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1. Introduction

In the previous paper [5], the author studied the uniquess of
analytic solution of the Cauchy problem to the following equation
with initial data on the hyperplane £=0;

1. 1) [EN—I 0]?7‘
0 0dos
_ Z":[B,(t,x) K, x) ] 0u +[C(t,.r) P, x) ]ii,
=LL(¢x) ¢/, x) dox, 0 a(t, x)
where Ey_, denotes the (N—1) X (N—1) unit matrix, B, (¢, x)’s and
C(t,x) are (N—1) x (N—1), and K, (¢, x)’s, ‘L;(¢, x)’s and P(¢, x)
are (N—1) X1 matrices with entries of analytic fnnctions of (¢, x)
in a neighborhood of the origin, and finally ¢'(¢, x)’s are analytic
functions in a neighborhood of the origin. We called (1.1) of thpe
(N—1,N—-1) if «(0,0)#0 (for the general definition of type (p,q),
see Definition. 1.1 of [5]).
In [5] the author treated the case of a (¢, x)= —1, and obtained
the following results;

Theorem 1. A necessary condition for the solution of the
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Cauchy problem for (1.1) to be unique is

¢’(0,0) =0 (j=1,2,-,n).

Theorem 2. If the solution, which is analytic in a neighborhood
of x=0, of the following equation

(1.2) S0, 2)0f/0z, = f,

is only trivial one, then the solution of lhe Cauchy problem for
(1.1) is unique. Moreover, if for any n-tuples of non-negative
integers (Qt, -, (n) it holds

(1.3) alll"‘."' ‘l‘ anllnzlély

then the equation (1.2) has no analytic solution except the trivial
one, where 1;’s are the eigenvalues of (04°(0,0)/0x.) (j, k=1, -, n).

However, we can give a simple example of the equation which
has only trivial solution, nevertheless the equation (1.3) is violated
by some n-tuples of non-negative integers (i, -, ®.) (see the 4-th
example of section 6).

In this paper, we shall consider the case when « (0, x) vanishes
at x=0, but exclude the case when «(0,x)=0. Moreover, we are
limited to the case of n=2, that is, our equatibn concerned is as
follows;

(1.4) a(x,y)0u/0x+b(x,y)0u/dy=c(x,y)u.

In addition to the analyticity of a(x,y), 6(x,y) and c(x,y) in a
neighborhood of the origin, we assume the followings throughout this
paper;
(H.1) 07*%(0,0)/0x"0y*=0 for all non-negative integers p and ¢
such that p4+¢<m—1 with some integer m larger than 1, and
o™c(0,0) /0x™=1 (we may assume this without loss of generality).
(H.2) 07*%(0,0) /0x”0y*=0"*"5(0, 0)/0x?0y?=0 for all non-negative
integers p and ¢ such that p+qg=<m.

The purpose of this paper is to find sufficient conditions under
which the analytic solution in a neighborhood of the origin of the
equation (1.4) to be only zero. Such a problem, of course, is deeply
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related to the question whether or not the equation (1.4) admits an
analytic integral in some neighborhood of the origin. For this, in
the early days H. Poincare already investigated the case when « (0, x)
= —1 essentially and the number of variables is general 7, in his
thesis [8], and obtained a sufficient condition for the integrability.

Recently, T. Oshima [6] obtained a result related to these
problems. In [6] he studied the equation of # variables not assuming
(H.2), and weakening hypothesis of [8] partly but under some
additional algebraic conditions for the coefficicients, he determined
Coker P and Ker P, where P denotes the concerning operator. How-
ever, the result of [6] does not cover fully those of [5] or of this
paper, and conversely the result of [5] or of this paper does not
fully the result of [6] as for the uniqueness of the solution. For
example, our result is not applicable to the 11-th example of [6].

Our principle in order that the analytic solution of (1.4) is only
zero is to show that the all derivatives of the solution vanish at the
origin. And we use the term ‘““solution” only for the analytic solu-
tion throughout this paper, since we are only concerned with the
analytic solution.

In section 2, we study the structure of the coefficient matrices
of the equations which determine the values at the origin of the
partial derivatives of the solution of (1.4) of easc order.

In the third section, we shall consider the case when the coefh-
cient matrices considered in section 2 are of triangular type, and the
case which we can make them to those of triangular type by a suitable
linear transformation (equivalently by an analytic transformation) of
independent variables with kept the hypothesis (H.1). We say such
an equation ‘“‘triangularizable”.

In the fourth section, we shall show that the equation (1.4) has
no solution except the trivial one, unless (1.4) is essentially triangu-
larizable.

In section 5, we shall slightly make mention of the case in which
the hypothesis (H.2) is removed. There, we shall show that the
methods used in the previous sections are also applicable to the
equation when the vanishing orders of a(x,y), #(x,y) and c(x,y)

at the origin are same, and the final section is devoted to giving
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some examples.

From the next section to the forth section, we use the notations
A=A(x,vy), B=B(x,v), and C=C(x,y) for the homogeneous parts
of degree m+1 of a(x,y) and b(x, y) and for the homogeneous part
of m of c¢(x,y) respectively. By virtue of (H.2), all the arguments
in these sections will be carried out in terms of A, B and C.

At the end of this section, we claim that if the vanishing orders
of a(zx,y) and b(x,y) both are larger than that of c¢(x,y) plus two,

then the equation (1.4) has no non-trivial solution.

2. Structure of coefficient matrices

In this section, we study the structure of the coefficient masrices
of the systems of the equations which determine the values at the
origin of the partial derivatives of the solution of (1.4) of each order.

Let us rewrite the equation (1.4) as follows;
2.1) Clx,y)u=A(x,y)0u/dx+B(x,y)ou/0y+R(u;x,y),
where R(u;x,y) is given by
(a—A)0u/dx+ (b—B)0u/dy+ (C—c)u.

Differentiating 7 times with respect to x the both sides of (2.1), we

have

El

m m
(2. 2) Z meC‘m"”u”) —\ mCL'A(m—L)u(H'l) + Z mCLB(m—t)ugg
L=0 l =0

=0
+R™ (u; z, ),

where £ stands for 9°*%f/0x?9y" for a function f(z,y) and ,C, is
defined for any integer m and [ by

ml/(m—D1 i mz=Il=0
ml =
0 if m<C0 or [<C0 or m<l

From (H.2) and (2.2), we have at first «(0,0) =0, and it is easily
seen that R (u; z,y) gives no influence to determine the values of the
partial derivatives at the origin of order n-+1, if all the derivatives

of order less than » vanish at the origin.
The main aim of this section is to prove the following two
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theorems.

Theorem 2.1. Let w(x,y);
(2.3) o(x,y) = :Zwlx”"y‘ (mo=1),

be the greatest common divisor of A(x,v), B(x,y) and C(x,y) in
Clz,y], and Uy be the column wector whose (k+1)-th component
is given by 0"u (0, 0) /0x"*0y* (k=0,1,---,N) for each non-negative
integer N, then for the equation to determine [—jN from (—jo, l-}l, e
Uzv—l;

(2.4) SN(wl,°",a)y)l7N:FN(ﬁoaﬁl,"'9 [jN—l),

where Sy(wy, -+, w,) is a IN+1) X (N+1) matriz which depends on
A, B, and C, and which we regard as a function of (o, -, 0,), in
particular, and F v is a vector with N+1 components depending on
U’o, ﬁl, e UN_I linearly, we see that the determinant of Sy, -,
w,) is independent of (wi,---,0,) for each N.

Theorem 2.2. For each N, the kernel of Sy(wi,--,0,) does
not depend on (0, -+, 0,).

In order to prove above theorems, we prepare a few lemmas, Let
us put
Az, y) =0 (x, ) a(z,y)
(2.5) B(z,y) =w(x,y)B(x,y)

C(z,y)=0(z,y)7(z,),

and
m-—
a(l:, y) — 2 ayxm+l—/l—-uyv
y=0
m-—pn
2.6) Bz, ») =3 Bam=

7(x,y) =2 7.7 7"y (ro=1).

y=0

We begin with
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Lemma 2.1. It holds
2.7 (N—P)Zqzch'xcq—p = (K+P+1);zch-xcq—p-1-
Proof. Notice that
(N—=p)xCq = (@—2)wCot (@+ 1) 5Cour,
when N=>¢g+1 and ¢g=p. In fact, we have
(@—=2)wCo+ (@+ D wCoys = (@a—p)N!/(N=q)! ¢!+ N!/(N—q—1)!¢q!
= (N=p)~C,
and hence we obtain

(N—P)L:[ Ncq'KCq—p = Lj{(q_p) NCq+ (Q+1) Ncq+l}KCq—P
= ;{q'lfcq-p—l_i_ (q_P)KCq—p}NCq

= (K+p+1) ; vCo kCypor. Q.E.D.

Lemma 2.2. The left hand side of the (k+1)-th equation
of (2.4) is given by

2.8 X ; wCio v iCis(m —0) 1 {,Co0 (N +0 — k) 2] 0.
2 T
=2 W7 + «Cor1(@+1)! Z Wgy1-<Pc} Uy,

where Uy’ denotes the (j+1)-th component of [—J"N, and a.=p.=0,
if ©<<0 or t>m+1, 7.=0 if <O or t>m and w.=0 if v<<0 or

T >/
Proof. After inserting (2.5) into (2.1) and differentiating m

times with respect to z both sides, we have
2.9 3 .Ci(oy) ™ Pu® =3 Cil{ (0a) " Pu®
L L
= (0B) " PuB} + R™ (u: x,¥),
and (N—k) times wit respect to x further, we get

(2.10) > ZL‘_‘ 2Cov_xCi_g (07) (m—0),, (N—k+a)

4
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= 2131 2C vk Ci s {(0r) =0y NIk
7 T

+ (0B) ™ VU TV} + R™HND (w2, ),

and moreover, £ times with respect to y, we obtain
(2.11) ZZZ nCrov4Cig:C. (07) & OuG25H?
= 2D 2 aCiwiCig i Co{(0a) B Pule=5""7

+ (0B) GO} + RET (s 2, 9).
Now let x=y=0 in (2.11), then we obtain

(2.12) Zﬂ ; nCrev_xCis (07) (GO UN°
= 2; ; mCL'N—kCl—d'kCJ-H{((Da)w‘+n)UNk —o-t

+ (0B) TP U} + RESHY 9 (150, 0),

where R "% (u;0,0) is represented in terms of U, U, -, Uy_,,

and hence

(2.13) Zd ; nC1(Co{n-iCrir—s (W) (517 — y_:Ci ()"

+:Cor1 n-kCi_g (0F) §?I1‘§)U1v'°"’ = —R%Jm_k) (#3;0,0),
Now let us notice

() = (m+1—-0)!0!Y w,_.a.
(2.14) (@B) G = (m =) (@+1)! 2 0_.p.
(o) = (m—0)! 0! 3] ws.7e,

and

(2.15) (m+1—0) Zz nCroviCiring = (N—k+0) ; wCisw-iCis,

which follows from Lemma. 2.1, then we obtain (2.8) if we insert
(2.14) and (2.15) into (2.13), and the (k+1)-th component of
FN(UQ, U], ey UN—I) is given by —R§?)+N_k) (u; O, 0) . Q.E.D.

The following lemma is important.
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Lemma 2.3. Let 5., bethe (R+1)-th row vector of Sy (v, -
®,), then we have

’

(2.16) 08k41/00) ~ 3k+1—x|w,=.-~=w,=oy

where y=min(y,k—1) and ~is the notation to denote that the
vectors of both sides are proportional eace other, and here we assume
5,=0 if j<O0.

Proof. Let us consider the case when y=k—1. The proof of
the case when y=y is carried out similarly. We notice that the

coefficient of ®, in the jth component of 5., is given by

(2.17) kl/(G—1)! ; nCroyoiCiipy g (m—k+j—1)!

XAWN =7+ D - jors1 = Te—gonar+ (G—1) Bie jorsa}s

and the jth component of 541 y]o,=mzu,,=0 1S given
(2.18) (k—l) !/(j_l)! Zz: mCt‘N+x—kC1-k+x—1+1('m _k+l_1+j)!

XAWN =+ D i jorir—Ti—gorer+ G—1) Bz jorsa}.
Now, using Lemma. 2.1 respectedly, we have

(2.19) (m—k+21—1+7)! Zz mCz'N+x—kCz_k+x—1+!

=(N+2-7) (N+3—7)--(N=1) (m—k+2)!
X ‘; mCL‘N+x_kCl—k+Xs

and

(2. 20) (m—Fk+j—1)! Zz mCrv_kCi_risa
=(N+2—j)(N+3—j)---(N—1) (m —k)! ; nCroviCiy,

hence we obtain

(2.21) k=D!m—Fk+2)! ZL‘, mCi wir,Cik 1205 1k 11/00,
=kl (7)1 —k)! ; mCl . N—kCl—k;k+l—x|m,=~--=mk.1=0-

This implies (2.16). Q.E.D.
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Now we prove the following proposition, then Theorem. 2.1 and
Theorem. 2.2 can be obtained as its cororally.

Proposition 2.1. For each N, Sy(w,, -+, 0,) can be decomposed
as follows;

Sy (o1, -+, 0,) =Tx (01, -+, 0,) Sy (0, ---,0),

where Ty(wy, -+, w,), a matrix of order N+1, is as follows;
1 0O 0 «oenee 0
Gloy 1 0 eeen 0

Cgla)l 0320)2 ]. 0

Proof. From (2.8) we see that each 5, is given by a linear
function of (w,, ---w,), and by virtue of (2.16) of Lemma. 2.3, we
have '

3226210)1;1 4 .?2 (0),
“
3122 cfva)u‘?]—V(O) Ty O) _*_;J (0’ R 0)9
v=1

with some suitable constants ¢,*. This proves our assertion. Q.E.D.

3. Triangularizable case

In this section, we shall treat the case in which each Sy=3Sy (0,
-+, ®,) is of triangular type or which we can triangularize it by a
suitable transformation of independent variables.

We start with

Lemma 3.1. The matrices Sy(N=1,2,---) are of triangular
type if and only if so is S, that is to say, 0™*'B(0,0)/0x™*'=0.
Proof. It suffices to note (2.8). Q.E.D.

At first we have

Theorem 3.1. Let 0™'B(0,0)/0x™'=0. If for all non-nega-
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tive integers j and k, it holds
@B.1 Jot+ kBi#1,

then the solntion of (1.4) does not exist except the trivial one.

Proof. We prove this theorem by showing thal all the derivatives
of the solution of (1.4) vanish at the origin. For this, we use the
mathematical induction with respect to the order of derivatives. Here,
we follow the notations of the previous section. Since ﬁo=6, we
we have Sll_jlzo, and the equation (3.1) with j+k=1 implies that
det S;5+0. So we obtain (71=6. Now suppose here ﬁjza (j=1,
2.... N—1), then we have SyUy=0. Therefore, the equation (3.1)
with j+%4=N implies det Sy=#0, and hence ﬁN=6. This completes
the proof. Q.E.D.

The next to be considered is the case in which §™*'B(0, 0) /0™
does not necessarily vanish. In this case, we aim to reduce the
equation to the case when 9™*'B(0,0)/0x™"'=0 by suitable trans-
formation of independent variables. In doing so, it suffices to consider
only a linear transformation, since we are concerned with the values
at the origin, that is to say,

(3.2) [ﬂ{“”‘e] (pa+rs).
y r s 77

After the transformation (3.2), the equation (1.4) turns into
3.3) a* (&, 7)0u/0&+0* (&, 9)0u/0y=c*(§, Pu,
where a*(&,7), b*(&,7) and c*(&,7) are given by
a* (&, ) =47 {sa(pé+ay, ré+sn) —qb(p€+aqn, ré+s7)}
@4 v*E ) =4"ra(pé+an, 76+ sy) +pb(pE +ay, 7€+ s}
c* (&, ) =c(pé +an,r&+s7),
where 4d=ps—aqr.
Definition 3.1. The equation (1.4) is said to be triangulariza-

ble if and only if a suitable choice of p, q, r and s with ps#qr
implies ™c*(0,0) /0&™=1 and 9™*'b*(0,0) /0&™*'=0.
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We have

Theorem 3.2. The equation (1.4) is triangularizable if and
only if the following system of algebraic equations:;
xB(x,y) —yA(x,y) =0
(3.5)
C(z,y) =1

has a root.
Proof. It suffices to note

0"*16*(0,0) /0§™ =47 {pB(p,7) —rA(p, 1)}
amc* (0, 0) /0™ =C(p,7). Q.E.D.

Remark. If (8.5) has a root, we can choose q and s such as
450, since (0,0) is not the rootof (8.5).

By Theorem. 3.1, we obtain

Theorem 3.3. Let A(x,y) =o(x,v)a(x,y), Blx,v) =0(z,y)
Bx,y) and C(x,y)=w(x,y)r(x,v), where w(x,y) is the greatest
common divisor of A(x,y), B(x,y) and C(x,v). Suppose that the
system of the algebraic equations;

JI/S’(I, v) —ya(x,y) =0
[Cx, =1,

has a root. If for some root (p,r) of (8.6), these exist two
complex numbers q and s satisfying pss=qr such that for all non-
negative integers j and k

3.6)

3.7 JA+kusps—ar,

where ) and y are given by

(3.8) A=sa(p,r) —qf(p,7),
and
3.9 u=—r{qoa(p,r)/0x+sda(p,r)/0y}

+p{ada(p,7) /0x+s0B(p, 1) /0y},
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then the solution of (1.4) is only zero.

Proof. For such p, g, 7 and s, consider the linear transformation
given by (3.2), and then we can see that the equation (3.3) has no
solution except the trivial one by Theorem. 3.1, and so does not the
equation (1.4).

Theorem. 3.1 and Theorem. 3.3 describe the sufficient condition
under which the diterminant of Sy never vanishes for each N, when
Sy is of triangular type or can be reduced by a suitable exchange
of independent variable. If the determinant of Sy vanishes for some
N, we must impose some conditions on the higher order terms of the
expansion of a(x,y), b(x,y) and c(x,y) to obtain the uniqueness of

the solution.

4. Non-triangularizable case

In this section we will cosider the equation which is not tri-
angularizable. So we assume here that the equation (3.5) has no
root, that is, all (z,y) satifying

zB(z,y) —yA(z,y) =0
satisfies also
C(z,y) =0.
Let A(x,v), B(x,y) and C(x,y) be as of (2.5). At first, we

consider the case when the following system of algebraic equations;

zfB(z,y) —ya(x,y) =0
(4.1)

7(z,y) =1,

has a root (p,r). Then, we may assume that the following matrix
S, is of triangular type with 9™*'#B(0, 0) /0x™*'"#*=0 by taking the

linear transformation of independent variables given by (3. 2);
0" (0,0) /027 OMITRR0,0) /0"
S, = .
' [am“-ﬂa (0,0) /9" *dy 3™"'~*R(0,0) /02" 3y

Thus we obtain
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Theorem 4.1. Suppase the equation (4.1) has a root, and
hence ™'7*3(0,0) /0x™"*=0. If for all non-negative integers j and
k, the equation (3.1) holds, then the solution of (1.4) is only
zero.

Proof. Let U, be the homogeneous part of degree k& of the
solution. The proof can be carried out by the induction with respect
to k. Obviously U;=0 and let U,=---=U,_,=0, then U, satisfies

4-2) 0y (2, ) Ur=0a(z, y)0U./0x+ 0 (z, y)0U,/0y.

Since o (x, y) #0, dividing both sides by w(x,y), we can apply the
same argument as of the proof of Theorem. 3.1. Q.E.D.

The case whice we must cosider is when the equation (4.1) has
no root. Then, taking an exchange of independent variables, we may
assume 7(x,y) has x as its factor. Now let z, x+cy, -, x+cy

be the irreducible factors of y(x,y), and let y(x,y) be as follows;
4-3) 7(x,9) =™ (x+ey) ™ (x+cay)

Since the zeros of zf(x,y) —ya(x,y) are all those of y(x,vy), we
may put

(4.4) zB(z, y) —ya(z,y) =0x™(x+cy)™ (x+cay) ™,

where A; are all non-negative integers, and ¢ a constant. That the
equation is not triangularizable assures 0'=£0.

Before stating our main theorem of this section, we prepare the
following easy lemma.

Lemma 4.1. In (4. 4) we have 1,222 for some j. Hence we
may assume A,=2 after a suitable exchange of independent variables,
if nmecessary.

Proof. Since xfB(x,y) —ya(x,y) is homogeneous of degree
m+2—u and it does not vanish identically, we have

At it +ha=m+2—p.

So if ;=1 for all j, we get m+1—u=<n. On the other hand, we
have n+1<m —y, for the degree of y(x,y) is m—y. This leads
us to a contradiction. Q.E.D.
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By the above lemma, we assume 1,==2 hereafter.

The main aim of this section is to establish the following theorem.

Theorem 4.2. Suppose that the equation (4.1) has no root.
Then the equation (1.4) has no solution except the trivial one.

Proof. We use the mathematical induction also. Let U, be the
homogeneous part of degree & of the solution, and let Uj=---=U,_,
=0. Of course, we know already U,=0. Now, then we obtain

4.5) r(x, VU=a(x,y)oU,/0x+ L (z,y)0U,/0y.
Here, let us put U, as follows;

(4.6) U,=uox" + w2 'y + -+ xy* 7+ uy”,

then (4.5) becomes

4.7 " (x+ey) - (@teay) (e + o ueaxy T+ uey®)
= (Ax™ T+ x™ Y Uy VT AW TTH)

X (kg '+ (B —1) 2Py + -+ + 204 oy w1y

+ Boa™ A By A B Y™ T A B ™)

X (2 4 2wt Py + -+ (B— 1D xy* 7+ Ryt ).

On the other hand, observing

(4.8) zB(x,y) —ya(z,y)

=80xm+z—ﬁ + (Bl —ao) xm.‘—l—ﬂy + ne + (.Bm+l—,u _am—p) xym_n_”

m+2—p
_am+1—;4y ’

and noticing that z? is a factor of zf(x,y) —ya(x,y), we obtain
Um-p=Pms1-p and Api1-,=0. Moreover, we have Br+1-,70. In fact,
if Bmi1,=0, we see that x gives a common factor of a(z,y), B(z, y)
and 7(x,y), and this contradicts to that w(z,y) is the greatest com-
mon divisor of A(x,v), B(x,y) and C(x,y). Thus (4.7) turns out

as follows;
(4.9) z(xt+eay)t (4™ (e + - 4ty + U y*)

— (aoxm+1—ll» + - __|_ am—l—,u-rzym—‘—” +Bm+l—;vrym_”)
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X (kptox* '+ (=D ux* Py + - + 204 oy 2 + 2wy 1y* )
+ Gox™ T e+ By Y™ T A By )
X (ayx* '+ 20" Py 4+ oo+ (=D e xy* 24 kuyy*t Y.

Since #,=1 and Bn,;_,#0, we have u,=0, and successively u,_;=0,
#,_,=0 and so on. This implies U,=0. Q.E.D.

5. The case when the vanishing orders of «(x,y), b(x,y) and

c(x,y) are same

In this section, we shall treat the case when the vanishing orders
of a(x,y), b(x,y) and c(x,y) at the origin are same. That is, in
addition to (H.1), we assume here the following in place of (H.2);
(H.2)" 877 (0, 0) /0x?0y"=07*"5 (0, 0) /0x”0y?*=0 for all non-negative
integars p and g such that p+q¢<m—1 (m=1).

To avoid any trouble about notations, let us use the different nota-
tions from the previous sections. Let us denote by f(x,v), 9(x, )
and A (x,y) the homogeneous parts of degree m of a(x,y), b(x,y)
and c¢(x,y) respectively. And by Q(x,v), we denote the greatest
common divisor of f(x,y) and ¢(x,y), and we set

f(x,y) =82(x,y) F(z,y)
g(z,y) =2(x,y)G(z,y).

5.1)

We obtain the following theorem.

Theorem 5.1. Suppose that
(1) if a triple of complex numbers (ki Ky k) satisfies

1S (x, ¥) + ka0 (z, ¥) = s (2, 5),

it follows k,=0.

2) 2G(x,y)—yF(x, v)=0mod(Ax+ uy), for some (A, 1)#(0,0).
Then the solution of (1.4) is only zero.

Proof. Let us denote by U, the homogeneous part of degree %
of the solution. First we have

(5. 2) Sflx,»)oU,/0x+9(x,v)0U,/0y=h(x,y) U,

and in virtue of (1) we obtain U,=0. Thus, we get
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(5.3) F(z,y)oU,/0x+ G (x,y)0U,/0y=0.
Now let F(x,y) and G(x,vy) be as follows;

(5.4 F(z,y) =Fux"+ -+ Fo_ixy" ' + Fay",

(5.5) G(z,y) =Gox"+ -+ Goixy"  + Goy"

We claim here that none of F(x,y) and G(z,y) vanishes identically.
Indeed, let, for example, G (x, y) =0, then we have 2(x,vy) =f(z,y)
and consequently F(x,y)=1, and this contradicts to (2). Moreover,
we notice that we may assume (4, #) = (1,0) by considering the
following transformation of independent variables;

§=Ax+uy
p=lz+Ry  (AlFEAp).

Thus we have F,=0 and G,=F,_,. Moreover, we see G,#0, if
G (x,y) —yF(x,y) does not vanish identically. In fact, if G,=0,
F(x,vy) and G(x,y) have x as their common foctor, and this contra-
dicts to the assumption on them. If xG(x,y) —yF(x,y) vanishes
identically, we have easily F(x,y) =x and G(x,y) =y. We first take
the case when xG (x,y) —yF(x,y)#0.

Let U,=u,x+uyy, then we obtain from (5. 3)

Uy (Fo-fcn +-- + Fn-zxzyn—z + anyn—l) + U, (Gox" + -+ Gnyn) =0,

and this implies #; =u,=0 since G,=0. Now let U;=U,=---=U,_,=0,

then as is easily seen, we obtain the following equation of U,;

(5.6) F(x,y)0U,/0x+ G (x,y)0U,/0y=0.

Here, let us put
U, =t +u 'y + - +up_yxy* 7+ uy”,

and inserting this into (5.6), we have

(5.7) (Fox"+ -+ Foy®y" 2+ Goxy™ ™) (kuex* '+ (k—1) wyz**y
ot we )+ (G + -+ Goy™) (a2 2unxt Tty
+ooo (=D up1xy* P+ kuy*") =0.

Hence the same arguments as of the proof of Theorem. 4.2 leads us
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to U,=0. The remainder part of the proof is the case when F(x, y)
=z and G(x,y) =y. But if we notice (5.7), we can easily show
U,=0 for this case. Q.E.D.

The next object of our studies is the case when (2) is removed.
Then, we assume that the degrees of F(x,y) and G(x,y) are larger
than 1. Under such assupmption on F(x,y) and G(x,y), we see
that G (z,y) —yF(x,y) has at least two irreducible factors, since
the polynomial of the form (lxz+ #y)? can not be the factor of
zG(x,y) —yF(zx,y). Therefore we may assume that xG(x,y)
—4yF(x,y) has x and y as its factors, considering the following linear

transformation of independent variables;
S =0xr+ 0'231
N =T1T + T2y,

where 0;x+ 0,y and v,x+ r,y are distinct irreducible factors of xG(x, y)
—yF(x,y). Let us set

(5.8) zG (z,y) —yF(z,y) =Jzxy(x+diy) - (x+dsy),

where J is a non-zero constant and d,, -+, d; are non-zero and dicinct
constants. Of course (zx+dy)---(x+d,y) does not appear if the
degree of F(x,y) (and consequently of G(x,v)) is equal to 1.
From (5.8) can see immediately that F(x,y) has g as its factor and
G (x,y) has y as its factor. Thus we obtain F,=0 and G,=0, and
therefore Fy==0 and G,50 since F(x,y) and G(zx,y) have no com-
mon factor,

We obtain the following theorem.

Theorem 5.2. Suppose that (1) is valid. If the following
relation hold for any natural numbers N and v;
(5.9) NF, +pJ+0,

then the solution of (1.4) is only zero, Moreover, if the degree
‘of F(x,y) and G(x,y) are larger than 2, (5.9) can be replaced
by

(5. 10) NG, +vd,---d,J#0.
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Proof. We use the same notations as those of the proof of
Theorem. 5.1. We must show that all U,’s vanish identically.
Clearly U,=0 holds, and hence we have (5.3) also. Thus we get
U,=0 since F(x,y) and G(x,y) are linearly independent because
Fy==0 and G,=0.

Now let U,=U,=---=U,_,=0, then we have (5.6) also, and
therefore we obtain

(6.11) EFx"+ -+ Foxy* D (ka7 + (k=D uyx* Py 4+ - du_ iyt
+ (G 'y + -+ Goy™) (o + (B— 1D uy_xyt
+ku,y* ) =0.

Since Fy#*0 and G,#0, we see immediately #,=0 and #,=0, and
have

(5.12) (Fox" '+ + Foly" ™) (=D w2+ d a1y )
+(Gux" e+ Gy (T (R D1yt =0,
Thus we obtain
((t—1)Fy+ G u,=0.
On the other hand, we have
G, —F,=J,

from (5.8). So we have #;=0 by (5.9). Now let yy=u,=--=u,
=0, then we obtain from (5.12)

((k—p—1DFi+ (k+1)G)u,, 1 =0,
and hence by (5.9) we have #,,1,,=0.

The proof of latter part is essentially same. Q.E.D.

If we remove one of (1) and (2) or the condition that the degree
of F(x,y) or of G(x,y) is larger than 1, then we can find the equa-
tions which admit null solutions. For this we shall give some ex-

amples in the next section.

6. Examples

in this section we shall give various examples admitting null
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solutions because the assumptions of our theorems are not satisfied
fully.
The first example is of that (1) is dropped.

Example 1. Consider the following exuation;
6.1) Z'0u/0zx +y'0u/0y = (' + ") u,

then, as is easily seen, u(x,y) =e**’ gives a null solution.

The second example is of that (2) is dropped and the degree of
F(x,y) is equal to zero.

Example 2. Consider the following equation;
6.2) T (x,y)0u/0x+y*0u/0y=2"u,
where T (x,y) =x°—2y*+ x%?, then u(x,y) =x+3* gives a null solu-

tion.

The third example is of that (5.9) is violated.

Example 3. Consider the following equation
(6.3) 20u/0x + xydu/dy + y*0u/0y =y'u,

then u(x,y) =xy gives a null solution.

The final example shows us there exists an equation which admits
no solution except zero, even if the determinant of S, vanishes for
some N.

Example 4. Consider the following equation;
(6. 4) 20u/0x+ (x+v)0u/dy=u,

then we can show the solution of (6.4) is only zero. In fact, let us
consider the formal solution u(z,y) expanded into Hartogs series;

(6.5) u(zx,y) ~2 u. (y) x",

then each u,(y) must satisfy
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(6.6) yuy (v) =uy (y),
6.7) yuy (v) +u’ (v) =u(y)
and

(6.8) Vb (V) + 0’ (V) + 210 (¥) =ty (v) (=1,2, ),

where’ stands for the differentiation with respect to y.
Hence we have from (6.6) and (6.7),

(6.9) Uy (y) =coy
and
(6.10) u (v) =1y + ¢,

where ¢, and ¢, are constants. Inserting these into (6.8), we get
¢;=0 and w#,(y) =c¢, and successively «,(y) =c, (constant), since each

u,(y) must be analytic at y=0. Moreover by (6.8) we have
(6.11) co=m—-1D!l¢ (n=1,2,:-).

Thus the formal solution becomes

(6.12) u(x,y) ~c(x+y+>(n—-1lzx"),

therfore, if ¢,5#0, the formal solution never converges in any neighbor-
hood of the origin, and this implies that the solution of (6.6) must

be identically zero.
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