =2, dimH"(M; F)=n+1,
H(M; F")=0  for h>0 and 0<i<n—1,

then the set of base points of H'(M; F) contains at most two
points,

As in Theorem 2.1, if M is non-singular, the condition H'(M;
F7™)=0 in (2) is redundant.
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