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1. Consider the following one-dimensional stochastic differential

equation
¢)) dXi=a(Xy)dBs.

It is well-known that if a(x) is Hélder continuous of order a (=1/2) the
pathwise uniqueness holds for (1). ([4]). But, for example, if a(x)
=|x|%, (0<<a<<1/2), (1) has infinitely many solutions, ([1], [3]).

In this paper we shall discuss the uniqueness problem for (1) by

imposing a non-sticky boundary condition:

t
Xi— Xo= /0 a(X)dBs,
® t
A X(o,(Xs)ds=0,

where X0,(x)=0 for x3¢0, X0, (0)=1. In the case that a(x) is an odd
function, we shall prove the pathwise uniqueness of the absolute value
of solution of (2) under some regularity conditions. Moreover we shall.
show the pathwise uniqueness of the following Skorokhod equation
with the reflecting barrier boundary condition, applying the same
method.
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t
Xi—Xo= [ a(X)dBs+p,

t
(3) /0 X0,(X5)ds=0,
X:=0, for v¢=0,

t
where {¢:} is an increasing process such that /0 X0y (Xe)dps=o:.

Let (2, F, P; {Fi}iz0) be a probability space with an increasing
family of o-fields &y which are sub o-fields of &F and {B;} be a Fi-
Brownian motion; i.e. {B;} is a continuous F;-martingale such that

E[(Bi— Bs)?|Fs]=t—s for t>s5=0.

Theorem 1. Let a(x) be a bounded continuous function on R!
which satisfies the following conditions,

(i) a(x) is an odd function and continuously differentiable on R g,
0
(ii) /0 lja(x)2dx <+ oo Sfor some §>0,
(iii) lim za'(x)/a(x) exists and lim xa'(x)[a(x)x1/2.
zl0 zl0

Under these conditions, if two Fi-adapted processes {X}}, {X%}
satisfy the equation (2) for the same Brownian motion {Bi}, then with
probability one, | X}|=|X3| for all t=0.

Here we give some remarks.

Remark 1. Under the conditions of Theorem 1, there is a diffu-
sion process which satisfies the equation (2). However it is obvious that
the pathwise uniqueness does not hold for the equation (2), because
if Xo=0 and {X;} is a solution of (2) then {— X;} is, also, a solution
of (2).

Remark 2. If a(x)=|x|* s(x), (where 0<{a<{1/2, and s(x) is a
slowly varying odd function at the origin) or a(x) is a linear combination

of such functions, a(x) satisfies the above conditions.
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Remark 3. It is not difficult to check the following facts by ele-

mentary calculations.
(a) Under the condition (ii) if lim za'(x)/a(x) exists, then lilrg xa'(x)/
zl0 z

a(x)<1)2.

(b) 11m xa'(x)/a(x) exists and lxm xa'(x)|a(x)<1/2 if and only if 11111(1’
z

a (x)/0 1/a(y) dy exists and 2{13 a (x)/;) 1/a(y) dy<1.
(¢) The conditions (ii) and (iii) imply li?g 1/a(x) /0 xl/a(y) dy=
4

(d) By the conditions (i) and (ii) there exists >0 such that a(x)30
for all x=(0, d).

2. In order to prove Theorem 1 it is sufficient to show the
uniqueness of (2) up to the first exist time from a neighborhood of the
origin, because a(x) is smooth except the origin. Therefore without

loss of generality, we may assume that a(x)>0 for all x>0 and a'(x)

/oxl/a(y) dy is bounded on Rl

Lemma 1. Under the assumption of Theorem 1 the equation
(2) is transformed into

@) Vi— Yo=/0'«/|—ydes+/0‘b( V,)ds

by putting g(x =~411-( /(; xl/a(y) dy)zand Yi=g(Xy), where b(x) is a
bounded continuous function and 6(0)>0.

Proof. First, note that g(x) is an even function and maps [0, o)

one-to-one onto itself. We show that the Ito formula is applicable to

2(x). g'(x)=%() / xl/a(y)dy is continuous, (by Remark 3 (¢)).

&'(®)=5—F—=5 [1—a'(x) / 1/a(»)dy] is locally integrable, and con-

e
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tinuous except at the origin. Therefore we can choose a sequence
{gn} CC2(RY) such that {gn(x)} and {gy(x)} converge uniformly to
g(x) and g'(x), respectively, and moreover {g,(x)} converges to g’'(x)
for all x&R1/{0} and {gn(x)a(x)} converges boundedly to g''(x)a(x)?
Xz/ (%) for all xR, Applying the Ito formula for g,, we have

t t
n(X)—gn(Xo)= [} gu(Xa(X)dBs+ 5 [ gu(Xa(Xo2ds.

As n—oo, we get

t , 1 t "
LX) —g(X0)= [ £(Xa(X)dBs+ [ 8" (Xa(XeP s (X

So, using non-sticky condition
X)—g(Xo)= [ g (XDa(X)dBot [ g"(X X,
£ X)—g(Xo)= [ &' (X)a(X)dBst—5 [ & (Xe)a(Xe)ds.

Denote the inverse function of g by 4, and put b(x)=—i— [1—a'(%(x))
/ " 1/a(z) d2). Then 4(0)>0 by Remark 3, (5). Noting that a(—x)
=—a(x), £(—0)=—£'®), &@ax)=Vg(), &' (h(x))a*(h(x))=b()
and X;=4(Y}) sgn (X;), we obtain

Yi—Yo= [, V5 dBs+ /: LBV )ds.

This lemma implies that in order to prove Theorem 1 it is sufficient
to show the pathwise uniqueness of the solution of (4). Therefore we

shall prove it in more general form as fol lows;

Theorem 2. Consider the following equation
¢ ¢
() Xi— Xo= /0 a(Xs)dBs+ /0 b(X 5)ds.

Suppose that a(x), b(x) are bounded continuous functions which satisfy
the following conditions; :
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(i) there exists a positive increasing function p(x) defined on (0, o)
such that |a(x)—a(M)|Zp(lx—y) for Yx, VYyERL, and

/:l/p(x)zdx=+oo for some 6>0,

(ii) @(0)=0, a(x)x0 for V20 and 5(0)O0.
Then the pathwise uniquenss holds for (5).

The following lemma is essential for the proof of Theorem 2.

Lemma 2. Under the assumption of Theorem 2 any solution
{ X1} of the equation (5) satisfies

/ "% o (Xo)ds=0, V¢=0, with probability one.

Proof. Let ro=1>r1>rs...>r4,—>0 be defined by / T 1/p(x)2
Tn
dx=n and choose a continuous gu(x) defined on [0, ) such that

gn(x)=Dbetween 0 and %p—z(x) for every x of (rn, 7p—1) and vanishes
in the other part, and satisfies / T gn(x) dx=1. Let fu(x) be defined
Tn

by fa(x)=x— /;) xdy /0 ygn(z) dz and extend on (—oo, +00) symme-
trically. Then fu(x) is twice continuously differentiable and {fn(x)},
{fn(®)} converge boundedly to 0, X (x), respectively. By the Ito

formula

FuE)—FuXo)= [ fulX)a(X B+ g [ fi(Xa(Xods

+ [ AKX s,

So we get
B aX)—fu( X0l =5 L [} fi(Xa(Xo)pds]

+E (XX ods= T+ T,
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Then we have

|hIS4 max  [ga()pAD]<L—0, as nrco.

2y, simisr,

For 7, by bounded convergence theorem
¢
B — HO)E[ [ % 0(Xe)ds].

But it is obvious that E[fa(X¢)—fu(X0)] >0, as #—oco. Hence, noting
t
6(0)0, /0 X 0)(Xs) ds=0 follows with probability one.

Lemma 3. (Yamada, T[5]). Consider the following two equa-

tions;
©) xo— xgo— [ ' (X VA Bs+ / “po( X s, i=1, 2,

where a(:i:), b0(x) are bounded continuous functions. Suppose that
(i) There exists a positive increasing function p(x) on (0, ) such
that |a(x)—a(M|=p(lx—y|) for any x,y of R and

/: 1/p(x)2dx=+ o0  for some >0,

(i) &M(x)<6@(x) for any x of R

If {XP}, {XP} are solutions of (6) corresponding to [a, 6D)],
[a, 6@, respectively and X{P < X®, then X{P< X2 for V¢ =0 with
probability one.

Proof of Theorem 2. By virtue of Lemma 3 there exist the maximal
solution {X;} and the minimal solution {X;} of the equation (5). It is
easy to show that the maximal solution and the minimal solution have

the strong Markov property because of their uniqueness. So {X;}

and {X;} are diffusion processes with the same local generator A=l

2
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az(x)————l—b(x) and have no stay® at the origin by Lemma 2.

However by Feller s general theory of one dimensional diffusion
processes, there exists only one diffusion process which possesses A
as its local generator and does not stay at the origin**). Therefore we
have P{Xt=Xt}=1 for ¥¢=0. Hence the pathwise uniqueness
follows from this.

Next, we study the Skorokhod equation with the reflecting barrier

condition at the origin.

Theorem 3.  Suppose that a(x) is bounded continuous function
of [0, o) such that

(i) a(O)z(O) and continuously differentiable on (0, oo,)
0

(ii) /0 a(x2 <+  for some §>0,

(iii) lim xa'(x) exists and lim>*2 () S 1

zlo, a(x) zio a(x)

Then the pathwise uniqueness holds for the equation (3).

Proof. 1f we extend a(x) on (—oo, 00) as an odd function, a(x)
satisfies the conditions of Theorem 1. Let g(x), gn(x) be the same
functions as in the proof of Lemma 1. Moreover we may assume
2n(0)=0 because I:;rlrs £'(x)=0 by Remark 3, (¢). Applying the Ito

formula for gn(%x),
n(X)—gn(Xo)= [ u(XDa(XDdBet [ &5 (X Da(Xopds
+ [ e Xdgs

t
Since /0 X0(Xs)dps=¢t and g,(0)=0, the last term of the right hand

side vanishes. So as #—oo,

*),¥¥) By this, we mean that, with probability one, the set {#; X;=0} has the Lebesgue
measure 0,
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t ’ 1 ¢ 1!
£X)—g(Xo)= [ £ (X)a(X)dByt [ g (XalXsf Lo, (X 3)ds.

By the same argument of Lemma 1 the equation (3) is transformed into
the equation (4) in Lemma 1. Therefore, since g(x) is a homeomorphism
from [0, o) onto itself, the pathwise uniqueness follows immediately

from Theorem 2.

Remark 4. The absolute value of solution of the equation (2) is
the unique solution of the equation (3). Now, we prove Y;=|X;| is a
solution of the equation (3) for any solution {X;} of the equation (2).
Let {¢:} defined by '

t
IM%%FAM&M&

Then it is sufficient to show {¢:} is an increasing process such that
¢

/ X0 (Xs)dps=¢:. We can find a sequence {gn(x)} CC2(R1) such
0 .

that

(i) gn(—x)=gn(x) and {gn(x)} converges uniformly to | x|,
(ii) [gn(®)[=1,
iy supplenc[—2, 2] and 0=

Applying the Ito formula for gn(x) and {X;}, we have
t 4 ]- t 4
en(X)—gn(X0)= [ en(X)a(X)dBst— [ gi(Xa(Xsyds.

Noting gp(x)a(x)—a(lx]), as n—oco, by the bounded convergence

theorem, we have
E|(5 [ gi(Xda(Xopds—gi) |0, as n—roo
2/, En(As 8, (27 y .
Therefore, ¢; is an increasing process and

|&M%Hﬁm&M&wb
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Next, applying the Ito formula for gn(x) and | Xy, we have
t 7 ]- t ’r
en( XD —gn(Xo)= [ gu(Xa(X)dBut [ g Xe)a Xol)2ds

t
+ /0 £n(1Xs)d ps.

Repeating the same argument, we see

E{(/()tg;,(IXsl)dgos)2]—>0, as n—»oo,

Therefore, by the bounded convergence theorem,
E{( [ 20, (1 Xdps) =0
(20wt

¢
Thus the process {¢;} satisfies —/0 X0 (I XD ps=0.

Finally, we don’t know whether the pathwise uniqueness hold in
case that a(x) is an even function. Another important problem is to
formulate the uniqueness problem of (1) by imposing an appropriate
random lateral condition different from the non-sticky boundary con-

dition.
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