On the excellent property for power series rings over polynomial rings ${ }^{1)}$

By

Paolo Valabrega

(Communicated by Prof. Nagata, May 7, 1974)

Introduction

In [1], chap. IV, $2^{\text {me }}$ partie, (7.4.8), Grothendieck considered the following problem:

If A is an excellent ring and \mathfrak{m} an ideal of A, is $(A, \mathfrak{m})^{\wedge}=$ m -adic completion of A an excellent ring either?

When A is an affine ring over a field k (i.e. A is a commutative ring finitely generated as a k-algebra), the problem can be turned into the following one (see [3], introduction):

If k is a field, $(\underline{X})=\left(X_{1}, \cdots, X_{n}\right)$ and $(\underline{Y})=\left(Y_{1}, \cdots, Y_{m}\right)$ are two sets of indeterminates, is $A=k[\underline{X}][[\underline{Y}]]$ an excellent ring?

In this case there are several partial answers.
In [3] it is proved that A is excellent, for every n and m, when $\operatorname{char}(k)=0$.

In [3] and [4] it is proved that $k\left[X_{1}, \cdots, X_{n}\right]\left[\left[Y_{1}\right]\right]$ is excellent when k is an arbitrary field of characteristic $p>0$.

Moreover, in [4] it is proved that $k[\underline{X}][[\underline{Y}]]$ is excellent for every n and m if its formal fibers are geometrically regular (i.e. closedness of singular locus is a consequence of such property of formal fibers).

Finally, it is a consequence of the results given in [8] that A is excellent for every n and m when $\operatorname{char}(k)=p>0$ and k is a finite vector space over k^{p}.
${ }^{1)}$ The present paper was written while the author was a member of G. N. S. A. G. A. (C. N. R.)

Therefore the unique open question concerns the case when the base field k has characteristic $p>0$, but is not finite over k^{p} and, moreover, m is strictly greater than 1 .

In the present paper we give positive answer to the question, proving that $k\left[X_{1}, \cdots, X_{n}\right]\left[\left[Y_{1}, \cdots, Y_{m}\right]\right]$ is always excellent, for every n and m.

We have to observe that our proof works for every field k, with $\operatorname{char}(k)=0$ and $\operatorname{char}(k)=p>0$, both when k is finite and when k is not finite over k^{p}.

Furthermore our techniques, independent on the base field k, give rise to proofs quite simpler than the proof given in [3] for $\operatorname{char}(k)=0$ and the proof deducible from [8] for $\operatorname{char}(k)=p>0$ and k finite over k^{p}.

As a consequence of our main result we can show that, if $(A, \mathrm{~m})$ is any equicharacteristic complete local ring and $(\underline{X})=\left(X_{1}, \cdots, X_{n}\right)$ is a set of indeterminates over A, then the ring $(A, \mathrm{~m})\left\{X_{1}, \cdots, X_{n}\right\}$ of restricted power series over the m-adic ring A ([1], 0_{1}, (7.5)) is excellent; hence we generalize a result of [8], where A is supposed to contain a coefficient field of characteristic $p>0$ finite over its p-th power.
n. 1.

All rings are commutative with 1.
Here we shortly recall a few definitions and properties which we need in the work (we use terminology of [2], chap. XII and chap. XIII).
(i) Let A be an integral domain and K its quotient field. We say that A is $N-2$ if, for every finite extension L of K, the integral closure of A in L is a finite A-module.
(ii) Let A be a noetherian ring. We say that A is a Nagata ring (universally japanese in E.G.A.'s terminology) if A / \Re_{B} is $N-2$ for every prime ideal \mathfrak{F}.
(iii) Let A be a noetherian ring. We say that A is $J-1$ if the set $\operatorname{Reg}(\operatorname{Spec}(A))$ of regular primes of A is open in $\operatorname{Spec}(A)$.
(iv) Let A be a noetherian ring. We say that A is $J-2$ if every finitely generated A-algebra is $J-1$. It can be shown (see [2],
chap. XIII, theorem 73) that property $J-2$ is equivalent to the following condition:

For every $\mathfrak{B} \in \operatorname{Spec}(A)$ and for every finite radical extension K^{\prime} of $k(\mathfrak{F})=$ fraction field of A / \mathfrak{F}, there is a finite A-algebra A^{\prime} satisfying $A / \Re \subseteq A^{\prime} \subseteq K^{\prime}$ such that $K^{\prime}=$ fraction field of A^{\prime} and $\operatorname{Reg}\left(\operatorname{Spec}\left(A^{\prime}\right)\right)$ contains a non empty open set of $\operatorname{Spec}\left(A^{\prime}\right)$.
(v) Let A be a ring containing a field k. We say that A is geometrically regular (normal, reduced,) over k if, for every finite extension k^{\prime} of k, the ring $A \otimes_{k} k^{\prime}$ is regular (normal reduced,).

We say that a homomorphism $A \rightarrow B$ is regular if it is flat and, for every $\mathfrak{B} \in \operatorname{Spec}(A)$ the fiber $B \otimes_{A} k(\mathfrak{B})$ is geometrically regular over $k(\mathfrak{F})$ (=fraction field of A / \mathfrak{F}).
(vi) A noetherian ring A is a G-ring if, for every $\mathfrak{B} \in \operatorname{Spec}(A)$, the homomorphism $A_{\mathfrak{P}} \rightarrow\left(A_{\mathfrak{P}}\right)^{\wedge}$ is regular. The fibers of $A_{\mathfrak{P}} \rightarrow\left(A_{\mathfrak{B}}\right)^{\wedge}$ are called formal fibers; hence a G-ring has formal fibers geometrically regular.

It is easy to see that A is a G-ring if $A_{\mathfrak{M}} \rightarrow\left(A_{\mathfrak{M}}\right)^{\wedge}$ is regular for every $\mathfrak{M} \in \operatorname{Max}(A)$ ([2], chap. XIII, theorem 75).
(vii) A noetherian ring A is excellent if it is $J-2$, a G-ring and universally catenary ([2], (14. B)).
(viii) We shall need also the following definition:

Let A be a ring, \mathfrak{m} an ideal of A and X_{1}, \cdots, X_{n} indeterminates; a formal power series $f \in A\left[\left[X_{1}, \cdots X_{n}\right]\right]$ is restricted for the m-topology of A if, given an integer $s>0$, all coefficients of f, but finitely many, belong to m^{s}.

The ring of restricted power series over the m-adic ring A is denoted by $(A, \mathfrak{m t})\left\{X_{1}, \cdots X_{n}\right\}$ (or $A\left\{X_{1}, \cdots, X_{n}\right\}$ when there is no fear of confusion; for instance, when A is a local ring, $A\left\{X_{1}, \cdots, X_{n}\right\}$ means the ring of restricted power series with respect to the topology of the maximal ideal).

Basic definitions and properties of restricted power series can be found in [7]. We recall that $A\left\{X_{1}, \cdots, X_{n}\right\}$ can be thought of as the completion of $A\left[X_{1}, \cdots, X_{n}\right]$ with respect to a suitable adic topology ([7], corollaire 1 to proposition 1).

Lemma 1. Let k be a field of char. $p>0$ and $(\underline{X}),(\underline{Y}),(\underline{Z})$
three finite sets of indeterminates. If $D \in \operatorname{Der}(k[[\underline{X}, \underline{Y}, \underline{Z}]])$, then there are D_{1}, \cdots, D_{s} belonging to $\operatorname{Der}(k[[\underline{X}, \underline{Y}, \underline{Z}]])$ and $a_{1}, \cdots, a_{s} \in k[[\underline{X}, \underline{Y}, \underline{Z}]]$ such that:
(i) the D_{i} 's map the subring $k[\underline{X}][[\underline{Y}]][\underline{Z}]$ into itself, for $i=2, \cdots, s$;
(ii) D_{1} can be approximated as close as we want, in the (X, $\underline{Y}, \underline{Z})$-topology, by derivations which map $k[\underline{X}][[\underline{Y}]][\underline{Z}]$ into itself;
(iii) $D=\sum_{i}^{s} a_{i} D_{i}$.

Proof. Choose $f \in k[[\underline{X}, \underline{Y}, \underline{Z}]]$. It is easy to check that $D(f)$ $=D^{\prime}(f)+D^{\prime \prime}(f)$, where D^{\prime} and $D^{\prime \prime}$ are defined as follows:

1) $D^{\prime}(a)=D(a)$, for $a \in k, D^{\prime}\left(X_{i}\right)=D^{\prime}\left(Y_{j}\right)=D^{\prime}\left(Z_{r}\right)=0$, all i, j, r;
2) $D^{\prime \prime}(a)=0$, for $a \in k, D^{\prime \prime}=D$ on variables.

It it immediate to see that D^{\prime} is a derivation on $k[[\underline{X}, \underline{Y}, \underline{Z}]]$, hence $D^{\prime \prime}=D-D^{\prime}$ is a k-derivation of $k[[\underline{X}, \underline{Y}, \underline{Z}]]$.

Now it is easy to see that $D^{\prime \prime}=\sum_{2}^{s} a_{i} D_{i}$, where $a_{i} \in k[[\underline{X}, \underline{Y}, \underline{Z}]]$ and the D_{i} 's are partial derivatives.

As far as D^{\prime} is concerned, it is determined by its values at a p-basis of k, say $\left(b_{t}\right)_{t \in T}$. If $D^{\prime}\left(b_{t}\right)$ is a formal power series, we can approximate it by a suitable c_{t} in $k[\underline{X}][[\underline{Y}]][\underline{Z}]$ and define the new derivation $\bar{D}: k[\underline{X}][[\underline{Y}]][\underline{Z}] \rightarrow k[\underline{X}][[\underline{Y}]][\underline{Z}]$ by putting: $\bar{D}\left(b_{t}\right)$ $=c_{t}$.

Hence also (ii) is satisfied, choosing $D_{1}=D^{\prime}$.
Now we want to investigate the closedness of singular locus (i.e. property $J-2$), proving the following.

Theorem 2. Let k be an arbitrary field and $(\underline{X})=\left(X_{1}, \cdots, X_{n}\right)$, $(\underline{Y})=\left(Y_{1}, \cdots, Y_{m}\right)$ two sets of indeterminates.

Then the ring $A=k[\underline{X}][[\underline{Y}]]$ is $J-2$, for every n and m.
Proof. Let $\mathfrak{p} \in \operatorname{Spec}(A), K=$ fraction field of $A / p, L=$ finite extension of K. Then it is enough to show that there is a finite extension B of A / \downarrow such that $L=$ fraction field of B and $\operatorname{Reg}(\operatorname{Spec}(B))$ contains a non empty open set of $\operatorname{Spec}(B)$.

If $\mathfrak{p q} \ddagger(\underline{Y})$ we are done, since A / \mathfrak{p} is a finite module over a ring $k\left[\underline{X}^{\prime}\right]\left[\left[\underline{Y}^{\prime}\right]\right]$, where (\underline{Y}^{\prime}) is a set of m variables and (\underline{X}^{\prime}) a set of $n^{\prime}<n$ variables ([3], theorem (1.2)); so we can argue by
induction on n, observing that, for $n=0$, the property is obvious.
If $\mathfrak{p}=(\underline{Y})$ we are done also, since $k[\underline{X}]$ is excellent.
Therefore we can assume that $p \varsubsetneqq(\underline{Y})$.
Put: $A^{\prime}=A / p$ and choose a ring $B^{\prime}=A^{\prime}\left[t_{1}, \cdots, t_{s}\right]$ such that:
a) L is the fraction field of B^{\prime};
b) B^{\prime} is finite free over the subring A^{\prime}.

Since $\mathfrak{p} \varsubsetneqq(\underline{Y})$ we can assume that $Y_{1} \notin \mathfrak{p}$. Then we put: $y=$ Y_{1} modulo $\mathfrak{p}, z_{i}=y t_{i}(i=1, \cdots, s)$ and $B=A^{\prime}\left[z_{1}, \cdots, z_{s}\right]$.

So there is a prime ideal \mathfrak{F} of $A\left[Z_{1}, \cdots, Z_{s}\right] \quad\left(Z_{i}\right.$'s = variables) such that $B=A[\underline{Z}] / \mathfrak{B}$.
A direct computation shows that \mathfrak{P} is contained in $(\underline{Y}, \underline{Z}) A[\underline{Z}]$.
Now put: $C=A[\underline{Z}], \mathcal{M}_{i}=(\underline{X}, \underline{Y}, \underline{Z}) C$. Then we have: $\left(C_{\mathfrak{M}}\right)^{\wedge}$ $=k[[\underline{X}, \underline{Y}, \underline{Z}]]$.

Observe that, by [5], proposition 1, A is a Nagata ring, since A is complete for the (\underline{Y})-topology and $A /(\underline{Y})=k[\underline{X}]$ is a Nagata ring.

Therefore C is a Nagata ring, so that its formal fibers are geometrically reduced ([1], chap. IV, $2^{\text {me }}$ partie, (7.6.4)).

This means that, if $\Omega \in \operatorname{Spec}\left(\left(C_{\mathfrak{m}}\right)^{\wedge}\right)$ and $\Omega \cap C=\mathfrak{F}$, then the local ring $\left(C_{\mathfrak{M}}\right)^{\wedge} \Omega / \mathfrak{F}\left(C_{\mathfrak{R}}\right)^{\wedge} \mathfrak{\Omega}$ is a reduced local ring.

Now we choose $\mathfrak{Q} \in \operatorname{Spec}\left(\left(C_{\mathfrak{N}}\right)^{\wedge}\right)$ such that \mathfrak{Q} is a minimal prime over $\mathfrak{B}\left(C_{\mathfrak{M}}\right)^{\wedge}$. Then, by [2], (5.B), $\mathfrak{Q} \cap C=\mathfrak{B}$, so that $\left(C_{\mathfrak{M}}\right)^{\wedge} \mathfrak{\Omega} / \mathfrak{P}\left(C_{\mathfrak{R}}\right)^{\wedge} \mathfrak{Z}$ is a reduced local ring of dimension 0 , hence a field, hence a regular local ring.

By Nagata's jacobian criterion of regularity for formal power series rings ($[1], 0_{\mathrm{IV}},(22.7 .3)$), there are $f_{1}, \cdots, f_{m} \in \mathfrak{F}$ and D_{1}, \cdots, D_{m} belonging to $\operatorname{Der}(k[[\underline{X}, \underline{Y}, \underline{Z}]])$ such that:
(i) $\mathfrak{A}\left(C_{\mathfrak{M}}\right)^{\wedge} \mathfrak{\mathfrak { D }}=\sum_{1}^{m} f_{i}\left(C_{\mathfrak{R}}\right)^{\wedge} \mathfrak{\mathfrak { }}$;
(ii) $\quad d=\operatorname{det}\left(D_{i}\left(f_{j}\right)\right) \notin \Omega$.

If $r=h t(\mathfrak{F})$, we have the following relations:
$r=h t\left(\mathfrak{P}\left(C_{\mathfrak{R}}\right)\right)=h t(\mathfrak{Q}) \quad([2], \quad(13 . \mathrm{B})$, theorem 19 (2))
and also:

$$
h t(\mathfrak{Q})=\operatorname{dim}\left(\left(C_{\mathfrak{M}}\right)^{\wedge} \mathfrak{Q}\right)=m=r,
$$

since $\mathfrak{P}\left(C_{\mathfrak{M}}\right)^{\wedge} \mathfrak{Q}=\mathfrak{Q}\left(C_{\mathfrak{R}}\right)^{\wedge} \mathfrak{\mathfrak { Q }}$.
Therefore we can find a $r \times r$ determinant d such that:

1) $d=\operatorname{det}\left(D_{i}\left(f_{j}\right)\right), 1 \leq i \leq r, 1 \leq j \leq r$;
2) $d \notin \mathfrak{\imath}$.

By lemma 1 there are $D_{1}{ }^{\prime}, \cdots, D_{u}{ }^{\prime} \in \operatorname{Der}(k[[\underline{X}, \underline{Y}, \underline{Z}]])$ (partial derivatives in char. 0) and $a_{i j}$'s in $k[[\underline{X}, \underline{Y}, \underline{Z}]](i=1, \cdots, r, j=1, \cdots, u)$ such that:
a) $D_{i}=\sum_{j} a_{i j} D_{j}{ }^{\prime}, i=1, \cdots, r$;
b) every D_{j}^{\prime} maps C into itself, $j=2, \cdots, u$;
c) D_{1}^{\prime} can be approximated as close as we want by a derivation which maps $k[\underline{X}][[\underline{Y}]][\underline{Z}]$ into itself ($D_{1}^{\prime}=0$ in char. 0).

Hence we deduce that $d=\sum b_{n} d_{n}$, where the b_{n} 's are suitable elements in $k[[\underline{X}, \underline{Y}, \underline{Z}]]$ and the d_{h} 's are determinants containing derivatives of the type $D_{i}{ }^{\prime}\left(f_{j}\right)$.

Since $d \notin \mathfrak{Q}$, there is an h such that $d_{h} \notin \mathfrak{\Omega}$. If \bar{d}_{h} approximates d_{h} sufficiently and $\bar{d}_{h} \in C$, we have $\bar{d}_{h} \notin \mathfrak{B}$.

By jacobian criterion of regularity (2.1) of [3], $B_{\bar{d}_{h}}$ is a regular ring, so that $\operatorname{Reg}(\operatorname{Spec}(B))$ contains a non empty open set.

Remark: In [4], theorem (3.1), Nomura proves that, if $k[\underline{X}][[\underline{Y}]]$ is a G-ring, then it is $J-2$. Our proof is inspired by that one, but makes use of the extra information on $k[\underline{X}][[\underline{Y}]]$ that it is a Nagata ring, so that we know that at some prime ideal (the minimal ones) the ring $k[[\underline{X}, \underline{Y}, \underline{Z}]] / \mathscr{F} k[[\underline{X}, \underline{Y}, \underline{Z}]]$ is really regular.

Now we investigate the property of formal fibers of $k[\underline{X}][[\underline{Y}]]$ and prove the following.

Theorem 3. Let k be arbitrary field, $(\underline{X})=\left(X_{1}, \cdots, X_{n}\right)$ and $(\underline{Y})=\left(Y_{1}, \cdots, Y_{m}\right)$ two sets of indeterminates.

Then $A=k[\underline{X}][[\underline{Y}]]$ is a G-ring for every n and m.
Proof. Let \mathfrak{B} be a maximal ideal of A and put: $C=A \mathfrak{ß}$. By [2], chap. XIII, (33.E), lemma 3, it is enough to show that, if D is a domain finite over C as a module and \mathfrak{Q} is a prime ideal of $\widehat{D}=(D, \operatorname{Rad}(D))^{\wedge}$ such that $\mathfrak{Q} \cap D=(0)$, then the local ring $\widehat{D}_{\mathfrak{\Omega}}$ is regular.

Put: $X=\operatorname{Spec}(D), X^{\prime}=\operatorname{Spec}(\widehat{D})$ and let $f: X^{\prime} \rightarrow X$ be the canonical map.

Then it is enough to show that $f^{-1}(\operatorname{Reg}(X)) \subseteq \operatorname{Reg}\left(X^{\prime}\right)$.
We argue by absurd and assume that $f^{-1}(\operatorname{Reg}(X)) \cap \operatorname{Sing}\left(X^{\prime}\right) \neq \phi$.
Since A is $J-2$ by theorem $2, C$ is also $J-2$, so that D is $J-1$,
i.e. $\operatorname{Reg}(X)$ is open in X. On the other hand, $\operatorname{Reg}\left(X^{\prime}\right)$ is open in X^{\prime}, since \widehat{D} is a complete semilocal ring. Therefore $f^{-1}(\operatorname{Reg}(X)) \cap$ Sing (X^{\prime}) is locally closed in X^{\prime} and non empty; so it contains a prime ideal \mathfrak{p}^{\prime} such that $\operatorname{dim}\left(\widehat{D} / \mathfrak{p}^{\prime}\right) \leqq 1$ ([2], chap. XIII, (33.F), lemma 5).

It is immediate that \mathfrak{p}^{\prime} is not maximal, since corresponding maximal ideals of D and \widehat{D} are simultaneusly regular or singular.

Therefore we have: $\operatorname{dim}\left(\widehat{D} / p^{\prime}\right)=1$.
Now put: $E=\widehat{D} / \mathfrak{p}^{\prime}, \mathfrak{F}=k[[\underline{Y}]] \cap \mathfrak{p}^{\prime}=k[[\underline{Y}]] \cap \mathfrak{p}$, where $\mathfrak{p}=\mathfrak{p}^{\prime} \cap D$.
Observe that $k[[\underline{Y}]] / \tilde{T} \subseteq D / p \subseteq E$.
We remark that $D_{\mathfrak{p}}$ is regular, while $\widehat{D}_{\mathfrak{p}^{\prime}}$ is not regular. Since the morphism $D_{\mathfrak{p}} \rightarrow \widehat{D}_{\mathfrak{p}^{\prime}}$ is faithfully flat, we can conclude that the ring $\widehat{D}_{\mathfrak{p}^{\prime}} / \mathfrak{p} \widehat{D}_{\mathfrak{p}^{\prime}}$ is not regular ([2], (21. D), theorem 51).

Now we want to deduce a contradiction. So we distinguish two cases:
(i) E is finite over $k[[\underline{Y}]] / \Im$ as a module. Therefore D / p is also finite over $k[[\underline{Y}]] / \Im$, which is a complete local ring, so that D / p is cmplete either ([2], (23.L), theorem 55), i.e. $D / p=\widehat{D} / p \widehat{D}$.

Since $\mathfrak{p}^{\prime} \cap D=\mathfrak{p}$, it is easy to check that $\mathfrak{p}^{\prime}=\mathfrak{p} \widehat{D}$, which means that $\widehat{D}_{\mathfrak{p}^{\prime}} / \mathfrak{p} \widehat{D}_{\mathfrak{p}^{\prime}}$ is a field, hence a regular local ring, which is a contradiction.
(ii) E is not finite over $k[[\underline{Y}]] / \mathfrak{J}$.

Put: $k[[\underline{Y}]] / \mathfrak{Y}=B, \operatorname{Rad}(E)=\mathfrak{m}_{E}, \operatorname{Rad}(C)=\mathfrak{m}_{C}$, etc.
We have:
$E / \mathfrak{m}_{E}=$ homomorphic image of $\widehat{D} / \mathfrak{m}_{\hat{D}}=D / \mathfrak{m}_{D}=$ finite module over $C / \mathfrak{m}_{c}=A / \mathfrak{B}=$ finite module over $k=B / \mathfrak{m}_{B}$.

Therefore if $\mathfrak{m}_{B} E$ contains some power of \mathfrak{m}_{E}, then E is finite over B, since B is complete; but this is absurd.

Hence we must have: $\mathfrak{m}_{B} E=(0)$, since E is a noetherian semilocal domain of dimension 1.

At last we have: $\mathfrak{m}_{B}=(0)$, i.e. $\mathcal{F}=(\underline{Y})$.
We know that D is a finite C-module; hence D / p is finite over $C /(p \cap C)$, which is a homomorphic image of $C /(\underline{Y}) C$. Therefore we see that D / \mathfrak{p} is finite over $\left.A_{\mathfrak{P}} /(\underline{Y}) A_{\mathfrak{\beta}}=(A /(\underline{Y}) A)_{(\mathcal{P} /(\underline{Y}) A)}=k[\underline{X}]\right)_{\mathfrak{P}^{\prime}}$, where $\mathfrak{S}^{\prime}=\mathfrak{B}$ modulo (\underline{Y}).

We can conclude that D / \mathfrak{p} is finite over an excellent ring, hence
it is excellent also. In particular the formal fibers of D / \mathfrak{p} at every maximal ideal are geometrically regular.

Now we choose $\mathscr{M}^{\prime} \in \operatorname{Max}(\widehat{D})$ such that $\mathfrak{p \subseteq} \mathscr{M}^{\prime}$ and put: $\mathfrak{M}=$ $\mathfrak{M}^{\prime} \cap D$, so that $\mathfrak{p} \subseteq \mathfrak{M}$. We know that the formal fiber of $(D / \mathfrak{p})(\mathfrak{M} / \mathfrak{p})$ at the origin is a regular ring, i.e. the following ring is regular:

$$
\left((\widehat{D} / \mathfrak{p} \widehat{D})\left(\mathfrak{M}^{\prime} / \mathfrak{p} \widehat{D}\right)\right)_{s},
$$

where $S=(D / \mathfrak{p})(\mathfrak{M} / \mathfrak{p})-(0)$.
Since $\mathfrak{p}^{\prime} \cap D=\mathfrak{p}$, we have: $\mathfrak{p}^{\prime}(\widehat{D} / \mathfrak{p} \widehat{D})\left(\mathfrak{N}^{\prime} / \mathfrak{p} \widehat{\mathcal{D}}\right) \cap(D / \mathfrak{p})(\mathfrak{M} / \mathfrak{p})=(0)$.
Therefore the ring $\widehat{D}_{\mathfrak{p}^{\prime}} / p \widehat{D}_{\mathfrak{p}^{\prime}}$ is regular, which is absurd.
At last, $f^{-1}(\operatorname{Reg}(X)) \cap \operatorname{Sing}\left(X^{\prime}\right)=\phi$ and A is a G-ring.

Recalling that the ring $k[\underline{X}][[\underline{Y}]]$ is a regular ring, hence universally catenary ([2], (14.B)), we see that theorem 2 and theorem 3 together give our main result on excellent property; we write here the result explicitly in the following.

Theorem 4. Let k be an arbitrary field, $(\underline{X})=\left(X_{1}, \cdots, X_{n}\right)$ and $(\underline{Y})=\left(Y_{1}, \cdots, Y_{m}\right)$ two sets of indeterminates.

Then $k[\underline{X}][[\underline{Y}]]$ is an excellent ring.

Corollary 5. Let k be an arbitrary field and A a k-algebra of finite type. Then, for every ideal \Im of A, the \mathfrak{Y}-adic completion $(A, \mathfrak{Y})^{\wedge}$ of A is an excellent ring.

Proof. Since $A=k\left[X_{1}, \cdots, X_{n}\right] / \mathfrak{R}$, where \mathfrak{Z} is a suitable ideal, the completion $(A, \Im)^{\wedge}$ is a residue ring of $k\left[X_{1}, \cdots, X_{n}\right]\left[\left[Y_{1}, \cdots, Y_{m}\right]\right]$, for a suitable choice of the Y_{i} 's, by [6], chap. II, theorem (17.5).

Hence the result follows from theorem 4.
Now we want to extend the preceding results to restricted power series over a complete local ring, obtaining a generalization of [8], corollaire (2.1.3).

In [8] it is proved that the ring of restricted power series in n variables over a complete local ring of characteristic $p>0$ is excellent, under the condition that the residue field of the base ring be finite as a vector space over its p-th power.

Here we give a more general result, proving excellent property for restricted power series over an arbitrary equicharacteristic complete local ring.

First we need a lemma:
Lemma 6. Let k be a field, (\underline{X}) and (\underline{Y}) two finite sets of indeterminates. Then we have:

$$
k[\underline{X}][[\underline{Y}]]=(k[[\underline{Y}]],(\underline{Y}))\{\underline{X}\} .
$$

Proof. $k[[\underline{Y}]]\{\underline{X}\}$ is a completion of $k[\underline{X}, \underline{Y}]$ with respect to the (\underline{Y})-adic topology ([7], n. 1, proposition 1); hence it is really the (\underline{Y})-adic closure of $k[\underline{X}, \underline{Y}]$ in $k[[\underline{X}, \underline{Y}]]$, exactly as $k[\underline{X}][[\underline{Y}]]$.

Proposition 7. Let (A, \mathfrak{m}) be an equicharacteristic complete local ring and $(\underline{X})=\left(X_{1}, \cdots, X_{n}\right)$ a set of indeterminates over A.

Then $(A, \mathfrak{m})\{\underline{X}\}$ is an excellent ring.
Proof. By Cohen's structure theorem A contains a coefficient field k and is a homomorphic image of a formal power series ring over k, say $k\left[\left[Y_{1}, \cdots, Y_{r}\right]\right]$ (see [6], chap. V, theorem (31.1)). Therefore $(A, \mathfrak{m})\{\underline{X}\}$ is a homomorphic image of $(k[[\underline{Y}]],(\underline{Y}))\{\underline{X}\}$; in fact, if $A=k[[\underline{Y}]] / \mathcal{R}$, then $A\{\underline{X}\}=k[[\underline{Y}]]\{\underline{X}\} / \mathcal{R}\{\underline{X}\}$, where $\mathbb{R}\{\underline{X}\}$ $=$ the set of restricted power series with coefficients in \mathbb{Q}.

Hence we can assume that $A=k[[\underline{Y}]]$. By lemma 6 we have: $k[[\underline{Y}]]\{\underline{X}\}=k[\underline{X}][[\underline{Y}]]=$ excellent ring by theorem 4.

References

[1] Grothendieck A. Eléments de Géométrie Algébrique, Publ. I. H. E. S., Paris, 1960...
[2] Matsumura H. Commutative Algebra, Benjamin, New York, 1970.
[3] Matsumura H. Formal power series rings over polynomial rings, I Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Y. Akizuki, Kinokuniya, Tokyo, 1973.
[4] Nomura M. Formal power series ring over polynomial rings, II Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Y. Akizuki, Kinokuniya, Tokyo, 1973.
[5] Marot J. Sur les anneaux universellement japonais, C. R. Acad. Sc. Paris, t. 277, 1973.
[6] Nagata M. Local rings, Interscience, New York, 1962.
[7] Salmon P. Sur les séries formelles restreintes, Bull. Soc. Math. de France, 92, 1964.
[8] Seydi H. Sur une note d'Ernst Kunz C. R. Acad. Sc. Paris, t. 274, 1972.

