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Let H 2 B be the class of bounded biharmonic nonharmonic functions,

i.e., nondegenerate solutions of 4 2 u=0, with 4 the Laplace-Beltrami

operator d 8 + 8 d .  Consider the punctured space E : 0< I xi <00,
x= (x l, ...,xN ) with the metric ds=.-Ix ia dxl, a a constant. It was shown
in Sario-Wang [1] that although EP,' with N=2,3 carries H 2 B-functions

for infinitely many values of a, it tolerates no H 2 B-functions for any
a  if N > 4 . In  th e  present paper we ask: What can be said about the

class H k B  of bounded nondegenerate polyharmonic functions of degree

k, that is, solutions of 4ku=0 ? The answer turns out to be rewarding

and puts the biharmonic case in proper perspective: T h e r e  ex is t  no

HkB -functions on E '  a n y  a  i f  N >2 k .
For N <2 k  there are infinitely many a for which these functions

do exist, and for these a the generators of the space H k B  are surface

spherical harmonics. In particular, this is true of H 2 B-functions on

Euclidean 2- and 3-spaces, as was recently shown in Sario-Wang [2].

If H 1CB 0  on a given Eg, is the same true of H hB  for any h>k ?
We shall show that, while this is so for every N  if the metric of E-1:  is

Euclidean, there are values of (N, a ) for which it does not hold.
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1. We start by stating our main result. Let Orrk, be the class of

Riemannian N-manifolds which d o  not carry bounded functions u
satisfying LPua0 ,  jh u   /  0 fo r all h <k .

Theorem 1. E ?'/  E O P B  fo r  a ll N > 2 k ,  k > l ,  and  a ll a.

The proof will be given in Nos. 2-9

2. First we consider radial functions, i.e., those depending on

r=-1x 1  on ly . W e sh a ll show that th e  equation Jky (r)=0  has the

following general solutions. If N  is odd, or if N  is even with N >2 k ,

then for any a/ — ]

k-1
Y k ( r ) =  E  (a n r( 2 n- N +2 )(a +1 ) b nr2n(+ 1) )\

•

n=0 

I f  N  is even with N  <2 k , then for any a/ - 1

k-1 (2k- N)
( 2 ) Y k ( r ) =  E (a n r(2 n- N+2)(a+1 ) b n r 2 n (a+1 )) E  nr2n(a+1) log r.

n=0 n=0

I f  a=--. —1, then fo r  any N

2k-1
y k ( r )  =  E a n (log r ) n .

n=0

Since the proofs are similar in all cases, we shall only discuss the

case N  odd, a  /  — 1 . For f  E C 2 (E § ),

1 d
r  N-1+ N . d r  ( rA r - l +  ( N - 2 )  a f (r)) •

The proof will be by induction. In the cases k = 1 ,2  it was given in

Sario-Wang [1]. For k >3  we have the induction hypothesis

1 d (rN --1-+(N
rN - 1 ±N a dr

k-2
E  ( a n r (2n-N+2) (a+1) bn r 2n(a+1)) .

n=0

(  
1

 )

( 3  )

-2)a f  ( r ) )

Here and later a n ,  bn , C , c n ,  etc. are constants, not always the same.
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We obtain successively

d k-2
( r N-1+ (N -2 )a f(r)

)
=,_  

E  ( a n r
(2n+2)(a+1)-1+b n r (2n+N)(a+1)-1),

d r` n=0

k-2
N-1+ (N-2)a f  f ( r ) _ .  E  ( a n r (2n+2)(a+1) b n r(2 7 + 1 \ T ) (a+1))+ C ,

n=0

k-2
( r ) = . E  (a  n r (2n+2- 1) (a+1)+2a+1+ bn r 2n (a+1)+2a +1) + Cr - N -  ( N - 2 )  a +1 ,

n=0

k-1
f ( r ) =  E  ( a n r ( 2 n + 2 - N ) ( a + 1 )

± b nr 2n(a+1)).
n=o

3. Let S n m =S n m (0); n=1,2, ; m=1, ..., m n , be the (Euclidean)
surface spherical harmonics. We do not include n = 0  in our notation
S n n -„ as we treat constants as radial functions. For harmonic functions

we know (loc. cit.) that.f(r)Snm E  1 / ( E i)  for any N  and any a if and

only if f ( r)=ar 23. +brq>, where a ,  b  are arbitrary constants and

( 4 )

1p n — 2 [—(N— 2)(a + 1)± ■/(N— 2)2 (a+ 1) 2 ± 4n(n+ N—  2)] ,{

1qn =-[— (N -2 )(a+1 )— V (N -2 ) 2 (a+1) 2 ± 4 n (n +N -2 ) ].

4. For any N , a, n > 0 , 0 < j < k - 2 ,

1. 1P ni =( 2  N  +1)(a+1)+p n , Q 5 = ( -2-N +j) ( a+1 ) +q n .

Define WI , n  by P n 'i i = 0 ,  Qn '; 1= 0 .  Then

( 5  ) Pni  /  0 and Qn.i 0  for N >2 k , any a,n.

For the proof, we observe that P n i = 0  implies

[4(1+1) 2 — (N -2)9(a+1) 2 =4n(n + N -2 ).

I f  N >2 k ,

4(1+ 1) 2 < 4k 2 — 8k + 4<(N— 2) 2 .

Since our n> 0 , there are no roots. The proof of (5) for Qn j  is identical.
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5. The equation Ziu=rPn'i+( 2 a+2 )/ S n 'i m  has a solution

( 6 ) un i'm-----ar9n (2a+2)(5+1) log r•S n j' m

and the equation Z1v-=-- r q,q +(2a+2)1S n
,

 mI a  s o l u t i o n

( 7  ) v f l brq." +(2a+2) (5+1 ) log m

with a, b  certain constants. We see this by direct computation which

is made easier by noting that r 1).:i S n 'j m  and rq ;' S  n 'i m  are harmonic.

In  this computation one observes that multiplying u  o r  y  by r 2a+2

raises its degree o f polyharm onic ity  b y  one, and d ( r 2a±2u )= co n st.0

+harmonic function.

6. It is easy to verify that for any N , a - 1 ,  the equations

Au  = r 23.-1-(2a+2)J s n m , A  v =  r q n + (2a+2)i s n m

have solutions u n m  fo r  n n ' i  and yn m  fo r  n n ' ;  given by

u n m = ar23.1-(2cr+2)(J+1)snm, n m =  q.±(2a+2)(j+i)s n m .v br

7. In the case  a=— 1, 1 > 1  we shall prove that

5- 1
A [7-23.(log r ) iS n m ] =  E  airPn(log r)/Snm

i=o

for certain constants a i. In  view o f A log r= d rP .S n m =0,

[1(7-Pn log r .S n m ) = —2(grad rPn.grad log r )S n m = - 2 p n rP .S ,, , .

A  straightforward induction argument completes the proof.

8. For harmonic functions we know (loc. cit.) that given any N,
a, every h E H (E § ) has an expansion

m„
(10) E  E  (an m rP.H-b n m rqn)S n m +y i (r).

n=1 m=1

( 8 )

( 9  )

We can now proceed to polyharm onic functions. For any N , any

uE .H ic(E §) has an expansion for
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k-1 m,, m.
(2a+2)/Snmu = .-  E  E  E  a i n m rpn+(2 a+2 )1Sn m +  E  E  b p i v i rqn+

5 = 0  n n , m = 1 n7422,, m=1
i J

J- 1 
+ E  E  r (2a+2)1 E  e n ,' i n t r p„ ,» - (2(+2)(j+1)

ra
lo g  r .S n 'i n t

n' 1=0 m=1j
K - j mn";

± E  E  r (2a+2)1 E  dn" im rq„,+(2a+2)(i+i) log r .S n .i'm ± y , ( r ) ,I 1n" 1=0 m = 1  -
1

where j= m a x i j I P W 0 = 0 } ,  K = m a x i i lQ 3 = 0 } .  I f  a=  —1 , then

k-1 mn
(12) u =  E  E  E  ( d i n m ry.-Fbj n m rq.)(10gr)JS n m -Fy k(r).

5=0 n=lm=1

For the proof let h=Z1k - 1 u  have expansion (10). The proper co-

efficients o f  u  are obtained from (1) - (3), (6) - (9). The expansion of

h converges for every rE(O , 00) and all O. Therefore,

lim
n_...

m„ I  1

E anmSnm11). -= lim
m=1

In n
E  bn m S n m

m=1
- qn = 0 ,

mn 1 mn 1
lim E  a i n m S n m

m=i
23 n= l im E  bin m S n m

m=i
- qn =0,

and the expansion of u  converges for all (r, 0). We apply the operator
Llk- 1  term-by-term and obtain (10).

9. We continue with the proof of Theorem 1 and discuss first the

case a  / 1 .  If j  1  n or k -/-m , then S  k  and S n m  are orthogonal with

respect to the inner product (., .):

(S ix , S nm )= f SikSnmdco,aBoo.)

where B(0, 1) is the unit ball about the origin, and du) is the Euclidean
surface element of 3B(0, 1).

I f  ze H k B , then (u, S n m ) is bounded for any (n, m ) .  For a   1,
N >2 k ,

k-1
-F(u ,S n m )=const E  (a i n m rPn+(2 a 2 )j_i

m uj n m rq.+ (2 a +2 ) i ) .
5=0
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Because th e  right-hand side must be bounded fo r  any choice of

rE(O, 00), either ai n n i  o r  pn +(2a+2)j vanishes, and either kin m  o r

qn +(2a+2)j vanishes, for all j .  W e note that

(13) pn+ (2a + 2) j= 0  a n d  qn + (2a +2) j=  0

is equivalent with

[(4j+2—  N) 2 — (N —2) 2 ] (a+ 1)2 = 4n(n + N —2).

I f  N > 2 k ,  [(4j+2—N) 2 — (N-2) 21< 0 ,  an d  (13) has no solutions

by virtue of n > 0 .  Therefore, the coefficients agn m ,  bi n?,  vanish for
all (j,n , W .

We conclude that all terms in (1) and (2), except for the constant,

vanish because, fo r fixed N , a, they are unbounded. The proof of

Theorem 1 is completed by using a similar argument for a= — 1 . In
the case a= —1 the theorem is true fo r  all N .

10 . We proceed to show that HkB-functions exist on the lower

dimensional spaces for certa in  a . Examining the proof o f  Theorem
1, we see that it would hold for N  <2k  if again (13) had no solutions;

in fact, the terms involving n 3 and  n would be eliminated as they
a re  not bounded. Hence, we need only find out when (13) has
solutions.

Theorem 2 .  For f ix ed N , a — 1, N <2k, the generators of Hk B
are the S n m  such that (13) holds.

P ro o f .  That the S i i n ,  are HkB-functions follows from (8). By

solving the equations in  (13) in the form

1 1 
(14) (2j+ 1 — y N )  (a+ 1) — — 2  V(N-2) 2 (a+1) 2 +4n (n+N -2 ),

we find that the solutions for j = k - 1 ,  n / 0, are

a=.- —1+V  n ( n +  N  

4k2 —  (4+2N)k +2N
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1 1 .  One might suspect that the existence of HhB-functions always

implies that o f nondegenerate HhB-functions for h > k .  However, we

shall show:

Theorem  3. E E E  O P B  f o r  a l l  h > k  an d  a l l
N  i f  a = 0 .  T h e r e  ex is t  E§ f o r  w h i c h  t h i s  i s  n o  lo n g e r  t r u e .

P r o o f .  I f  a = 0 ,  equation (14) reduces to n = 2 j+ 2 — N . There-

fore, i f  there exists an n  satisfying this for there also exists

an n  for all h>k.
T o  show that the above is not true fo r a ll a , we choose N = 4 ,

n = 1 .  For j = 3  we then have a= — 1 + 8  whereas j = 4  should give

6 = n ( n + 2 ) .  Since no integer n  satisfies this equation, we conclude

for the above a  that E i: E OH , B\OH4B.

U N IV E R SIT Y  O F  C A L IF O R N IA , LOS ANGELES
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