Riemann surfaces obtained by conformal sewings

By
Hisashi Ishida

(Received July 30, 1974)

Introduction. For Riemann surfaces of infinite genus, it is known that there occur many phenomena which are completely different from the function theory on plane regions or Riemann surfaces of finite genus. Actually we see them in various examples in classification theory of Riemann surfaces. Undoubtedly such phenomena depend on, in intuitive sense, the distributions of holes and handles representing genus. Now we take a countable number of disjoint cycles $\left\{\gamma_{n}\right\}$ on Riemann surface R so that $G=R-\cup \gamma_{n}$ becomes a planar region. G is conformally equivalent to a slit region. So, in this note, we consider plane region R which has an infinite number of disjoint slits $\left\{\gamma_{n}\right\}$ clustering nowhere in $R . \quad G=R-\cup \gamma_{n}$ is a subregion of R whose boundary consists of $\cup \gamma_{n}$ and the ideal boundary of R. We construct Riemann surfaces by conformal sewings (cf. sec. 1) of G and investigate some relations by extremal length methods between the classes of such surfaces and the types (weakness, semiweakness and so on) of the slit regions. Furthermore we give some examples related these topics. The last one will give a relevant remark for the extension of classical Koebe's theorem to open Riemann surfaces.

The author expresses his hearty thanks to Professors Y. Kusunoki and T. Fuji'i'e for their valuable suggestions and ceaseless encouragement.

1. Let R be an open Riemann surface. By a slit in R, we shall
mean an analytic arc which is homeomorphic to the closed interval $[-1,1]$ on the real axis in the complex plane. Consider a countable number of slits $\left\{\gamma_{n}\right\}_{n=0}^{\infty}$ in R which are mutually disjoint and cluster nowhere in R. Denote $G=R-\cup_{n} \gamma_{n}$. Now we define conformal sewings of G. (1) Take a parametric disk U_{j} around each γ_{j} so that γ_{j} is represented as $\left\{z_{j} ;\left|\operatorname{Re} z_{j}\right| \leqq 1, \operatorname{Im} z_{j}=0\right\}$ by the local parameter z_{j}, then each γ_{j} has two sides, the upper edge $\gamma_{j}{ }^{+}$and the lower one $\gamma_{j}{ }^{-}$. (2) Partition $\left\{\gamma_{n}\right\}_{n=0}^{\infty}$ into a countable number of finite sections $\left(\gamma_{i}\right)_{i \in I_{k}}(k=0,1, \cdots)$. (3) For each arrangement of elements in every section $\left(\gamma_{i}\right)_{i \in I_{k}}$, say ($\gamma_{i_{1}}, \gamma_{i_{2}}, \cdots, \gamma_{i_{n(k)}}$), identify γ_{j}^{-}with γ_{j+1}^{+} $\left(j=i_{1}, i_{2}, \cdots, i_{n(k)-1}\right)$ and $\gamma_{i_{n}(k)}^{-}$with $\gamma_{i_{1}}^{+}$. Through these processes we can define a Riemann surface. Above all, the two points of the surface corresponding to the end points of slits have actually the following structure. For instance, the end point $\left\{z_{i_{1}}=1\right\}=\left\{z_{i_{2}}=1\right\}=\cdots$ $=\left\{z_{i_{n(k)}}=1\right\}$ has a neighbourhood which is represented by n full circular disks in the complex plane. They are identified in the manner of an n-sheeted covering surface with a branch point, and we obtain a local parameter by taking an n-th root. We denote the resulting surface by $S(G)$ and call such a series of operations a conformal sewing of $G=R-\cup_{n} \gamma_{n}$. When we use the word 'any' (resp. 'some') conformal sewing, we mean conformal sewing for any (resp. some) (1) parametrization, (2) partition and (3) arrangement for $\left\{\gamma_{n}\right\}$. Especially, if each section consists of only one γ_{k}, then $S(G)=R$. More generally we map $U_{j}-\gamma_{j}$ conformally onto $U_{j}^{\prime}-\gamma_{j}^{\prime}$, where U_{j}^{\prime} is a neighbourhood of $\gamma_{j}^{\prime}=\left\{z_{j}^{\prime} ;\left|\operatorname{Re} z_{j}^{\prime}\right| \leqq 1, \operatorname{Im} z_{j}^{\prime}=0\right\}$. For such $\left\{\gamma_{j}^{\prime}\right\}$ we can do the processes stated above to obtain a Riemann surface. We say such an operation a general conformal sewing.

Proposition 1. Suppose that for each γ_{n} there exists a pair of parametric neighbourhoods U_{n}, V_{n} such that
(a) $\gamma_{n} \subset U_{n} \subset \bar{U}_{n} \subset V_{n}, \bar{V}_{m} \cap \bar{V}_{n}=\phi(m \neq n)$
(b) $V_{n}-\bar{U}_{n}$ is conformally equivalent to an annulus A_{n}
(c) $\sum_{n=0}^{\infty} \frac{1}{\log \bmod A_{n}}<\infty$,
where $\bmod A_{n}$ denotes the modulus of $A_{n}(>1)$.
Then, $R \in O_{G}$ if $S(G) \in O_{G}$ for some conformal sewing of G. Conversely, if $R \in O_{G}$ then $S(G) \in O_{G}$ for any conformal sewing of G.

Moreover this proposition is also valid for $O_{H B}, O_{H D}, U_{H B}$ and $U_{H D}$ in place of O_{G}.

Proof. Let f_{n} be a bounded continuous function on R such that $\left.f_{n}\right|_{R-V_{n}}=0, f_{n} \mid \bar{U}_{n}=1$ and f_{n} is harmonic on $V_{n}-\bar{U}_{n}$. Set $f=\sum_{n=0}^{\infty} f_{n}$. Then by (c) we can easily find that f is a bounded continuous Dirichlet potential on R. While, we can regard f_{n} and consequently f as bounded continuous Dirichlet potentials on $S(G)$. If $R \notin O_{G}$ then there exists a non-constant bounded positive harmonic function on G vanishing continuously along the relative boundary ∂G with respect to $S(G)$. Hence $S(G) \notin O_{G}$.

We can prove similary the converse, and also the last statement.
2. Let R be an open Riemann surface with ideal boundary β and let R_{0} be a parametric disk with compact relative boundary ∂R_{0} in R. We consider the family of curves $F=F\left(R-\bar{R}_{0}, \partial R_{0}\right)$ in $R-\bar{R}_{0}$ such that each $c \in F$ consists of a finite number of disjoint Jordan closed curves and c separates the ideal boundary β from ∂R_{0}, i.e. c is homologous to ∂R_{0}. Let $\lambda(F)$ be the extremal length of F. Then we have the well known fact;

Lemma 1. $R \in O_{G}$ if and only if $\lambda(F)=0$.

Let $F^{\prime}=F^{\prime}\left(R-\bar{R}_{0}, \partial R_{0}\right)$ be the family of curves $c \in F$ such that each component of c is a dividing cycle in R. According to Kusunoki [6],

Definition. We say that R belongs to class O^{\prime} if $\lambda(F)=0$.

That $\lambda\left(F^{\prime}\right)=0$ is an ideal boundary condition and is independent of the choice of R_{0}. (Such a remark will be omitted hereafter.)

Clearly $O^{\prime} \subset O_{G}$. Moreover, if R belongs to O^{\prime}, then $R_{s}{ }^{*}$ the Stoilow compactification of R coincides with $R_{M}{ }^{*}$ the Martin compactification of R (cf. [2], [6]).
3. From now on, we consider an open planar Riemann surface $R=\overline{\boldsymbol{C}}-\beta$, where $\overline{\boldsymbol{C}}, \beta$ stand for respectively the extended complex
plane, a compact subset of $\overline{\boldsymbol{C}}$ such that $\overline{\boldsymbol{C}}-\beta$ is connected. Let $\left\{\gamma_{n}\right\}$ denote a sequence of slits as in sec. 1. Of course $\overline{U_{n} \gamma_{n}}-\cup_{n} \gamma_{n} \subset \beta$ (where closure is taken in $\overline{\boldsymbol{C}}$). Let $G=R-\cup_{n} \gamma_{n}$, then G itself is a planar Riemann surface and β is a closed subset of the boundary of G. So, we can define the notion of weakness, semiweakness and parabolicity of β with respect to G. Here, we define them as follows. Let G_{0} be a parametric disk in G. We introduce here two families F^{0}, F^{1} of curves in $G-\bar{G}_{0}$. A curve $c \in F^{1}$ if and only if c consists of a finite number of Jordan closed curves in $G-\bar{G}_{0}$ such that c separates β from ∂G_{0}. While, $c \in F^{0}$ if and only if (i) c consists of a finite number of disjoint Jordan curves such that each component of c is closed or connects some γ_{n} with γ_{m} (may be $m=n$) and (ii) c separates β from ∂G_{0} in $G-\bar{G}_{0}$. Let $\lambda\left(F^{1}\right)$ (resp. $\lambda\left(F^{0}\right)$) be the extremal length of F^{1} (resp. F^{0}) with respect to $G-\bar{G}_{0}$.

Definition. β is called weak (with respect to G) if $\lambda\left(F^{1}\right)=0$, and is said to be semizveak (with respect to G) if $\lambda\left(F^{0}\right)=0$.

Definition. β is called parabolic (with respect to G) if (G, $\partial G) \in S O_{H B}$, i.e. there exist no $H B$-functions on G vanishing continuously along ∂G except constant zero.

We sometimes say that G is of weak type (resp. semizeeak type, parabolic type), when β is weak (resp. semiweak, parabolic).

Definition. We say that G belongs to class O_{1} (resp. O_{2}) if $S(G) \in O_{G}$ for any (resp. some) conformal sewing.

It is clear that $O_{1} \subset O_{2}$. By Proposition 1, there exists non-trivial $G \in O_{1}$.
4. Let G be as in sec. 3, and let \widehat{G} be the double of G along $\partial G=U_{n} \gamma_{n}$. Then there is a natural indirect conformal mapping φ of \widehat{G} onto itself. For a subset E of G, we use the symbols $\widetilde{E}, \widehat{E}$ in place of $\varphi(E), E \cup \varphi(E)$ respectively.

Proposition 2. G is of semiweak type if and only if $\widehat{G} \in O_{G}$.

Proof. Let $F=F\left(\widehat{G}-\widehat{\bar{G}}_{0}, \partial \widehat{G}_{0}\right)$ be the family of curves in Lemma 1. For any $c \in F,\left.c\right|_{G}$ the restriction of c onto G belongs to F^{0}. By $\left.F\right|_{G}$, we mean the total of $\left.c\right|_{G}$ such that $c \in F$. Then $\lambda\left(F^{0}\right) \leqq \lambda\left(\left.F\right|_{G}\right)$ in $G-\bar{G}_{0}$. Clearly $\lambda\left(\left.F\right|_{G}\right) \leqq \lambda(F)$ in $\widehat{G}-\hat{\bar{G}}_{0}$. Since each $\left.c \in F\right|_{G}$ is contained in $G-\bar{G}_{0}, \lambda\left(F^{0}\right) \leqq \lambda(F)$. So, if $\widehat{G} \in O_{G}$ then G is of semiweak type.

Conversely, let $\widehat{G} \notin O_{G}$. Then there exists the harmonic measure $\omega=\omega\left(\widehat{G}, \partial \widehat{G}_{0}\right)(\neq 0)$ of the ideal boundary of \widehat{G} with respect to $\widehat{G}-\widehat{\bar{G}}_{0}$. We take $d s=|\operatorname{grad} \omega||d z|$ as a linear density on $\widehat{G}-\widehat{\bar{G}}_{0}$, and set $d s_{G}$ $=\left.d s\right|_{G}$, which is a linear density on $G-\bar{G}_{0}$. For any $c \in F^{0}, \hat{c}=c \cup \tilde{c}$ $\in F$. So, by means of the symmetricity of ω,

$$
\int_{c} d s_{G}=\int_{\hat{c}} d s / 2=\int_{\hat{c}}|\operatorname{grad} \omega||d z| / 2 \geqq \int_{\hat{c}}|* d \omega| / 2 \geqq D(\omega) / 2
$$

where $D(\omega)$ means the Dirichlet integral of ω. Hence, $\lambda\left(F^{0}\right) \geqq D(\omega)$ $/ 2>0$. Thus G is not of semiweak type.

If $\widehat{G} \in O_{G}$, then G belongs to $S O_{H B}$. Hence,

Corollary. β is parabolic if β is semizveak.

Proposition 3. If β is weak, then every symmetric HB-function u defined near the ideal boundary of \widehat{G} has a limit value at each Stoïlow ideal boundary point, where by the symmetricity of u we mean that $u=u \circ \varphi$.

Proof. Take \widehat{G}_{0} as in Proposition 2 so that u is defined on \widehat{G} $-\widehat{G}_{0}$. Since \widehat{G} belongs to O_{a}, u is Dirichlet finite and $|\operatorname{grad} u||d z|$ becomes a linear density on $\widehat{G}-\widehat{\bar{G}}_{0}$. Let a, b be cluster values of u at a Stoilow ideal boundary point p. For each $c \in F^{1}, c \cup \tilde{c}$ surrounds a symmetric ideal boundary neighbourhood. It is not difficult to see that there exists a determining sequence $\left\{V_{n}\right\}$ (symmetric with respect to φ) for p such that

$$
\int_{c_{n}}|\operatorname{grad} u||d z| \rightarrow 0 \quad(n \rightarrow \infty),
$$

where we denote ∂V_{n} by c_{n}. Then by maximum principle,

$$
|a-b| \leqq \max _{c_{n}} u-\min _{c_{n}} u \leqq \int_{c_{n}}|d u| \leqq \int_{c_{n}}|\operatorname{grad} u||d z| .
$$

Hence, $a=b$.
5. We consider conformal sewings of plane regions which are symmetric with respect to the real axis. More precisely, we assume that β is a compact set on the real axis and $\left\{\gamma_{2 n}\right\}(n=0,1, \cdots)$ are contained in the upper half plane and $\gamma_{2 n+1}=\left\{z ; \bar{z} \in \gamma_{2 n}\right\}$. Furthermore, in this section, $S(G)$ is the Riemann surface obtained by identifying $\gamma_{2 n}$ with $\gamma_{2 n+1}$ symmetrically with respect to the real axis. Then,

Proposition 4. G is of weak type if and only if $S(G)$ belongs to class O^{\prime}.

Proof. The correspondence $z M \rightarrow \bar{z}$ induces a natural indirect conformal mapping φ (resp. ψ) of $S(G)$ (resp. $R=\boldsymbol{C}-\beta$) onto itself. $\psi\left(\gamma_{2 n}\right)=\gamma_{2 n+1}$. Let G_{0} be a symmetric (w.r.t. the real axis) neighbourhood around ∞ such that $G_{0} \cap\left(U_{n} \gamma_{n}\right)=\phi$, and let F^{1} be the family of curves in $S(G)-\bar{G}_{0}$ defined in sec. 3 for weakness. F^{\prime} denotes $F^{\prime}\left(S(G)-\bar{G}_{0}, \partial G_{0}\right)$ in sec. 2 (i.e. $S(G) \in O^{\prime}$ iff $\lambda\left(F^{\prime}\right)=0$) and $F^{\prime \prime}=\left\{c \in F^{\prime} ; c=\varphi(c)\right\}$. First we prove that $\lambda\left(F^{\prime \prime}\right)=0$ if and only if $\lambda\left(F^{\prime}\right)=0$. In fact, $\lambda\left(F^{\prime \prime}\right)=0$ implies $\lambda\left(F^{\prime}\right)=0$ since $F^{\prime \prime} \subset F^{\prime}$. Conversely, let $\lambda\left(F^{\prime}\right)=0$. For any linear density ρ and $\varepsilon>0$, there exists a $c \in F^{\prime}$ such that $\int_{c}(\rho+\rho \circ \varphi)|d z|=\int_{\varphi(c)}(\rho+\rho \circ \varphi)|d z|<\varepsilon$. Thus, $\int_{c \cup \varphi(c)} \rho|d z| \leqq \int_{c \cup \varphi(c)}(\rho+\rho \circ \varphi)|d z|<2 \varepsilon$. Here, $c \cup \varphi(c) \in F^{\prime \prime}$. Hence, $\lambda\left(F^{\prime \prime}\right)=0$. Now we can prove semilarly that $\lambda\left(F^{1}\right)=0$ if and only if $\lambda\left(F^{2}\right)=0$, where $F^{2}=\left\{c \in F^{1} ; c=\psi(c)\right\}$.

Clearly $F^{2} \subset F^{\prime \prime}$. So, if $\lambda\left(F^{1}\right)=0$, then $\lambda\left(F^{\prime}\right)=0$. Thus, $S(G)$ $\in O^{\prime}$ if G is of weak type.

Conversely, any $c \in F^{\prime \prime}$ does not meet $U_{n} \gamma_{n}$, since each component of c is a dividing cycle in $S(G)$. Thus $F^{\prime \prime} \subset F^{2}$. Hence, the converse statement follows.

In the same manner, for this $S(G)$ we have,

Proposition 5. $S(G) \in O_{a}$ if and only if G is of semiweak type.

It is easy to verify that if G is of weak type then G belongs to class O_{2}, and if G belongs to O_{2} then G is of semiweak type.

Thus, we get the following schema of inclusion relations:

Remark. When we define classes O_{1} and O_{2} for generel conformal sewings (cf. sec. 1) in place of conformal sewings, then we get besides in the schema, ' $O_{2} \rightleftarrows$ semiweak' and that if β consists of a finite number of components then ' $O_{1} \rightleftarrows$ weak'.

6. Examples.

In this section we give some examples. The examples (I) and (II) show the implications 'weak $\longrightarrow O_{1}$ ' and 'parabolic \longrightarrow semiweak' respectively. The example (III) shows ' $O_{2} \longrightarrow O_{1}$ ' and also ' $\mathrm{O}_{2} \longrightarrow$ weak'. Besides them, these examples have other interesting properties.
(I) Let $R=\boldsymbol{C}$ (i.e. $\beta=\{\infty\}$) and $\left\{\gamma_{n}\right\}$ be given so that $\overline{U_{n} \gamma_{n}}$ $-\cup_{n} \gamma_{n} \subset \beta$. Set $G=\boldsymbol{C}-\cup_{n} \gamma_{n}$, then clearly $\widehat{G} \in O_{G}$. Thus G is of semiweak type. (Generally this is true for any $\left\{\gamma_{n}\right.$), if the logarithmic capacity of β with respect to $\overline{\boldsymbol{C}}$ is zero.) While, we insist that there exist some choice of $\left\{\gamma_{n}\right\}$ and some conformal sewing such that $S(G)$ belongs to a hyperbolic Riemann surface.

Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be a sequence of strictly increasing positive numbers toward infinity. Set $\gamma_{n}=\left\{z=x+i y ;|x| \leqq 1, y=a_{n}\right\} \quad(n=0,1, \cdots)$. Identify $\gamma_{2 n}^{+}$with $\gamma_{2 n+1}^{-}$and $\gamma_{2 n}^{-}$with $\gamma_{2 n+1}^{+}$symmetrically with respect to the line $y=\left(a_{2 n}+a_{2 n+1}\right) / 2$ so that we obtain Riemann surface $S(G)$.

Suppose $\sum_{n=1}^{\infty}\left(a_{2 n}-a_{2 n-1}\right)=M<\infty$, then $S(G) \notin O_{G}$.
To see this, first we note that $G^{\prime}=\sum_{n=1}^{\infty} G_{n}$ can be regarded as a subregion of $S(G)$ with $G_{n}=\left\{z=x+i y ;|x|<1, a_{2 n-1}<y \leqq a_{2 n}\right\}$. It is clear that G^{\prime} is conformally equivalent to the plane region Ω :

$$
\Omega=\{z=x+i y ;|x|<1,0<y<M\} .
$$

Under this conformal mapping, ∂G^{\prime} corresponds to $\{z=x+i y ; x$ $= \pm 1,0<y<M\} \cup\{z ;|x| \leqq 1, y=0\}$. Since $\left(G^{\prime}, \partial G^{\prime}\right) \notin S O_{H B}, S(G)$ is hyperbolic. Furthermore, we can easily show by definitions that G is of weak type provided that $a_{2 n+1} / a_{2 n} \geqq n(n=1,2, \cdots)$.
(II) Generally we can prove that slit region G is of parabolic type if there exists a conformal sewing such that the resulting surface $S(G)$ belongs to $O_{H B}-O_{G}$. Here we take radial slit disk $G=\boldsymbol{F}$ and Riemann surface $S(G)=\hat{\boldsymbol{F}} \in O_{H B}-O_{G}$ by some conformal sewing of G (cf. Tôki [10]). Then $G=\boldsymbol{F}$ is of parabolic type. While, G is not of semiweak type. For, $-\log |\pi(p)|$ is a non-constant positive superharmonic function on \widehat{G}, where π denotes the projection of \widehat{G} onto the unit disk.

This example gives also a counter example showing that subregions of a region of type $N O_{H B}$ (i.e. on which there exist no nonconstant $H B$-functions whose normal derivatives vanish along the relative boundary) are not always of type $N O_{H B}$. (Note that every subregion of a region of type $S O_{H B}$ is always of type $S O_{H B}$.) Now, for sufficiently small positive number $r, G_{0}=\{|z|<r\}$ becomes a parametric disk of $S(G)$ and G. Let $S(G)-\bar{G}_{0}=G^{\prime}$, then the double \widehat{G}^{\prime} along $\partial G^{\prime}=\partial G_{0}$ belongs to $O_{H B}^{2}-O_{H B}$. Thus ($G^{\prime}, \partial G^{\prime}$) is of type $N O_{H B}$. While, $G-\bar{G}_{0}$ a subregion of G^{\prime} is not of type $N O_{H B}$. For, the double of a subregion belongs to $O_{H B}$ if and only if it is simultaniously of type $N O_{H B}$ and $S O_{H B}$ (cf. Kusunoki-Mori [7]). And clearly the double of $G-\bar{G}_{0}$ along $\partial\left(G-\bar{G}_{0}\right)$ does not belong to $O_{H B}$.
(III) Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ be a strictly decreasing sequence of positive numbers converging to zero for $n \rightarrow \infty$. Let,

$$
\begin{aligned}
& \beta=\{z=x+i y ;|x| \leqq 1, y=0\}, \\
& \gamma_{n}=\left\{z ;|x| \leqq 1, y=a_{n}\right\} \text { and } \gamma_{-n}=\left\{z ;|x| \leqq 1, y=-a_{n}\right\} \quad(n=0,1, \cdots) .
\end{aligned}
$$

Identify γ_{n} with γ_{-n} symmetrically with respect to the real axis to obtain $S(G)$. Clearly β is not weak. To prove the semiweakness of β, consider annuli A_{n} and $A_{n}{ }^{\prime}$ in $S(G)$ such that

$$
\begin{aligned}
A_{n}= & \left\{z ; a_{n+1}<|z-1|<a_{n}\right\} \\
& -\left\{z=x+i y ; 1-a_{n} \leqq x \leqq 1,|y|<a_{n+1}\right\}, \\
A_{n}^{\prime}= & \left\{z=x+i y ;-x+i y \in A_{n}\right\} .
\end{aligned}
$$

$F_{n}, F_{n}{ }^{\prime}$ and $F_{n}{ }^{\prime \prime}$ are families of curves such that

$$
F_{n}=\left\{c ; c=A_{n} \cap\{|z-1|=r\}, a_{n+1}<r<a_{n}\right\},
$$

$$
\begin{aligned}
& F_{n}^{\prime}=\left\{c^{\prime} ; c^{\prime}=A_{n}^{\prime} \cap\{|z+1|=r\}, a_{n+1}<r<a_{n}\right\}, \\
& F_{n}^{\prime \prime}=\left\{c \cup c^{\prime} ; c \in F_{n}, c^{\prime} \in F_{n}^{\prime}\right\} .
\end{aligned}
$$

Let G_{0} bea neighbourhood of ∞ such that $G_{0} \cap\left(\cup_{n=-\infty}^{\infty} \gamma_{n}\right)=\phi$, and let $F=F\left(S(G)-\bar{G}_{0}, \partial G_{0}\right)$ be as in Lemma 1 (i.e. $S(G) \in O_{G}$ iff $\lambda(F)=0)$. Since $\cup_{n} F_{n}{ }^{\prime \prime} \subset F$, we have

$$
\frac{1}{\lambda(F)} \geq \sum_{n=0}^{\infty} \frac{1}{\lambda\left(F_{n}{ }^{\prime \prime}\right)}
$$

and easily from the properties of extremal length,

$$
\begin{aligned}
& \lambda\left(F_{n}\right)=\lambda\left(F_{n}{ }^{\prime}\right) \leqq \frac{2 \pi}{\log \left(a_{n} / a_{n+1}\right)}, \\
& \lambda\left(F_{n}{ }^{\prime \prime}\right) \leqq 2\left(\lambda\left(F_{n}\right)+\lambda\left(F_{n}{ }^{\prime}\right)\right) .
\end{aligned}
$$

Thus, for any $m>0$

$$
\frac{1}{\lambda(F)} \geqq \sum_{n=0}^{m} \frac{1}{\lambda\left(F_{n}^{\prime \prime}\right)} \geqq \sum_{n=0}^{m} \frac{\log \left(a_{n} / a_{n+1}\right)}{4 \pi}=\frac{1}{4 \pi} \log \left(a_{0} / a_{m}\right) .
$$

Hence, $\lambda(F)=0 . \quad G$ is of semiweak type by Proposition 5.
7. Let G and $S .(G)$ be as in the example (III). We consider other properties that $S(G)$ has. And let U be a regular neighbourhood of the ideal boundary of $S(G)$ with $(\bar{U})^{c} \ni\{\infty\}$, then U is a (parabolic) end in the sense of Heins [3]. Denote by h the projection of U into the real axis (i.e. x-coordinate of the point in U), then h is a non-constant $H B$-function of U. And the full cluster set of h at the ideal boundary is clearly $[-1,1]$. Hence, the harmonic dimension of U is at least two. While, we can find a bounded continuous function h^{\prime} on $S(G)-K$ such that $h^{\prime}=H_{h}{ }^{U} / H_{1}{ }^{U}$ on U and
$h^{\prime}=0$ near K, where K is the closure of a regular neighbourhood of $\{\infty\}$ with $K \cap \bar{U}=\phi$. So, h^{\prime} is a continuous function on S^{*} the Martin compactification of $S(G)-K$. The Martin ideal boundary part $\Delta(U)$ of S^{*} belonging to U is the fibre over $[-1,1]$, and it consists of the continuum including minimal points precisely two. Furthermore there exist no minimal points over $(-1,1)$, since minimal points are accessible. But it is an open problem how many minimal points $\Delta(U)$ does have in more general situations.

Let $w=f(z)$ be a univalent function which maps G onto a vertical slit region such that β reduces to the origin and the images of γ_{n} lie on the imaginary axis symmetrically with respect to the origin. Then $(f(z))^{2}$ induces a non-constant $A B$-function f^{*} on U. Clearly f^{*} has a limit value zero at $\Delta(U)$. Thus we can not conclude that $A B$-function reduces to zero, even if it converges to zero uniformly on curves $\left\{C_{n}\right\}$ converging to non-degenerate Martin ideal boundary $\Delta(U)$. This shows that the extension of classical Koebe's theorem to open Riemann surfaces with Martin compactification does not hold under only assumption that C_{n} converges to a non-degenerate continuит.

Finally, we give an example modified from (III). Let $\beta=\{|z|$ $=1\} \cup\left\{z=r e^{i \theta} ; 0<\varepsilon \leqq r<1, \theta=0\right\} \quad$ and $\quad \gamma_{n}=\left\{z ; \varepsilon \leqq r \leqq 1-a_{n}, \theta=b_{n}\right\}$, $\gamma_{-n}=\left\{\bar{z} ; z \in \gamma_{n}\right\}$, where $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are sequences of strictly decreasing positive numbers converging to zero. Identify γ_{n} with γ_{-n} as in (III). Then we have a hyperbolic Riemann surface whose Green function G does not have compact level curves with $G(p)=r$ $(0<r \leqq-\log \epsilon)$.

Kyoto University

References

[1] Constantinescu, C., Ideale Randkomponenten einer Riemannschen Fläche. Rev. Math. Pures Appl. 4 (1959), 43-76.
[2] Constantinescu, C. and Cornea, A., Ideale Ränder Riemannscher Flächen. Springer (1963), 244pp.
[3] Heins, M, Riemann surfaces of infinite genus. Ann. of Math. (2) 55 (1952), 296-317.
[4] Ishida, H., Conformal sewings of slit regions. Proc. Japan Acad. 50(1974), 616618.
[5] Jurchescu, M., Modulus of a boundary component. Pacific J. Math. 9 (1958), 791-804.
[6] Kusunoki, Y., Some classes of Riemann surfaces characterized by the extremal length. Proc. Japan Acad. 32 (1956), 406-408.
[7] Kusunoki, Y. and Mori, S., On the harmonic boundary of an open Riemann surface, I. Japan J. Math. 29 (1959), 52-56.
[8] Nakai, M., Genus and classification of Riemann surfaces. Osaka Math. J. 14 (1962), 153-180.
[9] Sario, L. and Nakai, M., Classification theory of Riemann surfaces. Springer (1970), 446pp.
[10] Tôki, Y., On the examples in the classification of open Riemann surfaces (I). Osaka Math. J. 5 (1953), 267-280.

