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1. Introduction

Let 2 be the set of points 1,2, -+, %, where # is even. Let &
be a doubly transitive permutation group in which the stabilizer &,
of the points 1 and 2 is of even order and its Sylow 2-subgroup £
is cyclic. Let = be the unique involution in 8 =(K)>. By a theorem
of Witt ([13 Theorem 9.4]) the centralizer Cg(z) of z in & acts
doubly transitively on the set J(z) consisting of points in £ fixed
by z. We shall consider the case such that the image x(r) of this
representation of Cg(r) contains a regular normal subgroup. In this
paper we shall prove the following result.

Theorem 1. Let & be a doubly transitive group on 2=1{1, -,
n}, wherve n is even, not containing a regular normal subgroup.
Assume X(z) contains a regular normal subgroup and all Sylow
subgroups of Cg,,(v) are cyclic. Then one of the following holds:

(a) m=q+1 and PSL(2,q)=c®<PI'L(2,q),

(b)) n=28 and & PI'L(2,8),

(¢) n=28 and & is PSU(3, 3%).

This theorem is a corollary of Theorem 2, Lemma 20 and
Lemma 21. In the case # is odd we considered in [8] and [9].
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Notation

{--+>: the subgroup generated by ...,

Ny(%), Cy(X): the normalizer and the centralizer of a subset X in
a group ¥), respectively,

Z(D): the center of 9,

0(%): the largest normal subgroup of odd order,

9], 1Y]: the order of ¥) and an element Y of ¥), respectively,

J():  the set of points of A fixed by a subset 11 of a permutation
group on A. )

a(): the number of symbols in J(1).

2. Proof of Theorem 1

Let @ be a doubly transitive group on £ not containing a
regular normal subgroup in which the stabilizer &,. of the points
1 and 2 has a cyclic Sylow 2-subgroup & =<{K>(#1). Set |K|=2'
and t=K*". Let I be an involution with the cycle structure
(1,2)---. Then I is contained in Ngx(®,.). In particular we may
assume [ is contained in Ng(&). Let us denote O(®,,) by » and
[Gy.: C@)l,z(f)] by r.

Let ¢ fix £(>>2) points of £, say 1,2, --,i. Let X be a subgroup
of ®,, satisfying the condition of Witt. Then Ngx(¥X) act doubly
transitively on (%) by a theorem of Witt. Let x,(X) and x(%) be
the kernel of this permutation representation and its image, respec-
tively. Then x(z) is doubly transitive on J(z). In this paper we
assume x(r) has a regular normal subgroup. Since # is even, ¢
equals a power of two, say 2". Let &, be the set of elements in &
inverted by I. Let d be the number of elements in &, inverted
by I and for an element X of &, let d(/X) be the number of
elements in  inverted by IX. In [8] we proved the following
three lemmas.

Lemma 1. n=:i(B(G—1)+7)/y, where f=d—g*(2)/(n—1) and
g*(2) is the number of involutions in & which fix no point of @
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and r—= [@1_2: C@l,z(f)]‘

Lemma 2. d= >d(IX) and d(IX) is odd. If |8&]|>2,
. XERe
then B is even.

Lemma 3. & has one or two classes of involutions and every
involution is conjugate to I or Ir.

Remark 1. If @ has a regular normal subgroup &, then & is
elementary abelian and there exists an involution J in & contained
in C(®,,). We may assume /=1, Thus f=y and n=:* since &

has two classes of involutions.

Lemma 4. (C. Hering [5]). If i=2, then PSL(2,q)Cc®C
PI'L(2,q9) and n=q+1.

By this lemma we may assume i>>4. Let us denote &M% (z)
by Rl.

Lemma 5. Ng(®)=Cgx(R)).

Proof. By the Frattini argument x(8,)=x(z). Since it contains
a regular normal subgroup and Ng(8,)/Cgx(8R,) is 2-group and i>>4,
Ng(8,) must equal Cx(8&,).

Let N be a normal subgroup of Cg(r) containing () such
that N/x,(<) is a regular normal subgroup of x(z). Let & be a
Sylow 2-subgroup of 9t containing &;. By the Frattini argument it
may be assumed that & is normalized by £ and it normalizes ;.
Thus &/8, is elementary abelian.

Lemma 6. We may assume that I is contained in N.

Proof. If N contains an involution J not contained in x,(7),
then we may take J instead of I. Assume r is the unique involution
in & If =8&,, then N contains a Sylow 2-subgroup of Cg(z) and
hence it contains /. Since &/R,=N/x,(z) is elementary abelian and
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@& is a quaternion group, i=4. Thus /&, is a Sylow 2-subgroup
of symmetric group of degree four. Since IK,=(1,2)(3,4), IK, is
contained in the four group &/R,. Therefore I is contained in &.
This is a contradiction.

By Lemma 6 we may assume that & contains I. By the Frattini
argument Ng(&) N Ng(R:) acts doubly transitively on J(z) and the
image of this representation equals x(z). Thus every element not
contained in &; of & can be represented in the form JK’, where J
is an involution and K’ is an element of ;.

Lemma 7. If i>4 and R2<{c), then K2 K.

Proof. Assume 8=8&,. Let S be an element of order 2’ in &.
Since S? is contained in R, S*” equals r. Thus N?"'=¢ for every
element N of order 2’ in M. Assume that I is conjugate to r.
Since Cg(z) and Cg(I) are conjugate and K is contained in Cg([)
by Lemma 5, K*" must be equal to /. This is a contradiction.

Lemma 8. R,={z).

Proof. Assume 8,#<r) and {K, I) is dihedral or semi-dihedral.
By Lemma 5 &,=<r). Since I is an element of R, so is I*. Thus
IT¥ is an element of M and K®=r. Therefore (K, I) is dihedral of
order 8. By Lemma 28 is even and hence a Sylow 2-subgroup of
Cg(z) is that of @. If «(8)>2, then Cyx(R)=Ng(R) since x(&)
contains a regular normal subgroup (cf. Lemma 5). Since (X, I)
is non abelian, a(8)=2 and by Remark 1 {=a(K)*=4. Thus
{8,©)> is of order 16 and its exponent equals 4. By [2, Lemma 3]
@ contains a solvable normal subgroup. Hence & contains a regular
normal subgroup. This proves the lemma.

Lemma 9. If &28,2<{c), then |R,| =4, and K'=Kr.

Proof. Assume |f;/>4 and [ is conjugate to r. &' =8 is
a Sylow 2-subgroup of Cg(z). Let S be an element of & of order
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271, §*7 ig contained in &, where j=|&;|. Since &/, is elemen-
tary abelian, S*7" is contained in R,. Since j>2, S*’" is not
identity element. Thus S*” is equal to . This proves that 7% =<
for every element T of Cg(z) of order 2°'. Since K'=K or Kr,
K? is contained in Cg(I). (K*)**=r must be equal to I. This
is a contradiction. Assume I is contained in Cgx(K). Similarly it
may be proved that 7% " =r for every element T of Cg(z) of order
2!, Thus K*"'=r must be equal to I since Cgx([) is conjugate to
Cg(r). This proves the lemma.

Lemma 10. Let 8, be as in Lemma 9. Then |R|=8.

Proof. Assume that |®]|>8 and [ is conjugate to r. Let X
be an element of & of order 8. Let J be an involution of Ng({X)).
Then (X, J) must be abelian, for if it is not abelian, then (K? I)
must be dihedral.

We shall prove that every element of the coset X& is of order
8. Let XJK’ be an element of X&, where J is an involution and
K’ is an element of K,. If (XJK’)*=1, then XJXJ is contained
in & and hence J is contained in Ng({(X)). Thus X’=X and
| XJK’| +2, which is a contradiction. Assume (XJK’)*=1. Then
(XJK")*=X]JXJK"” is contained in &. If (XJK’)*=r, then X’ is
contained in {X)», X’=X and | XJK’| =8, which is a contradiction.
If (XJK’)*=]" or J'’K”, where J’ is an involution #r of & and
K” is an element of ©&;, then X/=X"'J'K"* or X\ J'K"K'™
Hence X*=(X”)*=(X"'J"")* where /' is an involution (#t) of
© and (X*)’" is contained in (X). Thus X' =X, X?*=X"* and
X*=1. This is a contradiction.

Let S be an element of order 8 in K&, and let S be the
image of S by the natural homomorphism of & onto £5/&. Since
the exponent of & equals four, S#1. If |S|+#2, then X& must
contain an element of order two or four. This is a contradiction.
Thus S contained in X&. Since &/&, is elementary abelian, S*=r.
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Since & is a Sylow 2-subgroup of Cg(z), for every element Y of
order 8 in Cg(zr), Y*=r. Since Cg(r) is conjugate to Cg(l) and
X is contained in Cg(l), X*=1I which is a contradiction. This
proves the lemma.

Lemma 11. Let R, be as in Lemma_9. Then i=4 and © is
PSU(3, 3%).

Proof. Since x(z) contains a regular normal subgroup, so does
x(8) and ¢=a(K)?. Since I is not contained in Cgx(R), it may be
proved by the same way as in Lemma 5 that «(K) must be equal
to two. Thus ¢=4. Since n—i=:(i—1)B/y is divisible by 8, 8 is
even. Therefore 8 is a Sylow 2-subgroup of & of order 32. If &
has subgroup &’ of index 2, then it is doubly transitive on £ and
&, is a Sylow 2-subgroup of &,. If &’ does not contain a regular
normal subgroup, then by Lemma 7 the order of a Sylow 2-subgroup
8 of ®7, must be greater than 8. Thus &’ has a regular normal
subgroup and so does &. Thus & has no subgroup of index 2. By
1] @ is PSU(S, 3?) since Cy(r) is solvable.

Next we shall study the following two cases.

(A) £,={z) and G has one class of involutions

(B) $£,=<{) and & has two classes of involutions.

Since every element not contained in &, of & can be represented in
the form J or Jr, where J is an involution in Cg(z), every element
(#1) of & is of order two and hence & is elementary abelian.

Lemma 12. FEvery involution of K& is contained in ©.

Proof. Let K*'S be an involution in a coset K* @&, where S
is an involution of &. Then (K?*)S=K™*". Thus S is contained
in Ng(<K*™)) and ¢S, K*) is dihedral. This contradicts Lemma 8.

Corollary 13. Every involution of Cg(c) is contained in N.
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Proof. Since £ is a Sylow 2-subgroup of Cg(r), this is trivial
by Lemma 12.

The case (A).

Corollary 14. Let (RS)* be the focal subgroup of £S. Then
(RS*E RS if |R|>2.

Proof. By Lemma 12 an element X of R is of order || if
and only if (X, &)=88. The lemma follows from this.

By Corollary 14 and [3, Theorem 7.3.1] & has normal subgroup
&’ of index 27'. Trivially & is doubly transitive on £ and satisfies

the conditions in the case (A).
Lemma 15. & ¢s PI'L(2,8) and n=28.

Proof. A Sylow 2-subgroup of &’ is elementary abelian. Since
Cg(r) is solvable and & has one class of involutions, by [11] &’
contains a normal subgroup &”’=PSL(2,q) of odd index, where
q>3, q=3, 5 (mod 8) or ¢=2". Since Cxy(®") is normal in &,
if it is not identity, it is transitive and hence it is of even order.
Since ®” is a normal subgroup &’ of odd index, a Sylow 2-subgroup
of Cy(®") is contained in &”. Thus Z(®"")+#1, which is a contra-
diction. We have PSL(2, ¢)<®&'CQI'L(2, ¢). By [10] & is
PI'L(2,8) and hence &=®’. The proof is completed.

The case (B). Assume «(/)=0.

Lemma 16. Every involution in & which is conjugate to = is
already conjugate to r in Np(S).

Proof. Let 7’ be an involution of & which is conjugate to r.
Set '=¢° for an element G of &. Then r=:" is contained in &
and &°". By Corollary 13 & is contained in M. By the Sylow’s
theorem there exists an element H of O(x(r)) such that S¥=&°".
Thus HG is an element of Ng(&). Set HG=G'. C=""¢=:,
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This proves the lemma.
Corollary 17. |Ng(®)|=:*(—1)|Ng(@)NCg,,(c) .

Proof. This follows form the Frattini argument and Lemma 16
since the number of involutions in & which are conjugate to =

equals .
Lemma 18. & is normal in N if and only if g*(2)=n—1.

Proof. Since & is normal in RN, N=0(N) xS. Since N/x.(z)
is a regular normal subgroup of x(z), for every element G of Cp(z),
I°=1I(mod 2,(¢)). Thus I°=1I or Ir. If I°=1Ir, then (Ir)°=1 and
|G| must be even. Therefore I°=1 and Cy(I7) contains Cy(zr). Thus
B=1[9: Co(I1)]<[9: Co(c)] =r. On the other hand n=:i(p(t—1)
+71)/r is divisible by i* by Corollary 17. Therefore =y, n=1:* and
Co(z)=Cy(Ir) =Cs(KI,z)). By the Braur-Wielandt’s theorem [12]

[D]1Co(KL ) 1P=1Ce(r) | |Co(I) | |Cep(Ir) |.

Thus $=Cgx(I) and g*(2)=[9:Ce(](n—1)=—1.

Next if g*(2)=#n—1, then O(RN) is contained in Cgx(l). Since
Ng(®) N Cg(r) acts doubly transitively on J(z), & is contained in
Cy(0O(®)). Thus & is normal in M. This completes the proof.

Lemma 19. Let 5 be an involution which is not contained in
&. If g*(@)=n—1 and a(y)=0, then a(cy)=0 and |wy| is equal
to 27 with r>1.

Proof. It can be proved by the same way as in the proof of
[7, Lemma 4, 10] that a(ty)=0. Let p be an old prime factor of
ley]. Put pg=|ry|. Then a((ry))=1. If a((r9)?) =1, then a(zy)
=1. Thus a((zy)'=2. Let @ and b be two points of J((zx)9).
Then (r3)? is contained in ®,,. Since <7, (r3)?> is dihedral of order
2p, g¥(2)=1[6.,: Cg,,()](n—1)>n—1. This is a contradiction.

The lemma is proved.
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Lemma 20. If & is normal in N, then & has a regular
normal subgroup.

Proof. Since & is normal in N, Lemma 4.5—4.9 in [7] are
also true. By Lemma 19, Lemma 4.11 in [7] can be proved in this
case. Thus it can be shown in same way as in [7, p. 273] that ®
has a regular normal subgroup.

Lemma 21. If all Sylow subgroup of O(R) are cyclic, then
& is normal in N.

Proof. Let p be a prime factor of |O(N)|. Let P be a Sylow
p-subgroup of O(N) normalized by &. By the Frattini argument
Ng(BS) N Cx(r) acts doubly transitively on (). Therefore Ng(&)
N Ng(PS) NCx(r) acts also doubly transitively on J(zr). Since >4
and Aut() is cyclic, & is contained in Cx(B). Thus & is normal
in N,

Lemma 22. (K, I) is abelian.

Proof. Assume (K, I) is non-abelian. Then K'=Kr and |K]|
>4. Thus I“=1Ir. Since every involution of & is conjugate to I
or Ir by Lemma 3, & has one class of involutions. This is a contra-
diction and (K, I) is abelian.

Thus we proved the following:

Theorem 2. Let 2 be the set of points 1,2,---,n, where n is
even. Let S be a doubly transitive group on 2 not containing a
regular normal subgroup. Assume a Sylow 2-subgroup K of ®,,
is cyclic of order 2'>1I and x(z) contains a regular normal sub-
group, where t is an involution of K. Then one of the following
holds:

(a) mn=q+1 and PSL(2,q)<=®CPI'L(2, q),

(b) n=28 and ® is PI'L(2,8),

(¢) n=28 and ®& is PSU(S, 3?),
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(@) O satisfies the following:

(1) a Sylow 2-subgroup of %(r).. is of order 2%, (2) & has two
classes of involutions and (3) (K, I) is abelian, where I is involu-
tion (#7) of Ny(R).

From Theorem 2, Lemma 20 and Lemma 21 we obtain
Theorem 1.
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