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Introduction.

W e  are interested in the spectral theory o f th e generalized Sturm-

Liouville operator D„,Dz.+ which was first introduced by M. G. Krein
in the study of the oscillation of a string. Also, such an operator was
introduced by W . F e lle r  in  connection with the theory o f  one-dimen-
sional diffusion processes. In particular, M. G. Krein proved that a non-
negative Radon measure 6  on  [0, 00) is the unique spectral measure of
an operator D„,Dx+ w ith  a  regular left boundary if and  only if

(0. 1) 6(dt) 
+ co

10, -) 1+ t

holds.

Our aim  is to generalize the above result to include the case of
singular left boundaries such as boundaries of entrance type in Feller's
sence.

Our problem may be divided into two p a rts . T h e  firs t one is to
show the uniqueness o f th e  operator D„Dx+ having the same spectral
measure a. The second one is  to  g ive som e necessary o r  sufficient
conditions for 6  t o  b e  a  spectra l m easu re o f a n  operator D„,D.,±.
I t  is  possible to  ve r ify  the uniquensess part, but it seem s difficult to
give some necessary and sufficient conditions in such a simple form  as
( 0 . 1 ) .  W e expect our results w ill be im proved in  a  m o re  complete
form.

The m ain tool in this paper is the theory of Hilbert space of entire
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functions developed by M . G. Krein and L. de Brange. Especially our

proof o f th e  uniqueness is essentially based o n  th e  ordering theorem

o f L .  de Brange.
Now  w e expla in  the content of this p a p e r . In  § 1, w e  w ill in -

troduce Krein-de Brange spaces (K-B spaces) and discuss their several

properties which we shall u se in  th e la tter sections. § 2  is devoted

to  show  the existence of a  spectral measure o f a n  operator D„,1),+

such that m  is  a Radon measure on ( — 00, r] ( —  co < r<  +  co) satisfy-

ing

(0 .2 ) l i m  ( ( —  0 0 ,  x ]) =O.

In  this section we will prove also that any non-negative K-B space can

b e  ob ta in ed  b y  th e  eigenfunction expansion of an operator D,„D.,±
satisfying (O. 2). In  § 3 w e  w ill trea t the case m ore restricted than

(O. 2 ): namely, fo r  some a

(0 .3 ) ( a  — s) m (d s) < + co .
oo, a]

holds, which will be called, following W . Feller, as the case of entrance

ty p e .  We shall give there in an abstract form a necessary and sufficient

cond ition  for 6  t o  b e  a  sp ec tra l measure o f  a n  operator D„,Dx+
satisfying (O. 3 ) .  In  § 4 we will study necessary conditions and suffi-

cient ones more concretely than in  § 3. We shall give there also some

critical examples.

Th ou gh  o n e  o f  o u r  motivations is  to  s tu d y  the properties of

transition probability densities o f quasi-diffusion processes (for the

definition, c f. S . Watanabe [13]) determinded b y  the operator D„,Dz+

i n  connection  w ith  th e  sp ec tra l th e o r y ,  w e  d o  n o t  discuss, in

this paper, any probabilistic problems. As for the connection between

th e  operator D„,D.,+ and diffusion processes, we refer to 11(1-McKean

[14].
W hen the present paper was almost written, th e author came to

know the existence of papers [16], [17] of I. S . Kac, where our Theo-

rem  3. 4, Theorem  4. 1, Example 1 and Example 2 are also obtained.

T h e  author wishes to express his sincere thanks to Professor S.
Watanabe who encouraged him to write up th e  paper and give him

several valuable suggestions.
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§ 1. Krein-de Brange space.

Each Sturm-Liouville operator can be transformed by its funda-
mental solutions to  a  multiplication operator in a pre-H ilbert space of
entire functions. In  this section we w ill form ulate such a  space and

discuss its general properties. We begin with the definition of this space
in  a  little modified form  o f th e  o r ig in a l o n e . W e  c a ll a pre-Hilbert
space L  o f entire functions an L  space if and o n ly  i f  it satisfies the
following conditions:

(L . 1 )  If  f  E L , th e n  its  c o n ju g ate  1(2) = f ( I )  E L  an d  h as  th e  saine
norm .
(L . 2 )  L e t  .0(A ) = { goEL : 2v (2) E L I  a n d  /490 = A ço ( A )  f o r yoG
2 ( A ) .  T h e n  A  becom es a  sy m m etric  c losab le  operator.
(L . 3 )  I f  f e L  a n d  f ( z )  =0  f o r  so m e  z E C ,  th e n  f ( 2 )  /  —zEL.

N ote  that when no nontrivial functions have zeros, L  becomes one
dimensional.

W e  ca ll a  non-negative Radon measure on R  a spectra l meas-
u r e  o f  L  when

( f  , f ) = I f (dt)

holds fo r  any fE  L .  W e denote by V the set of a ll spectral measures
o f  L. It is  k n ow n  th a t V is not em pty and there exists a  o n e  to
one correspondence between V  an d  th e  se t o f all "generalized" self-

adjoint extensions o f  A .  Fu rtherm ore it is  possible to characterize
the uniqueness o f th e  number o f th e  elements o f  V  b y  the function

(1.2 )=  s u P  {If : f  E f ) <1 1

L em m a  1 . 1 . T h e  f o llo w in g  s tate m e n ts  a r e  eq u iv alen t each
other;
(1) V = 1.
(2) 4 (2 )= + c o  f o r s o m e  2E C\R .
( 3 ) (A) oo  f o r  an y  A E C\R.

T h e  operator A  is essentially self-adjoint i f  a n d  o n ly  if V=1.
It is interesting to study the other case of t V>.1.
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Lemma 1. 2. I f then  the  com ple tion  H of  L also consists

o f  e n tire  f u n c tio n s  a n d  h a s  the  f o llo w in g  p ro p ertie s:
(H . 1 )  I f  f E H ,  th e n  its  c o n ju g ate  also  b e lo n g s  to  H  an d  h as  the
sam e  norm .
(H . 2 )  P u t  g ) (A )  = -{ço E H  : Ago (A) E H }  a n d  Av (A) =2ç912) f o r  vE
2 ( A ) .  T h e n  A  becom es a  c losed  sy m m etric  operator.
(H . 3 )  I f  f E H  an d  f (z )  = 0 f o r  som e zE C ,  then  f(2)/ (2—z) E H .

(H . 4 )  Pu t 4 (2) = suP G O lz  ic  E H , (f, .  T h e n  4  is  lo c ally
bounded  in  C .

W e  c a ll a  H ilb e r t  space o f  entire functions satisfying (H. 1)
(H. 4 )  a  Krein-de Brange space, which fo r  simplicity we call a K-B
space.

(H. 4 ) implies that H  has the reproducing kernel J1 (,'t): i.e., f (2) =
(f, J1) fo r  any fE  H .  Notice t h a t  (A) = J 2 (2 ).  Now choose a, b E R
such that Ja(a)\  0 , a * b  and put

p (A) ( A  — a) J a GO Q = (A — b) b  (A )  •(a — I a ( b ) '

Then, from  (H . 2 )  and (H. 3 ) ,  w e  have

(1. 3)1 - {P Q — P Q COI .
—

W e denote by H2 the set o f all L2-integrable functions whose Fourier

transforms vanish in  th e  le ft h a lf line. F o r  t h e  space 112, w e  refer

to  P. L. D uren  [1 ].
L .  de Brange gave another definition o f K-B space.

Lemma 1 . 3 .  L e t  E = P  i Q .  T h e n  E  h as  n o  z e ro e s  in  th e
c losed  upper p lan e  an d

(1 .4 ) IE M )I> IE  I

h o ld s  f o r  a n y  A E C+ = {Tin A > 0 }  M o reo v er H  c o in c id e s  w ith  the
s e t  o f  all  e n t ire  f u n c t io n s  s u c h  th at  f/E, I /  E  b e lo n g  to  H 2 . Con-
v ersely , choose a n  en tire  f u n c tio n  E hav ing no z eroes in  R  an d  satis-
f y i n g  (1 .  4 ) .  I f  w e  d e f in e  H  b y  th e  ab o v e  s e t ,  th e n  H  tu rn s  out
to  b e  a  K -B  sp ac e  w ith  th e  in n e r p ro d u c t
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(1 .5 )( f , g ) =  f+- f w g ( t ) d t .
—  IE  (O r

From  the above Lemma, we see that the space H is characterized

b y  the single function E.
O n e o f th e  remarkable properties o f  K-B spaces is the ordering

relation between two spaces having the same spectral measure. This

fact suggests that we can give a parameter which determines the order

o f  such spaces. Th is  is done in  Theorem 2.10 o f  § 2.
N ow  w e state the theorem proved by L . de Brange.

Lemma 1. 4. L e t  H1, H, b e  K -B  sp aces h av in g  th e  sam e spec-
tral m e as u re  a n d  E1, E, b e  th e ir ch arac te ris tic  f u n c tio n s  in tro d u ced
in  L e m m a 1. 3. Suppose lo g + 1E2/E1l is  d o m in ate d  b y  a  harm onic
f u n c t io n  on C .  T h e n  e i t h e r  H , c o n tain s  H , o r  H , c o n tain s  111.

W e  will consider the operator D.D.,+ so we introduce the notion

o f  a  non-negative K-B space. A  K -B  s p ac e  is  c alle d  nonnegative
i f  a n d  o n ly  i f

(Ago, go) >0 .

holds f o r  an y  çoE  2 ( A ) .  W e  d en o te  b y  V , th e  s e t  o f  a l l  spectral

measures o f  H  whose supports lie in R .  N e x t, w e  d e fin e  S2E M + if
and only i f  S2 = 00 o r  52 is  a  holomorphic function on C \ [0, oc) such

that I m  (A) /Im  fo r  any 2  C \R  and S2 is non-negative in  ( — co,

0].
Then we have follow ing

Theorem 1. 5. L e t  II b e  a  non-negativ e  K -B  s p ac e . T h e n
(1) = 0  i f  a n d  o n ly  i f  J0 2 ( A ) .
(2) Suppose T h e n  # V +=1  i f  a n d  o n ly  i f

su p {k 0 ()2 : (A 4 0 ,4 0 ).1 . gP E 2 (A )} = °° .

f o r  so m e  ( th e re f o re  e v e ry )  A E C \R .  T h is  is  e q u iv ale n t  to  s ay in g
th at , f o r  ev ery  p o s it iv e  a , Ja h as  a  negativ e  z ero .

Now  w e w ill consider the case of it V , > 1 .  In  this case, we can
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choose a  pa ir -{P , Q } o f  (1. 3) such that

(1. 6) P , Q  a r e  e n tire  f u n c tio n s  w h ic h  are
P (0 )= 1 , Q(0) = 0.

(1.7) P ( t )  + k Q ( t )> 0  f o r  a n y  t>0,
h as  a  n eg ativ e  z e ro  f o r  a n y  — 00<k<0.

re al-v alu e d  i n  R  an d

D O ,  a n d  P  ( t )  k Q (t )

It is  easy  to  show  the uniqueness o f  th e  p a ir  IP , Q l satisfying the

above conditions. Tak ing the above {P, QI and f  in H, we put R,-1),
SA/I) as follows.

R 5(.) _ (f (11) P — f  (A) P (10 
 ,  f

—

s f(A) _ (f (11) (2 — f  Q 0 0
,  f ( a ) ) .

—

6 E  V i s  c a l le d  orthogonal w h e n  H  spanns L2 (6) . In  other words

6 E  V is orthogonal if and only if 6  corresponds to a self-adjoint extension

o f  A .

Theorem 1. 6 L e t  H  b e  a  non-negativ e K -B  space such  that
V +>1, t h e n  w e  hav e

(1) I f  2 ( A )  is  dense  in  H, the f o llow ing  equation  de f ines a  bijec-
tion b e tw een  6 E  V +  an d  9 E  M

(1. 8) 10,. )  t — A
(t) I2  6  (dt) 

R 1 )  + S2 GO S  
P  +  S 2  GO ( 2 GO

Fu rth e rm o re  6 E  V +  i s  o rth o g o n al if  an d  o n ly  if  9  i s  a  non-negativ e
constant.
(2) I f  2 ( A )  i s  n o t  d e n s e  in  H , t h e  orthogonal com plem en t o f
2 ( A )  is  s p an n e d  b y  th e  s in g le  e lem en t P  a n d  6 E  V +  corresponds
o n e  t o  o n e  to  ,,„() E M +  su c h  th at

(1 .9 ) urn — ,1S2 WPM  ( p, ID)

P (A) + f 2 GO Q (A)

by  th e  sam e  e q u atio n  (1 .  8 ) .  Fu rth e rm o re  6 E  V  is  o rth o g o n al if
a n d  o n ly  i f  9  i s  a p o sitiv e  co nstan t.

Lemma 1. 1 and 1. 2 have been shown by M . G .  Krein [2] as a
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generalization o f the classical moment problem s. Lem m a 1. 3  and 1. 4
have been proved by L .  d e  B ra n g e  [3 ] . Theorem  1. 5  and 1. 6 seem

to  have published nowhere yet, bu t they can be obtained if w e  symme-
trize th e  non-negative K-B space and apply lemma 1. 1 and 1. 2 to that

symmetric K -B space. W e  c a ll a  K - B  space I I  sy m m etric  if  th e
transform ation f  (A ) — >f ( —  A ) is  isom etric in  H .  W e omit the details

of the proofs.

§  2 . Spectral measure of D.D.,:h

Applying the  general theory of § 1, we can show that there exists

a spectra l measure o f  a n  operator D.D.,+ w ith  a  singular boundary.

L et —  o c< /< r< +  00 . A  non-negative Borel measure m (d x ) on
[1 ,r] is called a  r igh t inextensible measure i f  there ex isist a non-
negativ e  R adon  measure m ' (d x )  o n  ( 1 ,r)  such that, by extending
m ' (d x )  o n  (1 ,r] so that mfr}  =0 , and  f o r some interior po in t x = a

m (dx ) = im ' (dx ) i f  r =  c o  or m ' [a, r) = c o

(dx ) co  • (r)(dx ) if I 7-1 + m' [a, r) <co

where ON  is  th e  u n it  measure at x = r .  It  is  c lea r  th a t th e  above

definition is independent of the choice of an interior point x = a .  Simi-
la r ly  we can define th e  le ft  inextensibility o f m ( d x ) .  T his definition

is  due to  S. Watanabe.
L e t m (d x ) be a  le ft inexensible measure o n  [I, a]. W e  assume

m ( ( b ,  a ]) >  c o  fo r some and so, for every b , 1 < b < a .  Let 01(x, A),
02(x, ,1) be the unique solutions of the equations:

(2. 1) 0, (x, ,1) =1—  A (s — x) (s, A ) m  (ds) ,
(x,

(2. 2) 02(x, A) =a— x— A (s— x)02(s,A )m (ds).
(.. a ]

Put W  (A) = lim   (x, A) a n d  fo r  x <y ,
0,(x ,

(2.3)G ,  (x , y, A) G ib e ,  x ,

=-0,(y , A) 10, (x, A) W —02(x, el)}

(2.4)G 2  (x , Y, A) = GE (Y, X, 10
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02(Y , A) l (x, A) —
W ( A )

0 2(

Then w e can  show that there exist measures ô ,  62 such that

6(2 .5 )=  a— cz0+ L 1 (dt) 
c.>

1 1 2 16 2 ( d t )  (2 .6 ) — — Am { o} —
TV (A) — (a — a0) a0 -1 t (t — A)

where ao is  the supremum of the support of m.

Then, we can state the well-known spectral theory as follows.

Lem m a 2 . 1 . For f  L 2 ( m ) ,  we put

(2 .7 ) 1(2)f  f  ( x )0 ,(x , A) (dx ),
El, a ]

(2 .8 )f  GO =  f  f  (x) 02 (x , A) m (dx) .
[4 a ]

Then, w e have

(1) L a3 lf  (x) 12 m (dx) = f W I' (dt) ,
to, - )

and when m {a} =0 ,

=  f  I f  (Or 200.[0, .)
By these relations L 2 (m ), L 2(61) and L2 (62) are unitary equivalent.

(2) Oi(x (pi(y, t)G i(x , y , A) =  10,.) ' t) (dt)
t —A

f o r  i = 1 ,  and i = 2  when m {a} =0.

(3)
1 _ 6 ,

m {a,} 10,
(dt) , 1= L,.)6 i(dt) 

t •

Lem m a 2 . 2 . F o r  any given a , a, and  61 satisfying f to, 006 i(d t)
/ (1 + 0 < + 0 0 , there exists a  un ique measure m  corresponding to
61, by the relation of Lemma 2 . 1 .

These lemmas were established by M . G . K rein  [4]. To  ou r re-
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gret, the proof has been published nowhere y e t .  However, it is possible

to  show  the existence of the operator D „,l).+  w ith  a  g iven  spectral

measure 61 satisfying (O. 1) i f  we approximate 61 by discrete measures.

M oreover, th e  uniqueness o f  th e  operators Dm lilz+ w ith th e  same

spectral measure follows directly from the ordering theorem o f  L .  de

Brange.

I. S. Kac and M. G . K rein  [5 ] have given a necessary and sufficient

condition for the support of 6,, 6, to be discrete.

Lemma 2. 3. T h e  spectum ( i .e . ,  th e  s u p p o rt  o f  (r, o r  62) o f
D„,Dx+ is  d is c re te  i f  a n d  o n ly  if  o n e  of  the  f o llo w in g  conditions is
satisf ied .

(1) a — l+ m ((l,a ])< -1 -0 0 .

(2) =  —  00 and

urn l xim((— 0 0 , x)) =0.
X , — co

(3) m ((l, a ])  =  c o  and

lim (x — l)m ((l , x]) 0.

Taking the above lemma into consideration, we assume that m (dx)
is  a  right and left inextensible measure on [ — no, r ]  and  a t  the left

endpoint

(2. 9) Ern Ix' m ( ( — x )) = o
X  —

is  satisfied , w h ich  w e w ill ca ll t y p e  C .  F ix  an  in terior point a  of
( — 00, r ].  L e t 01, 02 be as  in  (2 . 1 ), (2 . 2 ). According to Lemma 2. 3,

W (2 )  is  a meromorphic function on  C .  Hence there exist entire func-

tions P ,Q  such that P / Q = W  and both P  and Q  have sim ple roots

only in  [0 , 00 ), P  (t )> O , Q (t ) > 0  f o r  each t < 0  an d  P (0 ) =1 , Q (0)

= 0 .  N o w  set

(2. 10) ( x )  =P(A)Vh (x , A) - Q 02(x, A).

T h en  it is  c lea r th a t f o r  each  A <O , 0  i s  a  non-negative and non-
decreasing function.

Further we obtain the following
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Lemma 2.4. F o r  ea ch  A E C  a n d  x < r ,  go 2E L2 (m, (— oc , x ) )
and

(2. 11) (p— A) j (s)go,(s)m(ds) = go,(x),go,+ (x) — go,+ ( x )  ( z )

where gox+ (x) =lim 1— {go,(x+ c) — go, (x)} .
0,0 s

P r o o f .  T h e  given integral (2 . 1 1 )  is equal to the sum of L  and

/2 where

11= (it — A) 
fm ,  a] 

g o (s )  go, (s) m (ds) ,
(-

12= Ca —  2 )  f  g o ,( s ) g o ,( s )m (d s ) .
(a, x ]

W e know that f o r  each 2 E  C\R, sbi(x, 2)1V (A) — 52(x, 2 )  belongs to

L2 (m, (— co , a ] )  and

_co,a3{01(s, 11) WW(fl) —02(5, 1)1 {01(s, 'O W (A) —Ø2(s, A)} m (ds)

W (a) —W (A) 

Multiplying bothboth sides by Q ( ) Q ( A ) ,  w e have

11— P(,t1)Q P Q (/1).

On the other hand, integrating 12 by parts, we get

= go„ (x)v , (x )  — ,(x )ç 9 ,+ (x )  d-çox(a)40p± (a ) —  (a) ço,± (a ).

By the definition of ço„, w e have

V ( a )  P (P) , p +  (a ) = Q Ca) •
Therefore we see that

-I- /2 = v p (x )ço ,+  (x ) (x )ço ,+  (x ) •

Applying the F a to u 's  lemma to (2 . 1 1 ) , we have

(s) 12m Os) <  Oço,‘ ( r) +  ( z )  _avp+ (z)
811 0,a

ÇC)P

fo r  each p E R .  Thus v„ E L2 (m, ( — 00 , X ) )  f o r  each it E  C .  Since,
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for any 1, the function f ,,,x0 „ (s )0 (s )m  (ds) is holomorphic with respect
to  a  and is dominated by a  continuous function uniformly fo r  1, it is
clear that the left hand side o f (2 . 1 1 ) is  a holomorphic function on
C  w ith  respect to  g. Hence (2. 11) holds fo r  every A, p e  C.

H ere  w e  note the following

Corollary 2 .  5 .  F o r e ac h  g E C

q)„+ (x) — g f ço„(s)m (ds),

hence

9A+ (x ) =  0  (  x  -1/2)

P roo f. S in ce  P (0 ) =1 , Q (0 ) =0 , from  (2 . 1 0 ) w e  have

ç90 (x )  =1.

Then put A = 0  in  (2 . 1 1 ), it follows that

ç ( x ) —
(--

(s) m (ds) .
-,x]

B y  the Schwarz's inequality, we have

149/.4" (x)I 5_- Lai — 00, xi)1/2( f kop (s)12m (ds) 
1/2

Therefore the assumption (2. 9) implies that

lxi1121S0/,+ (.0  =  0 (1 ).

Let L02(m ) b e  the set o f all elements o f  L 2 (m ) w hose supports
are contained in  som e righ t fin ite  in terva ls . For fE  L02 (m ), w e  put

Ca) = f f  (s)yop(s)m (ds)

which may be called a  generalized Fourier transformation of f . We
first note f  is determined by y. To see th is , w e assume f (it) = 0  for
all /LE C. Since fE L02(m ), there exists a  real num ber b ,  b < r  such
that fE L 2 (m , ( —  co , b]). Considering the boundary value problem of
D r ,D x +  on ( — 00, b ]  such that right derivatives vanish in  both sides,
a ll ço, satisfying yo,' (b ) = 0 span the set of all eigen-functions. Thus
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it is clear that f =  O.

N o w  w e  set

L =( m ) }  ,

and define an inner product by

(f ,"d ) =  f f (s) g (s) m (ds),

which is well - defined by v irtue o f th e  above argument.

Theorem 2 .  6 .  L  becom es a non - negativ e  L  space.
P ro o f .  It is easy to see that L is a pre-Hilbert space of entire func-

tio n s and satisfies ( L .  1 ) .  W e  have o n ly  to  show  that L  satisfies

(L . 2) and ( L .  3 ) .  To  th is  end, we introduce another solution of the

equation D .D x+  =  — ,10. Fix A E C .  Taking some constants a, 8 such

that aQ(A)  — 19P(2) = 1 , w e  set

02(x) =capi(x, A) — i302(x, A).

Then

(2. 12) y9x+ (x) 0, (x ) —  (x )0 , (x )

= {PM 01+ (x, A) — Q (A) Ø2  ( x , {a0i (x, A) — 802(x, A)}

— IP(A)0,(x, A) — Q GO 02 (x, A)} {a01+ (x, A) — 802+ (x, A)}

laQ (A) — 13Q (A)} (x, A)(P2(x, A) —01(x, A)02+ (x, A)}

=1.

L e t Ka(x, s) = x) =“1.),(x)ço1(s) for s x. T h e n  f r o m  (2 . 3 ) and

(2. 4)

K,(x, s) aQ(A)Gi(x, s, 2.) ■313 (A) G 2 (X , s, A).

Since we assume now  (2 . 9 ), Lemma 2. 3 im plies that G1, G, are

compact operators in  V (m , ( — Do, a]) . Hence so is K A .  Thus we see

that fo r  each fE  L o2(m ) and b<r.

f(—oo,b31-KXf 
(X )  I 2 M  (d X )  <  D ° .

H ere w e show that
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f  e L02 (m) , (,1) = 0  then

K , f  L o 2  (m )  and K x  f — (P) •
11— A
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Under the above conditions,

K , f  (x )  =  f (x) ço, (s) f (s) m  (ds)  f (s)v, (x ) f ( s )m  (d s )
(- 00, .v] [ S r  r)

= f  10, (s) (x )  —  (x )  ç o ,  ( s )}  f ( s )m  (d s )

hence K if E Lo2 (m) . L et fE  L2 (m , (—  0 0 , b]) f o r  some b  < r .  Then

w e  have

(fi — A) K, f (p) =- (fi — A) f „ (x) ç o ,(x) m  (dx) f ç 9, (s) f (s) m (ds)
(_ co, 19] (—  x ]

(fi —  A) is yo, (x )yo,(x )m  ( d x )  f  0, (s ) f (s )m  (d s)  .
[., b] (x, b]

Integrating the first term by parts and substituting (2 . 11) to the second

term, w e  have

— A) K , f (p ) = (0, (s) ço,+ (s) — ço „ (s) Ø (s)} ç o ,(s)m (ds) ,
(-‘0,b]

( b )  X+ (1 ) X (1)

But in v iew  o f  (2 . 12 ) a n d  (A) = 0 , we find

(11 — A) K x  f = .

Thus the proof o f  ( * )  is complete.

( * )  tells us th a t (L . 3 )  holds. Fu rther, s ince th e  operator Ko
is compact and self-adjoint in each H ilbert space L2(m, ( — oo, b ] )  ,  (1. 2)
fo llow s w ithou t d ifficu lty . Therefore L  becomes a n  L  space. Non-

negativity is obvious. Thus the proof is complete.

N ow  w e can  app ly the theorems in  § 1. L e t, fo r  b < r,

G ,(x ,  s, b) =  G ,(s, x , b)

ço, (s) fço, (b) Ø (x) — ço, (x) ç  (b)}

and, for f L o2  (m ) ,
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G x b f (x ) =  ,b 3 G ,(x  , s , b ) f ( s )m  (d s )  .

Since we assume (2. 9), the operator G 1 6  i s  com pact in each Hilbert

space O m ,  ( — cc, b ] ) .  Further it is easy to see that, fo r  f e  L 2  (m ,

(—  co, b ] ) ,

Gxb f — 1 {1(11)49x (b) —  (A )S  (11)}
— A

Then  w e have the following

Corollary 2. 7. S u p p o se  th at n i  is  a R ad o n  m easu re  o n  ( - 0 0 ,
r ]  o f  t y p e  C .  T h e n  th e re  e x is t s  a  u n iq u e  m e asu re  6  o n  [0, 00)
s u c h  th at  f o r  each  fE L 0 2 (m ),

Jim (G x b f , f )  _ 
Jco

If(t)12 ( d o
btr v ,  c o )x(b) t —  A

T h is  6  i s  an  o rth o g o n al sp e c tral m easu re  o f  D „,D : th a t  is

104)
( )2 6 (dt) If (x) (dx )

f o r  any  fE L 0 2 (m )  a n d  L 2 (6 ) a n d  L 2 (m )  a re  u n itary  eq u iv alen t b y
this correspondence.

Remark 2. 8. It is generally impossible to normalize our solution

va in  a  ce rta in  w a y . H en ce  w e  have t o  note  that, f o r  each entire

function S W  w ith  n o  zeroes, 1S(t)1 za(dt) also becomes a spectral

measure.

Remark 2. 9. W e can discuss analogously th e case w hen  the

measure n i  o n  (0, r ]  satisfies lirn xm (C -r, a ])  = 0  fo r  some a < r .
X - .  0

N e x t w e  p ro v e  th e converse  o f T heorem  2. 6.

Theorem 2. 10. L e t  6  b e  a  n on -n eg ativ e  R a d o n  m e asu re  on
[0, c o ) .  S u p po se  a non-negativ e K - B  space  H is contained isom etri-
c ally  in  0 6 ) .  T h e n  6  becom es an  o rth o g o n al sp e c tral m easure  o f
a  m easure  m  o n  ( - 0 0 , r ]  o f  ty pe  C .
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P roo f. Since 6  belongs to  V+, w e see from  Theorem  1. 6 that

there exists ,Q E M , such that fo r  each :1" H,

R ; GO 2 GO _  f I f (012
P (A) +  (A) Q (A) J[0, t —

6 (dt) .

O n the other hand, from  (1. 3)

1 
x.J (A) - {P  Q — P Q  GO}

A - 2

hence it is clear that Tm P (A) / Q(A) > 0  on C + .  But, by the definition

of P, Q , w e  see  th a t, fo r  2<0, P (A) /Q(A)>O, so we have P/Q M+.

Hence, from the representation theorem o f  M+ (see N . I. Ahiezer
[6] p. 127), w e have that there exist non-negative constants a ,  and

measures y ,  on  [0 , oc ) such that

,f2 ( A )  =a+ 10, co)
v + (dt)
t — A

P (A) — a _ +
(2 GO Lo,)

v _(dt)
t — A

By Lemma 2. 2 we introduce measures m+, m _  o n  [0, r ] ,  ( —  00, 0]

corresponding to the spectral measures v+, y_ respectively. Here we

note that

Y+(dr = a+ +
1

t)
0,-) t

and

P+ —  (0) — (dt)
Q(0) L  

_
oo) t

For, b y  the definition of P ,  Q , w e see P (0 ) =1 , Q (0 ) -=  0 . L e t  m =
n  +  m_. T h e n  m is a right and left inextensible measure on  ( — co, r ] .
Since the support of y _  consists o f th e  zeroes o f  Q , the spectrum of

D,,Dx+ is discrete. Therefore, from  Lem m a 2. 3,

iirn 1XIM CX), I D  = 0

holds.

B y  the w ay of the construction, it is easy to see that H is nothing



438 Shin-ichi Kotani

but the Fourier transformation o f  th e  space .12 (m  , (—  0 , 0]). For

0 (0 ) =  P (A ) and 0+ (0) -=--Q (A ), and the functions P, Q  determine the

K -B space uniquely. It is clear that 2 ( A )  is  dense in L2(y_) if and

only i f  m {— a _} =- 0 , then H=1,2 (nz, (— 00 , 0 ) ) .  When ni_ {— a _} < 0,
w e  have, from  Theorem  1. 6 ,  that

1m_ { — a_} —

= lim 1Q
—22(2) 1-* c's /113 GO •

In  v iew  o f  Lemma 2 . 2  we see

m + {a m_ {— a_}m_ {— a _} —
1+ a+m,..{,a+} • 0 0  1  a_m_{—a_} .00

where 0. on = 0 , hence we have

= 1,2 (m , ( —  ,  0 ]) .

N o w  le t y  be the spectral measure o f  m .  Then we have, for any

f  -L2 (m, (— 0 1 ) (o r  L2(ni, ( — 0)) .

JE0, t —
(t)12 ( d t )  R ( A) GO _E rn ( G x V ,  

P +  GO (2 GO b tr ÇO), (b )  •

In  v iew  o f Corollary 2 . 7 , the le ft hand side is  equal to  Sco,cotif(t)12

(t — /I) v (d t) . H e n c e  I  W I  (dt) -=1:f(t)12V (dt) holds fo r  each f E  2

( n i ,C > 0  0 ]) , which implies 6=v.

Thus the proof is complete.

We remark that L. de Brange obtained the similar results for gener-

a l K -B spaces (L . de B ra n g e  [3 ]  Th. 4 0 ) .  But it seems that he does

not state clearly what conditions are satisfied by the measure m.

§ 3 .  Spectral measure o f 1:1„.1),+ with left boundary of entrance

type.

In  the previous section w e have considered the case lim „ ,1 x  m

x ] )  = 0 ,  In  this section we strengthen this condition and try

(P , P )
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to study the inverse problems more generally than M . G . Krein.
L e t  m  be a  righ t and  le f t  inextensible measure o n  ( — 00, r ] .

When

(3. 1)
fc- 00, a] 

I m (d s ) <  o o

holds for some a < r ,  we say that in is a measure o f ty pe  E  (entrance
ty pe).

In  the follow ing, we w ill generalize the result o f  Krein (Lemma

2. 1 and 2. 2) to  the case of the left boundaries of type E .  I n  par-

ticular, the uniqueness o f measures corresponding to the same spectral

measure is established in  Theorem  3. 6. W e rem a rk  th a t I. S . Kac
[7 ]  obtained the result corresponding to our Theorem 2. 6 in  the en-

trance case. A ls o , L . de Brange [3 ] proved Theorem 3. 4 for general

K-B spaces. However, we will formulate the problems in a little differ-

rent way.

From  now  on , w e assume that m is a measure on  ( — 00, r ]  of type

E .  L e t (pi, (p, be the solutions of the equations:

ibi(x , A) = 1  —  f (s — x) ( s  ,  A) m (ds)
a ]

02 (x , A) =a—x— A f  ( s  —  x )  02 (s, A) m (ds) .
(x, a ]

where we define f (x, m  (d s) =  — m (ds) fo r  x > a .

Now set Ta(x) = f  a ]  (a  s) in (d s) . Let N  be the set of all entire

functions f  satisfying

f +- su p log  f GO I
IAI=r  d r<  + co.

r2

L em m a 3. 1. F o r e ac h  x ,  w e  hav e  0 , ( x ) ,  (pa+ ( z )  E  N , an d  w e

c an  n o rm aliz e  i t ; i .e . (I) (  0 0 )  = 1 .

P r o o f .  L e t 7/0(x) = a —  x  and for each n = 1 , 2 •••, set

(x ) f (s — x) , ( s )m  (CIS)
(z, a]

Th en  w e have, for n = 0 , 1, 2, •••,
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171. (x)1 (a —
r a (x )n

n!

For, b y  the induction w ith  respect to  n,

+1(x)1 1 (s — (a — s) ra(s)nm(ds)
n!

<(a  —  x) ra (s)fldra (s)
n! a]

<  (a — x)T a ( x ) " 1
( n  1 ) !

holds. Since

CO

02 (x, A) =  (  —  A) (x) .n =0

w e  have

0 3

102 (X , A) E  ,11177.(x)1<( x)_ e r .
n=0

c.)121.

Similary we have

kbi(x, 1,11 —x)m ((— 00, apera(z".

Since

01+ (x , A ) =A 01(s, A) m (ds)
(., a3

02+ (x, A ) = — 1+A  ( 2(s, (ds) ,
.,

it follows that

101+(x, )01-1Aini((-00,a]){1+1Aira(x)e }

102+ (x A)1 - 1 +IA17 a(x) er.()121

from  the assumption (3. 1) , w e have ya,(— 00) < 00, hence

(3 .2 ) 101+ (— c>°, A) n  ( (  —  00 , a]) {1+ lAlra( — 00)er"--)Ial.

102+(— 0°, A)I

Therefore, we can set
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P (A) = —02+ (— °Q, A), Q  (A) i+  ( co  2)

(see § 2 as to  the definition o f  P, Q . )  A s  in  § 2, let

go, (x ) -= P(A )0 ,(x , A) — Q M  0 2 ( x ,  A).

Then, from  the Wronskian's equality, we have

g ( —  co) = lim -(02 ( (x, A) 01+ (x, A) — 01(x, A)02+ (x, A)1 =1.
X  — 0 0

But by Corollary 2. 5,

go, + (x ) =  —  A f go, (s) m (ds),
(- cc, xl

hence go2+ (x ) = 0 (m ( ( — co, x] ) )  as x — >—  co,
It is  easy  to  see  from  (3. 1) that f m (( —  00, s]) ds< 00, so we

have

go, (x) =1— A f (x— s)v,(s)m(ds).
z]

It should be noted that  Ç 91 does not depend on the choice o f fixed point

a. Further noting r a (  —  0 0 )  - - > o  as a— >—  00 and 0„ 02 are entire func-

tions with respect to  A fo r  each fixed x  o f order less then 1/2, it  is

obvious that gOA (x) ( x )  are entire functions of m inimal exponential

type: that is , fo r each x,

(3 .3 )l i m   sup logl go, (x)10 .
r—ooa

O n the other hand, from Lemma 2. 1,

G2(s, s, a) m (ds) = (a —  s )m (d s )< +  oc
 o o ,  a]

so w e have

-(3 .4 )E   ,  1 < +
n  =1  An

where (A„} is  a ll the zeroes o f  P .  From  (3. 3) and (3. 4) it is clear
that P  can be written in the form:

P (A) =f1(1— -A  ).,,=1\ /
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A  similar discussion w il l  show that

Q G O  -  MA -a ( 1 - A )
n = 1 /in

where .111-= m ( ( — 00, a ] ) .  (Note P ( L )  ço,(a) , Q(2) = 1 + (a ) . )

Thus w e have 0 (x ), 0 +  (x ) E N.

R e m a rk  3 . 2 . f E N  i f  a n d  o n ly  i f

f  (A ) = 7:11:( 1 —  ,n)

fo r  some {2„} such that L;,°=, 1/ /1.1<+00.

W e take the above normalized solution as the fundamental solution

thereafter.

L e t  K  be th e  s e t  o f  all entire functions f  o f  exponential type

which satisfy

c+ - log+ If (x)I d x< +  cx '•j _  1 + x '

It is  c lear that K D N .  H ere  w e note the following lemma relating to

functions o f  class K .

L em m a 3 . 3 . L e t  fE  K ,  an d  {A„} b e  its  z e ro e s . T h e n  the  lim it

O W  e x is ts , w h e re  6 (r) = L1 2 . Kr 1/,t. F u rt h e rm o re  f  can

b e  re p re se n te d  in  th e  f o rm

f  = C A e  l i m  I I  (1 — )
r— >co Ian Kr /In

w h e re  k  R .

A s  fo r  th e  proof, see B . J a . Lev in  [8] p . 250.
N ow  w e can  g ive  a  necessary and sufficient condition for G  to be

a spectral measure o f  m  of type E.

T heorem  3 . 4 . L e t  6  b e  a  non-negativ e R ad o n  m easu re  o n  [0,

c o ) .  T h e n  6  i s  a  s p e c t ra l  m easu re  o f  a  m e as u re  m  o n  ( - 0 0 , r ]
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o f  ty p e  E  i f  a n d  o n ly  if a  non-negative K-B  space whose elements
a re  o f  class K  is contained i n  L2 (6).

Proof. L e t  H  be a  non-negative K-B space whose elements are

functions o f  class K  and which is contained in  1,2 (6). T ak in g  P ,Q
as in Theorem  1. 6, we see that P, Q  are entire functions o f  class K
and have their zeroes only in  [0, on). L e t  { A , ,  t a n }  be the zeroes of

P, Q  respectively. Then , by Lemma 3. 3 w e  have for some a, 3 E R
and M >0,

P ( A )  =  e i "  ( 1 —  A ) ,  Ê 1  <  0 0 .
n=0 \ An / n = 1  An

A )  E  1Q(2)
„,

A m e 's x  (1_  ,   

= 1 /1 n n=1 fin

Since P, Q  are real valued on  R , it is necessary that a, 3 -=-0. There-

fo re , w e  have

P (A) pi (1  ,

Q  = fl (1 — A ).
77. 1 fin

O n the other hand, by Theorem  2. 10 we see that there exisits a
r ig h t  a n d  le f t  inextensible measure m  which satisfies xlm
( ( - -  co, x ] )  =0  and whose fundamental solution Ç02 and its derivative

çO,1+ (ÇO2-) coincides with P  and Q  at x = O . W e  g e t  f (_,,q(—s)m(ds)
<  o n .  F o r  by Lem m a 2. 1, w e have

( —  s)m (ds) = s, 0) in (ds)L ,n]
- 1—E < + C)°.

n=1

From  the same discussion as in Lemma 3. 1, it follows that (I) A( 0 0 ) = 1 .

Thus the proof is complete.

Next w e proceed to the proof o f the uniqueness. We start with

showing the following
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Lemma 3. 5. L e t  m  be a  measure o n  ( - 0 0 , r ]  o f  type E .  L et
o- b e  th e  s p e c tral m easure of m . S u p p o se  a non-negative K -B  space
H  whose elements a re  o f  class K  is contained in  L 2 (o - ) .  Then f o r
some a < r

H— ( — 00, a ) )

o r — ( — co , a ] )  .

P ro o f .  Since for each entire function f  of class K, l o g l f l  has a

harmonic majorant on C  w e can  app ly Lem m a 1. 4 and obtain the

inclusion relation between H  and L2(m, ( - 0 0 ,  a ) ) .  (o r  L2(m, (—

a ] )  ). N ow  it is  easy to  deduce the above lemma.

Theorem 3. 6. L e t  m,, m, be tw o m easures on ( — co, r i ] ( i =  1,

2 )  o f  type E .  Suppose mb m2 h av e  th e  sam e s p e c t ra l  measure 6

T h e n  w e  hav e, fo r  s o m e  h E R , r1=r2+h an d

7 7 7 1 ( d x )  = M 2 (d x  h )  .

P ro o f .  F ix  b < r ,  such that m2 ( (b b) > 0  for any e>0 and put

H=L2(m2, ( — co, b ] )  .  Then  H  is contained in L2(6 ) and becomes a
non-negative K-B space whose elements are of K class. It follows from

Lemma 3. 5 that, f o r  some a < r i ,  H=1,2(m1, (— c>, a ) )  o r  L2(m1,

( — Do, a ] )  . W e  c a n  suppose that m1((a-- 6, a])  > 0  f o r  each s>0.
Noting that g ( A )  is  dense in H  i f  and only if m, {a} = m,{b} -= 0, we

have

1,2 (m„ [—  Do , a ] )  =  (m 2 , (—  co ,  b ]) .

L e t h= a —b and firii(dx) = n z , (d x + h ).  Then

1,2 (m , ( 0 0 ,  a ] )  = L2 (frz,, ( co , a ])

S ince P / Q determines the spectra l measure p _  w h en  w e sta rt a t
x = a ,  applying lemma 2. 2, we obtain mi (d x ) =  in i(d x ) o n  ( — co, a].

Since x -=- a  is arbitrary, we have

2711 (dx) -= M i(dx)

o n  ( — co, r1). Thus the proof is complete.



and

—  

{no_ (1F+(.12)).:FEHo,F00(-1) = 0

f o r  k = 0 ,1 ,••• ,n -1 .

( f ,  f )  =
[

IF (t )12v(d t)
0.00)

= (Olio- (do .

[ 0 , 0 0
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§  4 .  Som e sufficient conditions.

In  this section we give some sufficient conditions for 6  t o  b e  a

spectral measure of m  o f typ e  E . Theorem  3. 4 is  the key to prove

the existence of m.

Let u s denote by E  the set of a ll spectral measure 6  corresponding

to some measure m  o f  type E.

T h eo rem  4 . 1 .  Suppose

(4 .1 ) 6 (dt)o o
SE.,..)(1+0"

T hen 6EE.

P r o o f ,  L e t  v (dt) 6 (dt)/ (1+ t)21'. Then from  (4. I ) ,  f[0,,,,,)v(dt)
<  0 0 .  By Lem m a 2. 2, there exists a  non-negative K -B  space H ,

whose elements a re  o f class K  and which is contained in  / 2 (v ) .  We

can suppose dim i f o > t t .  For, otherwise, v  and therefore 6 , consist of

the sum o f  at most n  point masses, and the theorem is obvious. Then,

put

It is easy to see that H  is  a  non-negative K-B space whose elements

a re  o f class K .  Therefore by Theorem  3. 4 we see 6 E E .  Thus the

proof is complete.

It is interesting to give some examples of ô. .E  whose density has

the order greater than  any polynom ial. F rom  n ow  o n , w e  assume

6 (d t ) is absolutely continuous and denote its derivative as p (t )

T h eorem  4 .2 .  L e t  p d tE E .  T h e n  it  is  n e c e s sary
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(4. 2) Sk g + 1 9 ( t )   dt< 00.
J[0.-)1 + t2

P ro o f .  W e  note if f E K ,  f*O , then

r+ log if(t) 1 d t<  o o
t2

(see P. L. Duren [ 1 ] ) .  From Theorem 3.4, there exists a  non-negative
K-B space H  whose elements a re  o f class K and which is contained in

L 2  (p d t ) .  I f  we take f  E H  and f*O , then f  E K , and

SD, co
l f  ( t )  1 2  p  ( t )  d t

<  ° Q

Since p ( t ) ( t ) 2  ( t )  /  f  ( t )
 Z  w e  have

10
log+p (t) dt< + co.,..) 1+ t2

Thus the proof is complete.

N o w  w e  examine the sufficiency of the condition (4. 2). For this

sake, we need the following

Lemma 4. 3. L e t  v ( t )  b e  a  non - n e g ativ e  f u n c tio n  su c h  th at

f 'log v d t <
1-Etz

L e t ,  f o r  k > 0 , K 0 =  { f E K  ; f  i s  a n  e n t ire  f u n c t io n  o f  ex ponential
ty p e  le s s  th an  o r  equal to  k} . P u t  H 0= K, n L2 W O . T h e n  w e  s e e
t h a t  H, becom es a  K - B  space  con tained  i n  L2 (w it).

P ro o f .  B y  the definition, it is clear that IL  is  a  L  SDa Ce. As

in  Lemma 1. 1, w e  set

=sup{f(A) 12 : f ( f ,,  f  )  11.

W e firs t show 4 ( i )  <  co. Let

h  (A )  
=  

e x p   1 .

 f  -  1 + a log v(t) dt.
27ti t —) 1+ t2

Since for fE  K 0  w e  have that
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logI f (A)1<ky + Y loglf ( t )  I  d t
(t - x)2 + y2
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where A= x  i y E C + .  (see B . Ja . Levin [ 8 ]  p. 240) . F o r fE  Ilk , it
follows that

(4. 3) log I f h 12 log y (t) If ( t )  12 d t
i t  - -  (t - x)2 + y2

By the Jensen's inequality, we find that

log If (2)h (2) I 2_2ky + log v (t) I f (t) 12  dtf
i t — x ) 2 + y 2 •

Therefore, we have

f  h  (A) 12<  Y  e z k y  f °   (t )  I f  ( t )  12 
71,

— x ) 2 +  y 2  

dt

Here we put A =i, then it is easy to see that

I f  ( i )  12 e2k I f  lI 2.
g lh (0 1 2

Hence we have

(i) <  e2k <  co

in ( i )

and it may be concluded by Lemma 1. 1 and 1. 2 that the closure Irk in
/2 ()At) becomes also a  K-B space. However, from  (4 . 3 ), w e have

that for f  Hk,

log 1 f (2)h(A)12<2ky +
f

log+v (t) I f  (0  1 2  dt
.it -- (t—x)2-1-y2 

Noting that log + ..r___x, it is clear that th e  above inequality is valid

also for f i -lk. Hence, fo r  each f e  i i k ,  w e have

(4. 4) log If(A) I < k y  Y
.

log+v I f  (t ) 12 — log y ( t )Y .
( t  — x)2 ± y2

dt.

<ky + y  ro log+v (t) If ( t ) 12+ I log p (t) I  dt.
27r J-- (t — x)2 + y2

Therefore, log If I, l o g  I I I  have harmonic m ajorants in C + .  Hence,
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b y  t h e  M .  G .  K re in 's  theorem  ( M .  G .  K re in  [9 ] ) , w e see that

f E K , , ,  fo r  some k' > 0 .  However, noting th e  inequality (4 . 4 ), it is
easy to see that k ' < k  Thus w e have Hk=- Hk, and the proof is com-

plete.

Applying the above lemma, we have

Theorem 4. 4. L e t  p  b e  a  n o n -n e g ativ e  f u n c tio n  o n  [0 , co)

su c h  th at

(4. 5) J
I log p(t)1 

,-) t112 (1+  t) dt<+ 
co

T h e n  p  s at is f y in g  e ith e r of the f o llo w in g  conditions b e lo n g s  to  E .

(1)
r e x p  (  — T (t ) )0 ( t ) d t< d -

f o r  som e continuous and non-decreasing  f unc tion  T  su c h  th at

J+
-   ( t ) c o .

t "

(2) log 0 ( t2 )  is  u n if o rm ly  co n tin u o u s on  [0 , co).

P roof. To apply Lem m a 4. 3 , we symmetrize the measure pdt in
the form

(t) 2It p ( g ) .

Then, fro m  (4 . 5 ) , w e see  th a t f7„1 log v ( t )  / (1 + t2) d t <  co. W e

m ust show  H k  contains a  non -zero  e lem en t. W e first assume that

p  satisfies ( 1 ) .  I f  w e  put 1 "  ( t)  = T  (g ) , then  ( 1 )  implies that

f  le x p  (—  (0) v (t) dt< +  0 0 .

where T ( - t) = T (t) , f + -T (t)/ t2 .d t<  + co  and T  is non-decreasing.

Therefore there exists a non-zero f K,, f o r  each k > 0  such that

I f ( t ) I  exp  T '(t)) < 1.
2 —

(A s  fo r  th e  proof, see [ 1 0 ] ) .  Hence we have
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f  If (012v (t) exp (— T (o )v (t )d t<  + 00 ,

so ,fE V ( v d t ) .  It fo llow s from  Lem m a 4 .3  that H ,  i s  a  nontrivial

K-B space contained in  L2 (vd t). H e re  w e  s e t H =  {AA) =  / 3.1/2) F

E H , and F ( 2 )  F ( — 2)1 . Th en  it is  easy  to  see  th a t H  is  a  non-

negative K-B space whose elements a re  o f K  class and which is con-

tained in  L2 (pdt) . From Theorem  3. 4, w e  have pdt E E.
N ex t w e  assume ( 2 ) .  Similarly as the above discussion, w e  put

v (t) =  21 t p (t2) . W e  have on ly  to  sh ow  H A , is nontrivial. F o r  this

sake, we pu t vo ( t )  1 +  ( y ( t ) ) 2 ,  th en  from  (4 . 5 ) a n d  (2 ) ,  log vo is
uniformly continuous on R  and satisfies f .1%,1 log vo (t)I / (1+ t2) d t<  o o .
F o r  such v0, L .  d e  Brange sh ow ed  th a t th ere  ex is ts  a  nontrivial

function f  such that f  E l i ,  and f % if  ( t ) y o ( t )1 " d t< +  co. ( s e e  L .  de

Brange [3] p. 2 8 5 ). Since vo l, we have f  .I f  ( t )1 " d t< +  00 . Then

from  Boas [11 ] p. 98, we see that f  is bounded on R .  Therefore, we

have

f (t) 12 v (t) suP If W I "  .01 f (t) v 0 (t) Iv' dt < +

Thus f Hk. T h e  proof is complete.

Finally we give som e exam ples of spectral measures of E.

Example 1 .  F o r  e a c h  1 / 2 < a < 1 , t h e re  e x i s t s  a  s p e c tral
m easure p d t  o f  E . su c h  th at

log+p(t) dt — + co.
1+ t'+'

P ro o f .  Taking any sequences {An}, {1t„} such that

0 <  K ee, <  < /12<  • ,
and

---, < + °° .n=1 A.

w e  set

P (A) =11 1 ( 1  —  ;In ) , —  — A  '1'4(1 — A )
n= 11.
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E(A) =rP(A) + iQ (2) , E = p (A2) + i(2 ((,12) 
•

Then it is not difficult to see that E , has n o  zeroes o n  closed upper

ha lf plane and satisfies

I Eo GO I > 1 E. GO I
fo r  each AE C .  H en ce  b y  v ir tu e  o f  Lemma 1. 3, there exists a  K-B
space Ho associated w ith E 0 . L e t  H  { f  f  F  E H o ,  F ( 2 )
= F ( - 2 )} , then it is clear that E  becomes the characteristic function

o f H  used in  Lemma 1.3. Since we have, for each  F RO,

1(F , F) r ( t ) 2   dt
-V -  1E0(0

it is clear that, fo r  each fE  H ,

r112
f  ,  f  =  f

[ 0 ,  0 0 )

1 f  ( t )  i2 
2 { t P  ( t )  2  +  Q  ( t )  2 }  

(it'

L e t p(t) =- t" / 2 {tP (t) 2 + Q(t)2} , then  w e have pdt V  ±  (H) . B y the

definition, however, P  and Q  belong to /V, so H is a non-negative K-B
space whose elements a re  o f class K .  Thus it follows from  theorem

3. 4 that p d t  is  a spectral measure belonging to E .  Now choose the

sequences -(A,a, { an}  such that P  and Q  are entire functions o f order

a (1 / 2 < a < l)  and

{A.: An,<t}

as t-->+ 00. Then, there exists a positive constant such that, for every

sufficiently large t,

IP (t)  I <exp ( — ct"),

I Q (t)  I <exp ( —  c r )

h o ld . A s  fo r  th e  proof, see E . C . Titchmarsh [12]. It is easy to see

that, fo r  such a { P ,  Q }  , p  satisfies

f log+p (t) dt — + 00.
j0,00) 1+ ti+"
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E xa m p le  2 .  There exists a sp e c tral measure 6 of  E  such that

(4. 6) L co) 

exp (— ts)6 (ds) +  c o

f o r  any t >0.
p r o o f .  L e t  { 2 , , {,a„} be two sequences such that

0<,1,< /i, <A,Ku z <  •  ,

and

- 1 E  <  +  co.
n = 1  An

We put P L )  =H77-.1(1— 2/ 2 ) and Q(2) —  ail7,=1(1-- 2/ 14) Then, as

w e  have seen in  the proof o f Example 1, there exists a  non-negative

K-B space H  associated with EGO = P (A) + i(.2(A) whose elements are of

class K .  From Theorem 1. 6 there exists an orthogonal spectral meas-

ure 6  o f  H  corresponding to ,S2=  + 00• T h e  s u p p o r t  o f 6 consists of

the zeroes of Q  : i.e. {0, /4} . Let

6 (dt) 0-0{}(dt),
n=t3

w here 610(dt) is the unit mass at t = a  and po =O. Here we calculate

6„. According to the reproducing property o f  J1,

P' (A )Q GO — Q ' P

=Jx(A )

=

=  J P(t)Q(A ) — Q(t)P(2)}2
 6  ( d t )

(t — /02

fo r  each ,1E R .  Let ,I=- . Then  w e have

— Q ' 0 0 1 '0 0  6 .{ Q ' OOP Ctin»2

and hence

 1  
Q' O O P (11.)

T o  show  (4 . 6 ), we choose special sequences {A„}, W e  set
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Art_  2

where ,s.„ is  the  un ique solution o f th e  following equation:

sin —7r e„= exp { —  (n3 + En)} .2

It is easy to see that 1>s„-->0. Then P(2) = sin 7rA1/2 / 21.2 so w e have,
fo r each n> 0

IP (u.) <  'Sin
)  1/2

2 Qnr ( n  —
n

   

e )1/2sin ir (n2 + — cn}

<sin - 7  "
—  2  n

<sin
2

B y  th e  definition o f 6 ,, we find

1P (ti.) . exP —

Let R (2 )  =  ( ) ' ) /12 = =1(1 — /12 / .1). Since n<1.1„112<n +1, it
follows from  B o as [11] p. 161 that R  is an entire function of exponen-

tia l typ e  7r and  satisfying

R (x) --- 0 (41 -1 )
a s  lx1 ---> o o .  Accord ing to th e  Paley-Wiener's theorem, there exists

a  function f  e  L2 (dx , ( —  r, 7 r) )  such that

R  (A) =
(

f  (x )  exp (i).x) dx.
-n,

It implies that R ' -- 7 rj j f j j1 ,  a n d  hence there exists a  positive constant
c  such that

IQ' (t) jc t v 2

holds fo r each t>1.
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Combining the estimates for P (ten )  and (2' Cu.), we have

1 1 ,> exp (n,u„) ,
ctl."2

fo r  every n=- 1 , 2, •••. Thus w e have

-  1exp(— ts) 6 (ds) 1> —  E  exp { (n — t) IA} =
C . = ,  l i n v z

fo r  every  t > 0 .  The proof is complete.

W e rem ark that Exam ple 2  shows us that there exists a  quasi-

diffusion process with entrance boundary and with a transition probability

density P  such that

P (t, — — oc) =  co

is  va lid  fo r  every  t > 0.

Remark to Lemma 4 .  3 .  L . D . P it t  [ 1 5 ]  also proved Lemma 4. 3
by a  different way from  o u rs . I f  w e  r e g a r d  j  as  spectra l function

o f a  stationaly  random process, the condition

f -h io g  v(t) I d t< + 0 0
- - 1+ t2

implies that the process is purely non-deterministic.

Remark to Theorem 2 . 1 0  a n d  Theorem  3. 4. It is necessary

that the K -B spaces stated in the above theorems should possess at least

tw o spectral m easures. F o r  this sake, it is sufficient that these K-B
spaces are strictly contained in  L2( (1).
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Added in  Proof ; Professor M. G. Krein pointed out to the author that Lemma 3.1 is
not valid in  general. Theorem 3.6 essentially depends on this Lemma. However, it
is  possible to correct the proof by modifying the ordering theorem . T h e  correction
will be published in  this Journal soon . In Theorem 3.4 we have to  use the term of
minimal exponential type in place of class K .  A s its consequence, Theorem 4 .2  is
not t r u e . Here the author wishes to thank Professor M . G. Krein.


