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Introduction.

We are interested in the spectral theory of the generalized Sturm-
Liouville operator D,D,* which was first introduced by M. G. Krein
in the study of the oscillation of a string. Also, such an operator was
introduced by W. Feller in connection with the theory of one-dimen-
sional diffusion processes. In particular, M. G. Krein proved that a non-
negative Radon measure ¢ on [0, 00) is the unique spectral measure of

an operator D,D,* with a regular left boundary if and only if

0.1) \ j WD) o
e 141t
holds.

Our aim is to generalize the above result to include the case of
singular left boundaries such as boundaries of entrance type in Feller’s
sence.

Our problem may be divided into two parts. The first one is to
show the uniqueness of the operator D,D,* having the same spectral
measure ¢. The second one is to give some necessary or sufficient
conditions for ¢ to be a spectral measure of an operator D,D,".
It is possible to verify the uniquensess part, but it seems difficult to
give some necessary and sufficient conditions in such a simple form as
(0.1). We expect our results will be improved in a more complete
form.

The main tool in this paper is the theory of Hilbert space of entire
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functions developed by M. G. Krein and L. de Brange. Especially our
proof of the uniqueness is essentially based on the ordering theorem
of L. de Brange.

Now we explain the content of this paper. In §1, we will in-
troduce Krein-de Brange spaces (K-B spaces) and discuss their several
properties which we shall use in the latter sections. §2 is devoted
to show the existence of a spectral measure of an operator D,D,*
such that m is a Radon measure on (—oo, 7] (—oo<r<<+ 00) satisfy-
ing

0. 2) Xlilzl |z|m ((—o0, x]) =0.

In this section we will prove also that any non-negative K-B space can
be obtained by the eigenfunction expansion of an operator D,D,*
satisfying (0.2). In §3 we will treat the case more restricted than
(0. 2): namely, for some a

0.3) f(_w' L (@a=9m(ds) <+ oo

holds, which will be called, following W. Feller, as the case of entrance
type. We shall give there in an abstract form a necessary and sufficient
condition for ¢ to be a spectral measure of an operator D,D,*
satisfying (0.3). In §4 we will study necessary conditions and suffi-
cient ones more concretely than in § 3. We shall give there also some
critical examples.

Though one of our motivations is to study the properties of
transition probability densities of quasi-diffusion processes (for the
definition, cf. S. Watanabe [13]) determinded by the operator D,D,*
in connection with the spectral theory, we do not discuss, in
this paper, any probabilistic problems. As for the connection between
the operator D,D," and diffusion processes, we refer to It6-McKean
[14].

When the present paper was almost written, the author came to
know the existence of papers [161, [17] of 1. S. Kac, where our Theo-
rem 3.4, Theorem 4.1, Example 1 and Example 2 are also obtained.

The author wishes to express his sincere thanks to Professor S.
Watanabe who encouraged him to write up the paper and give him

several valuable suggestions.
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§ 1. Krein-de Brange space.

Each Sturm-Liouville operator can be transformed by its funda-
mental solutions to a multiplication operator in a pre-Hilbert space of
entire functions. In this section we will formulate such a space and
discuss its general properties. We begin with the definition of this space
in a little modified form of the original one. We call a pre-Hilbert
space L of entire functions an L space if and only if it satisfies the
following conditions:

(L. 1) Iffe€L, then its conjugate F(QQ) =f77) €L and has the same
norm.

(L.2) Let D(A)={¢pcL:i9(Q) €L} and ApQd) =l¢) for p&<
D(A). Then A becomes a symmetric closable operator.

(L.8) If feL and f(2)=0 for some z€C, then f(1)/1—zcL.

Note that when no nontrivial functions have zeros, L becomes one
dimensional.

We call a non-negative Radon measure ¢ on R a spectral meas-

ure of L when

L1 0= [Tiroreay

holds for any f&L. We denote by V the set of all spectral measures
of L. It is known that V is not empty and there exists a one to
one correspondence between F and the set of all “generalized” self-
adjoint extensions of A. Furthermore it is possible to characterize

the uniqueness of the number of the elements of ¥ by the function

(1.2 4Q) =sup{lf(DI*: feL (f, )1},

Lemma 1.1. The following statements are equivalent each
other;
(1) #V=1.

(2) 4(A) =400 for some 1€C\R.
(8) 4() =+oo for any A€ C\R.

The operator A is essentially self-adjoint if and only if £¥F=1.
It is interesting to study the other case of $¥V>1.
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Lemma 1.2. If 2V >1, then the completion H of L also consists
of entire functions and has the following properties:
(H. 1) If f€H, then its conjugate also belongs to H and has the
same norm.
(H.2) Put D(A) ={9pH: Q) EH} and ApQ) =A¢p(2) for ¢
D(A). Then A becomes a closed symmetric operator.
(H.8) If feH and f(2) =0 for some z€C, then f()/(A—=z) < H.
(H.4) Put 4Q) =sup{|fQ)|*:feH, (f.HX1}. Then 4 is locally
bounded in C.

We call a Hilbert space of entire functions satisfying (H. 1)~
(H.4) a Krein-de Brange space, which for simplicity we call a K-B
space.

(H. 4) implies that H has the reproducing kernel J;(x): i.e., f(1) =
(f, J)) for any f€ H. Notice that 4(1) =J;(1). Now choose a, b€ R
such that J,(a)=0, a=b and put

— Q=a)J. () — (] —
P(l)—(a—b)Ja(b)’ QW =0Q-6J,).

Then, from (H.2) and (H.3), we have

1 e
1.3) J(w) = i {PQM) —P)QW}.
We denote by H? the set of all L%integrable functions whose Fourier
transforms vanish in the left half line. For the space H? we refer
to P. L. Duren [1].

L. de Brange gave another definition of K-B space.

Lemma 1.3. Let E=P+iQ. Then E has no zeroes in the
closed upper plane and

1.4) |E)I>E@)

holds for any l€C,={Im1>0}. Moreover H coincides with the
set of all entire functions such that f/E, f/E belong to H*. Con-
versely, choose an entire function E having no zeroes in R and satis-
fying (1.4). If we define H by the above set, then H turns out
to be a K-B space with the inner product
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_ (™ f®9®
1.5 , ds.
( ) (f g) — IE(t) |2 12

From the above Lemma, we see that the space H is characterized
by the single function E.

One of the remarkable properties of K-B spaces is the ordering
relation between two spaces having the same spectral measure. This
fact suggests that we can give a parameter which determines the order
of such spaces. This is done in Theorem 2.10 of § 2.

Now we state the theorem proved by L. de Brange.

Lemma 1.4. Let H, H, be K-B spaces having the same spec-
tral measure and E,, E, be their characteristic functions introduced
in Lemma 1.3. Suppose log*|E,/E)| is dominated by a harmonic
Sunction on C,. Then either H, contains H, or H, contains H,.

We will consider the operator D, D,* so we introduce the notion
of a non-negative K-B space. A K-B space is called nonnegative
if and only if

(Ag, ¢) =0.

holds for any o D(A). We denote by ¥V, the set of all spectral
measures of H whose supports lie in R,. Next, we define &M, if
and only if =00 or £ is a holomorphic function on C\[0, ©) such
that Im 2(2)/Im 2=0 for any A€ C\R and £ is non-negative in (— oo,
0].

Then we have following

Theorem 1.5. Let H be a non-negative K-B space. Then
(1) 2V,=0 if and only if J,€D(A).
(2) Suppose 2V, =>1. Then 3V, =1 if and only if

sup{lo(D|*: (Ap, ) <1. pED(A)} =o0.

for some (therefore every) A€ C\R. This is equivalent to saying

that, for every positive a, J, has a negative zero.

Now we will consider the case of £F,>1. In this case, we can
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choose a pair {P, Q} of (1.3) such that

(1.6) P, Q are entire functions which are real-valued in R and
P(0)=1,0(0) =

1.7 P(2) +kQ(2) >0 for any t>0, 0<k<oo, and P(t) +kQ(2)

has a negative zero for any — oo<k<O0.

It is easy to show the uniqueness of the pair {P, Q} satisfying the
above conditions. Taking the above {P, Q} and fin H, we put R,(1),
S;(A) as follows.

R, (D) :<f(ﬂ)P(li‘:J;(l)P(/1) ,f(ﬂ)),

S,(3) = <f(ﬂ)Q(l) _{(X)Q(ﬂ) f(/l))
6V is called orthogonal when H spanns L*(g). In other words

g€ V is orthogonal if and only if ¢ corresponds to a self-adjoint extension
of A.

Theorem 1.6 Let H be a non-negative K-B space such that
8V.>1, then we have
(1) If D(A) is dense in H, the following equation defines a bijec-
tion between ¢€V, and QeM,

f@* |2 _R,Q) +53(/1)Sf(/1)
(.8 .([o, w t—2 7(de) = PQ)+20)0QW

Furthermore ¢V, is orthogonal if and only if 2 is a non-negative
constant.

(2) If D(A) is not dense in H, the orthogonal complement of
D(A) is spanned by the single element P and 6V, corresponds
one to one to QEM, such that

—l!)(l)P(l)i_( P)

(1.9 2 PQO+20Q0)

by the same equation (1.8). Furthermore ¢V, is orthogonal if

and only if Q is a positive constant.

Lemma 1.1 and 1.2 have been shown by M. G. Krein [2] as a
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generalization of the classical moment problems. Lemma 1.3 and 1.4
have been proved by L. de Brange [3]. Theorem 1.5 and 1.6 seem
to have published nowhere yet, but they can be obtained if we symme-
trize the non-negative K-B space and apply lemma 1.1 and 1. 2 to that
symmetric K-B space. We call a K-B space H symmetric if the
transformation f(1) =f(—21) is isometric in H. We omit the details
of the proofs.

§ 2. Spectral measure of D,D,’

Applying the general theory of § 1, we can show that there exists
a spectral measure of an operator D,D,* with a singular boundary.
Let —oo<I<r<<+o00. A non-negative Borel measure m(dx) on
[Z,7] is called a right inextensible measure if there exisist a non-
negative Radon measure m’(dx) on (I,r) such that, by extending
m’ (dx) on (I,7] so that m{r} =0, and for some interior point x=a
m’(dx) if r=+400 or m'[a,7r) =+ o0
m(dx) =
m’(dx) + 000 (dx) i |7|+m'[a,r) oo
where 0, is the unit measure at x=r. It is clear that the above
definition is independent of the choice of an interior point x=a. Simi-
larly we can define the left inextensibility of 7 (dx). This definition
is due to S. Watanabe.
Let m(dx) be a left inexensible measure on [/,a]. We assume
m((b,a]) >+ oo for some and so, for every b, I<b<la. Let ¢(x,2),
¢2(x, ) be the unique solutions of the equations:

@.1 oz, ) =1—12 j( a](s—x) ¢ (s, Hm(ds),
@2 e D=a—z=1| (=2l DmEs).

Put W) = lim &V a0 for <y,
z-l ¢l (‘ry
(2.3) Gi(z,y, ) =G (y, z, )
=g (¥, D) i (z, Y WQ) —¢u(z, D},

(2‘ 4) Gg(x, y, l) :G2(y’ zx, l)
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1
W

=00, D (@, D)~ g, D).

Then we can show that there exist measures ¢, g, such that

—a— 0:(d)

(2. 5) W) =a—an+ Lw) ndh,
I S FAcy
e ao—z“jco,m) e

where a, is the supremum of the support of m.

Then, we can state the well-known spectral theory as follows.

Lemma 2.1. For feL*(m), we put

@7 F= [ f@u@nmaa,

2.8) FW= | f@uEom@.
Then, we have
o) [, r@man= [ |7oraw,
L al [0, )
and when m{a} =0,
- j | F(8) ['62 ().
[0, )

By these relations L*(m), L*(¢,) and L*(0,) are unitary equivalent.

. ~ AACIIACH)
@ Gi(z,9,2) L R D
for i=1, and i=2 when m{a} =0.
1 _ g 01 (dt)
(3) m {ao} j;ﬂ, ) o (dt) ’al) ! j[n. o) t )

Lemma 2.2, For any given a, a, and 0, satisfying [po,«,0:(d¢)
/(1+4+8)<+oo, there exists a unique measure m corresponding to
01, by the relation of Lemma 2. 1.

These lemmas were established by M. G. Krein [4]. To our re-
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gret, the proof has been published nowhere yet. However, it is possible
to show the existence of the operator D,D,* with a given spectral
measure ¢; satisfying (0.1) if we approximate ¢, by discrete measures.
Moreover, the uniqueness of the operators D,D,* with the same
spectral measure follows directly from the ordering theorem of L. de
Brange.

I. S. Kac and M. G. Krein [5] have given a necessary and sufficient

condition for the support of ¢y, ¢, to be discrete.

Lemma 2.3. The spectum (i.e., the support of ¢, or 0,) of
D.D,* is discrete if and only if one of the following conditions is
satisfied.

(1) a—Il+m((,a]) <+ oco.
) I=—oo and

Iir_n |z|m ((—o0, x)) =0.

3) 4 m((l,a]) =4+ and
lin‘ll(x—l)m((l, x]) =0.

Taking the above lemma into consideration, we assume that m (dx)
is a right and left inextensible measure on [ —oo,7] and at the left
endpoint

2.9 lim |x|m ((—o0, x)) =0

T——00

is satisfied, which we will call #ype €. Fix an interior point a of
(—oo,7]. Let ¢, ¢, be asin (2.1), (2. 2). According to Lemma 2. 3,
W(2) is a meromorphic function on €. Hence there exist entire func-
tions P, Q such that P/Q=W and both P and Q have simple roots
only in [0, c0), P(£) >0, Q(¢)>0 for each <0 and P(0) =1, Q(0)
=0. Now set

(2.10) (@) =P hi(x, ) —QD) ¢:(x, 4).

Then it is clear that for each 1<{0, ¢; is a non-negative and non-
decreasing function.

Further we obtain the following
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Lemma 2.4. For each 1€C and z<r, ¢, L*(m, (—o0,x))
and

@1 @-D [ p0a®nd) —a@a @ o @n@
where ¢,* (x) = 1131 % {on(x+8) —pn ()}

Proof. The given integral (2.11) is equal to the sum of I; and

I, where

L=¢-D [ __p0aGmnw),

L=@-D [ a@a@mws.

We know that for each 1€ C\R, ¢ (x, 1) W(A) —¢.(x, 1) belongs to
L*(m, (—o0,a]) and

[ 0GnWEW =400} 66 DWD — kG, D) m @)
_Ww-WQ)
U=
Multiplying both sides by Q(x)Q(A), we have
L=P(® Q) —PQW.
On the other hand, integrating I, by parts, we get
L=0,(0)¢" () ~0 (D0, () + 02 (@9, (@) —pu (D) 9 (@).

By the definition of ¢, we have

0@ =P, ¢."(@)=Q().

Therefore we see that
L+L=0.(x)p." (@) —r (@) gt (2).

Applying the Fatou’s lemma to (2.11), we have

[ e @lm @ =006 g1 iy - B0 (2, (o

for each y€R. Thus ¢g,€L’(m, (—oo,x)) for each p=C. Since,
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for any [, the function f(L_,J(/:A(s)Mm(ds) is holomorphic with respect
to 4 and is dominated by a continuous function uniformly for [, it is
clear that the left hand side of (2.11) is a holomorphic function on
C with respect to x. Hence (2.11) holds for every A, u€C.

Here we note the following

Corollary 2.5. For each pcC

ot @==u| _ a@m@s,
hence
¢, (x) =0 (|| 7).
Proof. Since P(0) =1, Q(0) =0, from (2.10) we have
@o(x) =1.
Then put 1=0 in (2.11), it follows that

ot @ == _pms.

By the Schwarz’s inequality, we have

12
0" @Sl on (o0, 2D ([ lou ()
Therefore the assumption (2.9) implies that

|2 g, ()| =0 (1).

Let Ly(m) be the set of all elements of L*(n) whose supports

are contained in some right finite intervals. For f& L,j(m), we put

Fw=| _ fOeomds

which may be called a generalized Fourier transformation of f. We
first note f is determined by 7. To see this, we assume f(,u) =0 for
all #C. Since f& Ly}?(m), there exists a real number &, 5<r such
that f& L?*(m, (—oo, b]). Considering the boundary value problem of
D,D.,* on (—o0, 5] such that right derivatives vanish in both sides,
all ¢, satisfying ¢,* (&) =0 span the set of all eigen-functions. Thus
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it is clear that f=0.

Now we set
L={f:feL(m)},

and define an inner product by

Fo= | foiomae,

which is well-defined by virtue of the above argument.

Theorem 2.6. L becomes a non-negative L space.

Proof. It is easy to see that L is a pre-Hilbert space of entire func-
tions and satisfies (L.1). We have only to show that L satisfies
(L.2) and (L.3). To this end, we introduce another solution of the
equation D,D,* ¢=—A¢. FixieC. Taking some constants «, 3 such
that aQ) —BP () =1, we set

u(x) = (z, 1) —B.(x, 2).
Then
(2.12)  ¢." (@ (2) —gu () s (x)
={PW " (2, ) =R ¢ (z, D} e (x, 1) =B (z, 1)}
—APW i (x, D) — QM) e (z, D} {a* (=, 1) —Bee* (=, 1)}
={aQ ) =R} " (z, D ez, 1) — i (x, D " (x, D)}
=1.

Let K;(x,s) =K,(s,x) = (x)ga(s) for s<x. Then from (2.3) and
(2. 4)

Ki(x, s) =aQ)Gi(x, 5, ) —pP (D) G(x, 5, 2).

Since we assume now (2.9), Lemma 2.3 implies that G,, G, are
compact operators in L?(m, (—oo,a]). Hence sois K;. Thus we see

that for each fe€ L (m) and b<r.

[ K @rmEn <+oe.

Here we show that
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*) feLi(m), f()=0 then

K, feLy(m) and @(ﬂ) = %

Under the above conditions,

KS@= [ 0@a@f@n@+ [ h@a@fomn@

= j;r’ " {02 () 0n (&) — ¢ () 02, (5) }f (5) m (ds)

hence K,feL(m). Let f&L*(m, (—oo,b]) for some b<r. Then

we have

@-DETW=w-D | _ 4@a@n) | _a0fOm@s

+@=D [ a@e@ne [ 60rom@.

Integrating the first term by parts and substituting (2. 11) to the second

term, we have
@-DEFW= [ 160050 -0 On Ol @m@s),

+ 0. @)t () = (B) 0 (B)} F (D)
But in view of (2.12) and () =0, we find

P ~
(=K. f(w)=f(p).

Thus the proof of (*) is complete.

(*) tells us that (L.3) holds. Further, since the operator K,
is compact and self-adjoint in each Hilbert space L*(m, (— o0, b]), (1.2)
follows without difficulty.. Therefore L becomes an L space. Non-

negativity is obvious. Thus the proof is complete.

Now we can apply the theorems in §1. Let, for 6<r,

G, (x,s, b) =G, (s, x, b)

=2 (8) {or D) s (x) —n () 90 (B) }
and, for f&€ L}?(m),
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Gl @ = [ _ G s hfom@s.

Since we assume (2.9), the operator G is compact in each Hilbert
space L?(m, (—oo,b]). Further it is easy to see that, for fe& L*(m,

(——OO, b])y

P 1 - N
G’ f (w) =ﬂ—_7{f(/1) o (8) —fF (D). (B)}.
Then we have the following

Coroﬂary 2.7. Suppose that m is a Radon measure on (— oo,
r] of type C. Then there exists a unique measure ¢ on [0, )
such that for each f& L} (m), ’

im (G2, ) _ 7o
lim o () L,«,) i 7@

This ¢ is an orthogonal spectral measure of D,D,*: that is
[ JForean = |r@m@

for any fe Li(m) and L*(¢) and L*(m) are unitary equivalent by

this correspondence.

Remark 2.8. It is generally impossible to normalize our solution
¢ in a certain way. Hence we have to note that, for each entire
function S(1) with no zeroes, |S(¢)|’0(d#) also becomes a spectral

measure.

Remark 2.9. We can discuss analogously the case when the

measure m on (0, r] satisfies lim xm ((x,a]) =0 for some a<lr.
-0

Next we prove the converse of Theorem 2. 6.

Theorem 2.10. Let 0 be a non-negative Radon measure on
[0, o). Suppose a non-negative K-B space H is contained isometri-
cally in L*(6). Then 6 becomes an orthogonal spectral measure of

a measure m on (—oo,r] of type C.
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Proof. Since ¢ belongs to V,, we see from Theorem 1.6 that
there exists 2& M, such that for each feH,

RN SR) _ f IF@OF 5 ar).
P +2WQW  Ju= t-1

t._.
On the other hand, from (1.3)

AW =1 PWRW ~PDRW)

hence it is clear that Im P(1)/Q(4) >0 on C,. But, by the definition
of P, Q, we see that, for 1<C0, P(1)/Q(A) >0, so we have P/QeM,.

Hence, from the representation theorem of M, (see N. L Ahieéer
[6] p.127), we have that there exist non-negative constants a, and
measures y, on [0, o) such that

aw -t [ 5D
P() _ PRCD)
oW “t fo P

By Lemma 2.2 we introduce measures m,,m_ on [0,#7], (—o0,0]
corresponding to the spectral measures y,,y_ respectively. Here we

note that

r=a,+ y.ar) (d8)
) ¢
and
+ o0 = EQZ = j‘ P_f_@?)w.
Q) )
For, by the definition of P, Q, we see P(0) =1, Q(0) =0. Let m=
m,+m_. Then m is a right and left inextensible measure on (— oo, r].

Since the support of y_ consists of the zeroes of Q, the spectrum of

D..D,* is discrete. Therefore, from Lemma 2. 3,

lim |z|m ((— o0, x]) =0

T—co

holds.

By the way of the construction, it is easy to see that H is nothing
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but the Fourier transformation of the space L°(m_, (—o0,0]). For
»:(0) =P (1) and ¢,*(0) =Q(A), and the functions P, Q determine the
K-B space uniquely. It is clear that 9D (A) is dense in L?*(y_) if and
only if m_{—a_}=0, then H=L?*(m, (—0,0)). When m_{—a_} <0,

we have, from Theorem 1.6, that

—lim 1 4 lim LA
i —J2Q) e —2PQQ)

In view of Lemma 2.2 we see

m_{—a} = my{a.} m_{—a_} )
) ) l+a,m,{a,} 00 l+am_{—a_}-o0

where 0-00 =0, hence we have
PR S
H=L2<m, (—OO’O]) .

Now let y be the spectral measure of 7. Then we have, for any

feL*(m, (—o0,0]) (or L*(m, (—o0,0)).

f lf(t)|20-(dt) _R3) +2)S3() —lim (G\f, f)'
e —2 PR +2)QW) o 0, (B)

In view of Corollary 2.7, the left hand side is equal to f[o,m)lf(tﬂz
/(t—)v(dt). Hence |F(2)|%6(dt) =|f(2)|%(dt) holds for each f& L,
(m, (—o0,0]), which implies ¢=y.

Thus the proof is complete.

We remark that L. de Brange obtained the similar results for gener-
al K-B spaces (L. de Brange [3] Th.40). But it seems that he does

not state clearly what conditions are satisfied by the measure .

§ 3. Spectral measure of D,D," with left boundary of entrance
type.

In the previous section we have considered the case lim,,_.|x|m

((—o0,x£]) =0. In this section we strengthen this condition and try
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to study the inverse problems more generally than M. G. Krein.

Let m be a right and left inextensible measure on (— oo, 7].

When

(CAY) j‘(_m, alls] m (ds) < + oo

holds for some a<(r, we say that m is a measure of type E (entrance
type).

In the following, we will generalize the result of Krein (Lemma
2.1 and 2.2) to the case of the left boundaries of type E. In par-
ticular, the uniqueness of measures corresponding to the same spectral
measure is established in Theorem 3.6. We remark that I. S. Kac
[7] obtained the result corresponding to our Theorem 2.6 in the en-
trance case. Also, L. de Brange [3] proved Theorem 3. 4 for general
K-B spaces. However, we will formulate the problems in a little differ-
rent way.

From now on, we assume that 7 is a measure on (— o0, 7] of type
E. Let . ¢, be the solutions of the equations:

D =1-1 [ =2t Hms)

Go(z, 2) =a—z—2 Lﬂ@—xwz(s, Dm(ds).

where we define [z 43-m(ds) = — [a,z1-m(ds) for x>a.
Now set 7,(x) = [(ay(@—s)m(ds). Let N be the set of all entire
functions f satisfying
j*“’ sup log | f(D)]

. dr<+ oo,
7

Lemma 3.1. For each x. we have ;(x). ¢,* (x) €N, and we
can normalize it; i.e. Pp,(—o0) =1

Proof. Let 7, (x) =a—x and for each n=1,2 .-+, set

7 (@) = L,a](s—xm_l(s)m(ds).

Then we have, for n=0,1,2, -,
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@) S (a2 T2,
For, by the induction with respect to 7,

@IS [ 6= @910 "m@s
n (z,a]

!
<@ ([ 1o
n! (z,a]

a( )ﬂ+l
g(a—x)l(ﬁﬁ

holds. Since

Bz, D =2 (=) "7 @)

we have

| (2, ) |1= Z_Olll"lm(x)lé(d—x)e’“(’)“'-
Similary we have

9 (z, )| <1+|2| (@a—x)m ((— o0, a])e =@M,

Since

bt @D =1 gt Hm@s)

Pt (x, ) = —1+12 Lﬂ(pz(g, Dm(ds),
it follows that
|t (z, D ZNAm ((— o0, a]) {144 7 (2) €2}
|2t (2, ) |14 || 70 () €=M,
from the assumption (3.1), we have 7,(—00)<{+ oo, hence
(3.2) gt (=00, D|=Z[Am((—o00,a]) {1+ [A|7e(—o0) e 1},
|ge* (— 00, )| 1+ 4|70 (—o0) el =M,

Therefore, we can set
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PQ)=—¢:"(—0,2),QQ4) = —* (— o0, 2).
(see §2 as to the definition of P,Q.) As in §2, let
o (@) =PQ) i (z, 1) —Q ) ¢e(z, 2).

Then, from the Wronskian’s equality, we have
¢)~(— OO) = iil{l {¢2((I, }\) ¢l+ (x) l) _¢1 (‘ry l)¢2+ (x, i)} = 1' '

But by Corollary 2.5,

ot @==1|__ a@mna,

hence ¢;*(x) =0(m((—o0,x])) as x— — o0,
It is easy to see from (3.1) that [(_ o - m((—o0,s])ds<+ oo, so we

have

pw@=1-2{  @=9pOm@.

It should be noted that ¢, does not depend on the choice of fixed point
a. Further noting y,(—00) =0 as a——occ and ¢y, ¢, are entire func-
tions with respect to 1 for each fixed x of order less then 1/2, it is
obvious that ¢;(x), ¢;* (x) are entire functions of minimal exponential

type: that is, for each x,

(3. 3) lim SuP logle (@) | _ 0.

T r

On the other hand, from Lemma 2.1,
[ Ga(s, s, a)m(ds) = j (@=9m@)<+oo
(=, a] (—o,a
so we have
= 1
(3.4 Zl 7“< + o0

where {A,} is all the zeroes of P. From (3.3) and (3. 4) it is clear

that P can be written in the form:

- 1),
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A similar discussion will show that

0w - fifi- 1)

where M=m((—o0,a]). (Note P(2) =¢:i(a), QD) =@ (a).)
Thus we have ¢,(x), ¢:" () €N.

Remark 3.2. feN if and only if

s =M1 —;L)

n—1 n
for some {l,} such that > 7 ;1/|4,] <4 oo.

We take the above normalized solution as the fundamental solution

thereafter.

Let K be the set of all entire functions f of exponential type
which satisfy

jww og*lf ()| g 4 oo,
e 142

It is clear that KDN. Here we note the following lemma relating to

functions of class K.

Lemma 3.3. Let feK, and {1, be its zeroes. Then the limit
0 =1lim,,., 0 (1) exists, where 0(r) =2 1, 1<t 1/ Furthermore f can

be represented in the form

£ =Came™ lim [ (1— 4 )

r—00 |d,|<r An
where k€ R.
As for the proof, see B. Ja. Levin [8] p.250.

Now we can give a necessary and sufficient condition for ¢ to be

a spectral measure of m of type E.

Theorem 3.4. Let ¢ be a non-negative Radon measure on [0,
). Then ¢ is a spectral measure of a measure m on (—oo,7]
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of type E if and onlv if a non-negative K-B space whose elements
are of class K is contained in L?(7).

Proof. Let H be a non-negative K-B space whose elements are
functions of class K and which is contained in L*(¢). Taking P,Q
as in Theorem 1.6, we see that P, Q are entire functions of class K
and have their zeroes only in [0, o0). Let {1.}, {#.} be the zeroes of
P, Q respectively. Then, by Lemma 3.3 we have for some a, FER
and M >0,

P(z)=e‘“*ﬁ<1—7fn—>, Tl e

n=0 n=1 }»n

0w =—amen [if1- L) & <+

U

Since P, Q are real valued on R, itis necessary that a,3=0. There-

fore, we have

(1o A
P11 1)

QW =-aMl(1-4).
n=l Un

On the other hand, by Theorem 2.10 we see that there exisits a
right and left inextensible measure m which satisfies lim,,_.|x|m
((—o0, x]) =0 and whose fundamental solution ¢; and its derivative
0" (¢:7) coincides with P and Q at x=0. We get [(_ni(—5)m(ds)
<4 oco. For by Lemma 2.1, we have

f (—s)m(ds)=j G. (s, 5, 0)m (ds)
(—0,0] (=m0

=3 - <+oo,

A

From the same discussion as in Lemma 3. 1, it follows that ¢,(—oc0)=1.

Thus the proof is complete.

Next we proceed to the proof of the uniqueness. We start with

showing the following
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Lemma 3.5. Let m be a measure on (—oo,r] of type E. Let
0 be the spectral measure of m. Suppose a non-negative K-B space
H whose elements are of class K is contained in L*(g). Then for

some a<lr

PO
H=L*(m, (—o0,a))
T~
or =L*(m, (—o0,a]) .

Proof. Since, for each entire function f of class K, log*|f] has a

harmonic majorant on C,, we can apply Lemma 1.4 and obtain the
PO

inclusion relation between H and L*(m, (—o0,a)). (or L*(m, (— oo,

P L.
a]) ). Now it is easy to deduce the above lemma.

Theorem 3.6. Let m,, m, be two measures on (—oo,r;](i=1,
2) of type E. Suppose m,, m, have the same spectral measure ¢.

Then we have, for some hER. ri=r,+h and
my(dx) =m,(dx+1h) .

Proof. Fix b<r, such that m,((b—¢, b) >0 for any ¢>>0 and put
H=L(m,, (— oo, Iﬁ)\ Then H is contained in L?(g) and becomes a
non-negative K-B space whose elements are of K class. It follows from
Lemma 3.5 that, for some a<lr,, H=L*(m,, (— oo, a/))\ or L*(m,,

N
(—o0,a]) . We can suppose that m,((a—e¢, a]) >0 for each ¢>0.
Noting that D(A) is dense in H if and only if m,{a} =m,{b} =0, we

have

Lz(nllv [—00, ﬁ)\ =L2(7n2y (— oo, b/)\'

Let A=a—b and #,(dx) =m,(dx+/). Then

P P
Lz(ﬂl], (—Oo,a]) =L2(ﬁilv (—oo,a]) .

Since P/Q determines the spectral measure y_ when we start at
x=a, applying lemma 2.2, we obtain m,(dx) =#,(dx) on (—o0,a].

Since x=a is arbitrary, we have
m, (dx) =, (dx)

on (—oo,7). Thus the proof is complete.
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§ 4. Some suflicient conditions.

In this section we give some sufficient conditions for ¢ to be a
spectral measure of m of type E. Theorem 3.4 is the key to prove
the existence of m.

Let us denote by E the set of all spectral measure g corresponding

to some measure m of type E.

Theorem 4.1. Suppose

0 (dt) -
4.1) L"m)——(l P < 400,

Then ceE.

Proof, Let y(d?) =¢(d?)/(1+2¢)™ Then from (4.1), [r, v (d2)
<+ o0, By Lemma 2.2, there exists a non-negative K-B space H,
whose elements are of class K and which is contained in L*(v). We
can suppose dim H,>n. For, otherwise, v and therefore ¢, consist of

the sum of at most 7 point masses, and the theorem is obvious. Then,

put
- FD _pem, Fo(-1)=0
o =B rem ro -
for £=0,1, -, n—1.
and AN = [ IFOIv@)

- j £ () 'o (de).
[0, )

It is easy to see that H is a non-negative K-B space whose elements
are of class K. Therefore by Theorem 3.4 we see ¢ E. Thus the

proof is complete.

It is interesting to give some examples of ¢ &€ E whose density has
the order greater than any polynomial. From now on, we assume

0(d¢) is absolutely continuous and denote its derivative as o(2)

Theorem 4.2. Let pdt€E. Then it is necessary
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4.2) j log™0 (@) g, 4 oo,
00 1422

Proof. We note if fe K, =0, then

I“ugV@Hw<+w
—o 142

(see P. L. Duren [1]). From Theorem 3.4, there exists a non-negative

K-B space H whose elements are of class K and which is contained in

L*(pdt). 1If we take f€ H and f=:0, then f€K, and
[ _roremu<e
Since p(2) =[f()*0 ()| /1 f(2)|* we have

j log*p (). dz <+ oo,
e 144

Thus the proof is complete.

Now we examine the sufficiency of the condition (4.2). For this

sake, we need the following

Lemma 4.3. Let y(t) be a non-negative function such that

—o 148

Let, for k=0, K,={f€K :f is an entire function of exponential
type less than or equal to k. Put H.=K,NnL*(vdt). Then we see
that H, becomes a K-B space contained in L?(vdt).

Proof. By the definition, it is clear that H, is a L svace. As

in Lemma 1.1, we set
4Q) =sup{f(Q)I*: fe H, (f, f)=1L.
We first show 4(7) <4 oo. Let

1 (=~ 1424 logy(®)
h =exp—— Sl It - SO NCAY | 3
W=expy o ) o701 14s

Since for f&€ K, we have that
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log| FQ) |<ky+ 2 [T _Loglf®] 5
T J-= (t—2)'+y

where 1=x+iysC,. (see B. Ja. Levin [8] p. 240). For feH,, it
follows that

4.3)  loglf(NhQ[*<2ky+2 j " logyOIFBOL 4,
nJ-e (E—2)'+y
By the Jensen’s inequality, wé find that
o 2
log| F() (1) P<2ky +log 2 [ 2OIFOF 4,
LA R (D) P<2ky +log 2 [~ 2OV OL
Therefore, we have
oo 2
l h A ZSleZkvj‘ l)(t) If(t)l dt.
F@r@rsLen [ 2OTOL
Here we put 1=1¢, then it is easy to see that

Ne< o o
F@ P Zei o

Hence we have

A< <4

N=<———— oo,

T rlh@

and it may be concluded by Lemma 1.1 and 1. 2 that the closure H, in
L*(ydt) becomes also a K-B space. However, from (4.3), we have

that for fe H,,

2 vy (* logtv@®If@A)I
loglF@ A 'S2ky+ 2 [~ LEVETOL 4,

Noting that log* x={x, it is clear that the above inequality is valid
also for f€ H,. Hence, for each f H,, we have

v [ logy®)1F®) [ ~logy(®)
(.9 loglf )| Shy+ L [ 1e2OF D020 g,

Skt 2 [ 8 OU Loy @] g,
= e _ 2 2 :
2n t—x)+y

Therefore, log|f|, log|f| have harmonic majorants in C,. Hence,
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by the M. G. Krein’s theorem (M. G. Krein [9]), we see that
feK,., for some £ =0. However, noting the inequality (4.4), it is
easy to see that #<<k. Thus we have H,=H,, and the proof is com-
plete.

Applying the above lemma, we have

Theorem 4.4. Let p be a non-negative function on [0, o0o)
such that

llog 0@ 4, o
4. 5) j;o,w) Ry (1+2) dz<+ oo,

Then o satisfying either of the following conditions belongs to E.
+oo
) j exp (=T (£)) p (&) dt < + oo

Sfor some continuous and non-decreasing function T such that

["IO 4 son

P

(2) logp(#) is uniformly continuous on [0, o).
Proof. To apply Lemma 4.3, we symmetrize the measure pd¢ in

the form
() =2[t]p(#).
Then, from (4.5), we see that [Z,|logy(&)|/(Q+)dt<l+ 0. We
must show H, contains a non-zero element. We first assume that
o satisfies (1). If we put T'(¢) =T(#). then (1) implies that
r’ exp (=T (£))y (&) dt< + oo.

where T'(—¢) =T (¢), [**T(¢)/£+dt<+ o0 and T is non-decreasing.
Therefore there exists a non-zero f&€ K, for each £>0 such that

F@lenn(TO) <1,

(As for the proof, see [10]). Hence we have
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[Trom®as [ e (-TOw@d<o,

so fe L*(ydt). It follows from Lemma 4.3 that H, is a nontrivial
K-B space contained in L*(ydt). Here we set H={f() =FQ") : F
€H, and F(1) =F(—2)}. Then it is easy to see that H is a non-
negative K-B space whose elements are of K class and which is con-
tained in L?(pd?). From Theorem 3.4, we have pd¢€E.

Next we assume (2). Similarly as the above discussion, we put
y(2) =2|t|p(£*). We have only to show H, is nontrivial. For this
sake, we put yo(¢) =1+ (v(¢))? then from (4.5) and (2), logy, is.
uniformly continuous on R and satisfies [, log v (2)|/ (1 + £*) de< + oo.
For such y,, L. de Brange showed that there exists a nontrivial
function f such that fEK, and [“.|f(&)v(2)]|?de<+ o0, (see L. de
Brange [3] p. 285). Since vo=>1, we have [=.|f(#)|?d¢<+oco. Then
from Boas [11] p. 98, we see that f is bounded on R. Therefore, we

have

[Cir@m@dsssapiror [ 1rone <+ .

Thus f€e H,. The proof is complete.
Finally we give some examples of spectral measures of E.

Example 1. For each 1/2<<a<l. there exists a spectral
measure odt of E, such that

r log*0(®) 4, 4 oo,
oo 1+tl+a

Proof. Taking any sequences {4,}, {#.} such that

O0<<ptr <A ptg 0+,

and

1t
n=1 ln

we set
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EQ=PQ)+iQQ), E@ =P +i._€£§&_

Then it is not difficult to see that E, has no zeroes on closed upper
half plane and satisfies

|Eo(R) > Ea (D) |

for each A€ C,. Hence by virtue of Lemma 1. 3, there exists a K-B
space H, associated with E, Let H={f(}) =f(1"%): FEH, FQ)
=F(—2)}, then it is clear that E becomes the characteristic function
of H used in Lemma 1.3. Since we have, for each Fe H,,

_ (" For
@0 [ rar

it is clear that, for each f&H,

12

EN=}, O sepire 0wt

Let o(2) =¢£7/2{tP(£)*+Q(®)*, then we have pd¢ec V, (H). By the
definition, however, P and Q belong to N, so H is a non-negative K-B
space whose elements are of class K. Thus it follows from theorem
3.4 that pd¢ is a spectral measure belonging to E. Now choose the

sequences {A.}, {#.} such that P and Q are entire functions of order

a(1/2<a<1) and
#{}»n: a2} ~2"

as t— 4+ o0o. Then, there exists a positive constant such that, for every

sufficiently large ¢,
|P(2) |<exp(—ct®),
Q@) |<exp(—ct®)

hold. As for the proof, see E. C. Titchmarsh [12]. It is easy to see
that, for such a {P, Q}, p satisfies

10g+0(t) d
08 PAY) 4t =+ oo,
j;oym) 1+tl+“ &0
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Example 2. There exists a spectral measure ¢ of E such that
4.6) j exp(—ts)0(ds) =+ o0
[0, c0)

for any t>0.
proof. Let {1.}. {#.} be two sequences such that
0 <pta et 00+,
and

2l

=1 A,

We put P(Q) =1I2.:(1—2/4,) and Q(A) = —Al]a-1(1—2/#.). Then, as
we have seen in the proof of Example 1, there exists a non-negative
K-B space H associated with E(2) =P (1) +:Q (1) whose elements are of

class K. From Theorem 1.6 there exists an orthogonal spectral meas-

ure ¢ of H corresponding to 2= +oco. The support of ¢ consists of
the zeroes of Q:i.e. {0, x,}. Let

0(dt) =5 0,010, (A1),

where 04 (d¢) is the unit mass at ¢=a and 4, =0. Here we calculate

G.. According to the reproducing property of J,

PR - WP

=Jx (l)
= (Jx, Jx)
[0, ) (t—-2)*

for each A€ R. Let A=p,. Then we have
'_Q, (ﬂn)P(ﬂn) =0, {Q’ (ﬂn)P(ﬂn)}z
and hence

S
Q' () P(a)’

To show (4.6), we choose special sequences {4}, {#.}. We set
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a=n

t=nt4 2

n
where ¢, is the unique solution of the following equation:

sin %e,,=exp{— (7 +e)}.

It is easy to see that 1>>¢,—0. Then P (1) =sin 71"%/72"% so we have,
for each n>0

< . . Sn 172
<|sing(n*+=2
n

[P (4n)

<sin le,..
2

By the definition of &, we find
lP(ﬂn) |§exp(_n,un)'

Let R =Q)/—2=1I2-1(Q—=23/p,). Since n<p,'*<m+1, it
follows from Boas [11] p. 161 that R is an entire function of exponen-

tial type 7 and satisfying
R(z) =0(lz|™)

as |x| >+ oo. According to the Paley-Wiener’s theorem, there exists

a function f€ L*(dx, (—x,n)) such that

RQ) = J‘(_”' ")f(.r) exp ({Ax)dx.

It implies that | R’ (¢)| <zl fl;, and hence there exists a positive constant

¢ such that
Q" (@) |=ct'”

holds for each £>1.
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Combining the estimates for P(u,) and Q' (#,), we have
1
anjﬁ exp (n/,),
for every 7z=1; 2, ---. Thus we have

exp{(n—12) ttn} = + 0

13 1
[ _exe(-t9o@o=2 -1
[0, ) C n=1 /ln

for every £>0. The proof is complete.

We remark that Example 2 shows us that there exists a quasi-
diffusion process with entrance boundary and with a transition probability
density P such that

P(¢t, —o0, —00) =+ 00

is valid for every #>0.

Remark to Lemmma 4.3. L. D. Pitt [15] also proved Lemma 4.3
by a different way from ours. If we regard p as spectral function

of a stationaly random process, the condition

j " Hog v 4, 4 o
o 142

implies that the process is purely non-deterministic.

Remark to Theorem 2.10 and Theorem 3.4. It is necessary
that the K-B spaces stated in the above theorems should possess at least
two spectral measures. For this sake, it is sufficient that these K-B

spaces are strictly contained in L*(q).
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Added in Proof ; Professor M. G. Krein pointed out to the author that Lemma 3.1 is
not valid in general. Theorem 3.6 essentially depends on this Lemma. However, it
is possible to correct the proof by modifying the ordering theorem. The correction
will be published in this Journal soon. In Theorem 3.4 we have to use the term of
minimal exponential type in place of class K. As its consequence, Theorem 4.2 is
not true. Here the author wishes to thank Professor M. G. Krein.



