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Introduction

Let XZ(X) be the set of all Cr-structures on a topological manifold
X. The study of the diffeomorphism classes of X(X) has been an
important subject in differential topology. We, however, consider X(X)
itself paying attention to its dependence relation (<) defined below.
We give some results which are chiefly reduced to a local theory of
homeomorphisms of R". We begin by the following problems.

Problem I G. For given Cr-structures 2, 2'eX(X), can we
find a third 2" € X(X) such that 2<c 2", 2'<2"?

Problem II G. For given Cr-structures 2, 2'e 2(X), can we find
a third 2" € X(X) such that 2"c2, 2"<2'?

These problems are quite raw and more suitable presentations will
be found according to the stages of our study. First, we localize the
problems.

By a local Cr-structures on R" we mean the germ at 0 of a Cr-
structure of a neighbourhood of 0eR" (we shall give a more detailed
definition in Section 1). By a local homeomorphism(!) of R" we mean
the germ at 0 of that homeomorphism between neighbourhoods of 0

(1) We use this term following Sternberg, who investigated local homeomorphisms in
connection with the theory of flow and found normal forms of conjugate classes
of local diffeomorphisms.
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which leaves 0 fixed. All the local homeomorphisms of R” form a
group ,C with respect to the operation (o) induced by the composition
of maps. If two local Cr-structures 2 and 2’ are given, take admissi-
ble charts f(t) and g(t) of their representative C’-structures in neigh-
bourhoods of 0. The germ fog~! of fog~!(¢) is a local homeomorphism
of R". We say that 2 is dependent on 2’ and write 2< 2’ when
fog~1 is of class C". This defines an order in the space of local Cr-
structures. Then we obtain the local forms, (I L) and (II L), of
the problems (I G) and (II G) in an obvious way. Global dependence
is defined by the pointwise dependence of admissible charts (see Section
4).

(IL) and (ITL) are easily reduced to problems about the sub-
semigroup(?) ,E,c,C that consists of the germs of class C. Church’s
smoothing lemma (2.1) gives a sufficient condition for (Il L) to be
answered in the affirmative. Next, we show by the examples (2.4),
(2.5) and (2.6) neither (I L) nor (II L) is unconditionally answered in
the affirmative. These examples reveal somewhat complicated aspects
of ,C relative to ,E. If we restrict ourselves to the I-dimensional
case we obtain a sharp positive result (as a consequence of Theorem
3.1):

Theorem 0.1. If n=1 and if (I L) is answered in the affirmative
for a pair (2, 2') then (I1 L) is also.

In substance this assertion gives the simple expression |E;!- E,
of the subgroup of ,C generated by ,E, (Corollary 3.7). A difficulty
in the proof lies in the removal of the singularities of a function which
is smooth almost everywhere. We remark that the converse of the
above theorem is false for every R” (Example 2.5).

All of these local results yield corresponding answers to (I G) and
(I1 G). The positive results for (I G) are best explained by a reduction
theory of structures (4.1 and 4.4). We can also treat subsemigroups
of the homeomorphism group of a C" manifold (see (4.6), (4.7) and

(2) A subsemigroup of a group is a subset closed with respect to multiplication.
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(4.8)). In the last section we remark on the diffeomorphism class of
a C=®-structure in some dependence relation with another. By the way,
transforming Schoenflies theorem, we show that Milnor’s group ,4
of exotic spheres is a quotient group of a subgroup of ,C (Theorem
5.3)

The essential part, Section 2 and 3, of this paper depends upon
real analysis. Especially we use a basic knowledge of measure theory
and the simplest case of Sard’s theorem(3. We refer to results in
ordinary differential topology only in the additional section 5.

I wish to express my thanks to Professor S. Mizohata for various
advices and to Professor R.C. Kirby for kind encouragement.

1. Preliminary consideration

First we clarify the relationship between local homeomorphisms
and local Cr-structures. We shall often express a property of a germ
by one of its representative.

Let us fix an affine coordinate system t=(¢!,t2,...,t") of the
Euclidian n-space R”. t assins naturally a Cr-structure on R”. Then
it determines the following subsemigroups of the group ,C of local
homeomorphisms at 0e R":

.D,={the elements of ,C of class C" except at 0},
«E, ={the elements of ,D, of class C},
oJ,={the elements of ,E, r-flat at 0}.

Here a (local) homeomorphism of class Cr does not mean the Cr-
differentiability of its inverse. r-flatness means vanishing of all the
partial derivatives of order up to r.

Let ,D} (resp. ,Ef, ,J¥) denotes the subsemigroup of ,D, (resp.
.Ep nJ.) consisting of all the elements whose Jacobian do not
vanish except at 0. Let ,EX* be the subsemigroup of ,E¥ consisting
of all the elements whose Jacobian do not vanish at 0. When we
do not need to restrict the dimension of the Euclidean space, the left

(3) According to Sard [8], this case is due to M. Morse.
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subscripts n of ,C,,D, etc. are omitted. r is always assumed to be
a natural number or co. D} and E}X* are subgroups of C and satisfy

D}~ ' =D}, EX*-1 =E}*
It is also easy to see that
E B =000, EFeE} 7 =JFeJr 1,
E;1oE,=J;1Jo,, E¥ 1oE}¥=J* 1oJ*,

Now take an element feC and its representative f(t) defined on a
neighbourhood U of 0. Regarding (U, (tof)(t)) as a chart we can
define another Cr-structure on U. The set &,.(f)=,£(f) of the
germs of all the C" functions at 0 in the new sense is determined by
the germ f and is independent of the choice of the representative (U,
f). It is clear that &(f)cé&,(g) (resp. £(f)=E£,(g9)) if and only
if feE,og (resp. fe E¥*og). Thus a local Cr-structure defined in the
introduction can be naturally identified with a subring &,(f) of the
ring of germs of continuous functions at 0e R". Dependence of local
Cr-structures just corresponds to inclusion of subrings. The left coset
space E}*\C can be also identified with the space of local Cr-structures.
We remark that EX** is not a normal subgroup of C, which we see in

the following:
Example 1.1. Put
oa(x)=2+sin[(n/2)—nlog|x|],
b ={ a@dz.
The germs f, g at 0 of the maps
fO=@B@"), 2, 2,..., 1),

g =(et', 12, 13,..., t")

belong to D¥, EX¥* respectively. Suppose that EX* is a normal subgroup
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of D¥. h=f"logof belongs to EX*. The first component h'(t) of h(r)
depends only upon t! and then we have

h14(0,0,..., 0)>0
Putting
k(x)=h'(x, 0, 0,..., 0)
we have
Bok(x)=eB(x)  (0=x<9),
k(x)e C'[0, 8), k(x)>0  (0<x<d)

for a small positive 6.

(If A is a subset of R", by C"(4) we mean the set of functions obtain-
ed by restriction to 4 of Cr-functions on an open set including A.)
By differentiation we have

aok(x)x k'(x)=ea(x)  (0<x<5).

Since
lima(x) =1, ima(x)=3, limk(x)= +0
xT0 xl0 xio
we deduce
k'(0) =£ilng k'(x)=e.
Then

k(x)=ex+o0(x).
Putting x =¢"2™ we have
a{e 2m+1[1+0(1)]} x k'(e~2m) =ea(e”2m).
On the other hand

lim af{e"2m*1[1+0(1)]} x k'(e"2™)=e,
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lim ea(e™2m)=3e.

m=—*a0

Thus our first assumption lead to a contradiction and E** is not a
normal subgroup of D,

Remark. It is easier to find f in E, than in D¥.

(IL) and (II L) are translated into the following problems about
local homeomorphisms.

Problem I L'. Let f and g be elements of C. Do hold the
following mutually equivalent statements (i)~ (iv)?

(i) feg 'eE,-E;'.
(ii) E;'-fnE;'-g#¢.
(iii) f,g€eE,-¢ for some peC.

(iv) &.(f), &.(g)=&(¢p)  for some peC.

Problem II L. Let f and g be elements of C. Do hold the
following mutually equivalent statements (i)~ (iv)?

(i) feg 'eE;'-E,.
(ii) E,ofnE -g+#¢.
(iii) f,geE; 'y for some Yy eC.
(v) &.(f), ¢(9)=6,(y)  for some YyeC.

We show a simple example to illustrate the situation meant by
these problems.

Example 1.2. We put

t (120

f(=t, g(t)={
2t (t<0),
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exp(—1/1) (t>0) \ exp(—1/t) (t>0)
()= 0 (t=0) ﬂ(f)=]‘ 0 (1=0)
|

—2exp(l/t) (t<0), —exp(2/t) (t<0),

—1/logt (t>0) [exp(—l/t) (t>0)
o(H)=¢ 0 (t=0) y(H=: 0 (t=0)
L 1/log(—1) (t<0), —exp(1/t). (t<0).

Then we have
f=Vope Egop,  f=yTlepe ELlY,
g=ocpe Enep, g=PB"'ope Eay
and hence
1€o(W) {1 8(f)N164(9)}c{1€L(fIU EL(9)} =18 (@)

Thus the problems (I L) and (Il L) are answered in the affirmative
for the germs f and g.

n P
Now we make some notational agreements. We put ||t||=\/Zt‘t'
i=1

for t=(t',12,...,t")eR". Let f(f) be a Cr-function on a domain
QcR", A a subset of Q, v=(v,, v5,..., v,) an element of {0, I, 2,..., r}"
[v|=v{+v,+-+v, We put

- olIf(2)
”f(t)“"_ogsﬁlpg ?E,? (@) 1 (0r2) 2+ (0t") "

0=<i=sr).

Next, let T be an interval of R. We define M"(I) to be the set of all
properly monotone increasing function of Cr(I). When we mention of
the measure u[A] of a subset 4 cR", it is the ordinary Lebesgue
measure.

2. Dependence of local homeomorphisms

In this section we show a sufficient condition for the assertions of
(ITL") in Section | and a few examples of f and g for which (I L)
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or (I'L") are answered in the negative. We illustrate these situation
in advance.

D? = (Ef)"1oE}

E,-E;!

EFo(Ep)~!

trivial

Here discs mean subgroups of C.

Lemma 2.1 (Church’s smoothing lemma). Let M and N be
connected paracompact C" manifold without boundary, A={x;} be
a discrete subset of N and {(U,, (1}, t?,..., t}))} coordinate neighbour-
hoods centered at x;. If f(t): M—N is continuous and proper on M
and C" on M—f~1(A), then there exists a C" homeomorphism ¢(1)
of N satisfying the following:

(i) geof(t) is Cr on M.

(ii) g(t) can be expressed in the form

@ -oi(lleil), e o lleill), .., 27 - o:(litill)

such that o(x) is flat at 0 and o(x)=1 for x = k;(>0) where {t:
It <k} <U,.

(i) g(t) is a Cr diffeomorphism on N—A and the identity map
on N—UU, If N is a C5(s=r) manifold, g can be chosen to be Cs.

Remrak 2.2. The condition (ii) has a special meaning. The homeo-
morphism ¢g(f) induces a new C’-structure (pull back by g(f)) on N.
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It is easy to see that (ii) means this structure is diffeomorphic to
original one. See (5.3) and (5.5).

Corollary 2.3. If r<s it holds that D¥=(E¥) ' E}=(E}) '-E¥.
Since (E¥*)"'eE*cE;'-E,, (I L') is answered in the affirmative
f, g €C satisfying fog~' e D}.

Example 2.4. Here we give f, geC such that (I L') is answered
in the negative i.e. fog ! § E;1-E,.
Take a function a(x) defined on [—1, 1] with the following properties.

(@) a(x)eMO[—1,1].
(b) a(x) is not differentiable on a dense subset 4 of [—1, 1].
(c) a(0)=0.

We can construct such a function summing monotone increasing func-
tions whose graphs are open polygons. The germ f of

f)=(a(t"), t2, 13,...,t") at 0 belongs to C. If E;'-E,=C we may
assume that f=h"'ok for some h, ke E,. For sufficiently small positive
0 we have hof(t)y=k(1) (tel"=[—4, 6]") and hi(t), k(t)e C"(I"). We put

li(x)=H'(x, t}, t3,..., 13) .

If (I')oa(a)#0 (ae AnI), there exists the differentiable inverse function
(I~ Y(x) defined in a neighbourhood of /!ox(a) such that

a(x)=(I")""oki(x, t§, t3,...,13).

This contradicts to the assumption that «(x) is not differentiable at
a. Thus we have proved (/!)oa(x)=0 on Anl. Since A is dense and
(/%) oa(x) is continuous,

(I') ca(x) =(0h*[0t")f(1) =0

and hof is constant on Ixt3xt3x---xt§, a contradiction. Thus f&
E;'-E,.
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Example 2.5. If r=1 we have E;'-E,{E,-E;! and hence
there is a pair (f, g) = C such that (IT L') is answered in the affirmative
and (I L') in the negative.

If r=2, this example is weaker than the next simple example
(2.6). Thus the reader can neglect this.

Let A be a subset of /=(—1, 1) such that:

(a) A is a closed subset of I.
(b) A has no interior point.

(c) A has positive measure.

(d) 0 is a density point of 4, i.e. lim fM:

. I.
al0,blo b—a

(e) A is symmetric with respect to 0.

We can realize such a set using a generalized Cantor set. Let I,
(i=1,2,3,...) be the connected components of I—A and p; 2r; be
the center and the width of I, Take a C%-function a(x) such that
o(x)=—1 (x=£—-1), a(x)=1 (x=1) and o(x)|-;, ;e M°[-1, 1]. p(x)
is defined by p(x)=0-0(x). If we put

ci=max{|p(x)%, la(x)llk}

and

a(x): i 2—i I",: [p(.ﬂ)-l-&gnp,:l,
i=1 C; ri

B(x)= g}l 2 —ZL [a<_x:'_p,> + sign pi] ,

3

then a(x), B(x)e M>(I). It is a consequence of the condition (b) that
a(x) and pB(x) are properly monotone increasing. To see the smooth-
ness, confer the proof of (3.2) given later. Obviously we have

a(p;r)=B(p;£r).

If xea(l;)=p(I;) we have
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i—1 . C;
oz/ooz"(x)=2"'—r—'c~——a'oo“ {[x—a(p‘-—ri)] 2'—7‘::—— l}
i i

xo'op~ Lx—alpi=rp]2 S 1},

/~'3'°ﬁ_’(x)=2‘iri_il a’oo"‘{[x—a(pi—ri)] 2i-i—.f—_ 1} .
Thus we obtain
%:‘;—:;%=6’°p“{[x—a(p.-~r,-)]zf i —1}
— 0 (xla(pi—ri)=B(pi=ri).
Similarly
%:—12’;—;—»0 (xta(pi+r)=PB(pi+r)).
We put

FHO=(a(t?), a(1?),..., a(t")
g~ (n=(B"), B(1?),..., B(1™))

and then fog~'€e,E;!'o,E,. Assume that there exist h, ke, E; such
that

feg=t=hek™!
then
fogtok=h.
Comparing each component on the t!-axis we obtain
a~loBoki(t!,0,0,...,0)=hi(t!,0,0,...,0)
for i=1,2,3,...,n and |t'|£6. We may assume that

h'(s,0,0,...,0)>0
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without loss of generality. Putting

I(x)=k!(x,0,0,..., 0)
we have

a'oa~to(Bol)(x) _ I'(x)
BB To(Bol)(x) (0h']/dt')(x,0,0,...,0) °

The numerater and the denominator on the right are continuous on
J=[0, 8]. The left expression tends to 0 when /(x) approaches p;+r
from the inside of I;. Thus

I'(x)=0
provided
l(x)=p;+ ek,

where K is a compact interval such that Ke€/(J) and u[AnK]>0.
Then

B={p;xr}nkK

is included in the set of the critical values of /. Being closed, the
latter includes the set

B=AnK

and thus has positive measure. This contradicts the theorem of Sard
on critical value and proves

fog_IQ"Elo”EIl’ q-e.d.
Example 2.6. We give an element feD¥ =E} '-E} that does

not belong to E,-E;! for r=2.
Put

p0) = (1+¢sin g ) e,



Local homeomorphisms and local Cr-structures 299

i = pi t (i=1,2,3,...,n).
Then the germ f of the map
fO=01®), £2(0),..., fr(®)
at 0 belongs to D%, because

OCf"' f2 e f7)  det(£iti+8,;]1t112) +0(Jle] >"+2)
o, 12,..., ") [V e(lel*)]"

_ 2024 0(fr] 27 2)
NEGE

But f&E. -E;! if r=2. To see this let us assume that

SEE, cE 1 =T Jo

or fopel, for some ped,. Then \/pLTo®I7] ¢'() and pllp(H]2]-
lo(t)]|* are r-flat at 0. Putting

a(x)=lo(x, 0,0,..., 0)2],
t(x)=pla(x)]-a(x),
we have
1" =0"(c")?p"(0) +2(c")? p'(0)
+0:6”:p'(6)+0" p(0).

Since o(x) and 1(x) are r-flat (r=2), t"(x), o(x), ¢'(x), ¢”(x) and
plo(x)] approach 0 and p’[a(x)] is bounded when x tends to 0. Then
a+(¢')2 - p” (o), and consequently

¢’ 1
T feos x|
approaches 0. On the other hand, putting

¢(x)=5:;—x/ cossis—‘ds
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we have

. i ("1 oo 1 ds =
lj{l_l}g(b[a(x)]—lxllngg p \/icos 53 ‘ds—oo.

1
The previous observation means
lim -2 & [a(x)] =0
mogx Lo x)]=0.

These two limit equations are not compatible. Thus we have proved

feD, fEE,-E7N (r22).

3. The case of R!

In the previous section we have seen that the assertions of the
problems (I L") and (II L) suppose some condition on f and g. Corol-
lary 2.3 gives such a condition. If we restrict ourselves to one dimen-
sional case, we obtain a sharper result which yields Theorem 0.1 in
Introduction.

Theorem 3.1. For r,s=1 we have the following:
(i) \E,o \E;' < \E;'-E,.
(ii) If
Ertof 0 Ertog # ¢
then
1E,of N Esog#¢.

(iii) If f,ge E,o@ for some @€ ,C then fe E 'y, ge E;'oy
for some Y e C.

Giv) If ,6,(f), 16(9)=.6,(p) for some ¢€,C then &,(Y)c
lé’r(f)’ léns('//)clé’s(g) fOI’ some wecl'

The assertions (i)~(iv) are mutually equivalent. We arrange a
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few lemmata before proof.

Lemma 3.2. Let Q be an open subset of R", f(x)eC%Q) and
let f(x)=0. Then there exists a function @(x)e C*(Q) such that

0 < o(x)< f(x) if f(x)>0,

@(x) is oo-flat at x, if f(x0)=0.

Proof. We may assume that
f(x)SM <o
without loss of generality. Put
P={x:xeQ, f(x)>0}

and take a countable covering V; of P, where V, is an open ball of
center p; and radious r;<1 and the closure V; is contained in P.
Let p(x) be a C®-function on R" such that

p(x)>0 (Ixll<1),  p(x)=0 (Ix[=1).
Putting
= [P ()lfens mi:;cigvf f(x),

we show that

= 3 =i r_; x_pi>
o(x) i§l2 mi p( .

has the required properties. Since

o7

|

Pl

p(v)( X—p; >l < Clv|

we have

i

<27iM.

frmo(52)
i i

R”
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Then ¢(x) is in C*(R") and oo-flat on Q—P.
By the inequalities

O<n; 2 f(x) (xeVy),

ong(—"_”f—>§l,

Ci ri

we have
O<o(x)= §12"'f(x)r§<f(x) (xep).
This completes the proof.

If r=1, the set of critical points of a function of M"(I) is a closed
subset without inner point. We can see that the converse is also true
putting f(x)=x in the next corollary.

Corollary 3.3. Let I be an interval of R and Z a closed subset
of O without inner point. For a function f(x)e M"(I) (r=1) we put
J=f(I). Then we can find a function F(x)e M*(J) such that the set
of zero points of (F'of)(x) is Z. (Consequently the set of critical
points of (Fof X(x) is the union of one of f(x) and Z.)

Proof. Since f is a homeomorphism, f(Z) is also a closed subset
without inner point. Put

o(x) =(the distance of x and f(Z)),

then o(x)eC%(J), a(x)=0 and the set of zero points of o(x) is f(Z).
By (3.2) there is a function t(x) such that 1(x)eC=(J), ©(x)>0 on
J—f(Z) and t(x)=0 on f(Z). It is clear that any primitive function
of 1(x) has the required property, qg.e.d.

Lemma 34. Let Q be an open set in R* and A its closed null
subset. If a homeomorphism f(x) of Q into R" is C' diffeomorphism
on Q—A then f~'(x) is absolutely continuous on f(). If g(x) and
and h(x) are C! homeomorphisms of Q into R" such that the critical
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set, Z, of g(x) includes that, W, of h(x), then goh~'(x) is absolutely

continuous.

Proof. Let S be a null set in f(Q). f~'(S)n(R—A4) and f~1(S)n4
are obviously null sets. This means that f~!(x) is absolutely con-
tinuous. hog~'(x) is a diffeomorphism on g(Q—Z—W)=g(Q-2Z).
This set is the critical value of g(x) and hence a null set by the Sard’s
theorem. It is also closed. Thus, we have only to apply the former
part to hog~!(x), qg.e.d.

Lemma 3.5. Let I be an interval of R and A be its closed sub-
set. Let f(x) be a continuous function that takes a fixed value on A.
If f(x) is differentiable on I1—A and if f'(x), defined on I—A, has
a continuous extension g(x) over I which vanishes almost everywhere
on A, then f(x) is of class C' and f'(x)=g(x).

Proof. We may assume that I is a compact interval [a, b]. If
we put

() =f(x) — S:g(c)de :

s(x) is a continuous function with differential coefficient 0 on I—A.
We have only to prove that s(x) is a constant function on I. Let
I,,1,,1I;,... be the connected component of I—A. Then f(x) takes a
same value on the boundary of I, so that

[, reuae=o.

If x,,x,€d, [x;, x,] is a disjoint sum B of some of I, 1I,,I,,...
and a subset C of 4. Then we have

| oe={ a@ue=, ro+f o@ac-o.

Thus each of

1. o
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and consequently s(x) takes a fixed value on A. Since s(x) is constant
on I, so is on I, g.e.d.

The proof of Theorem 3.1. For arbitrary elements f, ge ,E, we
have only to find suitable elements he E, and ke, E, such that

hof:kog

We may assume that f and g are orientation preserving. Let f(t), g(?)
be representatives of f and g respectively, which are defined on a finite
interval I=(—a, a) and belong to M"(I). The set Z, of critical points
of f(1) is a closed set without inner point. Applying (3.3), we can find
a function F(t)e M~(J) (J=g(I)) such that F(0)=0 and the set of
critical points of (Feg)(t) is the union of Z, and one for g(f). Since
the germ Fog of (Feg)(t) belongs to ,E.,og we can replace g by Fog.
Thus we may assume that the set of zero points of g’(¢) includes one
for f'(t), Z,. Similarly we assume that Z, contains 0. (3.2) assures
the existence of ¢(t) e C*(J) such that

O<op(<flog™'(ty if f'og7' (>0,
o(1): flat at t, if  f'og71(t5)=0.
Now take the C=-function 04(1) on R defined by
Oo()=exp(—1/lt]) (t#0),  6,(0)=0.
Then
Oty =signt-0y(1)

defines a function of M®(R). It is flat at 0 and has a positive differ-
ential coefficient anywhere else.
We put
t
W)= 0o p(xde,

h(t)=00yogof~1(1).
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Since the set of zero points of ¥'(t), or equivalently of f'og~!(1), is
homeomorphic to that of f'(f) and has no inner point, we have

y(eM=(J),  h(neMK),

where K=f(I). Further we shall show that h(t)e M"(K). It is obvious
that h(t) is of class Cr outside the set Z of zero points of f'of ~1(t).
By mathematical induction on v we can see that any higher derivative
h™(f) (1Lv<r) is a linear combination of terms of the following type
on K—Z excepting possible multiplication by sign ¢:

) Ooyogof ™) [00¢ogo/ (1))
[ege/ "1 Toego/ OV 7o OT

L M N
X llj’ [(p“)og of'—l(t)]al X I;Il [g(m)of—l(t)]b,,. X "].:Iz[,f(") oj._](t)]c"
where
a, :B’ y’ 6’ alv bnv C", L’ M, N

are all non-negative integers and M, N<r, §>0.
Since

0<p(n<flog™'(2)
and

lim 6(1)/t5=0
t—-0

every factor of (x) is bounded when ¢ tends to a point of Z from the
inside of K—Z. Especially the second factor tends to zero. Then
h®)(t) defined on K—Z has a continuous extension }’z\v’(t) which vanishes
on Z. We have assumed that the set Z, of zero points of f'(t) is
included in that of g'(r). Then by (3.4), we see that gof~I(t) is ab-
solutely continuous on K. Then h(t) is also absolutely continuous
and its derivative on K—Z has a continuous extension hN,(t). Since
Z is a null set as well as W, I:(t) is the derivative of h(tf). We proceed
by induction on v. Assume that h(f)e C*~!(K) and h(v‘”(t)=h/v\_41(t)
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(2=v=r). Applying (3.5 to the triple i:_,(l), K, Z, we have

ROEOETYOR
Thus we have proved that
h(t)e M°(K) n C"(K)=M"(K).
Putting
k() =0y (1) e M=(J),
we have
hef(f)y=kog(t).
Taking the germ at 0
hof=kog, he E, ke ,E,.

This completes the proof of the theorem.
Let us deduce some results from this theorem. To do this we
prove an algebraic lemma. (We use only (iv)). '

Lemma 3.6. Let G be a group and A, B, C and D be its subsets
satisfying

A>oD, Bo(C,
AB 'cC™'D (i.e. BA~'<=D™!(C).

(i) If C and D are subsemigroups of G, then C 'DnD-'C
is a subgroup of G.

(ii) If A and B are subsemigroups of G, then A"'BNB~!'A is
a subgroup of G.

(iii) If AnB>1 (identity of G) and if A and C (or B and D)
are subsemigroups, then

A 'BnB 'A=C'DnD-'C
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is a subgroup of G and
A~'B=D"'C (i.e. B-'A=C"'D).

(iv) If A=B>1 and if A=B and one of C, D are subsemigroups,
then

A 'A=C"'D=D"1C
is a subgroup of G.
Proof. (i) Since
(C"'D)2cC 'AB"'DcC!'C'DD<C'D,
(D~'C)?cD 'BA"'CcD'D"'CCc=D™1C,
we have
(C-'DnD 1C)2<cC'DnD'C.
While it is obvious that
(C'DnD-!Cy"'=C'DnD'C.

Then C™'DN D 'C is a subgroup of G.

(ii) Since AB'cC 'DcB~'A4, we have only to put C=B,
D=4 in (i).

(iii) Since

B 'A=1'B"'AcA B'AcC 'DAcC 'A AA=C'4
=C'4'1cC'C'DcC 'DcB !4,
we have B"'A=C"!'D and then
(C~'D)2c=C~'C~'D DcC-'A AcC 'AcB'4=C-'D,
(D~'C)?=(C~'D)2cD"!C.

Again it is obvious that
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(C-'DnD-'Cy'=C"'DnD'C.
Hence
A"'BnB 'A=C"'DnD"'C

is a subgroup of G.

(iv) Immediate from (iii).

Combining (2.4), (2.5), (3.1) and (iv) of (3.6), we have the follow-
ing:

Corollary 3.7. If 1Sr=<s<oo, E;'<,E, is the subgroup of ,C
generated by E, and
1E, o BV & BV e E & C

—1 — —1 — —1
lEr °1Er_1Es OlE‘r_lEr OIEs'

Corollary 3.8. If r, s=1 and f,e ,C (i=1,2,...,m) belong to
the same left coset of \E;'c E\,C, then

(1) (E¢ofyn (ézlErofi) #¢
or, what amounts to the same,
(i) (&N 6D, 6N N6

for some Y eC.
The proof is formal and we omit it. I wonder whether this

corollary can be generalized to the case of enumerably infinite number
of f.

Corollary 3.9. In (3.1) (i)~ (iii), (3.7) and (3.8) (i), we may
replace (E,, \E;) by ((E¥, E¥) or (,E?, E}), where E@ denotes
the subsemigroup of E, consisting of elements whose critical points

are at most enumerable. Hence

- _ - -1
1E;k*%1E:‘ '°1E:‘—1Df§(1Ef) '°1Ef§1Er °1Er
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are proper subgroups of |C.

This is a consequence of the fact that the sets of critical points
of h(t) and k(f) in the proof of the theorem are at most homeomorphic
to the union of those of the original f(t) and g(¢f) and O.

4. Global versions

Here we treat the dependence of C’-structures on a topological
manifold and the dependence of homeomorphisms of a Cr manifold.
In the local theory these are mutually equivalent. (compare (I L) and
(II L) with (I L) and (I L’)) but not in the global theory. The prob-
lems (I G) and (I G) in Introduction are concerned with the former.
The negative examples (2.4), (2.5) and (2.6) immediately yield the
corresponding negative examples for (I G) and (II G). The positive
results (2.3) and (3.1) have also global versions. We will explain them
as a reduction theory of some structures. There arises no topological
obstruction as far as we are concerned with the global versions of the
local results we have obtained. The dependence of homeomorphism is
defined by subsemigroups of the homeomorphism group. We show
global versions of (2.3) and (3.1) also in this sense. Hereafter we
assume that a manifold X is a connected paracompact topological one
without boundary.

We review the definition of structures on X in our terminology.
For a homeomorphism f(tf): U-V of open sets in R", we define f,o
to be the germ of the homeomorphism

Fro@=f(t+15)= f(1o)

at 0. f, is an element of ,C for teU. If (U, ¢(x)) is a chart on X,
we define @,, to be the germ of the homeomorphism

Pxo(X) =0(x) — @(x0)

at xo,. Now let H be a subsemigroup of ,C (n=dim X) which contains
the identity and satisfies the following condition:

(1) If f(t): U->V is a homeomorphism of open sets in R” and if
fioeH, then f,eH for all t near ft,.
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If two charts (U, ¢(x)), (V,y¥(x)) and xeU n V satisfy p,eHo
V,, we say that ¢(x) is H-dependent on y(x) at x. Then by (%), the
set

{xoeUnNV: ¢(x) is H-dependent on (x) at x,}

is open. If G is a subgroup of ,C, G-dependence is an equivalence
relation and hence we call it G-equivalence. Let B={(U,, ®,(x)}ics
be a collection of charts covering X. If ¢,(x) and ¢, (x) are C-
equivalent for all 4, A’eA and all xeU,;nU,, we call B a G-basis.
If the join of two G-basis B, B’ is again a G-basis, we say B and
B’ are (G-) equivalent. An equivalence class of a G-basis is called a
G-structure on X. A G-structure can be identified with its unique
maximal G-basis. If a chart belongs to the maximal basis, we call
it an admissible chart of the G-structure. If G<=G’, a basis of a
G-structure 2 is a G-basis of a uniquely determined G'-structure 2’
and then we say 9 generates 2'. Let Y be an open set of X
and B={(U,;, ¢,(x))},c4 be a basis of a G-structure 2 on X. Then
the restriction B|Y={U,nY, (¢,)JU,nY)x)},cs is a G-basis on Y
and (Y, 2|Y)=(Y, 2) becomes a manifold with G-structure.

Consider a subgroup G and a subsemigroup H of ,C satisfying
G=HnH"!. If any admissible chart (U, ¢(x)) of a G-structure 2
is H-dependent on any admissible chart (V, y(x)) of another G-structure
2 on UnV, we say 2 is H-dependent on 2'. This is an order
relation. E,-dependence of Cr-structures (i.e. EX*-structures) corres-
ponds to the “‘dependence” of local Cr-structures.

The group D¥* satisfies (), so we consider D}¥-structures. Let 8
be a basis of a D}-structures 2. We define Sy to be the closure of
the set of all x where all charts of B containing x are not E**-
equivalent. If B is locally finite, Sy is discrete and B|X—-Sy is a

E**-basis of a Cr-structure on X —Sg.

Proposition 4.1. Any ,DX-structure 2 is generated by a C'-
structure 2'. If a locally finite basis B={(U,, @ (x)},ca of 2 s
given, we can choose 2' such that:



Local homeomoephisms and local Cr-structures 311

(i) 2'|U, is E,-dependent on @,x) for any Ae A in a obvious

sense.

(ii) Blx-sq is a basis of 2'|x-sq-
The proof is easy by Church’s lemma (2.1).

Corollary 4.2. Let 2 and 2' be two Cr-structures differing
only on a discrete subset A. Then there is a third Cr-structure 2"
such that

(i) 2" is E,-dependent both on 2 and 2'.
(i) 2| X—A=2'|X-A=2"|X—-A.
(iii) (X, 2") is diffeomorphic to (X, 2).

(iii) follows from the special form of the map g(t) in (2.1) (cf.
2.2)). If n=1,2,3,56,12, (X, 2), (X,2') and (X, 2") can be
chosen to be diffeomorphic to each other by (5.6). This corollary
gives a positive answer to the problem (II G) (cf. (2.3)).

Next, we give the global version of (3.1).

Lemma 4.3. (an extension of a smooth monotone function) If

a<b<c<c'<b'<a’,
fx)eC([a, cJu[c, a']),
fXlla, cleM[a, c],  f()I[c', a'TeM[c, a’],
fle)<f(c)
then there exist a function g(x)e M'[a, a’] such that

gx)=f(x) (asx=b, b'sx=a),

g'(x)>0 (c=x=().

The proof is omitted.

Theorem 44, Let dimX=1. Any (,E;'c E,)-structure 2 on X
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comes from a Cr-structure 2'. Moreover, if a locally finite bases
{Us, 020N} 2ea of 2 is given, we can choose 2' such that any
admissible chart (V,y(x)) is E,-dependent on (U,, p,(x)) on U,nV.

Proof. By our assumption we can choose a collection {(W,
0/(x))}ien of charts satisfying the following conditions ((g) is possible
by (3.8)).

(a) N is at most countable.
(b) W,cW; implies i=j.
(c) W,nW; is connected.
(d) Three members from {W,};.y do not intersect.
(e) X=U W.
ieN
(f) 64w;) is an interval of R.
(g) 0(x) is Cr-dependent upon ¢,(x) for any A satisying xe U,.
Take a point p=p;;e W,n W; for each non empty W,n W, From (g)
0i,€1E, 0P, B0 \Ef1of; o | Efto E, 00,

We have used (3.1) to show the last inclusion. Then we obtain
fi°9ip(x) =fj°9jp(x) (xe W),

& ft)e M [0,(W)], ;i f(e M0, (W)] (e, e;=%1),
f(0)=f}0)=0

for some neighbourhood W e W;n W, of p, where A€ B means that the
closure of A is included in the interior of B. Narrowing W if necessary
we may assume that

8ifi°0ip( W) c H,I,(W,n Wj) )

Let Z be the connected part of W;n W;n We closer to W¢n W; and put
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W,=W.nZen( \J W,)-
k#i,j

By Lemma 4.3 there exists a function f;(t)e M[6,,(W;;)] such that

& fi(1) (1€ 6,,(W))

fij(t)={
t (te0,(W,;n W9)).

putting
0;(x) =f;o0,;,(x) (xe W)
we have charts {(W;;, 0,(x))}ix;,w,aw,#¢- Then it follows that
0:i(x) =¢:e; 0;,(x) (xeW;nW,),
0:,()+0i(pij) =0u(x)+0(ps)  (xeW;n Wy).

Hence {(Wj, 0;(X)}ij;w.nw,24 1S a basis of a Cr-structure 2. 0;4(x)
is Cr-dependent upon 0;,(x), 0(x) and thus upon ¢,(x). 2 is a
required Cr-structure on X, g.e.d.

Using this theorem and (3.1) again we have the following:

Corollary 4.5. Let 2 and 2 be (,E;'- E,)-equivalent C’-
structures on a 1-dimensional manifold X. Then there exists a third
Cr-structure 2" that is (E,-dependent on 2 and 2'. And hence,
if (I G) is answered in the affirmative for @ and 2', (I1I G) is also.

Let us consider the homeomorphism group of X and obtain another
kind of global versions of local theorems. Let {(U,, ¢,(x))},., and
{(V,, ¥u(x)},em be G-bases of G-structures 2 and 2’ on X and
K be a subset of C satisfying
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&) G-K-G=K.

We define K[2, 2'] to be the set of all homeomorphisms f: X—-X
such that

(.o f-97") €K

for all AeA, peM and all teo(U,n f~1(V,)). (tt) assures that this
definition is independent of the choice of A and u. If K and K’
satisfy (f1) we have

K[2, 2']-K'[2', 2"]<(K-K")[2, 2"],
K[2, 2']"'=K"'[2, 2].

If f is a homeomorphism of X and 2 is a G-structure on X then
there exists a unique G-structure f*2 (pull back of 2) such that

feG[f*2, 2].

Theorem 4.6. Let H be a subsemigroup of ,C and G,G’ be
subgroups of ,C such that H-H 'cH ' H,GcG’' and HnH '=G.
Suppose that:

(tt1) If two G-structures 2 and 2’ generates the same G'-
structure then there exists a third G-structure 2" H-dependent both
on 2 and 2' such that G[2, 2"]+#¢.

Then we have

G[2,2]<cH '[2,2]-H[2, 2]c(H'-H)[2, 2]

for any G-structure 2 on X.

Proof. If feG'[2, 2], 2 and f*2 induce the same G'-structure.
Hence there is a G-structure 2’ H-dependent on 2 and f*2 such
that G[2, 2']1#¢. If we take geG[2, 2],

f=(foidog)o(¢g'eid)e H '[2, 2] -H[2, 2]

by the following commutative diagram. This proves the theorem.
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(X, g)_i_dG“[Q,g'])(X, 9/) geG[Q,Q’]_(X’ 9)
\
I id iden[ 9,0

(X, D) L2291 (x" ri gyt

Corollary 4.7. D}[2, 2]1=(E}[2, 2]) '°E}[2, 2]
This follows from (4.2) and (4.6).

Corollary 4.8. If X is one dimensional Cr-manifold, we have
lEr[gs @]Ol(Er[g’ 9:])_.lc(lEr[@’ 9])_101E'[9’ 9]
=(1Er_l°1Er)[91 9]‘

GLE[2, 2]) ' ,E,[2, 2] is the subgroup of ,C[2D, 2] generated
by E,[2, 2].

This follows from (4.4), (4.6) and the fact that two homeomorphic
one dimensional C' manifolds are diffeomorphic. The latter half is
obvious.

5. Diffeomorphism classes of D**-equivalent C*-structures

Finally we make a remark on the diffeomorphism classes of two
D*-equivalent C®-structures. D¥%-equivalence, or a homeomorphism
which is a difffomorphism except at a discrete subset A, is a weaker
notion than Munkres’s diffeomorphism mod O-dimensional A4 in [5].
Here we interpret a part of Wilson’s theory in [13]. We restrict
ourselves to C® case for the sake of simplicity and so we omit the
right subscript co of DX, EX* etc..

By the induced map of the n-th local homology group, an element
of ,C is distinguished to be either orientation preserving or orientation
reversing. If G is a subgroup of ,C, its orientation preserving elements
form a subgroup G* of G of index one or two. In this section we
make the following agreements on terms. If X and Y are orientable,
we fix their orientations and all homeomorphisms of their open sets
are assumed to be orientation preserving. A C=-structure on X means
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an E**-structure whose admissible charts are orientation preserving.

Let 2 be a C>-structure on an n-dimensional manifold X with
basis {(U;, ¢;(x))},c4- Take an element feD** and its representative
f() which is a diffeomorphism on R"—{0}VD. If (V,y(x)) is an
admissible chart centered at pe X, then

{(U={p}, 010} 1ea ULV, foih(x))}

defines a new C«®-structure 2' on X. Let @' denotes the diffeomor-
phism class of 2’. By the theorem of Palais and Cerf, the diffeomor-
phism class 2’ of 2’ is determined by & and f. Thus we write
P'=1,9. Let X(X) be the set of all difffomorphism classes of Cx-
structures on X. It is easy to see the following:

Proposition 5.1. D** is a transformation group on X(X) by
the operation t, and it holds that t, ,=1,,, The D**-orbit of & is
the set of the classes of the C®-structures differing from @ only on
a single point (or a finite subset) of X.

Let ,4 be the set of diffcomorphism classes of those Cx®-structures
on topological n-sphere which, minus one point, is diffeomorphic to
R". Milnor [4] has shown this is an abelian group with respect
to connected sum(®. The class 2, of the standard n-sphere is the
identity of ,4. We define a map c: ,D**—>, A4 by ¢f=1,9,. It is easy
to see that this is a group homomorphism. Let ,K be the group
of the elements of ,D** with representative f(f) which is a diffeo-
morphism of R" except at 0 and has a compact support (f(t)=t
outside some compact subset of R”). For an element of ,K such a
support can be chosen arbitrary small.

Lemma 5.2. Let (U, ¢(x)) be a chart on a standard n-sphere (S*,
2,) centered at p. Then an element f of ,R*' is contained in K

(1) Moreover, if n#4, we can choose f(¢) such that f(R")=R" using the uniqueness
of the diffeomorphism class of C=-structures on open cell [11].

(2) Let I', be the group of C=-structures on the ordinary combinatorial n-sphere.
If n#4,,A=,I is finite and includes all the C=-structures on topological
n-sphere, If n=4, , 4>, =1 [l].
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if and only if the germ of the map ¢~ 'ofop(x) at p has a representa-
tive which is a diffeomorphism of (8", 2,) except at p.

The proof is omitted. The following theorem is essentially due to
Wilson.

Theorem 5.3. We have the diagrams
l-———»nK—Lan*"'—c» pA— 1 (n=1,2,3,...)

of group homomorphisms which are exact, except the part
K D*¥t—<, A where only the triviality of cei is proved.

Proof. The surjectivity of ¢ follows from the fact that the represen-
tatives of two elements of ,A can be chosen to differ from each other
only at one point. Triviality of coi is also straightforward.

Let n#4 and c¢f=1. Let (U, ¢(x)) be an admissible chart of the
standard n-sphere (S", 2,). Take a C® n-disc B in Un¢@ tof~log(U).
By the affirmative answer [9] and [10] (cf. [3]) to the differentiable
Schoenflies problem (n#4), B'=¢ 'ofop(B) is a C*® n-disc on (S", 2,).
Hence there is a diffeomorphism g(x) of (S", 2,) such that g(B)=B'.
Since ¢f=1, the diffeomorphism (g~ 'e@~!ofop|0B)(x) of OB can be
extended to a diffeomorphism h(x) of (S, 2,) (see [5] or [12]).
Pasting (h|S"-Int B)(x) and (g~ 'ep~lofoe|B) on dB we obtain a diffeo-
morphism of (S", 2,) except at p. Then its composition with g(x)
is a representative of the germ ¢ 'ofop defined on S". Thus fe K
by (5.2).

Corollary 54. If n#4, ,K includes the commutator subgroup of
D*+,

The 7,2 of a topological manifold X is just the connected sum

n

of 2 and the sphere c¢f. Thus we obtain the following:

Corollary 5.5. If c¢f=cg then t,=1,. Thus ,A is a transformation
group on X(X).

Corollary 5.6. Let n#4 and ,A=,'=0 (eg. n=1,2,3,5,6, 12).
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If two Cx®-structures 2 and 2’ differ from each other only on a
discrete subset (i.e. ,D**-equivalent), then 9 =9'.
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