Sur l'existence des intégrales d'un système d'équations différentielles aux fonctions inconnues de nombre infini

Par

Jôyô KANITANI

(Communiqué par Prof. Toda, le 11 décembre, 1974)

Résumé

Dans un article précédent ([4], p. 10) on a démontré que le chemin horizontal au dessus d'un chemin contenu dans une variété différentiable admtettant les homéomorphismes locaux à l'espace projectif à dimension infinie peut se déterminer au moyen d'un système d'équations différentielles de la même forme qu'à la variété différentiable à dimension finie. Ce système s'agit cependant des fonctions inconnues de nombre infini. Cet article a pour but de prouver l'existence de ses intégrales.

1. Soient S l'espace projectif à dimension infinie, et (A_i) $(i \in I)$ une base de S. Nous supposons que l'ensemble I d'indices est équipotent à l'ensemble (A_i) $(i \in I)$, et qu'il possède, conformément le théorème de Zermelo, un bon ordre. Soit ℓ l'élément le plus petit de I. En associant une famille des points d'unité $(U_{i_0\cdots i_r})$ $((i_0,\cdots,i_r):$ sous-famille finie de I) à la base (A_i) $(i \in I)$, on peut former un repère $\mathfrak A$ par rapport auquel un point P de S possède les coordonnées homogènes (x^i) $(i \in I)$ ([1], p. 3; [2], p. 1). Les points (A_i) $(i \in I)$ se nomment les sommets de ce repère qui se note $\mathfrak A(A_i)$. D'après la définition de base, on a $x^i=0$ sauf pour un nombre fini des indices i. On appelle $x^i/\sum_i |x^i|$ $(i \in I)$ les coordonnées normales du point P(x).

Nous désignerons désormais et sauf mention expresse du contraire par (x^i) $(i \in I)$ les coordonnées normales du point x. De plus, lorsque $x^{j_0}, \dots, x^{j_m} (j_0 < \dots < j_m)$ sont les coordonnées normales $\neq 0$ du point x, nous conviendrons de faire $x^{j_0} > 0$ de sorte qu'on ait $0 < x^{j_0} = 1 - |x^{j_1}| - \dots - |x^{j_m}|$, les coordonnées normales de x étant ainsi uniquement déterminées.

Prenons un point a. Soit λ un nombre qui ne dépasse pas mini. $(|a^i| \neq 0)$. L'ensemble des points x satisfaisant à l'inégalité $|x^i - a^i| < \lambda$ se note $\mathfrak{C}(a,\lambda)$ et se nomme cube projective de centre a et de largeur λ . On a $x^i \neq 0$ pourvu que $a^i \neq 0$, et alors x^i est de même signe que a^i . On doue l'espace S de la topologie où l'ensemble des cubes projectifs est une base.

2. Envisageons une transformation projective T dans S (une application bijective $S \rightarrow S$ qui entraı̂ne une correspondance bijective entre les droites en conservant la relation d'inclusion). Soit

$$A_{i}' = T(A_{i}), U'_{i_{0} \cdots i_{r}} = T(U_{i_{0} \cdots i_{r}}).$$

Nous obtenons alors un repère \mathfrak{A}' de sommets $A_i'(i \in I)$, et de points d'unité $U'_{i_0\cdots i_r}((i_0,\cdots,i_r)\subset I)$. Cette transformation T est dite attachée au changement de repère $\mathfrak{A}\to\mathfrak{A}'$. Inversement, pour tout couple de deux repères dans S, il existe une et unique transformation projective attachée au changement de l'un à l'autre ($\lceil 2 \rceil$, p. 3).

Soient (p_j^i) $(i, j \in I; p_j^i = 0$ pour chaque j sauf pour un nombre fini des indices i) les coordonnées homogènes du sommet A_j' par rapport au repère $\mathfrak{N}(A_i)$. La transformation T projective attachée au changement de repère $\mathfrak{N} \to \mathfrak{N}'$ s'exprime par

$$\rho x^{\prime i} = \sum_{j} p_{j}^{i} x^{j} \qquad (\rho \neq 0).$$

Lorsque les p_j^i sont les coordonnées normales de A_j' cette transformation est dite normale $(\sum_i |p_j^i| = 1 (j \in 1))$. Si l'on désigne par q_j^i les coordonnées homogènes du sommet A_j par rapport au repére \mathfrak{A}' , l'inverse T^{-1} de T est donnée par

$$\sigma x^{j} = \sum_{i} q_{i}^{j} x^{\prime i}.$$

Lorsque la transformation T est normale, il en est de même pour

 T^{-1} et on a

$$\sum_{i} p_{i}^{i} q_{j}^{i} = \sum_{i} q_{i}^{i} p_{j}^{i} = \delta_{j}^{i}.$$

De plus, si les transformations T et T^\prime sont normales, il en est ainsi pour la transformation composée

$$T' \circ T: \qquad \tau x'^{i} = \sum_{l,m} p_{l}'^{i} p_{m}^{l} x^{m}$$

de sorte qu'on a ([4], p. 11)

(2.1)
$$\sum_{i} |\sum_{l} p_{l}'^{i} p_{j}^{l}| = 1 \qquad (j \in I).$$

Nous pouvons induire sur l'ensemble des transformations projectives normales dans S la topologie de l'ensemble produit S^I de sorte qu'il forme un groupe topologique \mathfrak{G} ([2], p. 10).

Pour la transformation pojective normale T qui laisse invariant le cube projectif $\mathfrak{G}_{i} = \mathfrak{G}(A_{i}, 1)$, on a

$$p_{\iota}'q_{\iota}'=1, \ p_{\iota}'=q_{\iota}'=0 \qquad (l \in I'=I-\{\iota\}).$$

Elle opère sur \mathfrak{E}_{ι} comme un automorphisme. Si elle conserve de plus le sommet A_{ι} , on a

$$p_{i} = q_{i} = 1, \quad p_{i}^{l} = q_{i}^{l} = 0 \qquad (l \in I' = I - \{l\})$$

de sorte que son équation s'écrit

$$\hat{\xi}'^i = \sum_{j} p_j^i \hat{\xi}^j$$
 $\left(i, j \in I'; \; \hat{\xi}^i = \frac{x^i}{x^i}\right).$

L'ensemble G_i de telles transformations forme un sous-groupe de \mathfrak{B} ; nous pouvons induire sur G_i la topologie de \mathfrak{B} . Cela revint à dire qu'on induit sur G_i la topologie du produit $\mathfrak{B}^{I'}$ où l'ensemble d'aririvée \mathfrak{B} est la frontière de \mathfrak{C}_i .

Cela étant fait, à chaque transformation projective normale $p = (p_j{}^i) \in G_i$, il correspond une application de l'indice $j \in I'$ au point $p_j = (p_j{}^i) \in \mathfrak{B}$. Or, la topologie de $\mathfrak{B}^{I'}$ admet pour base l'ensemble des produits

$$\prod_{j \in I'} U_j$$

où U_j coincide avec $\mathfrak{B},$ si l'on laisse à coté certains indices $j_{\scriptscriptstyle 1},\,\cdots,\,j_{\scriptscriptstyle l}$

de nombre fini pour lesquels on a

$$U_{l} = \mathfrak{C}(p_{l}, \varepsilon) \cap \mathfrak{B} \qquad (p_{l} \in \mathfrak{B}) \qquad (s = 1, \dots, l).$$

Ce produit est donc l'image d'un voisinage \mathfrak{U}_p de la transformation $p \in G$, sous l'application Θ définie par la crrespondance dont nous venons de mentionner.

3. Soit $p = (p_j^i)$ un élément (une transformation projective normale) de G_i . Pour chaque indice $j \in I'$, il existe un ensemble fini nonvide des indices $i \in I'$ tels que $p_j^i \neq 0$. Soit $i_0(p,j)$ l'élément le plus petit de cet ensemble. On peut prendre (p_j^i) $(i \neq i_0(p,j); i,j \in I')$ comme coordonnées de la transformation p. Envisageons ensuite une transformation $\zeta \in \mathfrak{U}_p$. L'image $(\Theta \zeta)I'$ est l'ensemble des sommets (A_i') $(i \in I')$ du repère \mathfrak{A}' tel que la transformation ζ est attachée au changement de repère $\mathfrak{A} \to \mathfrak{A}'$. Cela revient à dire qu'on peut prendre comme les coordonnées de l'application $\Theta \zeta$, celles de la transformatoin ζ . Or, si

$$\zeta_{j_s} \in \mathfrak{C}(p_{j_s}, \varepsilon) \cap \mathfrak{B}$$
,

il vient

$$|\zeta_{j_i}^i - p_{j_i}^i| < \varepsilon$$
 $(\zeta_{j_i}^i = p_{j_i}^i = 0)$,

en particulier,

$$0 < p_{j_{\bullet}}^{i_0(p, j_{\bullet})} - \varepsilon < \zeta_{j_{\bullet}}^{i_0(p, j_{\bullet})}.$$

Nous pouvons donc prendre les $\zeta_{j_*}^i(i\neq i_0(p,j_*);\ i,j\in I')$ comme coordonnées de ζ_{j_*} . En effet, cela revient à la convention mentoinnées plus haut, si l'indice i_0 est le plus petit d'indices i tels que $\zeta_{j_*}^i\neq 0$. Au cas contraire, en prenant $\zeta_{j_*}^{i_0}$, où i_0' est l'indice le plus petit comme une des coordonnées locales, on peut écrire

$$\zeta_{f_s}^{i_0} = 1 - \zeta_{f_s}^{i_0'} - \sum_{i \neq i_0, i_0'} |\zeta_{f_s}^i|$$
 .

Lorsque $p = (p_j^i)$ est l'élément neutre (une identité) de G_i on a

$$p_{j}^{i} = \delta_{j}^{i}; i_{0}(p, j) = j; 0 \le 1 - \zeta_{j}^{i} = \sum_{i \ne j} |\zeta_{j}^{i}| < \varepsilon < 1.$$

Le vecteur tangent λ à G, en élément neutre e s'exprime sous la forme

$$\lambda = \sum_{i,j} \lambda_j^i \frac{\partial}{\partial c_j^i} \qquad (i \neq j),$$

où on a $\lambda_j^i = 0$ sauf pour un nombre fini des couples d'indices (i, j) $\in I' \times I' - \Delta$ (I, p. 11). Les coordonnées normales ρ_j^i de ce vecteur λ sont définies par

$$\rho_j^i = \frac{1}{1 + \sum\limits_{l \neq j} |\lambda_j^i|}, \quad \rho_j^i = \frac{\lambda_j^i}{1 + \sum\limits_{l \neq j} |\lambda_j^i|} \qquad (i \neq j),$$

d'où

$$0 < \rho_j^{j} \le 1$$
, $\sum_i |\rho_j^{i}| = 1$.

Ainsi, l'espace T(e) de vecteurs tangents à G_i en e peut se représenter par un sous-espace de G_i . Si $\rho_j{}^j = 1$ pour tout $j \in I'$ (i.e. $\rho_j{}^i = 0$ $(i \neq j)$), ρ est l'élément neutre de l'espace T(e). Il est représenté par l'élément neutre e. Supposons ensuite qu'il existe un ensemble nonvide des indices j tels que $\rho_j{}^i \neq 0$ $(i \neq j)$. Comme nous l'avons remarqué plus haut, il est fini: il s'écrit (j_s) $(1 \leq s \leq l)$. A chaque j_s il correspond un ensemble fini nonvide des indices i satisfaisant à l'inégalité $\rho_{j_s}^i \neq 0$. Le nomble le plus grand de tels indices pour $s=1,\cdots,l$ se note $\nu(\rho)$. L'élément représentatif $\rho \in G_i$ du vecteur $\rho=(\rho_j{}^i)$ admet ainsi un voisinage ouvert $\widetilde{\mathbb{U}}_{\rho}$ ([4], p. 5, ligne 2 de bas) tel que $\mathcal{O}\zeta$ $(\zeta \in \widetilde{\mathbb{U}}_{\rho})$ fait correspondre à $j_s(1 \leq s \leq l)$ un point de

$$U_{j_s} = \mathfrak{C}(\rho_{j_s}, \varepsilon_{\rho}) \cap \mathfrak{B} \qquad \left(0 < \varepsilon_{\rho} < \frac{1}{2\nu(\rho)} \text{ mini. } (|p_{j_s}^i| \neq 0)\right),$$

et à $j(\neq j_s)$ le sommet A_t .

4. Etant donné un élément $(g_j^i)_a$ de G_i , envisageons, sur T(e), un chemin $\rho = \psi(t)$ homémorphe à l'intervalle $[t_a, t_{a+1}]$ $(0 \le t_a < t_{a+1} \le 1; [4], p. 7)$, tel que

$$\rho_{j}(t) \in \mathfrak{C}(\delta_{j}, \varepsilon) \qquad (0 < \varepsilon < \frac{1}{4} \kappa_{j}; \kappa_{j} = \min_{i} (|(g_{j}^{i})_{a}| \neq 0))$$

ou bien, pour tout $(g_j^i)_a \neq 0$,

$$(4.1) 1 - \rho_j^{j}(t) = \sum_{k \neq i} |\rho_j^{k}(t)| < \frac{1}{4} \kappa_j \le \frac{1}{4} |(g_j^{i})_a|.$$

Nous allons démontrer, en utilisant la méthode d'approximation

successive, que le système d'équations différentielles

$$\frac{dg_j^i}{dt} = \sum_{k \neq j} \left(\rho_j^k(t) g_k^i - |\rho_j^k| g_j^i \right)$$

aux fonctions inconnues $g_j^i(t)$ $(t \in [t_a, t_{a+1}])$ de nombre infini admet un système unique des intégrales qui prennent les valeurs initiales $(g_j^i)_a$ $(i, j \in I')$ au point t_a ([4], p. 10; on prend les ρ_j^k et leurs signes à la place des coordonnées locales λ_j^k et des signes σ_k , car ceux-ci proviennent des signes des coordonnées locales d'un élément a_{j_j} assez viosin de l'élément neutre).

Considérons d'abord l'intégrale

$$\int_{t_a}^{t} \left(\sum_{k \neq j} \left(\rho_j^{k}(u) \left(g_k^{i} \right)_a - \left| \rho_j^{k}(u) \right| \left(g_j^{i} \right)_a \right) du \right)$$

$$= \int_{t_a}^{t} \left(\sum_{l} \rho_j^{l}(u) \left(g_l^{i} \right)_a - \left(g_j^{i} \right)_a \right) du.$$

L'ensemble des voisinages $\mathfrak{U}_{p(u)}$ $(t_a \leq u \leq t \leq t_{a+1})$ où

$$U_{j_s} = \mathfrak{C}(p_{j_s}, \varepsilon_p) \qquad \left(\varepsilon_p < \frac{1}{2\nu(p)} \text{ mini. } (|p_{j_s}^i| \neq 0)\right),$$

forme un recouvrement ouvert du chemin $L=\psi(u)$ $(t_a \leq u \leq t)$ qui est homéomorphe par l'hypothèse à l'intervalle $[t_a,t]$ et donc compact. Nous pouvons en extraire un recouvrement fini et donc partager le chemin L, au moyen des nombres $t_a=\bar{t}_0 < \bar{t}_1 < \cdots < t$, en parties de nombre fini dont chacune $\psi_c(u)$ $(\bar{t}_c \leq u \leq \bar{t}_{c+1})$ est contenue dans un voisinage $\mathfrak{U}_{p(u)}$ appartenant à ce recouvrement fini. La superposition des subdivisions $(\bar{t}_0(=t_a), \bar{t}_1, \cdots, t)$ et $(t_a, (t_a+t)/2, t)$ de l'intervalle $[t_a, t]$ se note $(\tau_0(=t_a), \tau_1, \cdots, t)$. Soit m_0 le minimum des longuers $\tau_{c+1}-\tau_c(c=0,1,\cdots)$ de ces sous-intervalles. Posons

$$M^{t}_{j,0} = \sum_{c} \left(\sum_{l} \rho_{j}^{l} (\bar{\tau}_{c}) \left(g_{l}^{i} \right)_{a} - \left(g_{j}^{i} \right)_{a} \right) \left(\tau_{c+1} - \tau_{c} \right) \qquad (\tau_{c} \leq \bar{\tau}_{c} \leq \tau_{c+1}).$$

On a $M_{j,0}^i = 0$, si $j \neq j_s$.

Considérons ensuite le recouvrement formé par les voisinages $\mathfrak{U}'_{p(u)}$ $(t_a \leq u \leq t)$ où

$$U'_{j_s} = \mathfrak{G}(p_{j_s}, \varepsilon_{p'}) \qquad \left(\varepsilon_{p'} < \frac{1}{4\nu(p)} \text{ mini. } (|p_{j_s}^i| \neq 0)\right),$$

tels que les longuers des sous-intervalles $\psi^{-1}(\mathfrak{U}'_{p(u)}\cap L)$ soient moindre que $m_0/2$, et extrayons en un recoruvrement fini. Partageons le chemin L au moyen des nombres $t_a=\bar{t}_0'<\bar{t}_1'<\cdots< t$ de telle sorte que cela divise chaque sous-chemin $(\tau_c\leq u\leq \tau_{c+1};\ c=0,\ 1,\ \cdots)$, en parties de nombre fini dont chacune est contenue dans un viosinage $\mathfrak{U}'_{p(u)}$ appartenant à ce recouvrement fini. La superposition de la subdivision $(\bar{t}_0'(=t_a),\bar{t}_1',\cdots,t)$ et de $(t_a,\ (t_a+t)/4,\ (t_a+t)/2,\ 3(t_a+t)/4,\ t)$ se note $(\tau_0'(=t_a),\tau_1',\cdots,t)$ et ainsi de suite.

Posons

$$\begin{split} M_{f,i}^{i} &= \sum_{c} \left(\sum_{l} \rho_{f}{}^{l} (\overline{\tau}_{c}{}') \left(g_{l}{}^{i} \right)_{a} - \left(g_{f}{}^{i} \right)_{a} \right) (\tau_{c+1}' - \tau_{c}{}') \quad (\tau_{c}{}' \leq \overline{\tau}_{c}{}' \leq \tau_{c+1}'), \\ M_{f,n}^{i} &= \sum_{c} \left(\sum_{l} \rho_{f}{}^{l} (\overline{\tau}_{c}{}^{(n)}) \left(g_{l}{}^{i} \right)_{a} - \left(g_{f}{}^{i} \right)_{a} \right) (\tau_{c+1}^{(n)} - \tau_{c}{}^{(n)}) \quad (\tau_{c}{}^{(n)} \leq \overline{\tau}_{c}{}^{(n)} \leq \tau_{c+1}^{(n)}), \end{split}$$

les $\tau_0^{(n)}$, $\tau_1^{(n)}$, \cdots étant les points de la (n+1)-ième subdivision de l'intervalle $[t_a, t]$, dont chaque couple de deux points adjacents détermine un sous-chemin L_c contenu dans un voisinage $\mathfrak{U}_{p(u)}^{(n)}$ $(t_0 \leq u \leq t)$ où

$$U_{j_{i}}^{(n)} = \mathfrak{C}(p_{j_{i}}, \varepsilon_{p}^{(n)}) \qquad \left(0 < \varepsilon_{p}^{(n)} < \frac{1}{2^{(n+1)} \nu(p)} \text{ mini. } (|p_{j_{i}}^{i}| \neq 0)\right)$$

de sorte que pour toute valeur v du sous-intervalle limité par ces deux points adjacents on a

$$(4.2) \qquad \qquad \sum_{i} |\rho_{j_{i}}^{i}(v) - p_{j_{i}}^{i}| < \nu(p) \, \varepsilon_{p}^{(n)} < \frac{1}{2^{n+1}}.$$

On a de plus

(4.3)
$$\tau_{c+1}^{(n)} - \tau_c^{(n)} \leq \frac{1}{2^{n+1}} \quad (c = 0, 1, \dots).$$

Nous obtenons ainsi une suite $(M_{j,0}^t, M_{j,1}^t, \cdots, M_{j,n}^t, \cdots)$, chaque membre étant nul si $j \neq j_s$. Celle-ci est convergente. En effect, comme chaque sous-intervalle $[\tau_c^{(n)}, \tau_{c+1}^{(n)}]$ dans la (n+1)-ième subdivision se décompose d'après définition, en parties $[\tau_{d_0(c)}^{(n+r)}, \tau_{d_1(c)}^{(n+r)}]$, \cdots , $[\tau_{d_{k-1}(c)}^{(n+r)}, \tau_{d_k(c)}^{(n+r)}]$ par la (n+r+1)-ième subdivision, on a grâce à (4,2), (4,3)

$$\begin{split} |M_{j,n+r}^i - M_{j,n}^i| &= |\sum_{\mathbf{c}} \left\{ \sum_{t=0}^{k-1} \left(\sum_{\mathbf{l}} \rho_j^{\ l} (\overline{\tau}_{d_t(\mathbf{c})}^{(n+r)}) \left(g_{\mathbf{l}}^{\ l} \right)_a \right. \\ &- \left. \left(g_j^{\ l} \right)_a \right) \left(\tau_{d_t,\mathbf{c}}^{(n+r)} - \tau_{d_t(\mathbf{c})}^{(n+r)} \right. \end{split}$$

$$\begin{split} &- \big(\sum_{l} \rho_{j}^{l} (\bar{\tau}_{c}^{(n)}) (g_{l}^{i})_{a} - (g_{j}^{i})_{a} \big) (\tau_{c+1}^{(n)} - \tau_{c}^{(n)}) \big\} \,| \\ &= |\sum_{c} \sum_{l} \big\{ \sum_{t=0}^{k-1} \left(\rho_{j}^{l} (\bar{\tau}_{d_{t}(c)}^{(n+r)}) - p_{j}^{l} \right) (g_{j}^{i})_{a} (\tau_{d_{t+1}(c)}^{(n+r)} - \tau_{d_{t}(c)}^{(n+r)}) \\ &- (\rho_{j}^{l} (\bar{\tau}_{c}^{(n)}) - p_{j}^{l}) (g_{l}^{i})_{a} \big) (\tau_{c+1}^{(n)} - \tau_{c}^{(n)}) \big\} \,| \\ &\leq \sum_{c} \sum_{l} \big\{ \sum_{t=0}^{k-1} |\rho_{j}^{l} (\bar{\tau}_{d_{t}(c)}^{(n+r)}) - p_{j}^{l} | (\tau_{d_{t+1}(c)}^{(n+r)} - \tau_{d_{t}(c)}^{(n+r)}) + | \cdots | \big\} \\ &\leq \sum_{c} \left(\frac{1}{2^{n+1}} \sum_{t=0}^{k-1} (\tau_{d+1(c)}^{(n+r)} - \tau_{d_{t}(c)}^{(n+r)}) + \frac{1}{2^{n+1}} (\tau_{c+1}^{(n)} - \tau_{c}^{(n)}) \right) \\ &= \frac{1}{2^{n}} (t - t_{a}) \end{split}$$

$$(\tau_{d_t(c)}^{(n+r)} \leq \overline{\tau}_{d_t(c)}^{(n+r)} \leq \tau_{d_{t+1}(c)}^{(n+r)}, \ \tau_c^{(n)} \leq \overline{\tau}_c^{(n)} \leq \tau_{c+1}^{(n)})$$

ce qui nous montre que la suite considérée est uniformément convergent dans $[t_a, t]$.

Nous définissons ainsi

$$\lim_{n\to\infty}M_{j,n}^i=\int_{t_a}^t\left(\sum_i\rho_j^i(u)\left(g_i^i\right)_a-\left(g_j^i\right)_a\right)du\qquad (i,j\in I').$$

Posons

$$(4.4) g_{j,1}^{i} = (g_{j}^{i})_{a} + \int_{i_{a}}^{i} \left(\sum_{l} \rho_{j}^{l}(u) (g_{l}^{i})_{a} - (g_{j}^{i})_{a} \right) du (i \neq i_{0}((g)_{a}, j).$$

5. Puisque, en vertu de (4.1),

$$\begin{split} &\sum_{i} |\sum_{l} \rho_{j}^{l}(u) (g_{l}^{i})_{a} - (g_{j}^{i})_{a}| \\ &\leq \sum_{i} |(g_{j}^{i})_{a}| \cdot |\rho_{j}^{f}(u) - 1| + \sum_{l} \sum_{k \neq l} |(g_{k}^{i})_{a}| |\rho_{j}^{k}| \leq \frac{1}{2} \kappa_{j}, \end{split}$$

il suit de (4.4)

$$\sum_{i \neq i_0} |g_{j,1}^i| \leq 1 - (g_j^{i_0})_a + \int_{t_0}^t \sum_i |\sum_i \rho_j^i(u) (g_i^{i_0})_a - (g_j^{i_0})_a | du$$

$$\leq 1 - (g_j^{i_0})_a + \frac{1}{2} (t - t_a) \kappa_j \leq 1 - \frac{1}{2} (g_j^{i_0})_a.$$

Donc, en posant

$$g_{j,1}^{i_0} = 1 - \sum_{i \neq i_0} |g_{j,1}^i|$$
 ,

on obtient

$$(5.1) g_{t_1}^{t_0} \ge \frac{1}{2} (g_j^{t_0})_a > 0.$$

En somme on a, pour tout j,

(5.2)
$$\sum_{i} |g_{j,1}^{i}| = 1.$$

On a aussi

$$(5.3)_1 |g_{t,1}^i - (g_t^i)_a| \leq \frac{1}{2} (t - t_a) \kappa_j < \frac{1}{2} (i \neq i_0; j \in I').$$

$$(5.3)_{2} |g_{j,1}^{t_{0}} - (g_{j}^{t_{0}})_{a}| = |\sum_{i \neq t_{0}} |(g_{j}^{t})_{a}| - \sum_{i \neq t_{0}} |(g_{j,1}^{t})||$$

$$= |\sum_{i \neq t_{0}} (|(g_{j}^{i})_{a}| - |g_{j,1}^{t}|)| \leq \sum_{i \neq t_{0}} |g_{j,1}^{t} - (g_{j}^{t})_{a}|$$

$$\leq \sum_{i \neq t_{0}} \frac{1}{2} \int_{t_{a}}^{t} \kappa_{j} du \leq \frac{1}{2} \int_{t_{a}}^{t} \sum_{i} |(g_{j}^{t})_{a}| du$$

$$= \frac{1}{2} (t - t_{a}) \leq \frac{1}{2} .$$

De même, on a

$$(5.4)_{1} |g_{j,1}^{i}(v) - g_{j,1}^{i}(u)| \leq \left| \int_{u}^{v} \left(\sum_{l} \rho_{j}^{l}(u) \left(g_{l}^{i} \right)_{a} - \left(g_{j}^{i} \right)_{a} \right) du \right|$$

$$\leq \frac{1}{2} \kappa_{j} |v - u| \leq \frac{1}{2} |v - u|$$

$$(i \neq i_{0}; t_{a} \leq u, v \leq t_{a+1}),$$

$$(5.4)_{2} |g_{j,1}^{i_{0}}(v) - g_{j,1}^{i_{0}}(u)| \leq \sum_{l} \frac{1}{2} |(g_{j}^{i})_{a}| |v - u| \leq \frac{1}{2} |v - u|.$$

En remplaçant, dans $M_{j,n}^i(n=0,1,\cdots)$, $(g_i^i)_a$ par $g_{i,1}^i(t)$ nous obtenons la suite $(M_{j,10}^i,M_{j,11}^i,\cdots,M_{j,1n}^i,\cdots)$. En fait de la différence $M_{j,1n+r}^i-M_{j,1n}^i$ on a, en vertu de (4.2), (4.3), (5.2), $(5.4)_1$ et $(5.4)_2$,

$$\begin{split} |M_{j,1n+r}^{i} - M_{j,1n}^{i}| &= |\sum_{c} \{ \sum_{t=0}^{k-1} \left(\sum_{l} \rho_{j}^{l} (\overline{\tau}_{d_{t}(c)}^{(n+r)}) g_{l,1}^{i} (\overline{\tau}_{d_{t}(c)}^{(n+r)}) - g_{j,1}^{i} (\overline{\tau}_{d_{t}(c)}^{(n+r)}) g_{l,1}^{i} (\overline{\tau}_{d_{t}(c)}^{(n+r)}) - g_{j,1}^{i} (\overline{\tau}_{c}^{(n+r)}) (\tau_{d_{t+1}(c)}^{(n+r)} - \tau_{d_{t}(c)}^{(n+r)}) - (\sum_{l} \rho_{j}^{l} (\overline{\tau}_{c}^{(n)}) g_{l,1}^{i} (\overline{\tau}_{c}^{(n)}) - g_{j,1}^{i} (\overline{\tau}_{c}^{(n)})) (\tau_{c+1}^{(n)} - \tau_{c}^{(n)}) \} | \\ &= |\sum_{c} \sum_{l} \{ (\sum_{t=0}^{k-1} \rho_{j}^{l} (\overline{\tau}_{d_{t}(c)}^{(n+r)}) - \rho_{j}^{l}) g_{l,1}^{i} (\overline{\tau}_{d_{t}(c)}^{(n+r)}) (\tau_{d_{t+1}(c)}^{(n+r)} - \tau_{d_{t}(c)}^{(n+r)}) - (\rho_{j}^{l} (\overline{\tau}_{c}^{(n)}) - \rho_{j}^{l}) g_{l,1}^{i} (\overline{\tau}_{c}^{(n)}) (\tau_{c+1}^{(n)} - \tau_{c}^{(n)}) \end{split}$$

$$\begin{split} &+p_{j}^{l}\left(\sum_{t=0}^{k-1}\left(g_{l,1}^{i}(\bar{\tau}_{d_{t}(c)}^{(n+r)})-g_{l,1}^{i}(\bar{\tau}_{c}^{(n)})\left(\tau_{d_{t},1(c)}^{(n+r)}-\tau_{d_{t}(c)}^{(n+r)}\right)\right.\\ &-\sum_{t=0}^{k-1}\left(g_{j,1}^{i}(\bar{\tau}_{d_{t}(c)}^{(n+r)})-g_{j,1}^{i}(\tau_{c}^{(n)})\right)\left(\tau_{d_{t+1}(c)}^{(n+r)}-\tau_{d_{t}(c)}^{(n+r)}\right)|\\ &\leq\sum_{c}\left(\frac{1}{2^{n+1}}\sum_{t=0}^{k-1}\left(\tau_{d_{t+1}(c)}^{(n+r)}-\tau_{d_{t}(c)}^{(n+r)}\right)+\frac{1}{2^{n+1}}\left(\tau_{c+1}^{(n)}-\tau_{c}^{(n)}\right)\right.\\ &+\frac{1}{2^{n+1}}\sum_{t}\left|p_{j}^{l}\right|\sum_{t=0}^{k-1}\left(\tau_{d_{t+1}(c)}^{(n+r)}-\tau_{d_{t}(c)}^{(n+r)}\right)\\ &+\frac{1}{2^{n+1}}\sum_{t=0}^{k-1}\left(\tau_{d_{t+1}(c)}^{(n+r)}-\tau_{d_{t}(c)}^{(n+r)}\right)\right)\\ &=\frac{1}{2^{n-1}}\left(t-t_{a}\right). \end{split}$$

Nous définissons ainsi

$$\lim_{n\to\infty} M_{j,1n}^i = \int_{t_a}^t \left(\sum_{l} \rho_j^l(u) g_{l,1}^i(u) - g_{j,1}^i(u) \right) du \qquad (i, j \in I').$$

Posons

(5.5)
$$g_{j,2}^{i}(t) = (g_{j}^{i})_{a} + \int_{t_{a}}^{t} \left(\sum_{l} \rho_{j}^{l}(u) g_{l,1}^{i}(u) - g_{j,1}^{i}(u) \right) du$$
$$(i \neq i_{0}((g)_{a}, j).$$

6. En vertu de (5.1), on a

$$\begin{split} & \sum_{i} | \sum_{l} \rho_{j}^{l}(u) g_{l,1}^{i}(u) - g_{j,1}^{i}(u) | \\ & \leq \sum_{i} | g_{j,1}^{i}(u) | \cdot | \rho_{j}^{f}(u) - 1 | + \sum_{i} \sum_{k \neq j} | g_{k,1}^{i}(u) | \cdot | \rho_{j}^{k} | < \frac{1}{2} \kappa_{f} \end{split}$$

et, par suite,

$$\sum_{i \neq i_0} |g_{j,2}^i| \leq \! 1 - (g_j^{i_0})_a + \frac{1}{2} \, \kappa_j(t - t_a) \leq \! 1 - \frac{1}{2} (g_j^{i_0})_a \; .$$

Donc, en posant

$$g_{j,2}^{i_0} \! = \! 1 - \sum\limits_{j \neq i_0} |g_{j,2}^i|$$
 ,

on obtient

$$g_{j,2}^{i_0} \ge \frac{1}{2} (g_j^{i_0})_a > 0$$

c'est-à-dire

$$\sum_{i} |g_{j,2}^{i}| = 1$$
.

On a aussi

$$|g_{j,2}^i(v) - g_{j,2}^i(u)| \le \frac{1}{2} |v - u| \le \frac{1}{2}$$

 $(i, j \in I'; t_a \le u, v \le t_{a+1}).$

Plus généralement, on déduit par la voie de récurrence

(6.1)
$$g_{j,m}^{i}(t) = (g_{j}^{i})_{a} + \int_{t_{a}}^{t} \left(\sum_{i} \rho_{j}^{i}(u) g_{i,m-1}^{i}(u) - g_{j,m-1}^{i}(u) \right) du$$
$$(i \neq i_{0}((g)_{a}, j)),$$

$$(6.2) \qquad \textstyle \sum\limits_{i} \, |g_{_{_{\!\!J},\,m}}^{i}| \, = \, 1 \; , \quad g_{_{_{\!\!J},\,m}}^{i_{_{\!0}}} \! \geq \! \! \frac{1}{2} \, (g_{_{_{\!J}}}{}^{i_{_{\!0}}})_a \! > \! 0 \; ,$$

(6.3)
$$|g_{j,m}^i - (g_j^i)_a| \leq \frac{1}{2} (t - t_a) \leq \frac{1}{2}$$
 $(i, j \in I'; m = 1, 2, \dots),$

(6.4)
$$|g_{j,m}^{i}(v) - g_{j,m}^{i}(u)| \leq \frac{1}{2} |v - u| \leq \frac{1}{2}$$

 $(i, j \in I'; t_a \leq u, v \leq t_{a+1}; m = 1, 2, \cdots).$

$$\begin{split} |g_{j,2}^{i} - g_{j,1}^{i}| &\leq |\int_{t_{a}}^{t} \left(\sum_{l} \rho_{j}^{l}(u) \left(g_{l,1}^{i}(u) - \left(g_{l}^{i}\right)_{a}\right) - g_{j,1}^{i}(u) + \left(g_{j}^{i}\right)_{a}\right) du| \\ &\leq \frac{1}{2} \int_{t_{a}}^{t} \left(|\rho_{j}^{j} - 1| \left(u - t_{a}\right) + \sum_{k \neq j} |\rho_{j}^{k}| \left(u - t_{a}\right)\right) du \\ &\leq \frac{\kappa_{j}}{2} \left(\frac{t - t_{a}}{2}\right)^{2} \leq \frac{1}{1.2} \left(\frac{1}{2}\right)^{2} \qquad (i \neq i_{0}), \\ |g_{j,2}^{i_{0}} - g_{j,1}^{i_{0}}| &= |\sum_{i \neq i_{0}} |g_{j,1}^{i}| - \sum_{i \neq i_{0}} |g_{j,2}^{i}|| \\ &= |\sum_{i \neq i_{0}} \left(|g_{j,1}^{i}| - |g_{j,2}^{i}|\right)| \\ &\leq \sum_{i \neq i_{0}} |g_{j,2}^{i} - g_{j,1}^{i}| \\ &\leq \frac{1}{2} \sum_{i} |\left(g_{j}^{i}\right)_{a} \left(\frac{t - t_{a}}{2}\right)^{2} \leq \frac{1}{12} \left(\frac{t - t_{a}}{2}\right)^{2} \leq \frac{1}{12} \left(\frac{1}{2}\right)^{2}. \end{split}$$

On obtient ainsi par la voie de récurrence

$$|g_{j,m}^{i} - g_{j,m-1}^{i}| \leq \frac{1}{m!} \left(\frac{t - t_{a}}{2}\right)^{m} \leq \frac{1}{m!} \left(\frac{1}{2}\right)^{m}$$

$$(i, j \in I'; m = 1, 2, \cdots).$$

Donc, si l'on pose

$$z_{j,0}^{i} = (g_{j}^{i})_{a}, \ z_{j,m}^{i} = g_{j,m}^{i} - g_{j,m-1}^{i},$$

la série $\sum z_{j,m}^t$ est uniformément convergente dans $[t_a,t_{a+1}]$ de sorte que sa somme partielle

$$\sum_{n=0}^{n} z_{f,n}^{i} = g_{f,n}^{i}$$

tend vers une fonction $g_j^i(t)$ continue dans $[t_a, t_{a+1}]$. D'une manière précise, étant donné un nombre ε positif quelconque, on peut trouver indépendamment de i, j, t un nombre positif N tel que, pour n > N,

$$|g_{j,n}^i(t)-g_j^i(t)|<\varepsilon$$
.

De plus, une fois que l'indice j ainsi que la valeur t soient fixés, on a

$$q_{i}(t) = q_{in} = 0$$

sauf pour un nombre fini des indices i. Donc,

$$\sum_{i} |g_{j}^{i}(t)| = \lim_{n \to \infty} \left(\sum_{i} |g_{j,n}^{i}(t)| \right) = 1,$$

$$g_{j^{i_0}}(t) = \lim g_{j,n}^{i_0}(t) \ge \frac{1}{2} (g_{j^{i_0}})_a > 0$$
.

D'ailleurs, lorsque n > N+1,

$$\begin{split} \left| \int_{t_{a}}^{t} \left(\sum_{l} \rho_{j}^{l}(u) g_{l,n-1}^{i}(u) - g_{j,n-1}^{i}(u) \right) du - \int_{t_{a}}^{t} \left(\sum_{l} \rho_{j}^{l}(u) g_{l}^{i}(u) - g_{j}^{i}(u) du \right) \right| \\ \leq \int_{t_{a}}^{t} \left(|\rho_{j}^{j}(u) - 1| \cdot |g_{j,n-1}^{i} - g_{j}^{i}| + \sum_{k \neq j} |\rho_{j}^{k}(u)| \cdot |g_{k,n-1}^{i} - g_{k}^{i}| \right) du \\ \leq \frac{\kappa_{j} \varepsilon}{2} \left(t - t_{a} \right) < \varepsilon \,, \end{split}$$

c'est-à-dire,

$$\lim_{n\to\infty} \int_{t_a}^t \left(\sum_{l} \rho_j^{l}(u) g_{l,n-1}^{i}(u) - g_{j,n-1}^{i}(u) \right) du$$

$$= \int_{t_a}^t \left(\sum_i \rho_j^l(u) g_i^l(u) - g_j^l(u) \right) du.$$

On a donc

(6.5)
$$g_{j}^{t}(t) = \lim_{n \to \infty} g_{j,n}^{t}(t) = (g_{j}^{t})_{a} + \lim_{n \to \infty} \int_{t_{a}}^{t} \left(\sum_{l} \rho_{j}^{l} g_{l,n-1}^{t} - g_{j,n-1}^{t} \right) du$$
$$= (g_{j}^{t})_{a} + \int_{t_{a}}^{t} \left(\sum_{l} \rho_{j}^{l}(u) g_{l}^{t}(u) - g_{j}^{t}(u) \right) du$$
$$(i \neq i_{0}((g)_{a}, j).$$

7. Puisque

$$|\sum_{l} \rho_{j}^{l}(u) g_{l}^{i}(u) - g_{j}^{i}(u)| \leq |\rho_{j}^{j} - 1| \cdot |g_{j}^{i}| + \sum_{k \neq j} |\rho_{j}^{k}| \cdot |g_{k}^{i}| < \frac{\kappa_{j}}{2}$$

il vient

$$|g_{j}^{t}(u) - (g_{j}^{t})_{a}| \leq \frac{1}{2} (t - t_{a}) \kappa_{j} \leq \frac{\kappa_{j}}{2},$$

$$|\sum_{i} \rho_{j}^{t}(u) g_{i}^{t}(u) - (g_{j}^{t})_{a}| < \kappa_{j}$$

ce qui nous montre que la somme $\sum_{l} \rho_{j}^{l}(u) g_{l}^{i}(u)$ ainsi que $g_{j}^{i}(u)$ sont de la même signe que $(g_{j}^{i})_{a}$, si $(g_{j}^{i})_{a} \neq 0$. On a donc dans ce cas

$$(7.1) |g_{j}^{t}(t)| + \int_{t_{a}}^{t} |g_{j}^{t}(u)| du = |(g_{j}^{t})_{a}| + \int_{t_{a}}^{t} |\sum_{t} \rho_{j}^{t}(u) g_{t}^{t}(u)| du.$$

Lorsque $(g_j^i)_a = 0$, on a

$$|g_{j^{\overline{i}}}(t)| \leq \int_{t_a}^{t} \left(\frac{k_{j}}{4}|g_{j^{\overline{i}}}| + \sum_{k \neq j} |\rho_{j^{k}}(u)| \cdot |g_{k^{\overline{i}}}| \right) du \leq \frac{t - t_{a}}{2} \kappa_{j} \leq \frac{t - t_{a}}{2}.$$

En faisant l'usage de cette inégalité on tire

$$|g_{j}^{t}(t)| \le \int_{t_{a}}^{t} \frac{k_{j}}{2} \frac{u - t_{a}}{2} du \le \frac{1}{1.2} \left(\frac{t - t_{a}}{2}\right)^{2}$$

et ainsi de suite. On obtient ainsi pour tout nombre entier

$$|g_j^i(t)| \leq \frac{1}{m!} \left(\frac{t-t_a}{2}\right)^m.$$

Il faut donc que

$$g_{i}^{i}(t)=0$$
.

D'autre part, les ρ_j^i pouvant être regardés comme les coordonnées normales d'un élément de G_i on a, en vertu de (2.1),

$$\sum_{s} |\sum_{l} g_{l}^{s}(t) \rho_{j}^{l}(t)| = 1.$$

Donc, en sommant par rapport aux indices $i(\neq i_0)$, on peut déduire de (7.1)

$$\begin{aligned} 1 - g_j^{i_0}(t) + \int_{t_a}^t (1 - g_j^{i_0}(u)) du \\ = 1 - (g_j^{i_0})_a + \int_{t_a}^t (1 - \sum_l \rho_j^{l_l}(u) g_l^{i_0}(u)) du \,, \end{aligned}$$

c'est-à-dire,

$$g_{j}^{i_{0}}(t) = (g_{j}^{i_{0}})_{a} + \int_{t_{a}}^{t} \left(\sum_{l} \rho_{j}^{l}(u) g_{l}^{i_{0}}(u) - g_{j}^{i_{0}}(u) \right) du.$$

La démonstration d'existence pour les intégrales cherchées est ainsi achevée. Quant à l'unicité, on peut la conclure par le raisonnement de tout à l'heure à la vérification de ce que $g_f^i = 0$.

SCIENCE AND ENGINEERING MEISEI UNIVERSITY

Références

- [1] J. Kanitani. Sur une variété localement applicable dans l'espace projectif à dimension infinie. Research Bulletin, Meisei Univ. (Hino City, Tokyo, Japan), No. 5 (Science and Engineering), 1970, pp. 1-13.
- [2] J. Kanitani. Sur l'ensemble des transformations projectives normales dans l'espace projectif à dimension infinie. Research Bulletin, Meisei Univ., No. 6 (Science and Engineering), 1971, pp. 1-14.
- [3] J. Kanitani. Sur l'espace fibré tensoriel à une variété différentiable admettant les homéomorphismes locaux à l'espace projectif à dimension infinie. Research Bulletin, Meisei Univ., No. 9 (Science and Engineering), 1973, pp. 1-16.
- [4] J. Kanitani. Sur les champs de vecteurs au dessus d'une variété différentiable admettant les homéomorphismes locaux à l'espace projectif à dimension infinie. Research Bulletin, Meisei Univ., No. 10 (Science and Engineering), 1974, pp. 1-13.