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§0. Introduction and statement of the result.

Let G be a compact, connected, simple Lie group and T its
maximal torus. As is well known [7], G/T has no torsion and its
Poincaré poylnomial is

PG T _ 1l ]_t2nu
( / ,t)_i=1 —l_tz

where (2m,;—1, ...,2m,;—1) indicates the degrees of the primitive ele-
ments of H*(G; ). Thus the additive structure of H*(G/T; Z) is
known. Furthermore its ring structure is known for G=U(n), Sp(n),
G, [2], [7] and probably for G=SO(n). The purpose of this paper
is to determine the ring structure of H*(G/T;Z) for G=F, and
Es, where F, and E, are simply connected, compact exceptional
Lie groups of rank 4 and 6 respectively.

Throughout the paper H*(X) always denotes the integral co-
homology ring of X and

o(ty, tyy.is 1)

is the i-th elementary symmetric function on n variables t,,t,,..., t,.
Then our main results are stated as follows.

Theorem A.

H*(F4/T)=Z[tla t2’ t3’ 14, Y15 V35 W]/(pb P25 P3> Pas Pé> Pss Plz)
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where t,, t,, t3, t4, ¥, € H?, y; € HS, weH® and
pr=cy =2y, p2=c2—21, p3=c3—2y3,
Pa=cs—2c3y, +2y1 3w, Pe=—cayi+73,
ps=3cayt—yi+3wlw+cayy), Pra=w3
for =0ty ty, ta, 1)
Theorem B.

H*(E6/T)=Z[tl’ Lo ey V15 V3o ')’4]/(171, P25 P3> Pas Pss> Pes> Pss
Pos P12)

where Liseeos by 71 € H?, y; € HS, v+ €H® and
pr=cy—3yy, p2=c,— %}, p3=c3—2ys,
Pa=Cs+2y% =374, ps=cs—cayy +c3yi =297,
Pe=2c6—ca¥i —7i+73,

ps=—9ceyT +3csy? =98 +374(va—c371 +291),

pPo=—3w2t+1°, p12=w3+15w2t4 — 9w
for C,'=0'i(tx, 12,..., t6)’ t=‘yl_t1
and w=ps—c3p, + 2yt + (3 =2y +yit—y 2 + )1,

Let p be the projection of E¢/T to the irreducible symmetric
space EIII=E,/D,-T'. Then t and w in the above theorem generate
the image of the injective homomorphism p*: H¥(EIII)-»H*(E4/T),
and we have the following ring structure of H*(EIIT) which is ad-

ditively determined in [9].

Corollary C. H*(EIIT)=2Z[t, w]/(t° —3w?t, w3 +15w21* — 9we8),

The paper is organized as follows. In §1 we describe how we
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calculate H*(G/T) from the information of the invariants of the Weyl
group D(G). §2 is used to determine H*(SO(n)/T) which is needed
in §6. In §3 we discuss low dimensional cohomology of G/T. The
Weyl groups of F, and E, are explained in §4 and the rational
cohomology rings of F,/T, E;/T and EIII are determined in §5.
The final section §6 completes the proof of our main results.

§1. Sketch of the argument.

Let G be a compact connected Lie group and let U be a con-
nected subgroup of G which contains a maximal torus T of G.
The behavior of the rational cohomology rings of spaces related these
Lie groups are well known [2]. The rational cohomology ring of
G is an exterior algebra of odd dimensional generators:

H¥G; Q)=A(X3m,~15-s Xam-1)» Xym—1 € H¥M1,
By Borel’s transgression theorem
(1.1) H*(BG; Q)=Q[x3m,ss Xam, s Xom, € H?™,
in particular, (2m,,...,2m)=(4, 12, 16, 24) for G=F,
=(4, 10, 12, 16, 18, 24) for G=Eq.

The rational cohomology spectral sequence associated with the
fibering

t

G/T —<— BT —2 BG

collapses. Furthermore the image of p¥% coincides with the subalgebra
of H*(BT; Q) which consists of the elements invariant under the action
of the Weyl group @(G)=N(T)/T of G. Thus

(1.2) pé: H*(BG; Q)= H*(BT; Q)*@
and ¢¢: H*(BT; Q)/(Im p§) = H*(G|T; Q),

where (Im p}) indicates the ideal generated by Impt=ptH™*(BG; Q)
~H*(BT; Q)°®.
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Consider three fiberings
G/T— G/U— BU, 6G|U— BU - BG
and U/T-— 6G|T-L,G|U.

In the first one, the rational cohomologies of G/T and BU vanish
for the odd dimensions. Thus the spectral sequence collapses. Then
the same holds for the second and the third fiberings, and we have

(1.3) H*(G|U; Q)= H*(BU; Q)/ (Im p*)
=~ H*(BT; Q)*™ [(H*(BT; Q)*®)

and the homomorphism p*: H*(G|U; Q)—-»H*(G|T; Q) is injective and
equivalent to that induced by the inclusion of H*(BT; Q)*?) into
H*(BT; Q).

For the integral cohomology the most important result is the
following ([7]):

(1.4) H*(G|T) has no torsion and vanishing odd dimensional part.

In the following we shall consider the cases that the following
(1.5), (iii) holds.

(1.5) The following conditions are equivalent.

(i) The integral cohomology spectral sequence associated with
the fibering U/T—- G|T -2, G|U collapses.

(ii) i*: H¥(G|/T)->H*(U|T) is surjective.

(iii) H*(G/U) has no torsion and vanishing odd dimensional
part.

(1.5), (i) implies
(1.6) p*: H¥(G|U)—H*(G|T) is injective and Keri*=(p*H*(G[U)).

Describe the rings H*¥(U/T) and H*(G/U) by generators and
relations:
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H*(U|T)=Z[«]/(r,) and H*(G|/U)=Z[B;1/(s),

and denote by the same symbol f; its image in H*(G/T) under the
injection p* of (1.6). Since i* is surjective there are elements «; of
H*(G|T) such that

i*(o) =0} .
Then from (1.5) the following lemma follows easily.

Lemma 1.1. Let p,=po, B;)eZ{w;, B;] be a polynomial such
that it vanishes in H*(G|T; Q) and that (i*p,=)p,(a;, 0) =r, modulo
the ideal of Z[a;] generated by r; for j<k, then

H*(G|T)=2Z[u, ﬁj]/(ka 5)) .

§2. H*(SO(m)|T).
Put B,=SO(2n+1)/SO2n—1)xT!'. First we see

(2.1)  H*B,)=Z[t, e]/(t"—2e, ¢?) where te H> and ee H?".

The Stiefel manifold ¥V =SO(2n+1)/SO(2n—1) is a T!'-bundle
over B,. Then ¥V is equivalent to a fibre of a map B,-..BT!
classifying the T'-bundle. As is well known H*(BT')=Z[1], te H?,
and HY(V)=Z(q=0,4n—1), =Z,(q=2n) and HY(¥V) =0 (q#0, 2n,
4n—1). By dimensional reason, the spectral sequence associated with
the fibering ¥— B,—— BT collapses for total degree<4n—1. Thus
H(B,)=0 for odd i and we have the following exact sequences for
0<i<2n-—-1:

0 — H?/(BT') L H?(B,)— H* 2"(BT")@H*"(V) — 0.

In particular H?(B,)~Z for 0<i<n—1. Since B, is an orientable
manifold of dimension 4n—2, H?*(B,)~H,,_ ,_,(B,)=Z for n<i<
2n—1. This proves (2.1) for t=f*(1).

Take a maximal torus T" of SO@2n+1) as usual: T"<U(n)c
SO(2n+1) and consider the following diagram
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H*(BSO(2n+1))— H¥(BT")— H*(SO(2n+1)/T")

l / ’

H*(BU (n))

where the homomorphisms are natural ones and H¥BT"=Z2[t,,..., t,]
for canonical generators t,. c¢;=o0(ty,...,t,) is the image of the i-th
Chern class c¢;e H2/(BU(n)). Consider the above diagram in mod?2
coefficient, then it follows from ¢;=w,; (mod2) (cf. [4]) that the image
of ¢; in H*SOQ2n+1)/T") vanishes mod2, that is, it is divisible by
2. Then it follows from (1.4)

(2.2) Denoting by the same symbols t,, c; their images in H*SO
(2n+1)/T") we have the unique existence of elements e,;€ H*(SO(2n
+1)/T") such that 2e,;=c;.

Theorem 2.1. H*SOQ2n+1)|T")=Z[1; e,]1/(c;—2e5, e+ > (—1)7
0<j<2i
€j€4i—2;) Where i=1,2,...,n, t,e H? and e;;e H*; ey =0 for k>n.

Proof. We prove the theorem by induction on n. Clearly it holds
for n=1. Let n>1 and consider the argument in §1 for U=SO(2n—
)x T' and G =S0(Qn+1). By (2.1), G/U=B, satisfies (l.5),
(iii), and Lemma 1.1 can be applied. For 1<i<n—1, i*(t)=t, i*(c)
=¢; (i*(t,)=0), and it follows from (1.4) and (2.2) that i*(e;)=ey;.
We may choose t such that p*(f)=t,. Rational invariant forms for
G=8S0(n+1) are given by the Pontrjagin classes:

. 2i .
Li=(=1Dip;=% (= Dicjeyi-j=4(eqi+ 23 (—1)ieyjeqi-2)).
Jj=0 0<j<2i

Thus the relation I,;/4=0 holds in H*(SO(2n+1)/T"). Remark that
i*(c,)=i*(e;,)=0. Then it follows from Lemma 1.1

H*(So(zn'l" 1)/T")=Z[ti’ €2, tna é]/(cl'_zeli’ 12l/4$ t:_ze’ éz)

where 1<i<n—1 and @&=p*(e). Put cj=0(t,,...,t,-4), then ¢;=
ci+ci_yt, and O=c¢,= 3> (—1)¢c,_gi. It follows, by putting
0<i<n
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€an=€3_2ty,— - H(=Deyti t +(—1)"t'e,
that c¢,—2e,,=(—1)"*1(t"—28) mod (c;—2e,;, 1 <i<n—1)
and I,,/4=e3,=22 mod (I,;/4, 1<i<n—1,11—2e).

Then we have the assertion of the theorem. Q.E.D.

Corollary 2.2. H*(SO(2n)|T")=Z[t;t,, e3]/(c;—2ey;, Cpy €4;+
(—1)ieyjeq;—5;) where 1<i<n—1, and t,t,€ H?, ey € H* ey =
for k>n.

_ Proof. Since H*(SO(2n)/T") has vanishing odd part, the spectral
sequence associated with the fibering SO(2n)/T"—SO(2n+1)/T" 2>
S§2n collapses. Since ¢, is invariant under @(SO(2n)), ¢, and also
e;,=¢,/2 vanish in H*(SO(2n)/T"). Then e,, generates p*H*(S2"),
and the corollary follows from Theorem 2.1 and (1.6).

§3. Considerations in low dimension.

Throughout this §, G stands for F, and E;. The modp coho-
mology rings of F, and E, are known [3], [1], [5]. and they have
the same structure for dim <8:

H*(G; Z,)={1, x3, Sq%x3, Sq3x3, x35q%x3, x35¢93x3,
(594Sq?x3),... },
H¥*(G; Z3)={1, x5, P'x;3, BP X3, (Xo),... }
and H*(G; Z,)={1, x3, (xg),... } for p>5,
where x;e€H?® and for G=Eg; x4, Sq*Sq?x;eH®. It follows
(3.1) H3(G)=Z generated by x,, H*(G)~Z, generated by xc=Sq3x;

(mod2), H8(G)=Z, generated by xg=p2'x3(mod3) and H'(G)=0
for i=1,2,4,517.

Let t,,..., 1, be an additive base of H?(BT), then H¥(BT)=Z[t,,
.., ,]. We use the same symbols t,,...,t,e H>(G/T) for their images
under the homomorphism *: H¥(BT)— H*(G/T) induced by the
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natural inclusion ¢: G/T—BT. We have a fibering
G—G/T— BT.

Let ue H*(BT) be the transgression image of x;e H3(G). Obviously
*(u)=0. Then we have the following

Lemma 3.1 Let G=F, or E,. There exist elements y;e H(G|T)
and y,e H8(G|T) such that 2y3=c*(y), yo= Sq?u (mod2) and 3y,=
*(yg), ys=2'u (mod3) for some yoe HS(BT) and yge H8(BT). For
such elements the natural homomorphism

Z[t,..., 1, 3, 741/(u, y6—273, yg—374) —> H*(G|T)

is an isomorphism onto for dim <8.

Proof. First remark that us0 since it is true in the rational
coefficient. Consider the integral cohomology spectral sequence (EP?:9)
associated with the above fibering, then E%9=HP(BT)®QH4G) and
dy(1®x3)=u®l. Since E%9=0 for odd p, the possible cases of
non-trivial differential d,: EP»9 — EPtra~r+1 for g<8 are d, for
q=3,6 and dg for q=8. d, for g=3 is equivalent to the multiplica-
tion of u in H*(BT), hence it is injecitve. It follows d,=0 for q=6,
E?3=0 for r>4, hence de=0 for q=8. Thus, in total degree p+q<8,
the non-trivial E, terms are EX°=~ H*BT)/(u), EL®~ H%(G)=Z,
(p=0,2) and E%83x~Z,.

Let y; and 7y, be representatives of the permanent cycles 1®xq
and 1®xg respectively. Since Im*=E¥° E%¢=H%G/T)/Im:* and
E%8+ E2.9~H8(G/T)/Im*, the existence of ys and yg satisfying
the required relation and the last assertion of the lemma follow.

Next consider the spectral sequence in Z,-coefficient. By the
naturality of Sq2, d¢(1®Sq?x3;)=Sq?u®1 which should be non-zero
since H3(G/T)=0. Thus Sq?u generates the kernel of H®(BT; Z,)/
W)xES°>HSG|T; Z,). From the last assertion of the lemma the
kernel is also generated by y¢(mod2). Thus ys=Sq%u (mod3). Simi-
larly, yg=2'u (mod3). By (1.4), we see that the choice of the
elements has no influence to the last assertion, Q.E.D.
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§4. The Weyl group of F, and E,.

(A) The case F,.
Let T+ be the maximal torus of SO(9) defined as in §2. Then
we have

HXBT*)=Z[t,, t,, t3, 4],

where t,e H2. Let pu:Spin(9)—SO(9) be the universal covering.
Then T=p'(T*) is a maximal torus of Spin(9) and

4.1 H*(BT)=Z[1,, t5, t3, ty, y1/(c; —2y,)
where t, y,€ H? and c,=a,(t,, t,, t3, ty)=t,+t,+13+1,.

According to [6], we choose Spin (9) as a subgroup of F, such
that F,/Spin(9) may be identified with the Cayley plane II. The
torus T is maximal in F,, and the Weyl group @(F,) acts on H*(BT;
Q)=01[t,, t,, t3, t,] as follows (see [6, §19]). Let R be the reflection
to the plane ¢, +1,+t;+1,=0:

4.2) R(t)=t;—c,)2  (i=1,..,4).

Then @(F,) is generated by R and the Weyl group @ (Spin(9))
of Spin(9), where @(Spin(9)) is the group of permutations of
t’s together with the changements of signs of ¢,

(B) The case E,.
Let T be a maximal torus of E,. We begin with choosing generators
of H*(E4/T). According to Bourbaki [8], the Schldfli diagram of
E; is

oy A3 oy As Ag
O @] O o] @]
Oa

where o;'s are the simple roots of E,. The corresponding fundamental
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weights ©; are given in page 261 of [8]. These elements form a
basis of H2(E¢/T) as explained in [6,§14]. Let R; denote the
reflection to the hyperplane o;=0. Then

4.3) R,-(wi)=w,~—§:<a,., a;>w; and R(w;)=w; for i#j.
Now we put
te =Wg,
ts=R¢(tg) =05 — s,
t,=Rs(ts)=w4—ws,
t3=Ry(t)=w,+w;3—w,,
t,=Ri(t;)=w,+w,—w;,
ti=R(t))=-w,+w,

and x=m2=%c, for c, =t +t; +tq.

Then x and t, 1<i<6, span H2(E4/T) since w; are integral
linear combinations of x and t's. HZ(BT) is identified with H2(E4/T)
since E¢ is simply connected. Thus

(4.4) H*(BT)=Z[x,t,...,ts]/(3x—c,).

Denote by U the centralizer of the one dimensional torus T!
which is defined by

a()=0 (2<i<6,teT).

Then U is a closed connected subgroup of maximal rank and of
local type DsxT' with D;nT'=Z,. (See [10] for details.) The
quotient manifold

EINI=E,|U

is the compact irreducible hermitian symmetric space of dimension 32.
The Weyl groups @ (Eg) and @(U) are generated by R,, R,,..., Rg
and R,,..., Ry respectively. From (4.3) we have the following table
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of the action of R;s for the generators x and .
4.5)
R, R, R, R, R, R¢
t t, X—t—1;
1 t X—t;—ty 1
13 X—t;—t, t 1,
ls f3 ts
ts ts le
te ts
x — X+t +ts+te
where the blanks indicate the trivial action.
Putting
46)  t=x—t;=w, and fi=t,,—xt for i=1,..5,
we have
H*(BT; Q)=0Qlt,,..., ts1=QI[t, t},..., 15]
and the following table:
4.7) R, R, R, R, R,
t
t) —t t
th -t t) ty
ty ty t,
A t )
ts ty
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We shall consider the relation between the elements t; € H2(SO(10)
/T?) in §3 and the elements just defined. For the subgroup T'!< T
of U=Ds-T!, put To=T/T'. Since D;nT'=Z,,U/T'=S0(10)/Z,
and it contains T, as a maximal torus. The inverse image T3 of
T, under the double covering u:SO(10)-SO(10)/Z, is a maximal
torus of SO(10). Since every maximal tori are conjugate to each
other, changing SO(10) by an inner automorphism, we may regard
that the torus T3 is the canonical one. We have the following com-
mutative diagram of natural maps

U/T=(SO(10)/Z,)| Ty~ SO(10)/ T*

(4.8) 1:0 ‘[io li

BT'— BT — BT, «*—- BT« BZ,.

The Weyl groups @(U), ®(SO(10)/Z,) and @ (SO(10)) are
isomorphic and the action is compatible with = and pu, and also com-
patible with A and v for the trivial action on BT' and BZ,. The
action of @(SO(10)) on H*BT?®)=Z[t,,...,ts] is as usual, that
is, same as (4.7) replacing t; by t,. Since the sequences of both sides
of BT, in (4.8) are fiberings, we have exact sequences

0 — H2(BT,) -~ H*(BT) -5 H*(BT') — 0
and 0—» H*(BT,) > H*(BT*) > Z, — 0.

Since A* is compatible with the action of @ (U), A*(t)=A*R,,,
(Lo 1) =A*(t; ) for i=2,3,4,5 I¥t))=2%2t,+2t3—t4—ts—ts+(Ryx—
X)) =A*(—=2R,(t,))=—2A*%(t;,) and A¥(x)=A*(R,t,+1t,+13)=—3A%t,). It
follows that H2?(BT')=~Z is generated by A*(t;) and the kernel of
A* is generated by

£+l-t;=ti+2_ti+l for i=1,2, 3,4 and '2+tl|=t‘+t2+t3_x.

So, as a subgroup of H2(BT) we have

(4.9) Hz(BT0)={_;51a,.z;|a,.ez, ;=0 (mod 2)} .



The integral cohomology ring of F,/T and E¢|T 269

Up to constant multiple, | is characterized by the property:
RiR,(t))=—1t; and R,(t))=Rs(t})=R¢(t})=t,. Same is true for ¢,
with respect to @(SO(10)). Since u* is compatible with the action,
u*(2ty)=c-t; for some ceZ and p*Q2t)=c.t; for i=2,3,4,5 by
applying R;,,. So, u*(Zait§)=%(Za‘ti). Since u* is an injection of
the index 2, it follows ¢=+2. Changing ¢t; to —t; if c=—2, we have

(4.10) pX(Xa;t) =2 ait (Xa;=0 (mod?2)).
(4.8) induces the following commutative diagram:

H*(BT) —= H*(BT,) —*, H*(BT®)

N

H*(U|T)=H*((SO(10)/Z,)| T,) = H*(SO(10) | T*).

For the right vertical map i* we use the convention i*(t,)=t; and
i*(c;)=c¢;=0,(t;,..., ts). Since t=x—t,eH?(BT) is @(U)-invariant,
3()=0 and ¥(x)=c4(t,) by (1.2), (1.4). Compute in rational coeffici-
ent: ¢ty 1) =8ty —1/2) =it} = *p*(1) = i*(t) =1, and §(t,) =512+
ot 16)2=3t/2) =(t;+ - +1t5)/2=e,. Thus aft,,...,te)=0;(ts, ..., ts)+
o;_(ty, ., tg)t; is mapped by i* to c¢;+c;_,e,. Consequently we
have the following

(4.11) The natural homomorphism &: H¥(BT)=2[t,,..., ts, x]/(c; —3x)
->H*(U|/T)~H*(SO(10)/T?) satisfies

() =0, F(x)=c8(t)=e,, §tir) =t for i=1,2,3,4,5
and (3(0’i(t1, ey t6))=Ci+ci_le2 fOl' i=1, 2,..., 6 (C6=O),

where the elements in the right hand sides of the equalities are those
in Corollary 2.2.

§5. Rational cohomology ring of F,/T, E¢/T and EIII.

(A) H*(F,/T; Q).
Choose generators t;e H¥BT; Q)=Q[t,,..., t4] as in §4, (4) and
put
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pi=0,t},13,13,13) e H*(BT; Q)
and s;=ti +th+1i+1i e H*(BT; Q).
S,’S are written as polynomials of p;’s by use of Newton's formula:
(5.1 s2n=15i2<"(_ D' pissn-2it (=" 'np,  (p,=0 for n>4).

Consider a set

(£t 1<i<j<4)

of elements of H2(BT; ), which is obviously invariant under the
action of @(Spin(9)) and also under that of R by (4.2). Thus it is
invariant under @(F,) and so is

L= ((t+t)"+(ti—t)"+ (= ti+ )"+ (= t,—t)") .
i<j
Since

ZI [n!= Z (etitti4etiTtif e tittiq g timty)

%[(lzen)z_i_(lze—r,)z_ ;(62"4-8_2”)] + ;en.;e—n_ét

we have easily the following

(5.2) I,e H2"(BT; Q)°F9, [,=24, I,=0  for odd n
and a=(16—22m)5, +2 ;q(i’.’)sﬁsz”_ﬁ for n>0.

Lemma 5.1. H*(BT; Q)®F=Q[l,, I, Iy, I,]
and H*(F,|T:Q)=0Qlt,, t;, t3, t,1/(py, p3, 12p4+ p3, p3).

Proof. Applying (5.1) to (5.2) we have the following relations.
At first

s;=p; and I,=(16—4)s,=12p,.

Next considering in modulo I,, we have
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$2=0, s54=-2p,, 5,=3p;
and I¢=(16—64)s,= — 144p, mod (I,).
Similarly
s¢=0, sg=2p3—4p,
and 185—24os8+2(§>s3580(12p4+p§) mod (I, I).
Finally we have

7 5
Sg E?.l’%’ 5125—5173

and  I,,= —4080s,, +4< 12 )s8s4 =960p3 mod (I, Ig, I) .

These show that I,, Is, I and I,, are indecomposable. Since
H*(BT; Q)®F+ is isomorphic to H*(BF,; Q)=Q[x4, X2, X16 X241,
x;€ H, we conclude that H*(BT;Q)**+=QI[I,, I, Ig, I,,] and
H*(F,/T; Q) is isomorphic to the quotient of Q[t,,...,1,] by the
ideal (I, Ig, Is, I12) =(p1, P3, 12ps+P3, P3). Q.E.D.

(B) H*(E,/T;Q) and H*(EIIT; Q).
(4.7) shows that the action of @(U) on t},..,t5; is same as
the usual action of @(SO(10)). Thus

(5.3) H*BT; Q)*™ =QL1, q,, q;, d%, 43, q4]
where

di=a(ty,...,t5)eH? and q;=0,t),..., 15) € H4,
Since 3 (—1)ig;=TT(1—¢}) =TT —t))(1+2)) =X (- 1)'d; X d},
(5.4) q9:= j+;=i (=D*idyd;,

Next put

x;=2t;—x for i=1,2,.,6,
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then it follows from the table (4.5) that the set
S={x;+x;, x—x;, —x—x;5i<j}

is invariant under the action of @(E;). Thus we have invariant
forms

I,= 3, " H2'(BT; Q)%=
Consider the following elements (J;€ H2/(BT; Q)):
Jy=c,—4x2,
Js=cs—c4x+c3x2—2x5,
Jo=8ce+c3—4cyx?—4x8,
Jg=—2Tcex2+c2—3c e3x+19c,x* — 15¢3x5 +31x8,

J9=_3W2t+t9,

and Ji2=w3+15w2t4 —9we8
Whel‘e ci=6i(tl’ tz,..., t6)’
t=x_11
R SO A7
and w—6q2+l6t .

Then we have the following
Lemma 5.2. (i) H*(BT; Q)O(E‘)=Q[12, Is, Ig, Ig, I, 1;,]

and H*(Eg|T; Q)=0Qlty,.... 16]/(J2, J5, J6 J5> o, J12) -

(ii) Identifying H*(EIII; Q) with the image of the injection
p*: H¥(EIII; Q)—» H*(E¢|T; Q) we have

H*(EIT; Q) =Qlt, w]/(Js, J12) .
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Proof. Put
ci=0a(ty...,1s) and R=Q[t,, c,,..., c5].

R is a subalgebra of H*(BT; Q) -containing c; d}, q;, x=c,/3,
t=x—t,;, and H*(BT; Q)%%s), H*(BT; Q)®™. Denote by

a;= R (resp. b;c H*(BT; Q)®WV)

the ideal of R (resp. of H*(BT; Q)®)) generated by I;’s for j<i,
je{2,5,6,8,9, 12}.

We assume the following sublemmas (5.5), (5.6), (5.7) which will
be proved in the last half of this section.

(5.5) I,=-243J,, Is=-273-5J mod a5,
1,=2732], modag and Ig=2125]4 mod ag .
In H*(BT; Q)*"' =QL, 4., 42, d5, 93, 44] We have
(5.6) 1,=6(4q,+31t?), Is=—273-5ds + decomposable,
I1,=2732q,+decomposable, Ig=—2193-5q,+ decomposable.
(5.7 1,=211337J, modby and I,,=-215345J,, modb,,.

By (5.6) and (5.7) we see that, for i=2,5,6,8,9,12, I; is not
a polynomial of I;s for j<i. Since H*(BT;Q)®¥s =~ H*(BE; Q)=
Qx4 X105 X125 X165 X18> X241, X;€H!, it follows that H*(BT; Q)%®¥e)
=Q[I; Is, Ig, Is, 1o, 1,,] and  H*(E4/T; Q) =H*(BT; Q)| (H*(BT;
Q)®E))=H*BT; Q)/(I,, Is,..., 1,,). By (5.5) and (5.7), (I3, Is,..., I,5)
=(J3, Jsy..., J12). Thus (i) of Lemma 5.2 is proved.

Next, by (1.3), H*(EIII; Q) is isomorphic to H*(BT;Q)%°Y/
(H*(BT; Q)®*9) =QI[t, 41, 9, d5, 43, 941/by3 and p* is an injection
equivalent to the natural correspondence. By (5.6), H*(BT; Q)®® =
Qlt, I,, w, Is, I, Ig]. Thus by (5.7), H*(EIII; Q)=0QL[t, w]/(Je, J12).

Q.E.D.
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Proof of (5.5). We use the following notations:
S, =x1+-+xt and d;=0(x,, X3,..., Xg) -
s, is written as a polynomial on d;s by use of Newton’s formula

(5.8) se= Y (=1 tsd,_;+(—=1)""'nd, (d,=0 for n>6).

1<i<n

Note that
(5.8) d,=s,=0
since d, =Xx;=2Xt;—6x =2(c, —3x)=0.

From 3 1,/nl=3 e**5+3 e (eX+e7¥) =%( > e"‘)z—é— > e?x

i<j

+2¥ e "> x27/(2))!, it follows

(5.9) 1"=%iz (:’) ,.sj—2""s,,+2i+z_”(—l)‘(?>s,-x”.

£j=n 2=
First we have the following relations:

(5.10) I,=—12(dy—x2),
Is=—60(ds+d;x?) mod as,
To=18(8d¢—8d,x?+d3) mod ag,
I3=80(—36d¢x2+d2+22d,x*+x8) mod ag
Iy=—-2"1337d3 mod (x, ag)

and I,,=—273355d% mod (x, ag).

These are computed step by step as have seen in the proof of
Lemma 5.1. We exhibit the data:

Step1: s,=d,=0, s;,=—-2d, and I,=65,+12x2=—12(d,—x?2).

Step 2 (mod as): dy=x2, s,=—2x2, s3=3d;, s,=2x*—4d,, ss=
5d5—5d3x2 and 15=—12S5+1033(82—2x2)5_60(d5+d3x2).
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Step 3 (mod ag): ds=—d;x?, ss=—10d;x?, sq=—6d¢+6d,x?+3d3
—2x% and Ig=—24sq + 15s5,(s,+2x2) + 1053 + 305,x* + 12x¢= 18(8d,
—8d,x2 +d?). ~
1 15 B
§d§, Se E—4—d§ —2x5, s3=136(dg —
dx?)x2+4d3+2x% and Ig=—120sg+28s4(s;, +2x2) + 565555+ 355, (54 +
4x%) 4 565,x6 + 12x® =80( — 36d X2 +d2 +22d . x* + x¥).

Step 4 (mod ag): dg =d x? —

Step 5 (mod (x, ap)): x=d;=d;=d3=0 and dy=—gd3. Then I,=
a-d} and I,,=d’'-d4 for some a, a’eQ. So, we may consider modulo
15

(x, d4y ag). Then s5,=0 for n#0 (mod3), sy=3d,, s6ETd§, So

%d%, s,zz%d‘g, and o= —252s5+84s¢s3= —271337d3, I,,= —2040s,,
+220s45; +462s2 = —2733554%.

Next, we rewrite (5.10) in terms of ¢s. Since Yd,=T1(1+x,)
=TTl —x+2t;)=3 (1 —x)°"2¢c;, we have
6—i

(5.11) d,,=§o(—l)""2‘<’1_i>cix"“, ¢ =3x.

For n=2, d,=15x2—10c,x+4c,=4c,—15x2 and [,=—12(d,—x?)
= —48(c,—4x2)=—24%3J,.

Modulo as=(I,)=(J,) we have d;=8c;—24x3, d,=16c,—24c;3x
+51x%, ds=32c5—32c4x +24c3x2—40x5 and Is=—60(ds+dyx2)=—1920
(cs—cax+c3x2—2x5)=—273-5J,.

Similarly, modulo ay=(J,, J5), we have dg=64cc—16c,x2+24c,x3
—53x6 and I,=18(8ds—8d,x2+d2)=2732/,.

Finally we have directly Iy =2'25J; modag, completing the com-
putation of (5.5).

By (5.11), d,=2"c, mod(x). Then we have
(5.12) Iy=-28337¢3 and 1,,=-—29355¢% mod (x, ay).

Proof of (5.6). Since Ige H*(BT; Q)®%®s)c H*(BT; Q)*Y =01,
4y, 42, d's, 43, 44), 1g=aq,+decomposable for some aeQ. Take the
following values of variables: t=0, t;=(' for i=1,2,3,4 and t5=0
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where (=exp(2m,/—1/8). Obviously ¢,=qg,=d5=¢;=0 and gq,=I
for such case. It is computed directly that x=xl=%(1+C+C2+C3),
o1 =20i—x, xg=—x and S={20}, —20i(1 <i<d); (1 + L+ L2 +3), LI
+L-02403%) (1<j<8); 0,0,0}. Here |+{+{2+{3=2 1+ J12¢2%!
for ¢=exp(2n/—1/16). Then we have a= ¥ y®=28(4+4—(1+/1/2)*

y€eS
—(1—/1]2)%)=—2193-5, proving the last formula of (5.6).

For Is, take t=0, t;={ for {=exp(2m,/ —1/5), then S={2(,
=20 =200 (1<i<s), 2004200 (1<i<j<5),0,0}, and Is becomes
25(5—5—=54+5(14+¢)5+5(1 +¢?)3)=—273-5 which is the coefficient of d¥.

For I,, take t=t,=t5,=0 and ;=0 (i=1,2,3) for w=exp
(2n\/——1/3), then S={2u, 20, 20°, — 2w, =2, (i=1, 2, 3), 20'+2w/
(1€i<j<3),0,..,0} and the coefficient of g5 is 263(3+2+1)=2732
since w®=(1+w)é=1.

I, is determined similarly or by a direct computation from the
following (5.13) and q,=d}’—2d5.

. 3 6 t t\6-i
Since x=t+1t, and (l+x—7t>2d;,=l_[(l—5+t,~>=2(l——2—> ¢,
1

we have

’ _3 ’ _ _l_ n-i 6—i n—i
(5.13) d,,+<x ‘f')d""_ogs..( 2) <n_i>c,-t :

Modulo as=(c,—4x2), we have

’ 3 a— 3
d,=2x—7t, d2=2x2—3xt+?t2,
dy=cy—2x?—2x— S x2— L3

3= 2T

and dy=cq—cax+2x4— x4+ 2 x2u2— S xpd 4 2 g4,
4TEe T3 2 4 16
Since q,=d% —2d4d’,+2d}, we have directly
=1 A
(5.14) w —?q2+ T3 t
1 1 8 4

ETc4+Tc3t+t4—(c3+t3)x+t2x2—2tx3+Tx mod as.
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Proof of (5.7). Put wyg=w—t* Since I, and [I,, belong to

H*(BT’ Q)¢‘l/)=0[t» 4y, 42, dIS* q3, Q4]=Q[t’ 12’ Wo, 15’ 16’ Is], we may
put '

o= —28337(a,wdt+a,wyt® +ayt®) mod by
and I,,=—29355(bywd + b,wdt*+b,wot®+byt'?) mod by
for some a; b;e Q. We consider these relations modulo

(x, ag)=(x, J3, Js, Jg, J3) =(x, ¢35, Cs, 8¢ce+¢3, c3)=R.

By (5.14) and (5.12) we have

H’OE;—C4+;—C3I, c3=a,wit+a,wot’+agt®
and ci=bywd+b,witt+b wotd+bgt'? mod (x, ay).

Now we assume the following (5.15) which will be proved in later.

1

(3.15) (i) t65§c§—c4t2—c3t3 mod (x, ag),

(ii) R/(x, ag) has a basis {cit!, c,cit/; i>0, 5>j=0}.

Then w3t E'—c4c3t2 + |—c§t3,
3 4 )
wots —%c% —T|c4c3t2 ——=c3 +—3—c4t5,
= —%c% +c4e3t? +—2~c§t3—c4t5,

and as the solution of c¢3=a,wit+a,wyt’+ayt® we have
a,=24, a, =48 and ay,=16.
Thus Io=—211337(3w3t + 6wyt +21%) mod by

=211337(=3w21+419)=211337J,.
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Similarly w%z—‘lt—c4c§t2+—;—c§t3,
wit=_L a1, ez L 3t3+Lc cyt3
1] 32 3 4 4¢3 4 3 3 438
Wol E—]—l6-c§+5—c4c§12+l—96—c§t3—%c4c3t5,
9 5 5
tlz—zﬁc‘g—z—c‘tc%tz—Tc§t3+2c4c3t5,

and we have bs=bo="o", b,=192, b, =128, and

I,=—215245(w3 +9wdt* + 6wyt +112) mod by
= —215345(w3 +6w21*—9wiB 4+ 31'2)
= —215345(w3 + 15w2t* —9wr8)=—215345J,, modb,,.
Finally we prove (5.15). Obviously «¢; satisfies ¢;=cj+c}j_,t,

(i=1,2,..,6; ¢, =0). Conversely, c;=§0cj(—t,)"‘f. Thus R=Q[t,,c,

6
.., 5] is generated by t, and c;,..,cs in which the relation } ¢
i=0

(—t))® =0 holds. So, there is a natural ring homomorphism of
Q[ty, cphesc6]/(Ze(—1)%7%) onto R. By comparing the Poincaré
polynomials, we see that this is an isomorphism, and we may identify

R=Q[t1, Clseens CG]/(ZCi(—tl)G_i) .

Since t=x—t; and c¢;=3x, R/(x)=QI[t, ca,..., cc]/(ce+Cst+ -+
cyt*+1%). Then

R/(x, 09)=Q[t, C3, Cy, C6] /(8CG+C§, Ci, C6+C4t2+03t3+t6)
1
=QIt, c3, c41/(ci, —'8_C§+C4t2+c3t3+t6) ,

and (5.15) follows. Consequently, (5.15), (5.7) and Lemma 5.2 are
established.



The integral cohomology ring of F,/T and E¢|T 279

§6. Integral cohomology rings.

(A) H*(F,|T).
For the subgroups TcSpin(9) of F, in §4, (A), we have a
fibering

6.1 Spin (9)/T —is F,|T 2, Il =F,/Spin (9).

The universal covering y induces a homeomorphism of Spin(9)/T
onto SO(9)/T*. Apply Theorem 2.1 to H*(Spin(9)/T)=H*(SO(9)|T*),
then it has the generators t;, e;; (i=1, 2, 3, 4) with the relations 2e,;=c;
(i=1,2,3,4), e,=e3, eg=2eqe,—el, 2ege,=e2 and e3=0. Thus we
have

(6.2)  H*(Spin (9)|T)=Z[1,, t5, 13, ts, €3, 61/(ry, 73, 73, Ty, 16, Tg)

where r =c,—2e,, ry=c,—2e3, ry=cy3—2e,
ra=c,—2cse,+2e%, re=—cue’+ed

and rg=3c,e%—ed .

Here we see that these t’s are identified with those in §4, (4)
and §5, (A) by the isomorphisms (*: H¥(BT)=~ H*(F,/T) and
i*: H¥(F,/T)~H?(Spin(9)/T). As is well known

(6.3) H*(IT)=Z[w]|(w?), weHSI).

Thus (1.5), (iii) is satisfied and we can apply (1.6) and Lemma
1.1. In particular

(6.4) i*: Hi(F,|/T)->H/(Spin(9)|T) is bijective for j<8 and Keri*
is generated by p*w for j=S8.

In H¥(BT;Z,) (p=2, 3) the following holds.
(6.5) Sq2c,=c3+ ¢, (mod 2),

Pley=cy—cyci+cd+cycd (mod 3).
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For, Sq%c,= Y Sq2(1;1;))= X (ti+1t)tit;=cyc,—3cy and Ple, =3 (8
i<j i<

i<j
+1Htt,=c (et —2¢,) — 30, +dey.

Now apply Lemma 3.1 for G=F, where H¥BT)=2Z[t,,..., t4, 1]/
(¢, —2y)=Z[t, t;, t3, y,] by (4.1). First we see, up to sign,

u=py=c,—2y%

by (6.4) and (6.2). By (6.5, Sq*u=Sq2c,=c3+2c,y,=c; (mod2)
and Plu=Plc,—2P'y2=c,—2c3y,+ci+4c,93 —4y4 (mod 3).
It follows from Lemma 3.1 the existence of elements

y;€ Ho(F,/T) and y,e H¥F,|T)
satisfying 2yy=c*c3=c,
and 3ys=c*(ca—2e3y i+ —41)
=c,—2c37,+8y%,
and that, by putting w=y,—2y%,

(6.6) the nautral homomorphism Z[t,,.... 14 ¥, Y3, WPy, P2y P35 P4)
—— H*(F,|T) is an isomorphism for dim<8, where p,....,p, are
given in Theorem A.

Since i*(t)=t;, i*(c;)=c;, and by (6.2), 2i*(y,)=c,=2e,, 2i*(y3)=
c3=2e, and 3i*(w)=c,—4dese,+2e5=0 in H*Spin(9)/T). It follows
from (1.4)

6.7) i*(y,)=e,, i*(y;)=ees and i*(w)=0.
This defines a homomorphism
¥ 2Lt Uyt by, Yy, Ve W] —— Z[1, 1y, 1y, Ly, €3, €6] .
Then we have obviously

(6.8) i*(p)=r;  for i=1,2,3,4,6,8.
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It follows from (6.6) and (6.2) that the kernel of i*: H8(F,/T)
— H®(Spin (7)/T) is generated by w. Thus (6.4) implies

(6.9) We may choose the generator w of (6.3) such that p*(w)=w.

Proof of Theorem A.

Apply Lemma I.1 to the fibering (6.1), then by (6.3), (6.8) and
pi2=w3 it is sufficient to prove that p,,..., ps, p¢ and pg are relations
in H*(F,/T;Q). (6.6) shows that p,, p,, p3, p, are relations. By

Lemma 5.1, H*(F,/T; Q)=Qlt,,.. , t,/(py» P3, 12ps+p3, p3). As (5.4)

the relation p;= Y (—1)i*ic;c, holds. Then we have
Jtk=i

I I
pe=v5—cavi =T(C:24'204Cz)=“71’3=0
and Ps=pPs+a4peri+payt=3w2+3w(cyy, =y +(c37,—r})?

=71‘—(2c3y, —2p4 4 3w)2 +—3—w2=4—'8_(12p4+p§)=0

since 3w=c,—2c3y,+2y}=c4—c;5c, +--]—c§ =

5 p2 and ci=p,.

Q.E.D.

(B) H*(E,/T) and H*(EIII).

Let T<U be the subgroups of E, defined in §4, (B), and con-
sider the fibering

(6.10) U/T /5 E¢,|T -2 EIIT=E{|U.
The following (6.11) is essentially proved in [9].

(6.11) H*(EIII) is multiplicatively generated by two elements
teH? and weHS.

For, apply the Gysin exact sequence for T '-bundle E¢/D;—
EIII, where H*(Eg/Ds)=Z{[xg, x,,1/(x3, x?;) and H{EIII)=0 for
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odd i by Corollaries 4 and 5 of [9]. Then we have an exact sequence
H*2(EIIT) > H¥(EIIl) — Z[x3]/(x3) — 0

which implies (6.11).
As in §4, (B) we identify U/T with SO(10)/T>. Then Corollary
2.2 implies

(6.12) H*(U|T)=2Z[t,,..., ts, e,, €gl/(ry, ¥, I3, ¥4, Cs, P, F'g) Where F;'s
are the same relations as (6.2) for c;=0{t,,..., ts).

Apply (4.11) to the commutativity of the diagram
H*(BT):Z[tls“U t65 x]/(cl _3x)

* »
/ <

H*E,|T) * H*(U|T)

and use the notations:
*xX)=y,, H)=t, Xt)=t and X)=¢
for ¢;=04t,,...,ts). Then we have
(6.13) i*()=0, i*(y,)=i*(t,)=e,, i*(cs)=cCse; ,
i*(t;y ) =t; and i*(c)=c;+c;_e; for i=1,...,5.

Now consider the element u in Lemma 3.1 which generates the
kernel of (*: H*(BT)— H*(E./T). By Theorem 5.2 and (1.2), in
the rational coefficient the kernel of (* is generated by J,=c,—4x2.
J, is an integral class and not divisible in H*BT). Thus u=c,—4y}
up to sign.

By (6.5), Sq*u=c; (mod2) ancl{v._‘,.“.g"uzc4+c§—14y‘,‘ (mod 3).
Then Lemma 3.1 implies the existence of elements y; and y, such that

2y3=c*(c3)=c3

and Ipa=c*(cyt+ci—14y) =c,+2y¢
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and that

(6.14) the natural homomorphism Z[t,,..., te, V1, V3, Y41/(P1> P2, P3» P4) =
H*(E4|T) is bijective for dim <8, where p,, p,, p3, ps are the rela-
tions in Theorem B.

By (6.13) 2i*(y3)=i*(c3)=c3+ce;=2es+2e3 and 3i*(y,)=i*(c,
+299) =c4+cye, +2e4 =6ege,. Then it follows from (1.4)

(6.15) i*(y;)=ee+e3 and i*(y,)=2ege,.

Since t=y,—t, and i*(y,—2y3y;+2y%) =2ece; —2(es+e3)e, +2e4 =0,
the following (6.15)' is obtained easily.

(6.15) The kernel of the homomorphism i*: Z[t,,..., ts, ¥y, 73, Ya]—
Z[t,,..., ts, €,, ] defined by (6.13) and (6.15) is the ideal generated
by t and y,—2ysy,+2yt.

It is verified directly
(6.16) i*(pp=r; mod(ry;j<i) for i=1,2,3,4,5,6,8 (rs=cs).

For example, i*(c)=cse;=0 mod(cs), i*(3csy?—y%)=3csel+3cqe4
—ef=rg mod(cs) and i*(ya—c3y +29)=i*(va— 2757, +2y1) =0 mod(r,,
ry). Thus i*(pg)=rg mod(r,, rj, cs).

The kernel of the composite of i* of (6.15) and the natural map
onto H*(U/T) is the ideal (p,..., Ps, P> I, Ya—C3¥1 +27%) by (6.15),
(6.12) and (6.16). By (6.14), for dim<8, the ideal is the inverse image
of the kernel of i* in the following (6.17). Thus we have

(6.17) The kernel of i*: H¥(E4|T)— H*(U|T) is the ideal
(t, y4—c3y, +2y1) for dim<8.

By (5.14), the element w=-rq,+-1*cHY(E,/T; Q) is of the
form
(6.18) w=ya— 3y + 20+ (3 =2y +rd—y 2+ )

which is contained in H*(Eg/T). Then Keri*=(t, w) for dim<8
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by (6.17). (6.11) means that (6.10) satisfies (1.5), (iii). Then by (1.6)
and (6.11), Keri*=(p*(t), p*(w)). Thus, up to sign,

p*(t)=t and p*(w)y=w+ft for some feHS(E /T).
(1.3) and (5.3) show that p*(w)=a'q,+b't*=a-w+b-t* for some a’, b’,
a,beQ. Thus

é—(a—l)qz=(f—(b+%(a—l))t3)t in H¥(Eq|T; Q).

By Lemma 5.2, (5.5) and (5.6), H*(E,/T; Q) is isomorphic to Q[¢,,

s te]l/(J)=QIt, ..., 151/(q)=Q 1] ® (QL1},.. , 151/(q;)) for dim<8.
It follows that if gt=h for geH*(E4/T; Q) and heQ[ty,..., t51/(q,),
*<6, then g=0. From the above equality we have

a=1 and b-t3=feHS(E,/T), beQ.

Since i*(f)=b-i*(t)>=0 in the rational coefficient, fe Keri* by (1.4).
So, bt3=f=f't for some f'e H*(E,/T), and it follows b-t2=f". Simi-
larly we have b't=f"eH*(E,/T) and b-1€eH°(E¢/T). Thus b has
to be an integer, and we have obtained

(6.19) The generators t and w of (6.11) can be chosen such that

p¥(t)=t and p*(w)=w.

Proof of Corollary C.
By (1.4) and (1.6) the composite
H*EHNI) 2, HYE,|T) — H*(E;|T; Q)

is injective. Then it follows from Lemma 5.2 (i) and (6.19) that the
relations Jo=J,,=0 hold in H*(EIIl). Thus we have a homomorphism

0: Z[t, wl/(Js, J,,) — H*(EII)

which is surjective by (6.11). Put v=—45w3r+26w?¢>, then we have
easily °=3w2s, w3=—15w2t4+9w1B, w3r=150, w2t5=26v and vt*=0
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(mod(Jy, J3)). Thus Z[t, wl/(Je, J,,) is additively generated by
{Witij0<i<3,0<j<9,4i+j<13} U {v|0<i<4}. These generators are
linearly independent in H*(EIIT; Q) by Lemma 5.2, (ii)). Thus 6 is
injective. Q.E.D.

Proof of Theorem B.

By (6.11) and (1.5), we can apply Lemma 1.1 to the fibering (6.10),
in which H*(U/T) is given by (6.12), H*(EIII) by Corollary C,
i* by (6.13), (6.15) and p* by (6.19). The correspondence of the
relations between p; and r; is known by (6.16). w is given by (6.18).
P1is P2> P3, P4 Vvanish in H*(E¢/T) by (6.14). In H*(E,/T:Q), we
have

ps=cs—cay +e3yi—2yi=*Js=0,
- I 2 26— x( 17\
96—2C6+703"C471_V1—‘ Z‘JG =0

and pg= —9667'%+3c5v?—v?+(c4+2v‘1‘)(;—c4—63v1 +%v‘?>

1 10 19
= —9¢eyi +3¢'5)"?+'3“C‘Z¢—C4C3V1 +TC4)’?*203)’?+T??

=c*<%JB+3J5y?>=O.

Thus the assumptions of Lemma 1.1 are satisfied, and Theorem
B follows from Lemma 1.1. Q.E.D.

(C) H*(G,/T).
As an appendix, we shall give an alternative proof of the result
on H¥(G,/T) in [7]. Lemma 1.1 can be applied to the fibering

SU3)/T — G,|T -2 S5 =G, |SU(3)

where H*(SUQ)/T)=Z[1y, t5, t;1/(cy, €2, ¢3), H*(BT)=2Z[t,, t,t3]/(c,)
for t,eH?, c¢;=0{t,, t,, t;) and H*(S®)=Z[x¢]/(x%), x¢cH®. Since
H*(G,) is naturally isomorphic to H*(F,) for dim<6, Lemma 3.1
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holds for G6=6G, and dim<6: H¥(G,|T)=Z[t,, t,, t3, y31/(cy, t, ys—
2y;) for dim<6 and Sq?u=y¢ (mod2). Then it is easy to see that
u=+=c,. So we can choose yg=c; by (6.5) and p*(x¢)=+y;. It fol-
lows from Lemma 1.1

(6.20)  H*(G,|T)=Z[t,, 1,, t3, y31/(cy, €3, €3—273, ¥3)
=Z[1, 13, )1+ 1,1, +13, 3-2y5,93) .
Put a=t,—t, and f=t,, then we have
(6.21)  HY*G,|T)=Z[a, p, y5]/(«*+30f+3B%, B> —2y;, v3)

which coincides with the result in [7].
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