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Let A2B be the class of bounded biharmonic nonharmonic functions,
i.e., nondegenerate solutions of 4%x#=0, with 4 the Laplace-Beltrami
operator &8+64. Consider the punctured space E¥: 0<|x|<<oo,
x=(x1,...,x%) with the metric ds=|x|%|dx|, a a constant. It was shown
in Sario-Wang [1] that although EY with N=2,3 carries A2B-functions
for infinitely many values of a, it tolerates no A2B-functions for any
a if N >4. In the present paper we ask: What can be said about the
class H*B of bounded nondegenerate polyharmonic functions of degree
#, that is, solutions of 4¥»#=0? The answer turns out to be rewarding
and puts the biharmonic case in proper perspective: 7/ere exist no
HYB-functions on EY for any a if N>2%.

For N<2£ there are infinitely many a for which these functions
do exist, and for these a the generators of the space H¥B are surface
spherical harmonics. In particular, this is true of A2B-functions on
Euclidean 2- and 3-spaces, as was recently shown in Sario-Wang [2].

If H¥B=£¢ on a given EY, is the same true of "B for any A>k?
We shall show that, while this is so for every N if the metric of £% is

Euclidean, there are values of (V,a) for which it does not hold.
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1. We start by stating our main result. Let O%#, be the class of

Riemannian /V-manifolds which do not carry bounded functions #
satisfying 4%¥2=0, 4*u=£0 for all A<k.

Theorem 1. EY&ONy for all N>2k, k>1, and all a.

The proof will be given in Nos. 2-9

2. First we consider radial functions, i.e., those depending on
r=|x| only. We shall show that the equation 4%y(»)=0 has the
following general solutions. If V is odd, or if V is even with NV >2£,
then for any as-=—1

k-1
( 1 ) '}/k(7’>= > (anr(Zn—N-l—Z) (a+1)+6n72”(a+1))_
n=0

If V is even with N <24, then for any as-—1

k-1 5 @k—N)
( 2) yk(r)= PN (anr(zn—N+2)(a+l)_|_5 n¢2n(a+l)>_|_ S cpr2niatl) log 7.
n=0 n=0

If a=—1, then for any N

2k—1
(3) 7)= X, anllog 7"
n=l
Since the proofs are similar in all cases, we shall only discuss the
case N odd, a=—1. For feCEY),

1 d ,
A= — =i gy (P ).

The proof will be by induction. In the cases £=1,2 it was given in
Sario-Wang [1]. For £#>3 we have the induction hypothesis

1

a ,
T V-1t Na W(’JV_H =22 (7))

k-2
— Eo(a,lr(zn—mz)(am+5nr2n(a+1)),

Here and later ay, b4, C, cn, etc. are constants, not always the same.
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We obtain successively
4 k-2
(N2 f(p)) = 3 (agr@rtD (@t -1 by @RAN) @) -1),
dr n=0
k-2
rN—1+(N—2)af/(r)= Zo(anr(2n+2) (a+1)+bn7(2n+N)(a+1))+ C"
n=,

k—2
(D=3 (apy@n+2-M(@tD+2a+l 4 b 2n(@l)+2a+l) | Cp—N-(N-2a+l
n=0

k-1
)= E'o(a ar@nA2=N) @+]) | p, p2n (@),

3. Let Sum=Sum(; n=1,2,...; m=1,...,my, be the (Euclidean)
surface spherical harmonics. We do not include #=0 in our notation
Sam, as we treat constants as radial functions. For harmonic functions
we know (loc. cit.) that A(»)Sum € H(EY) for any N and any «a if and

only if f(r)=arPs+br% where a, b are arbitrary constants and

=g [~ —D(a+ D)+ V=2t D (- V=),
(4)

gn——‘%[—(N—Q)(a—I- D— V(N —2)%(a+ L2 +dn(nt N—2)].

4. For any N, a, #>0, 0<j<b—2,
1 . 1 .
Pa={ 5V 47 @A Dbpn Qu=(3 47) (@t Dtgn
Define n},n’j’ by Pn}j=0, Qn'j’ 4=0. Then
(5) Pnj~0 and Qu3540 for N >24, any a,n.

For the proof, we observe that Pn;=0 implies

40+ 12— (N2 (a+12=dn(n-+ N—2).
If N>2¢4,
A+ 1< Ak — 8+ A< (N—2)2

Since our #>0, there are no roots. The proof of (5) for Qp; is identical.
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5. The equation du=7»Pn} +(2“+2”Sn’jm has a solution

(6) U= arPa @ U+ log 7+ Sp'm

and the equation szrqn}"*(?“"z)fSn’j’m a solution

( 7 ) yn’j’m=brq7.3,'+(20+2)(j+1) log r-Sn;m

with a, & certain constants. We see this by direct computation which
is made easier by noting that #Ps; Spim and 7% ; Syjm are harmonic.
In this computation one observes that multiplying » or v by »2¢+2
raises its degree of polyharmonicity by one, and 4(»2%+2y)=const.u
“+harmonic function.

6. It is easy to verify that for any A, as=—1, the equations
Au—rPatC@eIS, . Ay—rtt@atdIS,

have solutions uum for n%n; and vym for ns~nj given by

(8) Umm=—arPrt @IS, gy b8yt Qa2 D S,

7. In the case a=—1, 7>1 we shall prove that
j—1
(9) A[r®s(log ) Spm]= iZ airPa(log )t Spm
=0
for certain constants a;. In view of 4 log r=4rP2S,,=0,

A(rPrlog 7-Spm)=—2(grad »Pr-grad log7)Spm=—2pn7PsSpm-

A straightforward induction argument completes the proof.

8. For harmonic functions we know (loc. cit.) that given any 2V,

a, every A€ H(EY) has an expansion
o My

(].O) }l= 21 Zl(anmrp"+bnmrq")5nm+yl(r).
n=1m=

We can now proceed to polyharmonic functions. For any /, any

wE H¥(EY) has an expansion for az—1
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k-1, My My
u= 3 ( Y ¥ GamrPet@AAIS, 4+ T 2 bﬁ’”mrq"+(2a+2ﬂsnm)
J=0 m‘n} m=1 ”""’}' m=1
J-i mpj
an + X 3 rRe+2)t 2 Cn;lmrp”'+(2“+2)u+l) log 7*Sujym
n’j =0
lx—f mn
4+ 3 3 rRat2) Z d’llj imrq"}/ +(@a+2)(J+1) log »* Snj m’*")’h(r)
n’! i=0
J

where /=max{j|Pn;;=0}, K=max{j|Qnj;=0}. If a=—1, then

k-1 o my,

(12) =3 X X (@am?Pr+binmrin) (log ")ISpm~+y,(7).
j=0 n=1m=1

For the proof let #4=4%1% have expansion (10). The proper co-
efficients of # are obtained from (1)~(3), (6)~(9). The expansion of

% converges for every »&(0, o0) and all §. Therefore,

. [T |1 1
lim Z (lnmSnmI Pp= 9y =0,
n—oolm=1 i n—soo | m=1

1
lim Z djnmSnm ?n—llm E bjnmsnm dn =0,
n—o | m=1 n—>o0

and the expansion of # converges for all (»,0). We apply the operator
4*%-1 term-by-term and obtain (10).

9. We continue with the proof of Theorem 1 and discuss first the
case az=—1. If j54n or k5m, then Sjr and Syp are orthogonal with

respect to the inner product (:, *):

<Sjk, Snm) / 330,1) jk nmdw,

where B(0, 1) is the unit ball about the origin, and dw is the Euclidean
surface element of 9B8(0,1).

If ue H¥B, then (#, Spm) is bounded for any (#,7). For ast—1,
N>2k,

k-1
(u: Snm) =const X} (djnmrpn+(20+2)j+bjnmrq"+(2a+2)j)‘
J=0
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Because the right-hand side must be bounded for any choice of
r&€(0, o), either ajum or pn+(2a+42); vanishes, and either éjum or
gn+(2a-+2); vanishes, for all 7. We note that

13) Pn+2a+2)7=0 and ¢u+(2a+2);=0
is equivalent with
(45 4-2— N )2—(N—2)2|(a+1)2=4n(n+ N—2).

If N>24, [(4j4+2—N)2—(N—2)?]<0, and (13) has no solutions
by virtue of #>0. Therefore, the coefficients @jnm, bjum vanish for
all (f,7m,m).

We conclude that all terms in (1) and (2), except for the constant,
vanish because, for fixed N, a, they are unbounded. The proof of
Theorem 1 is completed by using a similar argument for a=—1. In

the case a=—1 the theorem is true for all V.

10. We proceed to show that Z*B-functions exist on the lower
dimensional spaces for certain a. Examining the proof of Theorem
1, we see that it would hold for A <<2£% if again (13) had no solutions;
in fact, the terms involving #; and #j would be eliminated as they
are not bounded. Hence, we need only find out when (13) has

solutions.

Theorem 2. For fixed N, a~=—1, N<2k, the generators of H¥B
are the Spym such that (13) holds.

Proof. That the Sunm are H¥B-functions follows from (8). By

solving the equations in (13) in the form

a1 (G- g V)t ) = — 2 et D nn D)

we find that the solutions for j=#4—1, #0, are

_ n(n+N—2)
a= 1i1/4,%2—(4+2N),é+2N '
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11.  One might suspect that the existence of Z¥B-functions always
implies that of nondegenerate A"*B-functions for 2>%. However, we

shall show:

Theorem 3. EYe&E Oty implies ENeEONnyg for all h>Fk and all
N if a=0. There exist EY for which this is no longer true.

Proof. 1f a=0, equation (14) reduces to #=2;4+2—AN. There-
fore, if there exists an # satisfying this for j=#4—1, there also exists
an #n for all 2>4A.

To show that the above is not true for all a, we choose N=4,

n=1. For j=3 we then have a——1+4877 whereas ;=4 should give
6=n(n+2). Since no integer # satisfies this equation, we conclude
for the above a that E¥& Oysp\Oyts.
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