On the excellent property for power series rings over polynomial rings¹⁾

By

Paolo VALABREGA

(Communicated by Prof. Nagata, May 7, 1974)

Introduction

In [1], chap. IV, 2^{me} partie, (7.4.8), Grothendieck considered the following problem:

If A is an excellent ring and \mathfrak{m} an ideal of A, is $(A, \mathfrak{m})^{\hat{}} = \mathfrak{m}$ -adic completion of A an excellent ring either?

When A is an affine ring over a field k (i.e. A is a commutative ring finitely generated as a k-algebra), the problem can be turned into the following one (see [3], introduction):

If k is a field, $(\underline{X}) = (X_1, \dots, X_n)$ and $(\underline{Y}) = (Y_1, \dots, Y_m)$ are two sets of indeterminates, is $A = k[\underline{X}][[\underline{Y}]]$ an excellent ring?

In this case there are several partial answers.

In [3] it is proved that A is excellent, for every n and m, when char(k) = 0.

In [3] and [4] it is proved that $k[X_1, \dots, X_n][[Y_1]]$ is excellent when k is an arbitrary field of characteristic p>0.

Moreover, in [4] it is proved that k[X][[Y]] is excellent for every n and m if its formal fibers are geometrically regular (i.e. closedness of singular locus is a consequence of such property of formal fibers).

Finally, it is a consequence of the results given in [8] that A is excellent for every n and m when $\operatorname{char}(k) = p > 0$ and k is a finite vector space over k^p .

¹⁾ The present paper was written while the author was a member of G. N. S. A. G. A. (C. N. R.)

Therefore the unique open question concerns the case when the base field k has characteristic p>0, but is not finite over k^p and, moreover, m is strictly greater than 1.

In the present paper we give positive answer to the question, proving that $k[X_1, \dots, X_n][[Y_1, \dots, Y_m]]$ is always excellent, for every n and m.

We have to observe that our proof works for every field k, with char(k) = 0 and char(k) = p > 0, both when k is finite and when k is not finite over k^p .

Furthermore our techniques, independent on the base field k, give rise to proofs quite simpler than the proof given in [3] for char(k) = 0 and the proof deducible from [8] for char(k) = p > 0 and k finite over k^p .

As a consequence of our main result we can show that, if (A, \mathfrak{m}) is any equicharacteristic complete local ring and $(\underline{X}) = (X_1, \dots, X_n)$ is a set of indeterminates over A, then the ring $(A, \mathfrak{m}) \{X_1, \dots, X_n\}$ of restricted power series over the \mathfrak{m} -adic ring A ([1], 0_1 , (7.5)) is excellent; hence we generalize a result of [8], where A is supposed to contain a coefficient field of characteristic p>0 finite over its p-th power.

n. 1.

All rings are commutative with 1.

Here we shortly recall a few definitions and properties which we need in the work (we use terminology of [2], chap. XII and chap. XIII).

- (i) Let A be an integral domain and K its quotient field. We say that A is N-2 if, for every finite extension L of K, the integral closure of A in L is a finite A-module.
- (ii) Let A be a noetherian ring. We say that A is a Nagata ring (universally japanese in E.G.A.'s terminology) if A/\mathfrak{P} is N-2 for every prime ideal \mathfrak{P} .
- (iii) Let A be a noetherian ring. We say that A is J-1 if the set Reg(Spec(A)) of regular primes of A is open in Spec(A).
- (iv) Let A be a noetherian ring. We say that A is J-2 if every finitely generated A-algebra is J-1. It can be shown (see [2],

chap. XIII, theorem 73) that property J-2 is equivalent to the following condition:

For every $\mathfrak{P} \in \operatorname{Spec}(A)$ and for every finite radical extension K' of $k(\mathfrak{P}) = \operatorname{fraction}$ field of A/\mathfrak{P} , there is a finite A-algebra A' satisfying $A/\mathfrak{P} \subseteq A' \subseteq K'$ such that $K' = \operatorname{fraction}$ field of A' and $\operatorname{Reg}(\operatorname{Spec}(A'))$ contains a non empty open set of $\operatorname{Spec}(A')$.

(v) Let A be a ring containing a field k. We say that A is geometrically regular (normal, reduced, \cdots) over k if, for every finite extension k' of k, the ring $A \bigotimes_k k'$ is regular (normal reduced, \cdots).

We say that a homomorphism $A \to B$ is regular if it is flat and, for every $\mathfrak{P} \in \operatorname{Spec}(A)$ the fiber $B \bigotimes_{A} k(\mathfrak{P})$ is geometrically regular over $k(\mathfrak{P})$ (=fraction field of A/\mathfrak{P}).

(vi) A noetherian ring A is a G-ring if, for every $\mathfrak{P} \in \operatorname{Spec}(A)$, the homomorphism $A\mathfrak{P} \to (A\mathfrak{P})^{\hat{}}$ is regular. The fibers of $A\mathfrak{P} \to (A\mathfrak{P})^{\hat{}}$ are called formal fibers; hence a G-ring has formal fibers geometrically regular.

It is easy to see that A is a G-ring if $A_{\mathfrak{M}} \to (A_{\mathfrak{M}})^{\hat{}}$ is regular for every $\mathfrak{M} \in \text{Max}(A)$ ([2], chap. XIII, theorem 75).

- (vii) A noetherian ring A is excellent if it is J-2, a G-ring and universally catenary ([2], (14. B)).
 - (viii) We shall need also the following definition:

Let A be a ring, m an ideal of A and X_1, \dots, X_n indeterminates; a formal power series $f \in A[[X_1, \dots X_n]]$ is restricted for the m-topology of A if, given an integer s>0, all coefficients of f, but finitely many, belong to m'.

The ring of restricted power series over the in-adic ring A is denoted by (A, \mathfrak{m}) $\{X_1, \dots X_n\}$ (or $A\{X_1, \dots, X_n\}$ when there is no fear of confusion; for instance, when A is a local ring, $A\{X_1, \dots, X_n\}$ means the ring of restricted power series with respect to the topology of the maximal ideal).

Basic definitions and properties of restricted power series can be found in [7]. We recall that $A\{X_1, \dots, X_n\}$ can be thought of as the completion of $A[X_1, \dots, X_n]$ with respect to a suitable adic topology ([7], corollaire 1 to proposition 1).

Lemma 1. Let k be a field of char. p>0 and (\underline{X}) , (\underline{Y}) , (\underline{Z})

three finite sets of indeterminates. If $D \in \text{Der}(k[[X, Y, Z]])$, then there are D_1, \dots, D_s belonging to Der(k[[X, Y, Z]]) and $a_1, \dots, a_s \in k[[X, Y, Z]]$ such that:

- (i) the D_i 's map the subring $k[\underline{X}][[\underline{Y}]][\underline{Z}]$ into itself, for $i=2,\dots,s$;
- (ii) D_1 can be approximated as close as we want, in the $(\underline{X}, \underline{Y}, \underline{Z})$ -topology, by derivations which map $k[\underline{X}][[\underline{Y}]][\underline{Z}]$ into itself; (iii) $D = \sum_{i=1}^{s} a_i D_i$.

Proof. Choose $f \in k[[\underline{X}, \underline{Y}, \underline{Z}]]$. It is easy to check that D(f) = D'(f) + D''(f), where D' and D'' are defined as follows:

- 1) D'(a) = D(a), for $a \in k$, $D'(X_i) = D'(Y_j) = D'(Z_r) = 0$, all i, j, r;
 - 2) D''(a) = 0, for $a \in k$, D'' = D on variables.

It it immediate to see that D' is a derivation on $k[[\underline{X}, \underline{Y}, \underline{Z}]]$, hence D'' = D - D' is a k-derivation of $k[[\underline{X}, \underline{Y}, \underline{Z}]]$.

Now it is easy to see that $D'' = \sum_{i=1}^{s} a_i D_i$, where $a_i \in k[[X, Y, Z]]$ and the D_i 's are partial derivatives.

As far as D' is concerned, it is determined by its values at a p-basis of k, say $(b_t)_{t \in T}$. If $D'(b_t)$ is a formal power series, we can approximate it by a suitable c_t in k[X][[Y]][Z] and define the new derivation $\overline{D}: k[X][[Y]][Z] \to k[X][[Y]][Z]$ by putting: $\overline{D}(b_t) = c_t$.

Hence also (ii) is satisfied, choosing $D_1 = D'$.

Now we want to investigate the closedness of singular locus (i.e. property J-2), proving the following.

Theorem 2. Let k be an arbitrary field and $(\underline{X}) = (X_1, \dots, X_n)$, $(\underline{Y}) = (Y_1, \dots, Y_m)$ two sets of indeterminates.

Then the ring $A = k[\underline{X}][[\underline{Y}]]$ is J-2, for every n and m.

Proof. Let $\mathfrak{p} \in \operatorname{Spec}(A)$, $K = \operatorname{fraction}$ field of A/\mathfrak{p} , $L = \operatorname{finite}$ extension of K. Then it is enough to show that there is a finite extension B of A/\mathfrak{p} such that $L = \operatorname{fraction}$ field of B and $\operatorname{Reg}(\operatorname{Spec}(B))$ contains a non empty open set of $\operatorname{Spec}(B)$.

If $\mathfrak{p} \not = (Y)$ we are done, since A/\mathfrak{p} is a finite module over a ring $k[\underline{X}'][[\underline{Y}']]$, where (\underline{Y}') is a set of m variables and (\underline{X}') a set of n' < n variables ([3], theorem (1.2)); so we can argue by

induction on n, observing that, for n=0, the property is obvious.

If $\mathfrak{p} = (\underline{Y})$ we are done also, since $k[\underline{X}]$ is excellent.

Therefore we can assume that $\mathfrak{p} \subseteq (\underline{Y})$.

Put: $A' = A/\mathfrak{p}$ and choose a ring $B' = A'[t_1, \dots, t_s]$ such that:

- a) L is the fraction field of B';
- b) B' is finite free over the subring A'.

Since $\mathfrak{p}\subsetneq (\underline{Y})$ we can assume that $Y_1 \notin \mathfrak{p}$. Then we put: $y = Y_1 \mod \mathfrak{p}, z_i = yt_i \ (i = 1, \dots, s)$ and $B = A'[z_1, \dots, z_s]$.

So there is a prime ideal \mathfrak{P} of $A[Z_1, \dots, Z_s]$ $(Z_i$'s = variables) such that $B = A[Z]/\mathfrak{P}$.

A direct computation shows that \mathfrak{P} is contained in $(\underline{Y}, \underline{Z})A[\underline{Z}]$.

Now put: $C = A[\underline{Z}]$, $\mathfrak{M} = (\underline{X}, \underline{Y}, \underline{Z})C$. Then we have: $(C_{\mathfrak{M}})^{\hat{}} = k[[\underline{X}, \underline{Y}, \underline{Z}]]$.

Observe that, by [5], proposition 1, A is a Nagata ring, since A is complete for the (\underline{Y}) -topology and $A/(\underline{Y}) = k[\underline{X}]$ is a Nagata ring.

Therefore C is a Nagata ring, so that its formal fibers are geometrically reduced ([1], chap. IV, 2^{me} partie, (7.6.4)).

This means that, if $\mathfrak{D} \in \operatorname{Spec}((C_{\mathfrak{M}})^{\hat{}})$ and $\mathfrak{D} \cap C = \mathfrak{P}$, then the local ring $(C_{\mathfrak{M}})^{\hat{}} \cap (C_{\mathfrak{M}})^{\hat{}} \cap C$ is a reduced local ring.

Now we choose $\mathfrak{Q} \in \operatorname{Spec}((C_{\mathfrak{M}})^{\wedge})$ such that \mathfrak{Q} is a minimal prime over $\mathfrak{P}(C_{\mathfrak{M}})^{\wedge}$. Then, by [2], (5. B), $\mathfrak{Q} \cap C = \mathfrak{P}$, so that $(C_{\mathfrak{M}})^{\wedge}\mathfrak{Q}/\mathfrak{P}(C_{\mathfrak{M}})^{\wedge}\mathfrak{Q}$ is a reduced local ring of dimension 0, hence a field, hence a regular local ring.

By Nagata's jacobian criterion of regularity for formal power series rings ([1], 0_{IV} , (22.7.3)), there are $f_1, \dots, f_m \in \mathfrak{P}$ and D_1, \dots, D_m belonging to Der(k[[X,Y,Z]]) such that:

- (i) $\mathfrak{P}(C_{\mathfrak{M}})^{\hat{}}\mathfrak{Q} = \sum_{i=1}^{m} f_{i}(C_{\mathfrak{M}})^{\hat{}}\mathfrak{Q};$
- (ii) $d = \det(D_i(f_j)) \in \mathfrak{Q}$.

If $r = ht(\mathfrak{P})$, we have the following relations:

 $r = \operatorname{ht}(\mathfrak{P}(C_{\mathfrak{M}})) = \operatorname{ht}(\mathfrak{Q})$ ([2], (13. B), theorem 19 (2)) and also:

$$\operatorname{ht}(\mathfrak{Q}) = \dim((C_{\mathfrak{M}})^{\hat{}}\mathfrak{Q}) = m = r,$$

since $\mathfrak{P}(C\mathfrak{M}) \hat{\mathfrak{D}} = \mathfrak{Q}(C\mathfrak{M}) \hat{\mathfrak{D}}$.

Therefore we can find a $r \times r$ determinant d such that:

- 1) $d = \det(D_i(f_j)), 1 \leq i \leq r, 1 \leq j \leq r;$
- 2) $d \in \Omega$.

By lemma 1 there are $D_1', \dots, D_u' \in \text{Der}(k[[\underline{X}, \underline{Y}, \underline{Z}]])$ (partial derivatives in char. 0) and a_{ij} 's in $k[[\underline{X}, \underline{Y}, \underline{Z}]]$ $(i = 1, \dots, r, j = 1, \dots, u)$ such that:

- a) $D_i = \sum_j a_{ij} D_j', i = 1, \dots, r;$
- b) every D_j maps C into itself, $j=2, \dots, u$;
- c) D_1' can be approximated as close as we want by a derivation which maps k[X][[Y]][Z] into itself $(D_1'=0)$ in char. 0).

Hence we deduce that $d = \sum b_h d_h$, where the b_h 's are suitable elements in k[[X, Y, Z]] and the d_h 's are determinants containing derivatives of the type $D_i'(f_j)$.

Since $d \in \mathbb{Q}$, there is an h such that $d_h \in \mathbb{Q}$. If \bar{d}_h approximates d_h sufficiently and $\bar{d}_h \in C$, we have $\bar{d}_h \notin \mathcal{P}$.

By jacobian criterion of regularity (2.1) of [3], $B_{\bar{a}_h}$ is a regular ring, so that Reg(Spec(B)) contains a non empty open set.

Remark: In [4], theorem (3.1), Nomura proves that, if $k[\underline{X}][[\underline{Y}]]$ is a G-ring, then it is J-2. Our proof is inspired by that one, but makes use of the extra information on $k[\underline{X}][[\underline{Y}]]$ that it is a Nagata ring, so that we know that at some prime ideal (the minimal ones) the ring $k[[\underline{X}, \underline{Y}, \underline{Z}]]/\Re k[[\underline{X}, \underline{Y}, \underline{Z}]]$ is really regular.

Now we investigate the property of formal fibers of k[X][[Y]] and prove the following.

Theorem 3. Let k be arbitrary field, $(\underline{X}) = (X_1, \dots, X_n)$ and $(\underline{Y}) = (Y_1, \dots, Y_m)$ two sets of indeterminates.

Then A = k[X][[Y]] is a G-ring for every n and m.

Proof. Let \mathfrak{P} be a maximal ideal of A and put: $C = A\mathfrak{P}$. By [2], chap. XIII, (33. E), lemma 3, it is enough to show that, if D is a domain finite over C as a module and \mathfrak{Q} is a prime ideal of $\widehat{D} = (D, \operatorname{Rad}(D))^{\hat{}}$ such that $\mathfrak{Q} \cap D = (0)$, then the local ring $\widehat{D}_{\mathfrak{Q}}$ is regular.

Put: $X = \operatorname{Spec}(D)$, $X' = \operatorname{Spec}(\widehat{D})$ and let $f: X' \to X$ be the canonical map.

Then it is enough to show that $f^{-1}(\operatorname{Reg}(X)) \subseteq \operatorname{Reg}(X')$.

We argue by absurd and assume that $f^{-1}(\text{Reg}(X)) \cap \text{Sing}(X') \neq \phi$. Since A is J-2 by theorem 2, C is also J-2, so that D is J-1, i.e. $\operatorname{Reg}(X)$ is open in X. On the other hand, $\operatorname{Reg}(X')$ is open in X', since \widehat{D} is a complete semilocal ring. Therefore $f^{-1}(\operatorname{Reg}(X)) \cap \operatorname{Sing}(X')$ is locally closed in X' and non empty; so it contains a prime ideal \mathfrak{p}' such that $\dim(\widehat{D}/\mathfrak{p}') \leq 1$ ([2], chap. XIII, (33. F), lemma 5).

It is immediate that \mathfrak{p}' is not maximal, since corresponding maximal ideals of D and \widehat{D} are simultaneously regular or singular.

Therefore we have: $\dim(\widehat{D}/\mathfrak{p}')=1$.

Now put: $E = \widehat{D}/\mathfrak{p}'$, $\mathfrak{F} = k[[\underline{Y}]] \cap \mathfrak{p}' = k[[\underline{Y}]] \cap \mathfrak{p}$, where $\mathfrak{p} = \mathfrak{p}' \cap D$. Observe that $k[[\underline{Y}]]/\mathfrak{F} \subseteq D/\mathfrak{p} \subseteq E$.

We remark that $D_{\mathfrak{p}}$ is regular, while $\widehat{D}_{\mathfrak{p}'}$ is not regular. Since the morphism $D_{\mathfrak{p}} \to \widehat{D}_{\mathfrak{p}'}$ is faithfully flat, we can conclude that the ring $\widehat{D}_{\mathfrak{p}'}/\mathfrak{p}\widehat{D}_{\mathfrak{p}'}$ is not regular ([2], (21. D), theorem 51).

Now we want to deduce a contradiction. So we distinguish two cases:

(i) E is finite over $k[[Y]]/\Im$ as a module. Therefore D/\mathfrak{p} is also finite over $k[[Y]]/\Im$, which is a complete local ring, so that D/\mathfrak{p} is cmplete either ([2], (23. L), theorem 55), i.e. $D/\mathfrak{p} = \widehat{D}/\mathfrak{p}\widehat{D}$.

Since $\mathfrak{p}' \cap D = \mathfrak{p}$, it is easy to check that $\mathfrak{p}' = \mathfrak{p}\widehat{D}$, which means that $\widehat{D}_{\mathfrak{p}'}/\mathfrak{p}\widehat{D}_{\mathfrak{p}'}$ is a field, hence a regular local ring, which is a contradiction.

(ii) E is not finite over $k[[Y]]/\Im$.

Put: $k[[Y]]/\Im = B$, Rad $(E) = \mathfrak{m}_E$, Rad $(C) = \mathfrak{m}_C$, etc.

We have:

 E/\mathfrak{m}_{E} = homomorphic image of $\widehat{D}/\mathfrak{m}_{\widehat{D}} = D/\mathfrak{m}_{D}$ = finite module over $C/\mathfrak{m}_{C} = A/\mathfrak{P}$ = finite module over $k = B/\mathfrak{m}_{B}$.

Therefore if $\mathfrak{m}_B E$ contains some power of \mathfrak{m}_E , then E is finite over B, since B is complete; but this is absurd.

Hence we must have: $\mathfrak{m}_B E = (0)$, since E is a noetherian semi-local domain of dimension 1.

At last we have: $\mathfrak{M}_B = (0)$, i.e. $\mathfrak{J} = (\underline{Y})$.

We know that D is a finite C-module; hence D/\mathfrak{p} is finite over $C/(\mathfrak{p}\cap C)$, which is a homomorphic image of $C/(\underline{Y})C$. Therefore we see that D/\mathfrak{p} is finite over $A\mathfrak{p}/(\underline{Y})A\mathfrak{p}=(A/(\underline{Y})A)_{(\mathfrak{P}/(\underline{Y})A)}=k[\underline{X}])\mathfrak{p}'$, where $\mathfrak{P}'=\mathfrak{P}$ modulo (\underline{Y}) .

We can conclude that D/\mathfrak{p} is finite over an excellent ring, hence

it is excellent also. In particular the formal fibers of D/\mathfrak{p} at every maximal ideal are geometrically regular.

Now we choose $\mathfrak{M}' \in \operatorname{Max}(\widehat{D})$ such that $\mathfrak{p} \subseteq \mathfrak{M}'$ and put: $\mathfrak{M} = \mathfrak{M}' \cap D$, so that $\mathfrak{p} \subseteq \mathfrak{M}$. We know that the formal fiber of $(D/\mathfrak{p})_{(\mathfrak{M}/\mathfrak{p})}$ at the origin is a regular ring, i.e. the following ring is regular:

$$((\widehat{D}/\mathfrak{p}\widehat{D})_{(\mathfrak{M}'/\mathfrak{p}\widehat{D})})_{s},$$

where $S = (D/\mathfrak{p}) (\mathfrak{M}/\mathfrak{p}) - (0)$.

Since $\mathfrak{p}' \cap D = \mathfrak{p}$, we have: $\mathfrak{p}'(\widehat{D}/\mathfrak{p}\widehat{D}) (\mathfrak{M}'/\mathfrak{p}\widehat{D}) \cap (D/\mathfrak{p}) (\mathfrak{M}/\mathfrak{p}) = (0)$. Therefore the ring $\widehat{D}_{\mathfrak{p}'}/\mathfrak{p}\widehat{D}_{\mathfrak{p}'}$ is regular, which is absurd.

At last, $f^{-1}(\operatorname{Reg}(X)) \cap \operatorname{Sing}(X') = \phi$ and A is a G-ring.

Recalling that the ring k[X][[Y]] is a regular ring, hence universally catenary ([2], (14. B)), we see that theorem 2 and theorem 3 together give our main result on excellent property; we write here the result explicitly in the following.

Theorem 4. Let k be an arbitrary field, $(\underline{X}) = (X_1, \dots, X_n)$ and $(\underline{Y}) = (Y_1, \dots, Y_m)$ two sets of indeterminates.

Then $k[\underline{X}][[\underline{Y}]]$ is an excellent ring.

Corollary 5. Let k be an arbitrary field and A a k-algebra of finite type. Then, for every ideal \Im of A, the \Im -adic completion $(A, \Im)^{\wedge}$ of A is an excellent ring.

Proof. Since $A = k[X_1, \dots, X_n]/\mathfrak{D}$, where \mathfrak{D} is a suitable ideal, the completion $(A, \mathfrak{F})^{\hat{}}$ is a residue ring of $k[X_1, \dots, X_n][[Y_1, \dots, Y_m]]$, for a suitable choice of the Y_i 's, by [6], chap. II, theorem (17.5).

Hence the result follows from theorem 4.

Now we want to extend the preceding results to restricted power series over a complete local ring, obtaining a generalization of [8], corollaire (2.1.3).

In [8] it is proved that the ring of restricted power series in n variables over a complete local ring of characteristic p>0 is excellent, under the condition that the residue field of the base ring be finite as a vector space over its p-th power.

Here we give a more general result, proving excellent property for restricted power series over an arbitrary equicharacteristic complete local ring.

First we need a lemma:

Lemma 6. Let k be a field, (\underline{X}) and (\underline{Y}) two finite sets of indeterminates. Then we have:

$$k[\underline{X}][[\underline{Y}]] = (k[[\underline{Y}]], (\underline{Y})) \{\underline{X}\}.$$

Proof. $k[[Y]]\{X\}$ is a completion of k[X,Y] with respect to the (Y)-adic topology ([7], n. 1, proposition 1); hence it is really the (Y)-adic closure of k[X,Y] in k[[X,Y]], exactly as k[X][[Y]].

Proposition 7. Let (A, \mathfrak{m}) be an equicharacteristic complete local ring and $(\underline{X}) = (X_1, \dots, X_n)$ a set of indeterminates over A.

Then $(A, \mathfrak{m}) \{\underline{X}\}$ is an excellent ring.

Proof. By Cohen's structure theorem A contains a coefficient field k and is a homomorphic image of a formal power series ring over k, say $k[[Y_1, \dots, Y_r]]$ (see [6], chap. V, theorem (31.1)). Therefore $(A, \mathfrak{m})\{\underline{X}\}$ is a homomorphic image of $(k[[\underline{Y}]], (\underline{Y}))\{\underline{X}\}$; in fact, if $A = k[[\underline{Y}]]/2$, then $A\{\underline{X}\} = k[[\underline{Y}]]\{\underline{X}\}/2\{\underline{X}\}$, where $2\{\underline{X}\}$ = the set of restricted power series with coefficients in 2.

Hence we can assume that A = k[[Y]]. By lemma 6 we have: $k[[Y]] \{X\} = k[X][[Y]] = \text{excellent ring by theorem 4.}$

ISTITUTO MATEMATICO UNIVERSITÀ DI TORINO

References

- [1] Grothendieck A. Eléments de Géométrie Algébrique, Publ. I. H. E. S., Paris, 1960...
- [2] Matsumura H. Commutative Algebra, Benjamin, New York, 1970.
- [3] Matsumura H. Formal power series rings over polynomial rings, I Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Y. Akizuki, Kinokuniya, Tokyo, 1973.
- [4] Nomura M. Formal power series ring over polynomial rings, II Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Y. Akizuki, Kinokuniya, Tokyo, 1973.
- [5] Marot J. Sur les anneaux universellement japonais, C. R. Acad. Sc. Paris, t. 277, 1973.
- [6] Nagata M. Local rings, Interscience, New York, 1962.
- [7] Salmon P. Sur les séries formelles restreintes, Bull. Soc. Math. de France, 92,
- [8] Seydi H. Sur une note d'Ernst Kunz C. R. Acad. Sc. Paris, t. 274, 1972.