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well-posedness of the
Cauchy problem
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§1. Introduction

We study in this note the following forward Cauchy problem;

6 _ 2m " . a
(1.1) Tt-u(x, t)—j;ot l.?z,,,_j(x, t,a—x—)u(x, t),
(1.2) uli=o =uo(x) € DT2(RY),

0
where % _(x, t; — )=
2m—j 0x |al=§m—j

(x, D e REx[0, 1] and n;=0.
Our purpose in this note is to seek a necessary condition of the
P.-well-posedness for the Cauchy problem (1.1)-(1.2). Recently K.
Igari [4] has studied this problem, but our research is different from
it. For instance, our research is based on the modified order? of the

g, j(x, 1) (—6?)7)&’ a,;(x, 1) e &AL,

1) 9%:(RY) ={u(x); (%—)au(x)eLz(Rg) for any a}

B (R ={u(x)€ C~(RY);
u(x, t)EEYH ) means that u(x, t)E g, for any fixed ¢ and continuous in ¢ in the

usual topology of & ,.

2) We say that the modified order at t=0 of t*%,,_, is %‘_'_LIL
J

(%)au(x)léMa for some M,=0 for any tx}
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differential operator. The notion of the modified order was introduced
when we considered Cauchy-Kowalevski’s theorem. And also this
notion will be used when we shall study the hypoellipticity of de-
generate parabolic differential equations. (M. Miyake [5]).

Now we give our theorem: let us assume the following conditions,

) 2m—jo _ ma 2m—j

for some j,e{0, 1,..., 2m—1},
nj,+1 osjszm n;+1 or € Jo { m }

vy 2m—jo _ 2m—j - P
(C.I) ii) Y > oy for any j=0, 1,..., jo—1,

iii) Re.Z,,_;,(0, 0; 27i£%) = 6>0 for some £°eRY, [£° =1,

where Rea means the real part of a, |é|=\/i1€}’ &=(;,..., &) e RY
=

and i=./—1.
Then we have

Theorem 1. Let us assume (C.1), then the Cauchy problem
(1.1)-(1.2) is not 2P.-well-posed in any neighborhood of t=0.

We give now the definition of 2{.-well-posedness of the Cauchy
problem for the equation (1.1).

Definition. We say that the Cauchy problem for the equation
(1.1) is uniformly 2¢P.-well-posed in [0, 1], if for any uy(x)e 2¢.
and any initial-time s€[0, 1), there exists a unique solution u(x,t)e
EH2P)Y in t=s satisfying ul-y=uy(x), and the mapping uy(x)—
u(x, t) is continuous. More precisely for any non-negative integer
I, there exist a non-negative integer h and a constant C independent
of s such that

3 l@ii= %

al=h
considered as a parameter. We also note that 9%: is a Fréchet space with

(-‘—?—)au(x)“z + |lu(x, t)||, denotes the norm in x-variable and ¢ is
3x L?

semi-norms |[u(x)|ln, (=0, 1, 2,...).
SN D3)Du(x, t)YSu(x, t)EPDT: for any fixed ¢ and it is continuously defferen-
tiable with respect to ¢ in the topology of 97%..
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(1.3) max flu(x, Nll; < Clue(x)|.
sS1s1

We shall prove our theorem from §3 on, and the method of the
proof rely on that of S. Mizohata ([1], [2]). In the case where the
coefficients of the equation (1.1) depend only on ¢, we shall give suffi-
cient conditions of 2¢.-well-posedness in §2.

§2. Sufficiency of the well-posedness

In this section we only consider the following equation;
(2.1) iu(x 1= ZZ"‘: g ~<t‘ —a—)u(x t)
' ot ’ j=o0 2m=i\"" 0x P

In this case, we have easily sufficient conditions of the well-posedness
for the equation (2.1), and an elementary result is the following

Theorem 2. Let us assume that the coefficients of %,,_; are
continuous and
2m 2m—j

i) ——— = max s
) ng+1 osjs2m nj+1

(C. 1)
i) Re.Z,,(t; 2nif) < —6|E[2™  for any EeR}.

Then the forward Cauchy problem for the equation (2.1) is uniformly
®,-well-posed in [0, 1].

In order to prove our theorem we use a fundamental inequality.

2m 2m—j
Lemma. If ol ogag)gm P then we have

(2.2) (tnj'f'l_sn1+1)2m§C(tno+l_sno+l)2m—j’ 0§S<t§l

for some positive constant C.*

Proof of the lemma. We prove (2.2) dividing into three cases;
i) s=0, ii)) 0<s<t<2s and iii) O0<s<2s<t. In the first case, (2.2)

4) In the sequel, we shall denote by the same symbol C any one of various diffe
rent constants.



464 Masatake Miyake

is obvious from the assumption. Now we prove (2.2) in the second case.
t —_

prtl —gnitl = (nj+1)S i dt < (n;+De"(t—s) < cths"J+1 . Thus
s

e \2
(¢ns+1 — gnit1)2m < const. (t ss > " amngt1)

Next, it is obvious that (¢"ot! —gsmotl) > (ny+ l)t—;s— smot!  then we have

— 2m—
(tnu+1_sno+1)2m—jgc0nst_(t ss ) " js(2m—j)(no+l).

Since t—Ss <1, it holds <t—-Ts>2"‘§< t;s>2m_1. On the other hand,
2m(n;+1)=(2m—j)(no+1) from the assumption, therefore we get s2m(n*1
<s@m=Dnot) (0<s<1). It proves the inequality (2.2). Finally let us
consider the third case. It is obvious that (z*1—smitl)2m< g2mn+1)
And the condition, (0<s<2s<t) implies ¢ro*!—g"o*1>const, trot!,
Hence we have (gmotl —gnot1)2m=j> const. ((2m=D(mo+t1)  These imply the

inequality (2.2). q.e.d.

Proof of the theorem. Let E.(t,s) be an elementary solution of
the Cauchy problem for the equation (2.1), that is,

2m
(2'3) iE‘x(ta S)= Z tnl'?Zm—j t;-a_ Ex(t, S)’ lgtgs;o-
ot j=0 0x

2.4) E,,-,=6,, O, means Dirac’s distribution.

Now let E(t,s; &) be a Fourier transform of E,(t,s) with respect to
x, then, due to Petrowski’s theorem ([3], Th. 5.2) the necessary and
sufficient condition of the uniformly 2¢.-well-posedness in [0, 1] is
that E(t, s; &) satisfies the following inequality,

(2.5) |E(r, s Ol < CA+1EDP, (129),

where C and p are positive constants independent of t and s.
Since

B, s; 8 = expB:jg TP g (T 2miE) dt:|,



Degenerate parabolic differential equations 465

it holds

L(,noﬂ —gnotl)|E|2m

|E(z, s; &)| <exp ['no+|

2m
+CZ (tn1+l _S""+l) I6|2m—j].
J=1

Considering Lemma, we have

(t"°+1 _S”°+l)|é|2m

(2.6) |E(t,s;é)léexp|:~,,o+l

2m 2m—J
+C 2 (t"°+1 — sno+1)' 2m |6 |2m—j:| .
Jj=1

1 2m

Let X =(tro*t! —g"o*1)2m|£|, then - ‘?HX’"'+C Y X2m=i<C' for some
0 j=1

positive constant C’. This completes the proof. q.e.d.

Now let us weaken the assumption (C. II) as follows.
There exists a sequence {m;}*d satisfying

i) O=mog<m;<my<--<m<mg,,=m.

.oy 2(m—my) 2m—j ,
LI =0 e =t =0, 1,..., k),
(C. 1) 1D Nym+1 2mi§]n§12a")l(i+ 1—1 nj+l (i=0,1 k)

i) ReL (- m,(1; 2mi€) < — g2 (m=m0),
(6>0,i=0,i=0, 1,..., k).

Then we have

Corollary 1. Under the assumption (C.III), the Cauchy problem
for the equation (2.1) is uniformly 2P.-well-posed in [0, 1].

Proof. It is clear, since we may repeat the above reasoning for
2mi+1—1

each brock of f 1YL g j(t;%). Precisely, we can show the
< J=2my

following inequality

t 2mi+1—1
Q.7 ReS {

+
s j=2my

VL (x5 20i)}de S C,
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(i=0, 1,..., k) by the same way as the thoerem. q.e.d.

Finally, let us consider the case where n; are integers and the coeffi-

cients of .Sf’z,,,_j(t;%) are continuous in an interval [—1,1]. Then

we have

Corollary 2. If we assume the condition (C.11) and ny is an even
integer, then the Cauchy problem for the equation (2.1) is uniformly
D P2-well-posed in [—1, 1].

Proof. Under the assumption of the corollary, it holds that

2m—J
S'|w|dr < o+t —gmot1y B (—1=s<i<l).
s
Its proof is obvious in view of the proof of the lemma. Therefore,
we can prove the corollary from the above inequality. q.e.d.

Remark. In the case where the coefficients are dependent only on
t, we can obtain trivial extensions of our theorems. That is, instead
of considering (2.1), we may consider the equation

, 0 _ 2m . 0
(2.1) —a't—‘u—jgo '?Zm—j(t, E)u,

where #,,_(t; 2nif) is a homogeneous polynomial in ¢ of degree
2m—j with continuous coefficients.

In the assumption (C.I), it suffices to assume that Re &,,_(t;
2mig0) =t"1 LY, j(t; 2miE°) for some {°eR”, (j=0, 1,...,2m—1). And in
the ‘assumption (C. II) or (C. III), it suffices to assume that Re %, _ (t;
2nil) =t LY, j(t; 2nil) for any eR”, (j=0,1,...,2m—1).

§3. Localization of the equation

From this section on, we shall prove our theorem stated in §1.
At first, we localize the equation (1.1). Let f(x)e C®P(RY) satisfy that
supp[B] is contained in a sufficiently small neighborhood of x=0,
and apply B(x) to the equation (1.1) then we have
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(3.1) b= 3 ]2 o (315 2 ) B0
. 51 =8 2m—j PR x

¥ 5 2 (nnL)ewn),

ts|uls2m=-j

where .?7‘2“,,3_ ; denotes differential operator of order 2m—j—|u| and

()

x

Since we may modify coefficients of the equation (3.1) outside of
supp [B] in view of (3.1), we assume that the oscillations of coefficients
are small as we desire.. Let &(&)e CH(R") be &(£)=1 in a neighborhood
of ¢=¢° and supp[4&] is sufficiently small. Thus we may assume that

. . 2
f ReZ,,_;,(0,0; 2ni&)>-—-4.
{eslur:)p[d] € 2m Jo( 7”6) 3
Now we define a convolution operator a(D) as follows.

(3.2) oD =F[&OAE, 0], 4, )=F [u(x, N].

Obviously «(D)u is rewritten by a(D)u=a(x)¥u(x, t), where a(x)=
F7[a)] and %, denotes the convolution. Hereafter we use the fol-
lowing notations.

0 =b(=-), @ (D=5 [BOIE D]

Let us apply «,(D) to the equation (3.1), then we have

03 L ®p= 8L (515 L D))
+ 2 t"f[an(D), $2m_j<x, t; —%)](ﬂu_)
LD B 2 CRERC CROT Y

j=0 1s|uls2m-j

+,22"." ,,.,{ ¥ [a,,(D), .@‘;,),-,(x,t;%)](ﬁ‘"’u)},

where [o,(D), 32,,,'_ Ju=a,(D)&L 3p- ju)— &L - j(@,(D)u). Thus we have
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(3 G @D = £ 1 Ls (3,13 2 )@ DIB0) +£,(x D)
. ot n pary 2m=j\ Ny &> ax n [ANad] ’

J
where we denote by f,(x, f) the terms following the second term in the
right hand side of (3.3).

In the following we shall prove an energy inequality for the equa-
tion (3.3)". At first, we remark that

d 2 i n . J
(3'4) 'F”an(D)ﬁu” _21§0t JRe<$2m~j<x7 ¢ 'ﬁ'>

(44(D)Bu), 2, D))

+2Re(f,(x, t), a,(D)Bu),

where ||| and ( , ) denote the L2-norm and the inner product of
L? in x-variable.
Then we shall show an energy inequality when ¢t is small,

(3.5)9 Sl (DYBul > g, (8) oty (D) Bl = I,

where g,,(t)=%t"1°nz""f°—COSJZSz t"n?m=J for some positive constant C.
2J3<im
i=

i*io
In fact, we prove (3.5) dividing (3.4) into two parts; i) j=j, and ii)
Jj#jo. At first we investigate the case i).

Re(Lamso( ¥ 1 5 ) (@(D)Bu), 2, (D))
=Re (£ 1s(0, 052 Yau(D) B, (DB
+ Re({:z’z",_ ,o(x, £ %)- Lo jo(o, 0;% }

(a,(D)Bu), @, (D)fu)

5) Instead of the inequality (3.5) we have
(35) Srlan(DIpul®> gu(Ollan(D)pult -y £,

05j52m
For the simplicity we use (3.5) in the sequel. The singular part of the second

term of the right hand side of (3.5)’ does not trouble in view of (4.6).
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=I1+1I.

From the assumption that inf Re.%,,_;,(0,0; 2ni€)>—2—5, we
Eesupp[4&] 3
have

I=Re(Lm_;,(0, 0; 2miE)a (OB, 1), 8()Bu(E, 1),

>%6n2'"'f°llot,,(D)ﬁu||2 .

On the other hand, since the oscillation of the coefficients are
small, we have the following inequality when ¢ is small.

[IIl<e Y

la|=2m=jo

<%>aa,,(D)Bu”'Ila,,(D)ﬁu" ,

where ¢ is a sufficiently small positive constant. Therefore we have
|I[1| <g-n2m=io|a,(D)Bul?2 for some sufficiently small positive consatnt

’

¢. Combining the above two inequalities, we have
b}
2Re (&3 13 5 N DB, @, (D)Bu) > n2=iooay(D)Bull?.

In the case of ii), we have easily
|($2m—j(an(D)ﬁ“)a an(D)ﬁu)l é const. nzm—j"an(D)ﬁullz

since the order of #,,_; is 2m—j. This proves the inequality (3.5).

§4. Proof of the theorem

We shall prove the theorem by contradiction. Let {¢,(x)}% <

©,(R!) be a sequence of Cauchy data satisfying @,(&)=¢@(&—n&0),

where ¢(£)e Cy(RY) and ¢(&)=1 in a neighborhood of ¢=0 and
supp [¢] is sufficiently small. That is,

4.1) P(x) = 2ri<nE>g(x),

o(x)=FF [$()] and <x,¢>=i1x,.¢,.. And now let {u,(x, )},
=
E1(2¥:) be a sequence of solutions with Cauchy data {@,(x)}2; at
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t=0, that is,

a _ 2m R . 0
(4~2) Wun(xs t)_ jA:.:Ot j-me—j<x’ ta'a_x— un(x9 t)a

(4.3) uy(X, 0)=@,(x).

If we assume that the forward Cauchy problem (4.2)-(4.3) is well-
posed, u,(x, f) should satisfy

(4.4) max [[u,(x, DIl < Cllu,(x, 0)ll,<Cn",
o=sts1

for some positive constants C and C, and non-negative integer h,
where we may assume without loss of generality that h=2m.
It is easy to see

(4.5) llai(D)Bu(x, 0)| > co

for some postive constant c¢,. (see S. Mizohata [1]).

We shall prove the following inequality for f,(x, f) appeared in (3.5)
substituting u for u,,

CORNTACH IS XOTI

oDy w1 p W, |+
Flvish n

2m
where h,()=C Y t"n?m~J, (C is a sufficiently large constant) and
j=o0

aslv)(D)un = {xvdn(x)}(:)un(x’ t)'

At first, we consider the term of [oz,,(D), L om— J~<x, t;a—i-)}(ﬁu,,).
[an(D)y aa,j(xa t)(’a%'>a:|(ﬁun)

= ({0, 0= 0,105, D}aa =) ) B (v 0y

l%éh (= Dal (x, 1) “5"')(1)){(%)“([314,,)}

_1 V!

TIA
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(= 1)k
vIZh+e1 V!

gaa,j,v(x, Y, 1) (x—y)a,(x—y)
a [
(55) Bunr. 0dy,
where |a| =2m—j, a’}(x, N € &Y(B,) and a,;,€EY (B x,)-
Now let us consider the last term in the above equality.

f0.105, 7, 0= yroz =L ) (B2 10y

a a—a’
—(— 1)l A
( l) alzézca,a S( ay> aa.],v(x’ Y, t)

8 (a_ay‘y {x=y)ro,(x=p)} x (Bu, )y, ydy.

Using Hausdorff-Young’s inequality for each term of the right hand
side, we have

l|each term|| . <const. ”(%)a {xva, ()} Lo 1 Buyll L2

; 0 Vi —plal=1v] (‘7)“ v :
It is easy to show H( 6x) (xva,(x)) ”u =n o (xva(x)) Lo since
o, (x)=ndim(Rg(nx). And on the other hand, we know that |u,| =0(n")

from (4.4), hence we have

lleach term|, . £ const. n2m=Ji-1

Since

it holds

a0)(- ) (bu)

<const. n2m |« Bu,| in view of |a|=2m—j,

@) [[anD). Lo (3. 1:55) [ Bu| < €1 T, _wmi1a (D),

sivi=h
+n2m=i=1}

Next, it is obvious
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(4.8) 2% (@, (D)B®u,)| < const. n2"=ikl [, (D)BWu,| ,

because of the order of £¥)_; is at most 2m—j—|ul.

Finally for the term of [a,(D), .E?"z“,,),_j](/}‘“’u,,), we have
(4.9 [ (D), L0 ;1(BPu,)]

Sconst. { S n2nimla)(D)p0u, | +n2nimlni=1}
L=|vish
by the similar way as the first term. And also we know that
(4.10) (DI B, | < OB if |+ |v| Zh+1.

Hence combining (4.7)~(4.10) we have the inequality (4.6). There-
fore

@11 Slla,(D)fu,l > 9.0l D)Bu|

—n@f 3 DB

[+1vIsh

in view of (3.5).
If we repeat the above reasonings by setting «,(D) by «\”(D) and
B(x) by n~I#BW  we have

@12) a2 (D) g @, | > g, (1) o (D) 41 B0, |

—const. h,l(t){ | |+§| |

v +
Sy +|u'sh

e (DY 180y |+
Now let us define S,(t) by

S\t)y=_ 3 CY¢HM (D)1 B, |l

lul+|vish

Then (4.11) and (4.12) imply, if we give a sufficiently large constant
Co»
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d ~ C
(4' 13) '_dt—Sn(t) > gn(t)Sn(t) _Thn(t) s

where §,(t) =06,t"on?""Jo —const. /Z t"n?m=J_ for some positive constant
0sSJ/S2m
j#jo

60-

t
Now let G,(t) =S g(r)dt = Syttt p2m—jo_ ZS cjt"!“nz""f, (50=
Js2
j#jo

0s
J

/o+1) then we have from (4.13)

Sexpl= G015} > = h,0): exp [~ Go(0].
Since S,(0)>c¢,>0 from (4.5), it holds

$ut)>co'exp [G,(0)]=-S-exp [6,0]-{ (1) exp [~ Gu(0)]dr.

We choose a positive constant ¢ satisfying

(4.14) &< min M=jo)n+1)=Qm=j)(n;,+1)
0s5jSjo—1 Jo—1J

then if n is sufficiently large, we have

2m 5 e(2m—Jo)
(4.15) S, (n '7j0+1+€) >mexp[-—2—n njoti+e J,

The proof of (4.15) will be given in §5, since it is long.

On the other hand, from the assumption of the well-posedness it
must be S,(t)=0(n*), (0=t=<1). This contradicts from (4.15), which
proves the theorem. g.e.d.

§5. Proof of (4.15)

In order to evaluate S't"lnz""fexp[—G,,(t)]dr, let us show
o

(5.1) _& <8

O tn;o+ln2m Jjo + C

6) The existence of such ¢ is guaranteed from the condition ii) of (C.I).
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1 . .
50 )"J_"jo __Jo—J

in 0<¢t< min ( -0 “n"nj-no .
4_]0Cj

0=jsjo-1

In fact, we prove (5.1) dividing into two cases.
1) the case where j=j,+1. Now let us consider

Ginl )(t)= 50 ot p2m=jo _ z Ej t'lj+ln2'"-j.
4 jzjo+1

Cm—j)(n;,+1)

The condition i) of (C. 1) implies n;+12 J , hence
p J 5
«m—jo
(njo+1)(2m=J)
G(l)(t)Zg_otnjo+ln2m—jo_ Z &t 2m—jo .n2m—j
T4 jzio¥1 ’
"Io+l
(0=t=1). If we put X=t 2" Jo.n, we get
G{,“(t) ; %TOXZI"—jO_ij§+l Ej XZm—j> -C

because of that X =0.
ii) the case where 0<j<j,—1. We note that the condition ii)
of (C. 1) implies n;>n;, (j<j,), therefore in the interval

1 .
. 5 CYECT el I
O§t§ min (—0—~> °n Mg,

0sjsjo-1\ 4joC;
it holds
— 50 njo+1,2m—j &ogngtl,2m—j
i gt ipsm=jo g grtipn2m=i<( .
Jo

These prove the inequality (5.1). Thus we have
g’ tip?m=iexp [—G,(t)]dt
0
t . 3 .
< const. S T"n?m=J exp [ - -—20 t"f°+1n2'"'lo] dt.
o

t
Next, let us evaluate Hj(t)=S r"lnz""fexp[—ézo—t"m“nz""ia]dr,
0
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(j=0, 1,..., 2m).
a) the case where 0<j<j,—1. We note that n;>n;
ly it holds

jo» then obvious-

H ;(¢) < const. t"!‘”1°nf°‘f{l —exp [—%Q—t"m* tp2m=ij, ]} .
b) the case where j=j,.
— 50 njo+1,2m—j
H; (t)=const. {1 —exp ——z—t jot1p2m=ij, |4

c) the case where j=j,+1. By the same way as i) of the proof
of (5.1) we can prove that —%"—t"ﬂ’“nz""f"+t"1+1n2”"f§C for any

n and any te[0, 1]. Therefore we have
H(f)<const. g;‘t"fnz'"‘f exp[—t+in2m-ildr
=const. {1 —exp [— "+ 1p2m=i]},
Now if we put together with the above inequalities, we have
(5.2)  Comst o h[d, (t)]g {;z";wnm—f} exp [— G, (t)]dz

 const. const { Z thi—njopio- J+1}exp [G )]

Jj=

+———°°ESt { Z g miopio=i 4| }exp[Gn(t)— 520 griotlp2m= !o]
2m
+ const. Z exp [G,,(t) _tn,+1n2m—j] .
Jj=Jo+1

2m—Jj
Under the above preparations, we shall evaluate at t=n" "10'11"?5

1,(0)= o exp [8,)]~-S-exp [G,0)1{| Au(0) exp [~ G,(0)Jd .

At first, we note that if n is sufficiently large, it holds
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1 L

__2m=jo_ . 50 nj—njo __Jo=J

n njotl+e <  min —_— n nj—njo,
0sjsjo-1\ 4joC;

in view of the determination of &. And we can show

2m—jo e(2m—Jo) e(2m—Jo)
(5.3) G,(n"wso¥i+e) = Son npoti+e + o(nnjotite),

as n—+o0. In fact, it suffices to see that when j#j,, we have

e(2m—1Jo)
2m-g, =0(nj¥T+e) as n—>+ 00,

‘=""njo+ 1+e

tnj+1n2m—j

in view of the condition (C.I) and the determination of e.
Finally, in the case where 0<j<j,—1, it follows

trmmoplo=i 2m-j, =0(1) as n— +o00

EE PR E

because (2m—jo)(n;—n;)—(n;o+1+¢€)(jo—j)>0.
Thus, combining the above inequalities, it follows

__2m—jo e(2m—Jo)
I(n"mjo¥i+e) > —ciiexp [57011 njoFite j|

when n is sufficiently large, which proves (4.15). q.e.d.
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