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Introduction.

Let f be an immersion of a manifold M into the m-dimensional
Euclidean space R". Assume that f is non-degenerate (see §1). In
his paper [15] one of the authors has shown that there is associated
to f a linear differential operator L in a natural manner, and that it is
equivalent, in a sense, to the differential operator d®, of infinitesimal
isometric deformations of £ ([15], Theorem 1.2; Theorem 1.1 in the
present paper).  Especially the infinitesimal isometric deformations u
of f are in a one-to-one correspondence with the solutions ¢ of the
equation Lo=0. It should be here pointed out that the symbol of the
operator d®, necessarily degenerates, while the symbol of the operator
L does not necessarily degenerate. Thus we have the notion of ellip-
ticity for the operator L. These facts indicate that the equation Le=0
plays an important role in the study of the rigidity problem for the
immersion f.

Owing the operator L, he has indeed established a global rigidity
theorem ([15], Theorem 2.4) which may be stated as follows: Let f,
be an immersion M —R" which satisfies the following conditions: 1) £
is elliptic, i. e., f, is non-degenerate and the associated equation Lop=0
is elliptic; 2) £, is globally infinitesimally rigid, i. e., every global solu-
tion of the equation L¢=0 is derived from an infinitesimal Euclidean
transformation of R"; 3) M is compact. Then the theorem states that
if two imbeddings f and f': M—R" lie both near to f, with respect to
the C*-topology, and if they induce the same Riemannian metric g,
then there is a unique Euclidean transformation a of R" such that f'=af.
He has also applied this theorem to the canonical isometric imbedding f,
of a compact hermitian symmetric space, M=K/K,, into the Euclidean
space f=R", t being the Lie algebra of K, and has obtained a rigidity
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theorem ([15], Theorem 3.5) for the imbeddings arround £, which
partially generalizes the famous theorem of Cohn-Vossen.

The main purpose of the present paper is first to make a general
and systematic study on the rigidity problem for isometric imbeddings,
based on the operators L, and second to establish actual rigidity
theorems (analogous to the second theorem cited above) for some of
the canonical isometric imbeddings of the so called symmetric R spaces
into Euclidean spaces.

Corresponding to the global rigidity theorem mentioned above, we
prove, in the present paper, a local rigidity theorem (Theorem 2.8),
which we shall explain from now on. Let us first introduce the notion
for an immersion of being finite (see §2): An immersion f: M—R"
is of completely finite type if f is non-degenerate and if the second
prolongation H® of the symbol ) of the equation Le=0 is minimal in
a sense. Now let f, be an immersion M—R". Assume that f, is of
completely finite type and that M is connected. Then the local rigidity
theorem asserts that if two immersions f and f': M—R" lie both near
to f, with respect to the C’-topology and if they induce the same
Riemannian metric g, then there is a unique Euclidean transformation
a of R™ such that f'=af.

Now the symmetric R spaces form a class of compact Riemannian
symmetric spaces, which are associated with the simple graded Lie
algebras of the first kind, g=¢_,+8+8, (see [12] and §3). It is
known that every symmetric R space M can be canonically isometrical-
ly imbedded into a Euclidean space. It is also known that the irredu-
cible hermitian symmetric spaces of compact type as well as the real
Grassmann manifolds belong to this class. First of all we show that
the canonical isometric imbedding f of an irreducible hermitian sym-
metric space of compact type, M, is of completely finite type except
that M is a complex projective space (Theorem 3.7). This is a
refinement of [15], Theorem 3.5 cited above. As for the canonical
isometric imbedding f of the real Grassmann manifold G**(R) (p=gq),
we prove the following facts: (1) If p=3, then Ff is of completely
finite type (Theorem 4.1), and (2) if p=2 and ¢=3, then f is elliptic,
of infinite type, and globally infinitesimally rigid (Theorems 3.8 and
7.12). Note that if p=1, then f is globally deformable. Accordingly
the rigidity problem for the canonical imbedding of a symmetric R
space considerably depends on the (group-theoretic) structure of the
individual space.

In §1 we first recall the definition of the operator L, and then
study the symbol b of the equation Le=0 together with its prolongations
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b, In §2 we prove the local rigidity theorem. In §3 we prove
Theorems 3.7 and 3.8 after some general considerations on a sym-
metric R space. §4 is devoted to the proof of Theorem 4.1, which
makes use of the root system associated with the simple Lie algebra
slip+q; R).

§5~§ 7 are devoted to the study of the global solutions of the
equation Lo=0, associated with the canonical isometric imbedding f
of a symmetric R space M. In §5 we give a sufficient condition for
f to be globally infinitesimally rigid, which is described in terms of
the eigenvalues of the Laplacian 4 on M (Proposition 5.10). §6 is
preliminalry to the subsequent section, § 7, and in this last section we
prove Theorem 7.12 by the application of Proposition 5. 10.

Finally in Appendix we study the non-linear differential equation of
isometric imbeddings, and give another proof of the theorem of Janet-
Cartan on the possibility for locally isometric imbeddings of Riemannian
metrics. (A study in the same line can be found in the recent paper
of Gasqui [5].) Through the discussions here we further find the
close relation between the linear equation L¢=0 and the non-linear
equation of isometric imbeddings.

§1. The linear differential equation Lp=0.

1.1. The differential operator L. Let M be an n-dimensional
differentiable manifold. T'(M) or simply T denotes the tangent bundle
of M, and T* its dual. S$*T* (resp. A\*T*) denotes the k-th symmetric
product (resp. the k-th exterior product) of T*.

Let I'(M, m) denote the set of all differentiable maps of M to the
m-dimensional Euclidean space R", and # (M, m) the subset of I" (M, m)
composed of all immersions of M into R". For uel' (M, m) we define
a cross section @(u) of S*T* by

& (uw) = <<du, du>,

where <,> stands for the inner product as a Euclidean vector space.
If fe s (M, m), then g=@(f) is a Riemannian metric on M, which
is called induced from the immersion f. Conversely given a Rimannian
metric £ on M, an immersion f& £ (M, m) is called an isometric
immersion of the Riemannian manifold (M, g) into the Euclidean space
R" if it is a solution of the equation @ (u)=g.

The assignment u—®(u) gives a non-linear differential operator @
of I'(M, m) to I'($*T*). Let f& £ (M, m). As usual d®; denotes the
linearization of @ at f, which is the linear differential operator of
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I'(M, m) to I'($*T*) given by
d®; (u) =2<df, du> for all ueI'(M, m).

A solution u of the equation d®.(u) =0 is called an infinitesimal isomet-
ric deformation of f.

We denote by N the normal bundle of the immersion f, which may
be regarded as a subbundle of the trivial bundle MX R". Let I be
the covariant differentiation associated with the induced Riemannian
metric g=@(f). It is well known that, for any z, y&T,, the second
covariant derivative V.V, f is in the fibre N, of N at p.

Definition (cf. [15]). We say that the immersion f is non-degen-
erate if the fibre N, of N at each pEM is spanned by the vectors of
the form V.V,f, x, yeT,.

For v€EN, we define a symmetric bilinear form @) on T, by
o) (z, y)=<v, V.V ,f> for all z, yeT,,

which is usually called the second fundamental form of f corresponding
to the normal vector v. It is clear that f is non-degenerate if and
only if the bundle homomorphism 6: NSv—6(v) €S*T* is injective.
Now assume that f is non-degenerate. Then the image n=06(N)
of N by O forms a subbundle of $*T*, which will be called the bundle
of second fundamental forms of f.
We define a differential operator D of I'(T*) to I'(S*T*) by

(Do) (z, y) = (F.0) ) + V,0) (%) for all o€ I'(T*) and z, yET,.

Let II denote the projection of S*T* onto the quotient bundle S*T*/n.
Then the composition L=/TeD of II and D gives a differential operator
of I'(T*) to I'($*T*/n).

The next theorem which is fundamental in our arguments indicates
that the two operators d®; and L are equivalent in a sense.

Theorem 1.1 ([15], Theorem 1.2). Let aSI'(S*T*). Then there is
a natural one-to-one correspondence between the set of solutions u of
the equation d®,(u) =a and the set of solutions ¢ of the equation L=
Ila. Furthermore the two solutions u and ¢ are related as follows :

p=<u, df >
u= Vf+%@“(Dgo—a),
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where V is the wvector field dual to ¢ with respect to the Riemannian
metric g=O(f).

1.2. The differential equation R and its prolongations. Let
fes (M, m). We denote by J*(T*) the vector bundle of all %-jets
of local cross sections of 7T*, and denote by pi_, the projection of
J*(T*) onto J**(T*). As is well known, the vector bundle S*T*®T*
may be regarded as a subbundle of J*(T*) and we have the exact
sequence :

0_)SkT*®T*_‘)Jk(T*)_,Jk—l(T*)__>0.

Now assume that f is non-degenerate and consider the associated
operator L: I'(T*)—I"($*T*/n). The equation Le=0 may be represent-
ed as usual by the subvariety R=UR, of J'(T*), where

PEM

R,={je | el (T*), (Lp),=0}.

The intersection )= RN (T*®T*) or the kernel of the map p;:R—
T* is usually called the symbol of the equation R.

The assignment jio—¢,+ (F), gives an isomorphism of J'(T*) onto
T*+T*@T*, by which we identify these two vector bundles. Then
R,={¢,+ o), o€'(T*), (Dp),En,}. Therefore R and b may be
described respectively as follows:

R=T*+ (n+ N?T*),
Hh=n+ A2T*.

We now define the I-th prolongation R® of the equation R by
RO=J(R) NJ"*(T*)

and define the I-th prolongation §* of the symbol ©) to be the kernel
of the map pi*': RP—>R¢: §HO=(S*"T*QT*) NR®. Note that H®
depends only on §), or more precisely,

[)(')=S'T*®b ﬂS'HT*@T*.

Our task from now on is to study the prolongations R® and H%.
For this purpose we first make a consideration on the special solutions
¢* of the equation R coming from the infinitesimal Euclidean transfor-
mations A of R".

Let E(m) be the Euclidean transformation group of R™ and e(m)
its Lie algebra. Let o(m) be the Lie algebra of skew symmetric
matrices of degree m. Every element A of e(m) may be represented
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00

by a matrix A of degree m+1 of the form: < B
c

> or by a map R"=x

—Bx+c¢ER", where cER", BEo(m).
For Aee(m) we define a 1-form ¢* on M by

pt=Af, df>,

giving a solution of the equation Ly=0 or of R. It is known that the

map A—¢* is injective (see [15]). For pEM we define a subspace
R, of J*'(T*), by

Ri={ji"¢* | A€e(m)}, [=z-1

3

and denote by b, the kernel of the (surjective) map o;*: R R o*
being solutions of R, we have R,CR{’ and h,cCh.
These being prepared, we shall now prove the following

Proposition 1.2. dim R;'=#, dim f)‘;=r+%n (n—1), dim 5;=nr,

dim 5§=%r(r—l) and =0 for (=3, where r=m—n.
If a€E(m), the two immersions f and af induce the same Rieman-
nian metric &, the same bundle n of second fundamental forms and

hence the same operator L. Consequently we may assume that f(p)

=0, f.T,= i:Re,- and N,= > Re, where {e,..., e,} denotes the canon-
i=1 i=n+1
ical basis of the Euclidean vector space R™.
This being said, every AEe(m) may be represented by a matrix

of degree m+1 of the form:

0 O 0
Cc_, Bo - ‘Bl
Co B1 Bz

where ¢., €ER", ¢,€ER’, B,E0(n), B,€0(r) and B, is an 7X#n matrix.
A simple calculation proves the following

Lemma 1.3. Let Ace(m) and x, v, z, wET,.

D e (@)=<co, F.f>.

2) T @=<B,F,f), V.f>+<cy, V,V.f>.

3 Fre" (@=—<VV,f, BF.f)>+IBWF.),V,V.f>
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+<B,, ), TV.f>+<c_,tec, VI V.f>.

4) If c.y=c,=B,=B,=0, then

T T ") (2)=<B,FI, ), VI >+B,FIN.0), V.V.f>

+<B,W v, ), V.V .f>.

Now Proposition 1.2 follows immediately from the following

Lemma 1.4. Let Ace(m).

(1) ¢t=0 if and only if c.,=0.

(2) sie*=0 if and only if c_.,=c,=B,=0.

(3) sie*=0 if and only if c.,=c,=B,=B,=0.

@) 7¢*=0 if and only if A=0.

This fact follows easily from Lemma 1.3. We only remark that

f9*=0 if and only if (7... Fg*),=0 for all 0Sk<L.
We put R'= pLeJMRIP and Y)’=PEUMf);, which are vector bundles by

Proposition 1. 1.
Proposition 1.5. R=R° and R®=R".
Proof. By Proposition 1. 2 we have dim R°=n+7r+ ,;n (n—1)=dim R,

whence R=R’. Since R=R’ the sequence 0—-§P->R®—->R—0 is exact.
By Proposition 1.2, we have dim §'=nr, and we shall prove in the
next paragraph that dim §®=nr. Therefore H®=h' and hence R®
=R Q.ED.

Corollary. Both the equations R and R® are wvector bundles, and
the following two sequences are exact:

0—>HP—>RO—>R—>0
0 Ab(Z) SR 5> RM 0

(Note that §® and hence R® are not necessarily vector bundles,)

1.3. The algebraic prolongations. Let V be an 7n-dimensional
vector space over a field K (of characteristic zero). In this paragraph
we shall make a general consideration on the prolongations H® of the
subspace h=u+A?V* of ®*V*, 1 being a subspace of S*V* = This
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leads to the study of the prolongations H® of the symbol b of the
equation R, associated with a non-degenerate immersionn f.

For u€V and XE®'V*, we denote by # X the elements of
®'V*  defined by (w1X)(uyy ooy u)=X(u, uy ..., u_,) for all
Uy, vuuy 4, €V. We have QV*=85V*4+ A2V* (direct sum). We
denote by 7 the projection of &®*V* onto S?V*, and define a linear map
0: ®3V*_9V*®/\2 V* by

0X) (u, v, w)y=X(v, u, w)— X(w, u, v)
for all Xe®*V* and u, v, weV,
For any integer /=1, we define a linear map
R @V SRV RSV
by m=1,&®n, and a linear map
0, : @ V*—QV*RQAV*

by 8,=1,,&0, where 1, denotes the identity of ®*V* onto itself. Clearly
we have m00,=0 and

u |, X=n(u_X),
_10,,,X=0,(u _1X), Xe&**V* ueV,

Now let n be an r-dimensional subspace of $*V*. We define a
subspace §) of ®*V* by

h=u+ A2V*
and denote by H* its /-th prolongation:
b(l)zStV*®b ﬂS’“V*@V*, lg 1.

Note that H@=V*@HU-vN S V*RH~2, where H=V* and H@ =Y, Let
us now define vector spaces p'(1t) (!=1) as follows:

P =V*Qn,

P =SV*Q@ung (SV*QNV*),

P =8SV*QuNSV*Qp*(n), [=3.
Note that p'(n) =V*Qp''(1) NSV*Qp'~2(n), [=3.

Theorem 1.6. For any =1, the map
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T :®1 +2 V“‘H@‘ V*®S2V*

induces an isomorphism of H onto p'(n), and the inverse of this isomor-
phism is given by the map

®1+2V*5Y > Y+a,Y€®l+2V*,
restricted to p'(n).
In particular we know from this theorem that dim H® =nr.

Proof of Theorem 1.6, First of all we assert that the map =,
induces an isomorphism of S*V*® V* onto V*® S$*V* and that X=
mX+om X for all X€SV*Q®V*, Indeed let YEV*®SV*. Putting
X=Y+0Y, we have X(u, v, w)=Y(u, v, w)+Y(v, u, w)—Y(w, u, v)
for all u, v, w€V. Hence we easily find that 1°. XeSV*QV*, 2°.
Y=0 if X=0 and 3°. Y=rX. These facts prove our assertion.

(1) The case {=1. Let XES*V*Q@V*. Then for all #€V we have
u | X=u_|n,X+u_|or,X. We have u_|7r,X&S*V* and u_lor,XE N\?V*.
Hence X€H® if and only if 7, XEV*@n=p'(11). Therefore the map =,
induces an isomorphism of H® onto p'(1) and X=rX+0r,X for all
Xehw,

(2) The case /=2. By (1) we see that the map =, induces an
isomorphism of V*®H® onto V*®p'(n) and that X=r,X+0,r,X for all
XeV*@h®, Let X€V*®H®. Then for all u, vEV, we have v_|u | X=
v_|u_|m,X+v _Ju_J3,7,X. We havev Ju | m,XEn and v _Ju 3,7, XE N\*V*.
Hence X€bh® if and only if nXESV*Q@u and 8,7, XESV*QAV*,
Le., m,X€Ep*(n). Therefore the map m, induces an isomorphism of H®
onto p*() and X=mX+0m7,X for all XEHh®,

(8) The case /=3. By (2) we see that the map =, induces an
isomorphism of V*&@bH® onto V*@p*(1) and that X=7x,X+03,7,X for all
XeV*QHh®, Let XeV*Q@H®. Then for all u, vEV, we have v_|u _|m,X
ep)=V*Q@n and v_u_|omX=0(w_Ju_|z,X) € V*QA?V*. Hence
Xeh® if and only if 7, XESV*Qp' (1), i.e., m,XEp*(n). Therefore the
map 7, induces an isomorphism of H® onto p°(1t) and X=n,X+0,r,X for
all X€)®. In the same way or precisely by induction on the integer
I, we can prove the theorem for /=4.

Q. E. D.

1.4. Involutive immersions. We use the same notations as in
the previous paragraph. Let {e, ..., ¢,} be a basis of V. For each
I<i<n we define a subspace §); of §) by

h;={X&€hle, 1X= ...=¢, ] X=0]}.
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Then the basis {e, ..., e} 1is called regular for 9§ if the following
equality is satisfied:
dim f)(’)=n2l dim Y.
i=0

By definition the subspace ) of ®*V* is involutive if V admits a regu-
lar basis for b.

Proposition 1.7. A basis {e, ..., e} of V is regular for § if and
only if

dim (h;_./b)=n, 1=Zi<n—1.
Proof. First assume that {e, ..., e} is regular. Then if we putr,=
dim(9;_,/9:,), we have 7,=<n and dim b,=dim b,-—z']r,.. Furthermore we
i=1

1
2

dim b(”=fg dim b, gives

have dim )=r+_n(n—1) and dim H® =nr. Therefore the equality

nr:%m(n— D)+ nr— A:V_": (n—1d)r.

Hence we obtain

%nz(n— = Z}:(n— i)rignng(n— 1) =~§-n2(n— 1),

indicating that 7,=n, 1<¢<n—1. The converse is clear.
Q. E. D.

Corollary 1. A basis {e, ..., e} of V is regular for Y if and only
if 1 contains %n (n—1) independent symmetric forms 0,;(1=i, j<n—1)

such that 0;=wew; (mod {w)eV"), where {w, ..., 0} is the dual
basis of {e, ..., e.}.

Corollary 2. If the subspace ) of @*V* is involutive, then

—;—n(n— 1) éré—;—n(n+ 1.

Definition. An immersion fE€ £ (M, m) is said to be involutive if
it is non-degenerate and if the symbol H=n+ /\*T* of the equation R
is involutive, i. e., each fibre Y, of [ is involutive.

By definition, the equation R is involutive if it satisfies the follow-
ing condition: 1°. Both R and R® are vector bundles and the map
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0t R®>R is surjective, and 2°. b is involutive. Therefore we know
from Corollary to Proposition 1.5 that an immersion f is involutive if
and only if 1°. fis non-degenerate and 2°. the equation R is involu-
tive.

1.5. Elliptic immersions. Let V be an n-dimensional vector space
over the field R of real numbers, and let 1 be an 7-dimensional
subspace of S*V*. Then the following three statements are mutually
equivalent (cf. [15]):

(1) The subspace h=u+A\*V* of &*V* is elliptic. Namely ) con-
tains no non-zero decomposable elements (w.r.t. the tensor product),i.e.,
contains no elements of the form a®p, where @, BEV* and a, 0.

(2) The subspace 1t of S$*V* contains no non-zero decomposable
elements (w. r. t. the symmetric product), i.e., contains no elements of
the form aof, where a, SEV* and a, B=0.

(3) Every non-zero form HEn has at least two eigenvalues of the
same sign (=#0), where H should be identified with a symmetric
endomorphism of V with respect to an inner product <, > of V.

Proposition 1.8 ([15]). If the subspace Y of K*V* is elliptic, then
either r<~é—n(n—l) or n=2 and r=1.

Proof. We take an inner product <, > in V and identify $*V* with
the space 3(V) of symmetric endomorphisms of the Euclidean vector
space V. The inner product <,> in V induces an inner product
<,> in 8(V). This being said, we denote by n* the orthogonal com-
plement of 1t in 8(V). We have <Xu, v>=<X, uov> for all XE3(V)
and u, vE€V. Accordingly the assumption for 1 means that, for every
non-zero #E YV, the map w3 X—->XueEV is surjective. It follows that

dim n-‘-=%n(n+ )—r=mn, i e., r§ln(n— 1). Let us now consider the

2
1 . .
case where r=7n(7z—1), 1. e.,, dim n=n. Then, for every non-zero

u€V, the map ' X—->Xu€YV is an isomorphism, meaning that det X
%0 for every non-zero XE€u. Therefore we have =2 and r=1 by a
theorem of Adams-Lax-Phillips [1]. Q. E D.

For example, Let V be a 2n-dimensional vector space over R and
I a complex structure on V. Then the space of (real) hermitain forms
on V with respect to I contains no non-zero decomposable elements.

Definition. An immersion fE€ 4 (M, m) is said to be elliptic if it
is non-degenerate and if the symbol §) of the equation R is elliptic, 1. e.,



12 Eiji Kaneda and Noboru Tanaka

each fibre b, of §) is elliptic.

It is easy to see that an immersion fE 4 (M, m) is elliptic if and
only if 1°. f is non-degenerate and 2°. the operator L is elliptic

(see [15]).

§2. Immersions of completely finite type.

2.1. Some facts on the prolongations H’, [=2. The notations
being as in 1.3, we shall study, in this paragraph, the prolongations H®,
[=2, of the subspace h=n+A*V* of ®*V*. By virtue of Theorem 1.6,
the study is reduced to that of the spaces p'(n), /=2. We fix a basis
{e,, ..., €} of V, and express covariant tensors in terms of this basis.
This “index” expression of covariant tensors will be of particular use
for the calculations of the space (1) (see 2.3, 2.5 and §4).

First of all the space p?(1) consists of all XE€S8*V*®@n which satisfy
the following relation:

X Bre Xaarp_ Xrﬁad+ er= 0,

a

where X,,,=X(e, ¢, e, ¢,), the coefficients of X, and the indices
a, B, ... run over the range 1, ..., n. Another expression -of p°(1)
based on a basis of 1, is given as follows: Let {H', ..., H'} be a basis
of . Then every XES*V*®n may be written uniquelly as follows:

X=YAQH,

where A*€S*V*, Thus S*V*@u may be identified with the space

(S’V*)':S’V*/X—.r.. x S§*V*.  This being said, p*(1t) consists of all
(A,..., A)e(S*V*)" which satisfy the following relation :

Z_.'(u_lA‘)/\(U_IH‘)—;('U_lA‘)/\(uJH‘)=0
for all u, v€V.

Proposition 2.1. The dimension p*(n) is larger than or equal to
%r(r— 1). And the equality holds if and only if every XEp*(n) satisfies
the following relation :

Xﬂe‘lﬂ: - Xﬂﬂ#’

Proof. Let a denote the subspace of S*V*@S*V* consisting of all
XeSV*RS*V* which satisfy X,,,=— X,.,. Then we easily see that
(M) Na=n@nNa. Therefore to prove the propostition, it sufficies to
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show that dim (n®nﬂa)=—é—r(r— 1). Let Xeu®n, which may be ex-
pressed uniquely as follows: X= Y a, H*®H". As is easily observed,
XEa if and only if @,+a,=0. This fact implies that dim (®uNa)
:%r(r-&). Q. E. D.

Proposition 2.2. If dim pz(n)z%r(r—l), then the space p*(n)

vanishes.

Proof. Let Xe€p*(n). Then X,,, is symmetric with respect to the
following pairs of indices: (e, a), (a, B) and (7, d). Furthermore
X.,p=—X,,5.s by Proposition 2.1. It follows that X, .= X, ,.=— X, .,
=~ X, 3.s= X,ups= X, ;pas» showing that X,,,, is symmetric with respect to
the pair (a, 7). Moreover, using this fact, we have X, =X, ;= X,
=X137ﬁa=Xtrda,§' Thus mera:X.Taar Since X«aﬂrﬁz_Xtrduﬁj we get me,a
=0, i. e., X=0. Hence the space p*(1) vanishes. Q. E. D.

Let n be an r-dimensional subspace of S$*V*. By definition the
subspace H)=n+ A?V* of ®*V* is of finite type if the k-th prolongation
H® of b vanishes for some 2>0. Note that if ) is of finite type, then
it is elliptic.

Definition. The subspace Y is said to be of completely finite type
(for simply of c. finite type) if the dimension of the second prolongation
H@ (=p*(n)) is just equal to %T(r— 1) (and hence the third prolongation
H® (=p*(11)) vanishes).

The next proposition will be proved in Appendix.

Proposition 2.3. Let 1t be an r-dimensional subspace of S*V*. We
put Nz%n(n—l).

(1) The case r=N. The subspace h=u+ N\*V* of Q*V* is of infinite
type (i. e., not of finite type) except for r=n=0 or r=0, n=1.

(2) The case r<N. If 0ZIZ %—I—r, then the I-th prolongation H©

—-r

of Yy does not vanish.
Corollary. If the subspace Y is of c. finite type, then ré—él}-n (n—1).

2. 2. Rigidity theorems. At the outset we recall the (global) rigid-
ity theorem for elliptic immersions which was proved by one of the
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authors in [15]. In general let f& .# (M, m) and assume that it is non-
degenerate. Then we denote by & (M, f) the space of global solutions
of the equation Lo=0, and denote by & ,(M, f) the subspace of & (M, f)
consisting of all the special solutions ¢*, A=e(m).

Theorem 2.4 ([15], Theorem 2. 4). Let f,€ # (M, m). Assume the
following : 1°. f, is elliptic: 2°. o/ (M, ) =L (M, f,): 3°. M is compact.
Then there is a neighborhood U of f,(in & (M, m)) with respect to the
C-topology having the following property : If f, f,€ U and if they
induce the same Riemannian metric, i. e., O(f,) =@ (f,), then there is a
unique Euclidean transformations a of R" such that af =f,.

We shall now introduce the notion of an immersion of completely
finite type and prove a (local) rigidity theorem for immersions of c.
finite type.

Definition. An immersion f& # (M, m) is said to be of finite type
(resp. of c. finite type) if it is non-degenerate and if the symbol § of
the equation R is of finite type (resp. of c¢. finite type), i. e., each
fibre B, of b is of finite type (resp. of c. finite type).

Proposition 2.5. Let fe s (M, m). If f is of c. finite type and if
M is connected, then the two spaces of (M, f) and sf,(M, f) coincide.

Proof. We have h® =0 and )®=§*=0. Therefore it follows from
Proposition 1.5 that R=R’ and RW=R' for all [=1. We have thus
seen that the equation R is formally integrable and the equation R®
is Involutive (with vanishing symbol). Hence dim & (M, f) <dim R’=
dim e(m). Thus we get &/ (M, f)=u4 (M, f). Q. E. D.

Proposition 2.6. If an immersion f,& # (M, m) is of c. finite type,
then there is a neighborhood U of f, (in # (M, m)) with respect to the
C-topology such that every f&U is of c. finite type.

Proof. Let J*(M, m) be the vector bundle of all 2-jets of (local)
differentiable maps of M to R™ and p the projection of J*(M, m) onto
M. Let M be the image of M by the map Msp—jif,eJ*(M, m).
Since the immersion f, is non-degenerate, there is a neighborhood O of
M such that every =0 may be expressed as z=j2 f, where p=p(2) and
f is a non-degenerate immersion of a neighborhood of p into R”. Let
2=j:f€0. We denote by n(z) the space of second fundamental forms
of f defined at p, being a subspace of S$*T*. (Note that n(z) depends
only on z.) Furthermore we define a subspace §(2) of ®*T} by h(z)
=n(2) +/A\*Ty. Since §(if,) is of c¢. finite type for all peM, we
see from Lemma 1. 6 below that there is a neighborhood O (CO)
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of M such that §)(2) is of c. finite type for all z€0’. Now let U be
the subset of 4 (M, m) consisting of all f€ (M, m) such that j; FEO’
for all pEM, which is a neighborhood of f, with respect to the C*-

topology. Then it is clear that every fEU is of c. finite type.
Q.E. D.

Lemma 2.7. Let V be an n-dimensional vector space over R and G"
the Grassmann manifold of all r-dimensional subspaces 1w of S*V*. Let
G; be the subset of G consisting of all WEG" such that the subspaces
h=u+4 /A\?V* of @*V* are of c. finite type. If Gix¢, then G, is an open
(dense) subset of G'.

By using Propositions 2.5 and 2.6 we can prove the following
theorem just in the same way as in the proof of Theorem 2. 4.

Theorem 2.8. Let f,e 4 (M, m). Assume that f, is of c. finite
type and that M is connected. Then there is a neighborhood U of f, (in
F (M, m)) with respect to the C*-topology having the following property :
If f, f,eU and if they induce the same Riemannian metric, then there
is a unique Euclidean transformation a of R™ such that f,= af,.

2. 3. Direct sums of spaces of symmetric forms. Let V, 1=/
k, be k vector spaces over a field K and, for each 7, let 1, be a sub-
space of SVF. If we put V=3V, we have V*=2 V¥ Thus the direct

sum =] 1; is a subspace of SV, 1; being a'subspace of VIQVE,
we may ;peak of the first prolongation 1, of 1,:
n,O=V*Qu NSV*QVH.
We shall prove the following

Proposition 2.9. Assume that w’=0 for each i. Then the subspace
b=n+/\*V*of K*V* is of c. finite type if and only if the subspace 5=
4+ A\VEF of *VF is of c. finite type for each i.

Proof. Let w'=3'n; be a sum of %, ’s. Then the first prolongation
w® of n being 3’ n{, vanishes. Accordingly to prove the proposition,
it suffices to deal with the case where £=2.

The proof is based on Proposition 2.1. Thus we consider the
spaces p*(m) (=H®) and p2(n) (=H®) associated with n and m,
respectively. Note that p*(1;) are subspaces of p*(n). We put n,=
dim V,(i=1,2). We fix a basis {e, ..., €,.,} of V such that e,...,
e, (resp. €, .y ..., €,,+.) form a basis of Vi(resp. of V,),and express
covariant tensors (on V or V) in terms of this basis. We further
promise that the indices 4, g, v, ¢ run over the range 1, ..., n,+n,
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the indices a,, B, 71, 0, over the range 1, ..., n, and indces a, B 74
0, over the range n,+1, ..., n,+n,

First assume that § is of c. finite type. Then have X,,.,=-—X,,
for all XEp*(n) (Proposition 2.1). Since p*(n,) Cp*(n) it follows that
Xepirioy=— Xy p,a, for all Xep*(n) (i=1, 2). This means that both b,
and b, are of c. finite type (Proposition 2. 1).

Conversely assume that both §, and Y, are of c. finite type. By
Lemma 2.10 below we have X,,,=—X,,, for all Xep*(n) meaning
that § is of c. finite type.

Lemma 2.10. Let XEp*(n).
D) X0 == X5, (=1, 2).
(2) X5, =0

3 X = Xpspeynye
@ X

aybargdy 0.

1817232

X,

1Per1d1

Proof. (1) Fixing 7, we define an element X' of S*V*Q@n, by
(X)) a10,00,= Xespirs,» Which clearly belongs to p*(1,). Since U; is of c. finite
type, we have (X),,0,= = (X)), 50,000, Hence X, ;. .=— X, .., proving
(.

(2) is clear.

(3) Since

X

ayfyrady X‘H"zi’zﬂx - szﬁm"z -

X

2201813

it follows from (2) that X, ,,,= — X,,5,s Proving (3).
(4) Since

" = —
aybarady ‘X"x‘zrzﬁz_ szﬂz"v‘z sz‘z“u’z’
it follows from (2) that X,,,,,= Xy, Fixing @, we define an
element Y of Vy®m, by (Y),,.,,,= Xesp, Then the equality just

above means that Y belongs to n{". Since 1’=0, we have Y:=0,
i e, X, ,,=0. Similarly we get X, ., =0, proving (4).
Q. E. D.

For each 7, 1=i<k, let f; be a non-degenerate immersion of a
manifold M, into the m;-dimensional Euclidean space R™, and let 1w,
be the bundle of second fundamental forms of f. Let n® be the first
prolongation of M;:

no=Tr@nNST*RTY,
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T; being the tangent bundle of M.

Corollary. Assume that each " vanishes. Then the product im-
mersion

fiX...xf,: MX...XM,—>R" (m=},m,)
is of c. finite type if and only if each f; is of c. finite type.

2.4. The type number. Let V be an 7n-dimensional vector space
over a field K, and 1 an r-dimensional subspace of S*V*. Let {H, ..., H}
be a basis of n. By definition the type number of n is the largest
integer k# for which there are % vectors %, ..., %, in V such that 7k
covectors u; |H), 1<1<r, 1<i<k, are linearly independent.

Proposition 2.11. (1) If the type number is larger than or equal
to 2, then the first prolongation NV of N vanishes.

(2) (cf. [2] and [4]) If the type number is larger than or equal to
3, then the subspace H=n+ /\?V* of Q*V* is of c. finite type.

Proof. (1) By the assumption there are two vectors %, and %, in V
such that 2r covectors u, |H* u, |H* 1<2, u<r, are linearly independent.
Let Xen®, Then we have u, |X, u, |XEn and u, _|u, | X=u, |u, |X.
Hence %; |X may be expressed as u, JX=} a} H, and } aju, |H'=

2 2
¥ aju, |H\ It follows that a;=0, i. e., #; _|X=0. Now for any z_| X we
2
have u, | (v _|X)=u _|(u, _1X)=0. Then it follows as above that u _|X=
0. Hence X=0, proving (1).

(2) The space »*(11) may be identified with the subspace of (S*V*)~
consisting of all (4, ..., A)E€(S*V*)" such that

L 1AYN (v IH) = X (v JAY A\ (u I H?)

2 2

(See 2.1.) Now by the assumption there are three vectors %, u, and
u, in V such that 37 covectors u, JH), 1=<i<3, 1<2<r, are linearly
independent. Let (4 ..., A)ep*(n). Then we have

% (e JAY A (g JH) = 5 (s, _JAYN (s JHD).

Applying Cartan’s lemma (cf. [11]) to these equalities, we see that
u; JA* may be expressed as follows:

u; | A'=3Ta; (w; |H"),

M
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where ‘a,=— ‘a; if ixj. If we put ai='a), we have ‘ai=al and al=

—ai. We now assert that A=} ajH*. Indeed let # be any vector in V.
I

Then we have
S (u JAYN (u JH) = T (u JAY A (u I HD),
whence
L (e A= N ay(u JHY) A (4 JH) =0,

It follows that # _|A*— ¥ a} (v JH*)=0, proving our assertion. We have
"

thus seen that dim 2*(n) éfi‘(r— 1). Since dim pz(n)g-%»r(r—l), this

proves (2).

2.5. Spaces of hermitian forms. Let V be a 2n-dimensional
vector space over R and I a complex structure on V. Let V° be the
complexification of V. (In general, W* denotes the complexification of
a vector space W over R.) As usual we define subspaces V* and V-
of V© respectively as follows:

Vi={XeV: | IX={—-1 X}
V-={XeV: | IX=—y—1 X}.

Then we have V-=V* and V'=V*+ V- (direct sum).

By definition a symmetric form H on V is hermitian if H(lu, Iv)=
H(u, v) for all u, v€V. This condition is equivalent to the condition
that H(u, v)=0 (or H(a, 7)=0) for all u, vE€V*, where H should be
considered as an element of (S*V*)e=52(Ve)*,

Now let 1 be a space of hermitian forms on V. For any HEW we
define an element H of (V*)*®@(V-)* by H(u, v)=H(u, v) for all u, v
€V*. We denote by 1 the subspace of (V*)*&®(V~)* consisting of all
H, and denote by i the second prolongation i:

0= (V) * @1 NS (V) *@(V)*.
With these preparations we have the following

Proposition 2.12. (1) The first prolongation 1w of n wvanishes.
(2) The subspace h=n+ N*V* of Q*V* is of c. finite type if and
only if the second prolongation N® of i vanishes.

Proof. Let {e, ..., e,} be a basis of V*. If we pute,=¢, then the
2n vectors €, ..., €, ¢ ..., ¢, form a basis of V°. We express covari-
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ant tensors on V° in terms of this basis. We further promise that the
indices 4, &, v, 6 run over the range 1, ..., n, I, ..., # and the indices
@, B, 1, 0 over the range 1, ..., n and that a=a.

(1) Let Xen®c®*(V)*. Then X satisfies the following : X,,,= X,
X.;=0 and X,,=X,,=X,,. It follows immediately that X,,=0, i.e.,,
X=0. Hence n1®”=0, proving (1). :

(2) Let Xepr(m)c®*(V)*. Then X satisfies the following:

XX/ZW) XApaﬁ: 0; Xl,uwz Xy1v¢= quv’ and

X, —X. =X

avp = vpro

X

Apve =

X,

pvo vau®

We consider this last equality in the following two cases: 1°. i=a, pu=
B,v=r,ande=6; 2°. A=P, p=a, v=7 and 0=06. Then we obtain X,,,;
=X, and X,,=—X,.,  Let us now define an element X of
KR(VH*RQ(V)* by (X)ap,,,=X,,,,,. Then we can easily verify the follow-
ing: 1°. Xei®; 2°, The linear map (over R) p*(n) = X->Xei®
is suvjective ; 3°. The kernel of this map consists of all XEp*(n) with
X,p.=—X,,.,» Therefore we see from Proposition 2.1 that b is of c.
finite type if and only if 1 vanishes. Q. E. D.

§ 3. The canonical isometric imbeddings of symmetric R spaces.

3.1. Symmetric R spaces. Let g=2 g, be a graded Lie algebra
?

over R which satisfies the following conditions: 1°. g is simple; 2°.
a,=0 for [p|>1; 3° @g.,%0. (Such a graded Lie algebra will be
called a simple graded Lie algebra of the first kind.) As is well known,
there is a unique element Z, in the centre of @ such that g,=
{Xeg |[Z, X]=pX} for all p (cf. [8]).

Remark (cf. [8]). Accordingly a simple graded Lie algebra of the
first kind may be represented by the pair (8, Z;) of a simple Lie algebra
g and an element Z, of g such that ad Z, is a semi-simple endomorphism
of ¢ with eigenvalues —1, 0 and 1.

Let B be the Killing form of g. Then the following two lemmas
are also well known.

Lemma 3.1 (cf. [8]). B(g,, 8,)=0 if p+q=0, and, for each p, the
bilinear map §,Xg¢_,2 (X, Y)—>B(X, Y) ER is non-degenerate.

Lemma 3.2 (cf. [8]). There is an involutive automorphism o of g
such that oZ,= —Z, or o(8,) =8_, for all p and such that the quadratic
form B(X, ¢X), XEg, is negative definite.

By using the Killing form B and the involutive automorphism o, we
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define an inner product <, > in ¢ by
<X, Y>=—-B(X, ¢Y) for all X, Yeg.

Then it is clear that the decomposition §=3 @, is orthogonal with
4

respect to the inner product <, >.
We now define subspaces £ and m of § respectively as follows:
f= (XEg |sX=X],
m= {Xeg|sX=—X]}.

Then we have @g=f+4m (orthogonal), and [f, t]Ct, [f, m]Cm and
[m, m]cf. Furthermore we define subspaces f, f,, n;, and m, of g respec-
tively as follows :

f‘ozfﬂgo, fl-:fn(g—l_l_gl)’
nmy=mng, n,=mnN(@_,+4g).

Then we have ¥=%+F¥ (orthogonal) and m=m,+m, (orthogonal), and
[fos f0]wa [fo, fl]Cfl’ [fl, fl]Cfo, etc.

Now consider the adjoint group Ad(g8) of the simple Lie algebra g.
As wusual the Lie algebra of Ad(g) may be identified with g. We
denote by K the Lie subgroup of Ad(g) generated by the subalgebra f
of g, which is a maximal compact subgroup of Ad(g). We also denote
by K, the subgroup of K consisting of all a€K which satisfy the
equality Ad(a)Z,=Z, or Ad(a)g,=g, for all p. Here we note that
the Lie algebra of K (resp. of K;) is f (resp. ).

We have thus obtained the homogeneous space

M=K/K,

(Note that the action of K on M is effective.) Since I/f, =%, the
tangent space T,=T (M), to M at the origin 0 may be identified with
I. This being said, there is a unique K-invariant Riemannian metric
g on M such that g(X, Y)=<X, Y> for all X, YeT,=f. We are
now in a position to assert that M= K/K, is a homogeneous symmetric
space with respect to the Riemannian metric g (cf. [12]). Following
[12], the symmetric space M thus obtained will be called a symmetric
R space.

3.2. The canonical isometric imbeddings. We have Z,Em,
Ad(Kymcm and K,={a€K|Ad(@a) Z,=Z)}. Hence the map Ksa—
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Ad(a)Z,em induces an imbedding of M into W, which we denote by f.
Clearly f is K-equivariant, i.e., Ad(a)f (p)= f(ap) for all aEK and
pEM. Let IV be the covariant differentiation associated with the Rie-
mannian metric g.

Lemma 3.3 (cf. [15], Lemma 3.2). Let X, YET,=I.
(1) Vxf=[X, Z] (em,).
(2) FIf=1X, [Y, Z]] (em,).

Now if we put m=dim m, m may be regarded as the Euclidean
space R™ with respect to a fixed orthonormal basis X,, ..., X, of m.
Using (1) of Lemma 3.3, we have

g(X, =X, Y>=L[X, %], [Y, 21>
= Vxf, Vif >.

Since f is K-equivariant, this means that f is an isometric imbedding
of the R space M to the Euclidean space R"=m (cf. [12]).

Let N be the normal bundle of the imbedding f. We have f£,7T,=
[f, Z]=m, and hence the fibre N, of N at the origin coincides with
the orthogonal complement 11, of 11, in .

Proposition 3.4. The canonical imbedding f is non-degenerate.

Proof. We have f,= {X+¢X| XEg_} and m= {X—-0X| XEg,)}.
And for any X, YEg_,, we have [X+0X, [Y+0Y, Z]]=[¢X, Y]
—o[¢X, Y]. Since g,= 3, Q—x](*)s it follows that m,= [fu [fu Z,11].
Therefore we see from (2) of Lemma 3.3 that N, is spanned by the
vectors of the form FyVy f, X,YET, Since f is K-equivariant, this
means that £ is non-degenerate. Q. E. D.

As is easily observed, the bundle n=60(N) of second fundamental
forms is K-invariant. It follows that the operator L and hence the
equation R, associated with f, are K-invariant.

Let us consider the symbol H=n+ A*T* of the equation R, being
K-invariant. If we identify T, and f, as before, then the fibre 1, of
n at the origin may be identified with a subspace of S*,* , the fibre
B, of B at the origin with a subspace of &%*,* , and

D=1+ A’L*.

Hereafter the fibres 1, and 0, will be simply written as 1 and )

(*) This follows from the fact that a=g_,+[g;,9-,]+g; is an ideal of g.
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respectively.

We shall now describe the spaces 1 and b in terms of the space
m,. For this purpose we first define a linear isomorphism % of g,
onto I, by

n(X)z‘/%(X-l—aX) for all Xeg_,.

It is easy to see that % is isometric, i. e.,

<n(X), n(V) >=<X, Y> forall X, YEg_,.

Lemma 3.5. Let AEN,=m, Then the second jfundamental form
O(A) corresponding to the normal vector A may be expressed as follows :

0(4) (n(X), (M) =<[4, X], Y>=<A4, [X, sY]>
forall X, YEg_,.
Proof. By (2) of Lemma 3.3 we have
O(A) ((X), n(Y)) =<4, Vyxy Voerf>
=<4, [7(X), [n(Y), Z11>,

which can be shown to be equal to <4, [X, ¢Y]>=<[4, X], Y>.
Q.E.D.

We define a representation p of the Lie algebra g, on §_, by
p(A)X=[A, X] for all A€g, and XeEg_,,

which is faithful (cf. [14]). We have p(,) =p(8,) N3(g_,) and p(f)
=p(8,) No(8-,), where 8(g_,) (resp. 0(g-,)) denotes the space of all
symmetric (resp. skew-symmetric) endomorphisms of g., with respect
to the inner product <, >. Let us now define an (injective) linear
map 0 of g, to ®g*, by

PA) (X, V)=<pAX, Y>
for all A€g, and X, Yeg_..

Then it follows that g(M,)=0(g8) N S%¢* and ¢ ) =6(a) NA%*,.
Now the isomorphism 7 of g_, onto f, induces the isomorphism 7* of
&EF onto X% ¢ (p*a) (X, V)=a(®(X), 5(Y)) for all a€ &I} and
X, Yeg_,

Proposition 3.6. (1) 7*0(A)=pg(4), Aem,.

(2) y*n=pm,).



Isometric imbeddings 23
(3)  7*h=p(m) + A’g.

Proof. (1) is clear from Lemma 3.5. We have n=60(n,) and bh=
n+ A#f. Therefore (2) and (3) immediately follow from (1).
Q. E. D.

Corollary. The canonical imbedding f of M=K/K, into W s
involutive (resp. elliptic ; resp. of finite type; resp. of c. finite type) if
and only if the same holds for the subspace ¢(m,)+ A’g* of &K’g*.

The rest of the section will be devoted to the study of the canonical
imbeddings of the following R spaces:

(I) Irreducible hermitian symmetric spaces of compact type.

(II) The real Grassmann manifolds G**(R).

3.3. Irreducible hermitian symmetric spaces of compact type.

Let M=K/K, be an irreducible hermitian symmetric space of com-
pact type, where K is the largest group of automorphisms (holomorphic
isometries) of M, and K, is the isotropy group of K at a fixed point
oof M. Tt is well known that M=K/K, may be represented by a
symmetric R space (cf. [14]), which we first explain. ,

Let T (resp. f,) be the Lie algebra of K (resp. of K,). Let B, be
the Killing form of f, and f, the orthogonal complement of ¥, in !
with respect to B,: f=f,+1, (direct sum). Furthermore let [ be the
tensor field of type (}) on M representing the complex structure of M.
Then there is a unique element I, in the centre of ¥, such that IX=
[L, X] for all XeT,=f, where T,=T(M), is identified with f, as
before. Let us now consider the complexification g=¥ of the Lie
algebra f as well as its subspaces g_,=f}, g=¥ and g,=f, where
= (Xet | [L, X]==+y—1 X}. Then we see that the subspaces §_,,
g, and g, together give the structure of a simple graded Lie algebra of
the first kind, in the Lie algebra g.

Let ¢ be the conjugation of g=¥, which is an involutive automor-
phism of the Lie algebra ¢ and which has the properties in Lemma 3. 2.
Clearly we have f= {X&€g|sX=X} and f,=g,Nt. Moreover we know
that the centre of the group K is reduced to the identity element.
We have thus seen that the given hermitian symmetric space M= K/K,
is represented by the symmetric R space which is associated with the
simple graded Lie algebra of the first kind, §=} g, (together with

»

the involutive automorphism o). Then notations being as in 3.1, we
furhter see that m=y—1 f, m,=y—11%, m=y—1{ and

<X, Y>=—-2 Re B(X, Y) for all X, Yeg.
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Theorem 3.7. The canonical imbedding f of the irreducible hermi-
tian symmetric space M= K/K, into the Euclidean space M is of c. finite
type if and only if M is not a complex projective space.

Proof. Consider the subspace h=n+ A%} of &1F. We first
remark that n=60(m,) is a space of real hermitian forms of (=T,
([15]). ( Indeed we have @A) (X, V)=<A4, [X, [Y, V-1 I]]>
for all Aem, and X, YEL. We have [[L, X1, [[L, Y], V=1 L]1=
[X, [Y, v—1 I,]1. Hence 6(A)([L, X1, [L, Y])=6(4) (X, Y).) Thus
we may apply the arguments in 2.5 to the space . Let us consider the
subspace 1 of (()®(7)*. Then we see from Proposition 2.12 that b
is of ¢. finite type if and only if the second prolongation i® of i
vanishes. Since M{=g,, the linear map © of M, to S%¥ is extended
to a complex linear map 6 of g to F)*RE)* by 64 (X, D)
=0(A)(X, Y) for all A€g, and X, YEL. Then 1=06(g,), and we
can easily verify the equality

6(4) (X, Y)=-2B,([4, X1, V),
Aeg, X, YE¥;,

Let us now identify (f7)* with I} by the non-degenerate bilinear map
trxE=s X, V)>—B,(X, Y)EC. Then it follows that the two complex
subspaces ft and p(@,) of Hom. (8-, 8-,) (=F)*®E)*) coincide.
However we know from [8] that the second prolongation p(g,)® of
p(8,) vanishes if and only if M is not a complex projective space.
Therefore we have seen that f is of c. finite type if and only if M
is not a complex projective space. Q. E. D.

We shall now make some remarks in connection with Theorem 3. 7.
Let M;=K,/(K.),, 1=i{<Fk, be k irreducible hermitian symmetric spaces
of compact type, and, for each 7, let f; be the canonical imbedding of
M, into m,=y{—1%. We consider the product imbedding f=f, X ... XFf,
of the (reducible) hermitain symmetric space M=M,X ... XM, into
the Euclidean space m=mu,+ ... +m, Then we remark that f is
elliptic ([15]) and that f is of c. finite type if and only if none of
M, is a complex projective space. This last fact follows immediately
from Corollary to Proposition 2.9, Proposition 2. 12 and Theorem 3. 7.
Now assume that none of M, is a complex projective space. Then it
follows from Proposition 2.5 that &/ (U, f| U)=/;(U, f|U) for any
connected open subset U(#¢) of M, where f| U denotes the restric-
tion of f to U. 1In [15], one of the authors has shown that the two
spaces & (M, f) and &/ (M, f) necessarily coincide (without assump-
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tions on the spaces M;). See also §5.

3.4. The real Grassmann manifolds G*?(R). Let p and g be
any positive integers with p=<q. Let G**(R) be the Grassmann manifold
of all p-dimensional subspaces in the (p+¢)-dimensional vector space
R**%.  As usual G**(R) may be expressed as the symmetric homoge-
neous space K/K, where

K=SO(P+Q)/C0’
K,=(SO@+q)NO0(p) x0(q))/C,

C, being the centre of SO(p+4q). Moreover as is well known, G**(R)

= K/K, may be represented by a symmetric R space. This is associ-

ated with the simple graded Lie algebra of the first kind, §=3/g, or
?

(8, Z,), (together with the involutive automorphism ¢ of g) which is

defined as follows:

ngI(P“I'q; R),

al, 0
ZO= :qi d b= —p ,
<o qu> @= prq ™ ptq”

o(X)=—'X, Xeg,

where I, denotes the unit matrix of degree 7.

We shall now give the explicit expressions for the various objects
associated with the R space. In the following we shall use the follow-
ing notations: M, ,(K) denotes the space of rXs matrices over a field
K, and S,(K) the space of all symmetric matrices of degree 7 over
K.

Then spaces §_,, §, and @, are expressed respectively as follows:

0 0
g—1= XEMq.p(R)’
X 0

A0
goz( B) Ae€gl(p; R), BEgl(g; R) and Tr A+Tr B=0,

0
0 Y

gl:( ) YEM».«(R)'
0 0

And the representation p of g, on §_, is expressed as follows:
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A 0 A 0
P( )X:BX—XAa EQO, XEQ_I,
0 B 0 B

where we have identified ¢_;, and M, ,(R) in a natural manner.
Analogously we have the expressions for I, {, and ;:

t=0(p+9),

(

A 0
fo=i( )IAEO(P), BEo(g) }
0 B

0 —X
fx——'{( >|XEMM,(R)},
X 0

and the expressions for m, n, and M, :

m= {XESp+q(R) l TrX:O}’

A 0
m‘,={< )[AESP(R), BeS,(R) and Tr A+Tr B=0¢,
0 B

{(O | l
m,= ) I XEMq,p(R)
0

X |
Finally the inner product <, > in ¢ is expressed as follows:
<X, Y>=200+9)Tr(X'Y), X, Yeq.
These being prepared, we shall prove the following

Theorem 3.8. Consider the canonical isometric imbedding f of the
Grassmann manifold G**(R)=K/K, into the Euclidean space m.

(1) The case where p=1. The imbedding f is involutive and not
elliptic.

(2) The case where p=q=2. The imbedding f is not elliptic.

(8) The case where p=2 and q=3. The imbedding f is of infinite
type and elliptic.

(4) The case where p=3. The imbedding f is of finite type.

We shall show in §4 that f is of c. finite type in case (4), and in
§7 that & (M, )=/ (M, f) in case (3).

Let us consider the (injective) linear map g of M, to S°¢_,
expressed as follows:

* which is
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A 0
ﬁ((o B>) (X, V)=2(p+q) Tr((BX—XA)'Y),

A 0
where< B>€m0 and X, Yeg_,=M,,(R). The map ¢ is extended to
0
a complex linear map of M; to S*°(¢%,)*. Note that ¢2,=M,,(C) and
m; consists of all (4, B)eS,(C)xS,(C) with TrA+TrB=0. Also
note that the extended map ¢ is defined by the same formula above.
We first prove the following

Lemma 3.9. Assume that p=2 and q=3. Then the subspace ¢(W5) of
S*(g°)* contains non-zero decomposable elements (w. r. t. the symmetric

product) if and only if p=2.
Proof, Assume that ¢(m{) contains a non-zero decomposable element,
A 0
say .6(< B)). Then there are non-zero matrices (X;;) and (Y;) in
0

M, ,(C) such that
0B, —A.0,= XY, + Y. X,;, (1=4, j<p, 154 p=q),

2"
where A= (4;;) and B= (B,,). For simplicity we put Zj;=X,,Y,,+ Y, X,
Now we have —A,;0,,=Z;/(i%j). Since ¢=3 and since the rank of the
matrix (Zi}),z. .5, 15 at most 2, it follows that

A;;=0(ixj) and Zjj=0(=j).

For i, let X¥ (resp. Y®) denote the vector (X)) zig,(resp. (Yi)isizd)-
We assert that X0 and Y”%0 for every ¢. For example suppose
that X®=0 or Y®=0. Then we have B,,—A4,0,,=Z2;,=0. Hence (4,
—A,)6,=B,—A,0,,=Z. Therefore it follows as above that A,,—A4,;
=0. Since B,=4,0,, A;;=A,0;; and TrA+TrB=0, we obtain A=B
=0. This is a contradiction, proving our assertion. Since Zi=0 (i
7), we therefore see that the two vectors X® and Y are linearly
dependent for every i.

Accordingly we have

YO =agX"®  with some a=0.
Since Zi,=0 ({=2), it follows that
YO= _aX® (i22).

Furthermore we have B,,—A4,§,=2aX,X, and B,,—A4,0,,=—2aX,X,,
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whence

(A,—A,)0,=2a( X, X+ X,,X,,).
Hence we obtain

A,=A4, and X, X, +X,X,=0.
This second equality means that

XP=J—1 XD or —y—1 X%,

The case where p=3. We have 0=Z2;=—-2aX,X, This is a
contradiction, because ax0, X®x0 and X®=:0.
The case where p=2. We have 4,,=4,,, B,,=A,5,,+2a X, X, and

TrA+TrB=0. Hence Au=~52_€72 (X))’ Therefore putting X,=

2aX,, we obtain

1
A,= Au= A22= — Xf,
»=0 and 712 ;

1
By=— (T XD, + X.X,
Conversely take any non-zero vector (X,) €C’ and define matrices A&
A 0
S,(C) and BeS,(C) by the formula above. Then < ) e mg, and
0 B

A0
ﬁ(( B>) is a non-zero decomposable element.
0

We have thereby proved Lemma 3. 9.

We are now in a position to prove Theorem 3. 8. First recall Corol-
lary to Proposition 3. 6.

The case where =2 and ¢=3. We know that the subspace g(m,)
+/\’g%, of ®’g* is of infinite type if and only if the subspace g(ms)
+/A\%(@)* of ®*(82.)* contains non-zero decomposable element (w.
r. t. the tensor product) ([7]). This last condition is equivalent to
the condition that the subspace g(mg) of S?(g°,)* contains non-zero
decomposable elements (w. r. t. the symmetric product). Therefore
we see from Lemma 3.9 that f is of infinite type if and only if p=2.
Moreover we deduce from the proof of Lemma 3.9 that the subspace
g(m,) of S’¢* contains no non-zero decomposable elements (w. r. t.
the symmetric product), meaning that f is elliptic.

The case where p=1. We have dim ¢_,=¢ and dim mo=%q(q+ D),
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whence ¢(m,)=5%¢*. This clearly implies that f is involutive and not
elliptic.
The case where p=¢=2. For example, define matrices A and B in

1 0 A 0 A 0
S,(R) by A=B= . Then )emo, and g( ) is a non-
0 —1 0 B 0 B

zero decomposable element. Hence f is not elliptic.
We have thus completed the proof of Theorem 3. 8.

3.5. Remark (the real quadries Q}(R)). Let (n,7) be any pair
of integres 7 and 7 with n=1 and Oéré[-—gx]. Let z,, ..., Z,,; be the

homogeneous coordinates of the (n+1)-dimensional real projective
space P"*'(R), and let Q(R) be the quadric of P"*'(R) defined by the
equation

n
—22%,,+ 2] ez’ = 0,
f=n

where ¢=—1 if 1<i<r and ¢, =1 otherwise. Let G be the group of all
projective transformations which leave Q7(R) invariant. The group G
acts effectively and transitively on Q7 (R), and hence the quadric Q;(R)
may be represented by the homogeneous space G/G’, where G’
denotes the isotropy group of G at the point 0=(1,0, ..., 0) € Q;(R).
This homogeneous space is usually known as the n-dimensional Mébius
space of index 7 (cf. [13]).

Let g be the Lie algebra of G, which is isomorphic with the subal-
gebra of 8[(n+2; R) consisting of all matrices S €3l(n+2; R) with *XJ
+JX=0, where

00 -1 &
J=l 0 J of J=

-1 0 0 &,
Let Z, be the element of g defined by

1 0 0
Zy= (0 0 0).
0 0 —1

Hereafter we assume that (7, 7) % (2, 1). Then the pair (g, Z,) defines
a simple graded Lie algebra of the first kind, say =), g, and the
4

homogeneous space G/G’ is naturally obtained from this graded Lie
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algebra (cf. 5.6 and [14]). Now the assignment X——'X gives an
involutive automorphism of g, say ¢, and it has the properties stated in
Lemma 3.2. Hence the quadric Q;(R) may be further represented by
the symmetric R space K/K, which is associated with the graded Lie
algebra Q='Z] g, together with the involutive automorphism o¢. Here we

note that the quadric Q;(R) is isomorphic with the Grassmann manifold
G**(R) as symmetric R spaces.

These being prepared, we state the following proposition without
proof.

Proposition 3.10. Assume that (n,r)x (2, 1). Consider the canoni-
cal isometric imbedding f of the symmetric R space Q:(R)= K/K, into the
Euclidean space m.

(1) £ is involutive if and only if (n, r)=(1, 0) or (2,0) or (3, 1).

(2) F is elliptic if and only if n=22 and r=0.

(8) f is of c. finite type if and only if n=3 and r=0.

(4) The first prolongation " of the bundle of second fundamental
forms of f vanishes if and only if either n=2 and r=0 or r=2.

Note that dim m= (r+1) (n—r+1).

§4. Rigidity for the canonical isometric imbeddings of the real
Grassmann manifolds G*‘(R), ¢g=p=3.

Let f be the canonical isometric imbedding of the real Grassmann
manifold M=G**(R), q=p, into the Euclidean space m(see 3.4).
The main aim of this section is to prove the following

Theorem 4.1. (1) If p=2, then the first prolongation
nO=TM)*QuNST(M)*QT(M)*

of the bundle n of second fundamental forms vanishes.
(2) If p=3, then the imbedding f is of c. finite type.

4.1. Preliminaries. Let us consider the graded Lie algebra g= Z, g,

together with the involutive automorphism ¢ which is associated with
G*(R) (see 3.4). We denote by a the Cartan subalgebra of g=
8l(p+¢q; R) which consists of all diagonal matrices.

We first recall the root system with respect to a. 4 denotes the set
of all non-zero roots, and for every a4, g° denotes the root subspace
of ¢ corresponding to a€4. Then we have g=a+ X ¢* (direct sum).

a€4
Let us now give the exact expressions of 4 and ¢°. For 1=i<p+gq,
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let 2, denote the linear function a>H— (H)€R, where A, (H) is the
i-th diagonal component of H. Then 4 consists of all the linear func-
tions 4,—2;(¢xj). For every a=2—12;, let E, denote the matrix
(04i05;) 1500554410 3. Then g* is the 1-dimensional subspace of ¢ spanned
by E..

As is well known, we have the following:

4.1) oE,=-E_, acd.

(4.2) Let acd. If we put H,=[E, E_], then H,ea and
<H, H>=20p+qa(H), Hea.

Let a, f=4.

(4.3) If a+p is not a root, i. €., a+B%0 and a+p&4, then
[EaQ EF]ZO'

(4.4) If a+pBed, then [E, E]]=N,,E ., and N,,=1 or —1. More
precisely N, ,=1 if a=2—2; and f=2,—2, (i¥k), and N,,=—1 if a=
A—2; and B=2,— A, (*k).

Let us now describe the graded structure of ¢ in terms of the root

al, 0 —p
system. Consider the element Z,= . qu) (a= P-cll-q , b= P+q) in ¢

which gives the grading of §. Then we have a(Z,)=—1, 0 or 1 for
every a4, and hence 4=4_,U4,U 4,(disjoint), where we set 4,=
{aed|a(Z,)=1. The subsets 4; are explicitly given as follows:

d,={2—24 | 1=i<p and p+1=r=<p+gq},
do={+A—2) | 1=2i<jSp+q or p+1=i<j<p+q},
4,={2—2 | 1Zi<p and p+1=r=<p+gq}.

And the subspaces g¢; ({=—1, 0, 1) of ¢ are discribed as follows:

g, = Z g8 G,=0a+ Zga and ¢,= Z g°.

a€d4-1 aE4do a€4y

Finally we prove a useful lemma on the subspace g(m,) of Sg*.
First note that E,(a€4_,) forms a basis of g_,. We express covariant
tensors on §_, in terms of this basis, and promise that the indices 7, j,
k, ... run over the range 1, 2, ..., p and the indices 7, s, ¢, ... over
the range p+1, p+2, ..., p+q. We also promise that the Greek
letters a, 8, 7, ... mean roots in 4_,.
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Lemma 4.2, Let Xesg(m,).

(1) X,,=0 if a—B is not a root.

(2) X=X if a=4—2A, f=4—4, a,=2.—2;, B=24—2A;(r=s) or if
a=2—2A, B=A—2, ay=A—A, Bi=A—A(i%]).

®) Xu=X X~ I X, if a= A=D1

Proof. By the very definition of the map ¢, there is a unique 4
em, such that

Xaﬁ= <A; [Ea, 0Ep]>: - <Aa [Ea, E—p] >.

Now (1) is clear. (2) follows from the equality: [E,, E_J=[E,, E_, ],
and (3) from the equality: H,= 3 H,,— 3} H,. Q. E. D.
a b

4.2. Proof of Theorem 4.1, (1). By Proposition 3.6 it suffices
to show if p=2, then the first prolongation g(m,)® of (M, (as a
subspace of ®?g¥*,) vanishes.

Take any element X of g(m,)®. Then X,,, may be expressed as
follows: X,,,=<A,, [E,, oE]>, where A,em, Furthermore we have
X.py=X,,.=X, ;o By Lemma 4.2 we see that X,,,=0 if one of a—p,
B—7 and y—a is not a root.

Lemma 4.3. If a—fped, p—red and y—aecd, then X,,,=0.
Proof. The following two cases are possible:

(i) a=2—-2, f=2,—2; and y=2,— 4, where r=s, r¥t and s,
(i) a=2 -4, f=2,—2; and y=2, — 2, where 7%, ixk and jxk.

We shall prove our assertion only for case (i). (Case (ii) can be
similarly dealt with.) Since p=2, we can find j such that j¥i. Putt-
ing B;=24,—4; and y,=4,—2;, we see that @ —7, is not a root. Therefore
using Lemma 4.2 we have X=X, =0. Q. E. D.

"ﬂlrl_
In the same way we can prove the following
Lemma 4.4. If a—yed, then X,,,=0.
Lemma 4.5. X,.=0.

Proof. Let a=2 —2;. Choose j and s such that j%¢ and s3r, and
set pp=A4—4, n=4—2; and 6,=2,—4;. Then a=pf+7 -0, both a-4
and a—7, are in 4, and a—9, is not a root. Therefore it follows from
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Lemmas 4.2 and 4.4 that X,..=X,,+X

aryry

Xna;al =0.
Q. E. D.

By Lemmas 4. 3~4. 5, we have shown that every Xe€p(m,)® satisfies
X.;,=0 for all a, B, 7, thus completing the proof of Theorem 4.1, (1).

4.3. Proof of Theorem 4.1, (2). By Proposition 3.6, it suffices
to show that if p=3, then the subspace g(m,)+A’g* of &®g* is of
c. finite type or equivalently every Ye&p?(g(m,)) satisfies the relation:
Y, .=-Y,, forall a, B, 1, 0 (cf. Proposition 2. 1).

Take any element Y of p*(6(m,)). Then Y,,, can be expressed as
follows Y. =<A., [E, ¢E]>, where A,em, Furthermore we have
Yﬂﬂr" ﬂarﬁ (or Aaﬂ_Apa), and Yaﬁrd at)rﬁ Yr,eua‘l‘ riap— =0. By Lemma 4.2

we see that Y,,,=0 if y—0 is not a root.
Lemma 4.6. If a«—f is not a root and y—d<d, then Y,,,=0.
Proof. The following two cases are possible:
(i) a=2—4, =24 -2, y=4—2 and 0=12,— 4,
where 737, r¥s and I3y,
(ii)) a=4, -4, B=4 -2, y=4—4 and d=1-2,

where i3/, k! and r=s.

We shall prove our assertion only for case (i). (Case (ii) can be
similarly dealt with.) Since Y,;, is symmetric with respect to the pairs
(a, B) and (7, 9), we may assume that 7r%u and s=f Since p=3, we
can find !/ such that /% 7, j. Putting 7,=2,—2, and 6,=2,—4, we see

that neither 7, —f8 nor a—d, are roots. It follows from Lemma 4.2 that
Yapraz Yaprlalz Ya3171ﬂ+ anaal lellaﬁzo' Q E. D.
Lemma 4.7. If By and a—0 is not a root, then Y ,,= —Y,.,.

Proof. Using Lemma 4.6 we have Y,,=Y,,=0. Since Y,,— Y.,
=Y.~ Y., it follows that Y,,,= —Y,,.,. Q.E. D.

Lemma 4.8. If a—-f€d and y—-d<d, then Y, ,= - Y,
Proof. The following four cases are possible :
(1) a=2—-2A, =224, y=24—2; and 0=2,—4,,

where 735 and f¥u.

(1) a=2-24, B=2,-24, y=2—-4; and 6=24,—2,
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where j¥k and 735,

(ii1)) a=24, -4, B=2—2;, y=24,—2 and 6=24,— 2,
where 73] an kX,

(iv) a=24-2, =2 —2;, y=24—2 and 6=2, -4,

where i%j and st
We shall prove our assertion only for cases (i) and (ii). (Cases (iii)
and (iv) can be similarly dealt with.)

Case (1). We first consider the case where ¢%j. Then a3y, d and
B2y, 0 and either «—7 or a—dJ is not a root. It follows from Lemma
4.7 that Y,,,=—Y,., We next consider the case where 7=j. Chosse
k and ! such that ki, 37 and kx/, and set a,=24,— 4, Bi=4 -4, 1=
A,—2, and 6,=24,—2,. Then both «,—p8, and 7,—d, are in 4. Therefore
using Lemma 4.2 and the result obtained above, we have Y,,=Y,.,
== YTl"x“P: - Y71’1”1ﬂ1 = Y"xﬂln"l = Y"u’lf": - YT"“U’: ==Y

Case (ii). Let us consider the case where i%j, £. Then axy, o
and 8%y, 0 and either @a—7 or B—7 1is not a root. It follows from
Lemma 4.7 that Y,,,=—Y,, Analogously we have Y,,,=—1Y,, in the
case where 73¢f, s. Thus to finish the proof in case (ii), we have
only to discuss the following case: a=24—2, =4—2, y=4—2, and 0=
A,—2;, where %  and r=s. Choose ! and # such that /%7, j and u=3r,
s, and set a,=24,—24, Bi=4—4, n=4,—4; and 6,=4,—4;,. Then in the
same manner as in case (i) we obtain Y=Y, ,=... ==Y

a a rdape

Q. E. D.
Lemma 4.9. If a—f is not a root, then Y, =0.

Proof. We first consider the case where y¥a, 8. If either y—«a

or y—pB is not a root, then we see from Lemma 4.7 that Y,.,= — Y.,
and hence that Y,,=Y, ,+Y,,—Y,,=0. If both y—a and y—B€4,
then we see from Lemma 4.8 that Y,,=—7Y,. and hence, as above,
that Y,,,=0. We next consider the case where y=a or y=p. Since
Y.,=Y,,, we may assume that y=p%a. Let a=2—2, and B=y=

2;—2;, where i%j and 7s. We choose # and ¢ such that 2=i, j and
txr, s, and set 1,=4—4;, 0,=4,—2, and ¢=2,—4. Then we have: a
*1, 0,63 B¥r, 0y, &5 B=71+0,—&. Therefore using Lemma 4.2 and
the result obtained above, we have Y..;="Y.; . + Y5, — Yop,,, =0.

Q. E. D.
Lemma 4.10. If a—B€4, then Y, =-Y,

rrape
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Proof. We first consider the case where y¥xa, 8. This case can
be similarly treated to the first half of the proof of Lemma 4.9. If
either y—a or y—f is not a root, then we see from Lemma 4.7 that
Y,,=—Y,, If both y—a and 7—p are in 4, we see from Lemma
4.8 that Y,,,=—7Y,.,. We next consider the case where y=a or r=4.
As before we may assume that a=8=y. The following two cases are

possible :
(1) a=2—2; and B=y=A4,—1,, where s,
(ii) a=2A—24 and B=7y=2,—21;, where i%j.

We shall prove our assertion only for case (i). (Case (ii) can be
similarly dealt with.) Choose j, # and ¢ such that ji, ki, ixk and
tiFT, and set alzzr—zln }31:2:_2&, 7‘1:21_1{, 51=2:—2j and EIZZ,—ZJ».
Then we have: a7y, 0, &; Bxa, By, 11, 0 &3 a,¥r, 0, &3 B, O,
&; a,—PE4; B=7,+0,—¢e. Therefore using Lemma 4.2 and the result
obtained above, we have

Yosoo= Yoy, + Yaﬁhh Yo
= Yrm"ﬁ "1 1"1’+ Y, €1e1aB
=- Ynn"u’x Y"l’l”u’1+ Y‘l‘x"lﬁl
= “1ﬂ1f171+ Y"lﬂl”l"l

:Ya,ﬂ,ﬁp— Yﬂﬂalﬂl_ Yﬂﬂaﬂ‘ Q. E. D.

Lemma 4.11. Y _,,=-Y,.

Y“lﬂl'l’l

Proof. We first consider the case where a¥=p. If a—p&4, it follows
from Lemma 4.7 that Y, ,=-Y,.. If a—Be4, it follows from Lemma
4.8 that Y,,,=—Y,,., i. e, Y,,,=0. Hence Y. ,;=Y, 0+ Vius— Yipua=

—Y4... We next consider the case where a=f. Let a=p=2—2. We
choose 7, k, s and t such that j¥i, ki, j%k, s¥r, t3r and s¥¢, and
set y=A4,—2;, 0=A4—A, 66=4—4,0,=4,—4, 5=4—2;, and 6,=4, —4,. Then
we have: r¥e, 6, a, 0; 0%e¢, 0, a; 06,%¢, 0, a; a¥e, 9; r=¢,+0,—a;
0=g+0,—a. Therefore using Lemma 4.1 and the result obtained above,

we have
Yrr“ Yrr‘z‘ + Yrr-'zvz Yrraa

=-Y -Y 2027r+ Yﬂarr

eatory 4

+ Kz €010y Kztzan)

- ( ’2’2.1 1+ Yﬂzlzd dl leﬂzdd)
+ Yoo+ Yeaoyoy = Vo)

( €2f21%1
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In the same manner we have

anr = - (Y‘l'l‘z‘z + Y‘x‘v’z"z - Ytlllua)
- (Yltdllziz + Yﬂlﬂldzﬂz - Yo‘ldlnn)
+ (Y + Yaaazaz - Yaaaa) .

ﬂ((‘zlz
Consequently it follows that 0=Y,,,,+ Y,,,= —2Y... Q. E. D.

By Lemmas 4.6 and 4. 8~4. 11 we have shown that Y,,=—7Y,,,, for
all a, B, 7, d, thus completing the proof of Theorem 4.1, (2).

Remark. Let p and ¢ be any positive integers with p=q. Let
Q*** denote the space of quaternionic (p+¢q)-vectors, and G*?(Q) the
Grassmann manifold of p-dimensional quaternionic subspaces of @Q**7,
As is well known, G**(Q) may be represented by a symmetric R space
(cf. [12]). This is associated with the simple graded Lie algebra of
the first kind, (8, Z,), (together with the involutive automorphism o)
which is defined as follows:

g=5u*(2(+9))

- o

al, 0
Z0= bI =iq,,
(@ p+aq

U, Veglip+q; €), Tr(U+U)=0y,

b= —P
and b= 7 ),
0 bl

q

cX=—X, Xeg.

Now consider the canonical isometric imbedding f of the quaterni-
onic Grassmann manifold G**(Q) into the Euclidean space m. Then it
can be shown that the imbedding f is of finite type for any (p, q) (cf.
Theorem 3.8). Moreover we can prove the following theorem by a
similar method to the proof of Theorem 4. 1.

Theorem 4.12. (1) For any (p, q) the first prolongation n®° of the
bundle n of second fundamental forms vanishes.
(2) If p=3 or p=q=1, then the imbedding f is of c. finite type.

§5. Global solutions of the equation Lgp=0.

In this section, M= K/K, is the symmetric R space associated with
a simple graded Lie algebra of the first kind, =} g,, (together with
?



Isometric imbeddings 37

an involutive automorphism ¢ of § having the properties in Lemma 3. 2).
We use the notations as explained in 3.1 and 3. 2. Above all f means
the canonical isometric imbedding of M into the Euclidean space R"=
m. We put dim M=n.

5.1. The curvature R and the tensor field S. As is well known,

the curvature R of the symmetric space M=K/K, evaluated at the

origin o, may be expressed as follows:
R(X, Y)ZZ”"[[Xs Y], 7] for all X, Y, Zet, =T,

The assignment X—[X, Z] gives an isomorphism of f, onto m,
and [, [f, [f, Z,]]1cm,. These being said, we define a tensor S
of type (3) on I, by

[S(X, NZ, Z]1=[Z, [X, [Y, Z]]1] for all X, Y, Zet,.

For any X, Yeg_, we denote by —R'(X, Y) (resp. by S'(X, Y))
the f-component (resp. the mM,-component) of [X, ¢Y] (g, with
respect to the decomposition: g,=%,+m, Clearly we have

R,(X3 Y):_é([X, 0Y]+[0X> Y]))

(X, V)= o ([X, oY1= [oX, Y]).

For simplicity let us idenify @, with a subalgebra of gl(g_,) by the
natural representation o of g, on g_,: §,=p(g,). We also consider the
isometric isomorphism 7 of g_, onto f. Then a simple calculation
proves the following

Lemma 5.1. Let X, Y, Zeg_,.

(D RX), n(N)9(@)=9(R (X, Y)2).

2 S((X), n(N)9(@)=9(S"(X, )2).

Lemma 5.2. Let X, Y, Z, Wet,.

() SX, V)=S5(Y, X) and <S(X, V)Z, W>=<Z, S(X, Y)W>,
2) <S(X, VVZ W>=SZ WX, Y>

) SX, )Z=S(Z, )X+ R(X, 2)Y.

These equalities follow immediately from the corresponding equalities
for S (which can be easily derived) and Lemma 5. 1.
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It is easy to see that S is invariant by the linear isotropy group of
the homogeneous space K/K, at the origin. Hence S gives rise to
a K-invariant tensor field of type (;) on M, which we denote by the
same letter S. Note that the tensor field S is parallel with respect to
the Riemannian connection on M.

5.2. The bundle 1 of second fundamental forms. By Lemma
3.1 the bilinear map g-,X¢,2 (X, 2)»B(X, Z)eR is non-degenerate.
Thus there corresponds to every Aegl(g.,) its transpose ‘Acgl(g,) as
follows: B(AX, Z)=B(X, *AZ) for all Xeg_, and Z=g, This being
said, we denote by §, the subspace of gl(g_,) consisting of all A€
gl(g_,) which satisfy the equation

A[X, Z]1—[X, Z]1A—[AX, Z]1+[X, ‘AZ]=0
for all XEg_, and Z<g,.

Lemma 5.3. §,=4d..
Proof. Let A€g,, XEg_, and Z€g,. Then we have
[A9 [X9 Z]]=[[A5 X], Z]+[X3 [Aa Z]] and [A, Z]= _‘AZ'

These facts show that g,C@,. Furthermore §, is a subalgebra of gl(g_,),
and the direct sum d=g_,+d,+9¢, is endowed with the structure of
a graded Lie algebra, so that the given §=g_,+8,+3, is a graded
subalgebra of §=¢_,+8,+@,. Since the natural representation of g, on
g_, is irreducible (cf. [8] and [14]), so is the natural representation
of §, on g_,. It follows that § is simple (cf. ibid.). Hence we obtain
8,=[8_1,, 8.1=8, (cf. ibid.). Q. E. D.

Let us consider the space 8(g-,) of all symmetric endomorphisms
of §_,. By Lemma 5.3 we have m,=g,N38(3-,) =8, N3(3-,).

Lemma 5.4. The subspace W, of 8(g-,) consists of all Ac3(g_,)
which satisfy the equation

AS' (X, Y) -S (X, )A+ R (AX, Y)—R (X, AY)=0
for all X, YEg_,.
Proof. Since m,=§,N3(g_,), M, consists of all AE3(g_,) which
satisfy the equation
A[X, oY]-[X, oY]A—-[AX, 6Y]+[X, 'AcY]=0
for all X, Yeg_,.
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We have [X, 6Y]=-R' (X, V)+S5(X, Y) and ‘AcY=0AY. We also
note that R (X, Y)ef,co(g_,) and S(X, Y)=Em,C8(g_,). Hence we
see that the equation above is equivalent to the following two equations:

AR (X, Y)— R (X, )A+S (AX, Y)—S (X, AY)=0,
AS'(X, Y)—S'(X, Y)A+ R (AX, Y)—R'(X, AY) =0.

However these two equations (for A) are mutually equivalent, which
can be easily verified by the use of the equalities:

<R (X, )Z, W>=<R(Z, W)X, Y>,
<S(X, V)Z, W>=<8'(Z, W)X, Y> (cf. Lemma 5. 2).
Q. E. D.

We now define a bundle homomorphism ¥ of S$*T* to S*T*QAN*T*
by
(wa) (Xs Ys Z: W):a(S(X> Y)Z’ W)_a(Z’ S(X9 Y) W)
‘_a(Xs R(Z, W)Y)_a(R(Z, W)X, Y)’
where a €8T} and X, Y, Z, WET,.
Proposition 5.5. The bundle n of second fundamental forms of
the canonical imbedding f is the kernel of the bundle homomorphism W.

Proof. From Lemma 5.4 we see that m, consists of all A€58(g_,)
which satisfy the equation

<AS(X, V)Z, W>—<AZ, S (X, Y)W>-<AX, R'(Z, \)Y>
'_<ARI(Zy W)X’ Y>=O for all X) Y, Z’ Weg—l-

(Note that <R'(AX, Y)Z, W>= -<AX, R'(Z, W)Y >, etc.) Further-
more we have p*n,=g(m,) by Proposition 3.6. Therefore it follows
from Lemma 5.1 that n,= {@aES4%} | ¥a=0}. Since both 1 and ¥ are
K-invariant, the proposition follows. Q. E. D.

5.3. The covariant derivatives of the canonical imbedding 7.

As before let ' be the covariant differentiation associated with the
canonical Riemannian metric g(=@()).

Proposition 5.6 (cf. [15], Proposition 3.1). Let X, Y, ZE€T,.
(1) ViV f=[[Vxf, f], V.F].

(2) VI f=(S(X, Y)Z)F.

Proof. (1) Let X, YE!,=T, By Lemma 3.3 we have Vyf=[X, Z,]
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and VPV, f=[X, [Y, Z,]]. Furthermore we have f(0)=2, and [[X, Z,],Z,]
=X. Hence it follows that ViV, f=[[Vf, f], Vyf]. Since f is K-equi-
variant, (1) follows.
(2) Let X, Y, ZET,. By using (1), we have
ViV of= [[VFxf, Fl, Vof ]+ [[VxF, V.f], VF]
+[[Vxf, fl, V.F.f].

Let us consider this equality at the origin, i. e., p=o. Then we have

PV Vif = [[[Z [X, %11, %], [Y, Z]]
+[X, Z], [4 %11, [Y, Z11+1X, [4 [Y, Z]]1].

An easy calculation shows that
[[Z [X Z]1], Z], [Y, Z11=[[[2, Z], [X, Z]], [Y, Z]]
+[[2, X1, [Y, Z]].

Hence it follows that V,F.V f=[Z, [X, [Y, Z]]—(S(X YVZ)f. Since f
is K-equivariant, (2) follows. Q. E. D.

We denote by #*(M) the space of all (anti-symmetric) k-forms on
M: ¢*(M)=I'(A\*T*). In terms of V, the exterior differentiation d:
¢*(M)—> "' (M) may be described as follows:

@p) (X +oey Xo) = B(=D" ) (K ooy Xy oy X,

where ¢o€%*(M) and X,, ..., X,,,€T,. By denition the co-differ-
entiation is the differential operator d: ¢*(M)—>%*'(M) defined as
follows: Let {e, ..., €,} be any orthonormal basis of 7,. Then

(09) (Xu ) Xlz—l) = ,Z: (Vei?’) (ess Xl’ ey Xk—l)s

where p€¢*(M) and X,, ..., X,.,€T,. The differential operator 4=
6d+do: ¢*(M)—%*(M) is usually called the Laplacian. Note that 4
commutes with d and 4. In pacrticular we have

Adf==2pepe f for any function f.

Proposition 5. 7. Af=%f.

Although this fact is known ([12]), we shall give a simple proof of
it which uses (1) of Proposition 5.6 and some elementary facts on the
graded Lie algebra g=3 g,.

4
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Proof of Proposition 5.7. Let {u, ..., u,} be an orthonormal basis
of g_.. Putting e,;=9(u,), we have (4f) (0) = —ZV.V..f=—2[e, [e; Z]]

= X[y ou;]. Furthermore putting Z',= 2 [u;, ou;], we see that Z'; is

in the centre of g, and ¢Z,= —Z,. It follows that Z',=aZ, with some
a (Cf. [14])- We have B(Zo, Z,o) = ZB(ZO) [ui, Gui]) = - ZB(ui’ Gui) =n.

And we can easily verify that B(Z, Z,)=2n. Therefore we have a=
é and hence (4f) (o)=é-zo=é~ f(0). Since f is K-equivariant, the
proposition follows. Q. E. D.

5.4. Relevant calculations on the solutions of the equations

d®r(u) =0 and Le=0. In this and the subsequent paragraphs we
assume that M=K/K, is an Einstein space, that is, there is a constant
£ such that

LR(X, e)e,=rX for all XeT,.
Under this assumption we have
do=—=2V.V.0o+rp for any l-form ¢.

Now recall the differential operators d®; of I'(M, m) to I'(S*T*),
D of I'(T*) to I'(S*T*) and L=II-D of I'(T*) to I'(S*T*/n), which
are all defined in 1. 1.

Proposition 5.8 (cf. [15], Lemma 3.11). Let u be a solution of
the equation d@r(w) =0, and ¢ the corresponding solution of the equation
Lo=0. (The correspondence is given by Thorem 1.1.)

1 <Au—%u, PE>=— déo.

) <Au——é—u, VVf>=%D(A;o—go).
Proof. We have <u, Vyf >=¢(Y) and hence
<Vxu, Voif >+ <u, Vil yf >= Fxe) (Y).

Since Vil F=V,Fyf and <Vif, Pyu>+ <V,f, VFxu>=0, it follows
that

.1 <w FuFif>=1-(Dp) (X, V).

(5.2) <Fyu, Vyf>=%<dsa> (X, Y).
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From these two equalities we obtain

ST, Pl of >+ T <n, Ve.Ve.fo>=—;_— 2 (D) (e X),

SV, Vaf >+ N<F o, V,,.fo>=é_'z(17,,.d¢) ., X).
Hence
— DTl ety Vb >+ 5 <y Pl ol o >
=-é~Zi:(V,,.Dgo) (e, X)— %;(V.idgo) e, X)
Now by using the fact that 4f= ;
SV xf = TOFT o+ S (RX, e)e)f

f (Proposition 5.7), we have

= (s=Pf,
whence
S, PP x> = (e=p) <u, Pxf>= (5= ) 9(X),

Furthermore we have X2 V.V.u= —4du, 3 Fe:dp) (e;, X) = — (8do) (X),

and
2 (VDo) (e;, X)=(—2dop+2rp—adde) (X).

Therefore (1) follows.
Let us now prove (2). From (5.1) we obtain

SOty Vol >+ 28T o, VTP >
+5<n, V,iV,iVXV,,f>=-:£-—};;(Ve,.V‘,.Dgo)(X, Y)
First by (2) of Proposition 5.6 combined with (5.2), we have
n<T.a, V”VXV,,f>=% 2 (o) (e, SCX, Ve,

Since S(X, Y) is symmetric with respect to & (cf. Lemma 5.2), we
obtain 2 (dg) (e;, S(X, Y)e,) =0 Hence

Z<Vnu, VeanVyf>:0.

Next by using the fact that Af=%f, we have
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SPS A= Q= DV + 257 T wcxaief-
From this equality together with (5. 1) follows that
S<u, PP =g Q= ) (Dp) (X, Y)

+ X (Do) (e, R(X, e)Y).

Furthermore we have

(VD) (X, Y)=—(Ddg) (X, Y)+2x(Do) (X, Y)

+22(D90) (R(X, €)Y, e).

Therefore (2) follows. Q. E. D.

Remark. Incidentally we remark that the constant # of the Einstein

space M is smaller than % Indeed we have 25 V.V.Vxf= (x—%)fo.

Hence it follows that
lVVf|2+n(x——;—)=5a,

where |Vl7f|2=‘Z]<Ve,.l7,,f, V.V, ,f> and a is the l-form defined by
a(X)=— B<I.f, V. £> for all XET,. Since FFF%0, we see from

Green’s theorem that Ic<éf, proving our remark.

5.5. The space & (M) and & (M). In this paragraph we study
the space & (M, f) of all global solutions ¢ of the equation Lep=0 as
well as the subspace (M, f) of & (M, f) consisting of all the special
solutions ¢*(A€e(m)). For simplicity we put & (M)=«/ (M, f) and
Ag(M)y=o/ (M, f). For any real number 2 and any integer p, we
define a subspace #*(M) of #*(M) by

g¢*(M) = {pe¢?*(M) | dp=12¢}.

By an infinitesimal K-transformation we mean the vector field V
on M=K/K, which is induced from a one-parameter group {a,} of K.
We denote by &/(M) the subspace of #'(M) consisting of all the
I-forms ¢ which are dual to infinitesimal K-transformations V (w. r.
t. £). Here we notice that an infinitesimal K-transformation means
an infinitesimal isometry (cf. Proposition 5.12 in the next paragraph).
Consequently the space &x(M) coincides with the space of all the
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Killing forms on M, i. e., &x(M)={pE ¢'(M) | Dp=0}. Moreover it is
known that this space is equal to the space {pE@'(M), | dp=0}=
€' (M)eyNo7(0) ([16]). (We are assuming that M is an Einstein
space.) Therefore we have

A (M)=%"'(M),N67"(0).

We denote by & (M) the subspace of #°(M) consisting of all the
functions of the form <le¢, f>(cEm). By Proposition 5.7 we have

Z (M) ¢°(M) 4.
We also denote by &/¢(M) the subspace of #'(M) defined by
L (M)=sx(M)+dP (M).

In the next paragraph we shall justify this notation.
From Proposition 5.9 just below we shall see that 4/ ;(M)C s/ (M).
We here assert that

At (Myc o (M),

Indeed let ¢ (M). Then it follows from (2) of Proposition 5.8
that D(do—¢) is a cross section of n. Hence Ldp=1IIoD(dp—¢)=0,
L e, dpEo/ (M). This proves our assertion. For any real number 2
we put Ly(M)y=AL(M)Ne' (M), and & (M) = (M) N ¢ (M).

Proposition 5.9. (1) 4« ;(M)C«/ (M), and the eigenvalues of
the operator 4| (M), the restriction of 4 to o ;(M), are 2k, % and 1.

(2) A(M)=A s (M) oo+ (M) 4y and 65 5(M),=0.

Note that 0=2x<1 (Remark at the end of the previous paragraph).
Also note that the second assertion of (2) of the proposition may be

restated as follows : 1% If 231, then & ;(M) qy=/x (M) and (M) g,

=d?(M); 2° If 2k=-=, then (M) 4= ;(M).

1
71

Proof of Proposition 5.9. We denote by &,(M) the subspace of
& (M) consiting of all 1-forms of the form ¢* (A€0o(m)). Then we
have &, (M) = ,(M)+dP (M). Furthermore we have & x (M) Csf,(M),
because the canonical imbedding f is K-equivariant. Therefore to
prove the proposition, it suffices to show that 6%/,(M)=0 and
Ao (Mycy(M)+ ¢*(M)y. Let p=¢p*€Ao(M). Then u=Af is the
solution of the equation d®,(w)=0 which corresponds to the solution
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¢ of the equation Lp=0. (The correspondence is given by Theorem

1.1.) By Proposition 5.7 we have du=lu  Therefore we see from

2
Proposition 5.8 that dop=0 and D(d¢—¢)=0.
This last equality means that d(d¢ —¢)=0 and A(Ago ©)=2c(do—¢).

It follows that dp=04¢=40p=0. Putting ¢,= 95— r—(Ago ¢) and ¢,=
2 (21c§o 4¢), we further find that ¢, Eo/ (M), gozefg (M) 4 and ¢=

go,-}-gog. We have thereby proved that 6&,(M) =0 and &,(M)C (M)
+&' (M), Q. E. D.

Let us now consider the following four conditions for the symmetric
R space M:

€) €°'(M)y=2(M).
(C,) The canonical imbedding f is elliptic.

(C) The eigenvalues of the operator 4| & (M) are 2x, —é— and 1.

(C) Ae(M)=oA (M)qy+o (M) and 65 (M) =0.

Proposition 5.10. Assume conditions (C)~ (C). Then the two
spaces L (M) and £ (M) coincide.

Proof. (C,) means that the equation Lo=0 is elliptic, whence & (M)
is of finite dimension. From this fact combined with (C,) and (C)
we know that & (M)=of;(M)+ (M)y. Therefore to prove the
proposition, it suffices to show that & (M) ,C &/ z(M).
Let o€ (M), and u the corresponding solution of the equation
d®r(u)=0. Since dp—¢=0 and dp=0 (by (C,)), it follows from Pro-
position 5. 8 that

<Au—— e Ff >=0,
<du- lu PPF>=0.

Since f is non-degenerate, these equalities mean that Au=iu.

2

Consequently we see from (C,) that u can be written in the form: u
=Af, where A is a matrix of degree m. We can further verify that
Aco(m) (cf. [15], Lemma 3. 14). Hence ¢o=<Af, df >=¢* € (M).
We have thus shown that & (M), C .o/ (M).

It is known that (C,) is satisfied for various symmetric R spaces
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including irreducible hermitian symmetric spaces of compact type, the
real projective spaces, the real quadrics (or the Moébius spaces) of
index 0, etc. In §6 we shall directly verify (C,)) for the real Grass-
mann manifolds G*"(R) with n=2.

Now consider the case where M is an irreducible hermitian symmet-
ric space of compact type, being an Einstein space. In [15] one of
the authors has shown that M satisfies (C,)~(C,), and hence & (M)

=&/ ;(M). Note that the constant 2¢ is just equal to é

Also note that the canonical imbedding is of infinite type in the special
case where M is a complex projective space. Next consider the case
where M is the real Grassmann manifold G*"(R) with =3, being an
Einstein space. In 3.5 we have seen that the canonical imbedding
is elliptic and of infinite type (see Theorem 3.8). In §§6 and 7 we
shall see that M satisfies (C,), (C,) and (C,), and hence & (M) =/;(M).

Note that the constant 2« is smaller than —é.
In connection with the results above, recall the rigidity theorem
(Theorem 2.4) for elliptic imbeddings.

5.6. The space &/;(M). Let G denote the adjoint group Ad(g)
of 3. We define a subalgebra ¢" of ¢ by ¢'=g,+g,, and a closed sub-
group G’ of G by

G ={acG|Ad(a)g'=4g"}.
We also define a closed subgroup G, of G' by
Gy={asG | Ad(a)g,=g, for all p}.

Then we know the following ([14]): 1°. The Lie algebra of G’(resp.
of G,) is ¢' (resp. o) ; 2° G'=G,-exp 8,5 3°. The homogeneous space
G/G is effective; 4. KNG =K, and

G/G'=K/K,

For example consider the case the symmetric R space M=K/K, is the
real projective space P"(R) (=G""(R)). Then G may be characterized
as the largest connected group of projective transformations.

By an infinitesimal G-transformation we mean the vector field V
on M=G/G" which is induced from a one-parameter group {a,} of G.
By using the curvature R and the tensor field S, we define a tensor
field F of type (3) on M by

F=—-R+S.
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Note that F,(9(X), n(Y))7(2) =9([X, ¢Y]Z) for all X, Y, Z&g_,.
The next lemma whose proof is omitted, can be verified by the use
of the results of [14].

Lemma 5.11. Assume that M is neither the 1-dimensional real pro-
Jective space P'(R) nor the 1-dimensional complex projective space P'(C).
Let V be a vector field defined on an open set U of M. Then V isan
infinitesimal G-transformation if and only if there is a wvector field
V defined on the open set U such that

(L) (X, Y)=F(X, V)Y for all X, YET,.

Here L,V denotes the Lie derivative of the covariant differentiation
V w. r. t. V, which may be expressed as follows :

LFY (X, Y)=VFyV+R(V, X)Y.

Let us newly denote by &¢(M) the subspace of ¢'(M) consisting
of all the 1-forms which are dual to infinitesimal G-transformations.

Proposition 5.12. The space (M) coincides with the space of all
Killing forms, and the space o ;(M) may be described as follows:

A (M)=AL (M) +dP (M) (direct sum).

Proof. We first consider the case when M is neither P'(R) nor
P'(C). Let I(M)° denote the largest connected group of isometries
of M, which is compact. Since an isometry leaves V invariant, we see
from Lemma 5. 11 that I(M)°CG. Furthermore KCI(M)° and K is a
maximal compact subgroup of G. From these facts it follows that
I(M)’=K. Now let fE®? (M), and let V be the vector field on M
which is dual to df w. r.t.g. Then we can easily verify that (L, V) (X, Y) =
F(X, V)Y. It follows from Lemma 5.11 that V is an infinitesimal
G-transformation, whence df€/;(M). We have dim &/x(M)=dimf,
dimd? (M)=dim m, dim &;(M)=dim g¢=dim f+dim m, ‘and &/ (M) N
d? (M)=0. Therefore we obtain &/;(M)=(M)+d® (M). Finally
the proposition can be directly verified in the case when M=P'(R)
or P'(C). Q. E. D.

§6. The real Grassmann manifolds G*"(R).

In this and the subsequent sections we observe the real Grassmann
manifold M=G*"(R) (n=2), which is a symmetric R space (see 3.4).
As for this space we preserve the notations as explained so far.
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6.1. The curvature R and the tensor field S. We define an
element I, in the centre of ¥, by

0

Then we have [, [l,, X]1=-X for all X€&t,.

Remark. Let K} be the connected component of the identity of
K,. Then M=K/K} is the universal covering space of M=K/K,, and
I, naturally induces a complex structure on M so that M becomes a
hermitian symmetric space.

Now consider the complexification ¥ =% +¥ of f, and define
subspaces I and I of ¥ in the same manner as in 3.3. We have
=¥ +¥ (direct sum), f =%, <¥, ¥>=0, and [f}, £]1=0. In
particular it follows that the curvature R is completely determined by
the values R(X, ¥)Z= -[[X, Y1, Z] for X, Y, Z&¥;.

Lemma 6.1. There is a basis {e, ...,e) of & having the following
properties :

D <e, &,>=d

2) Re, €)e,= 4(n1-|— % (0,08, —0;,6,+0,.e,).
- _ 1 i
3) S(ei) ej)ek_ 4(71 _’_2) (5jkei+5ikej +5jiek)s
_ 1
S(e;, e,)é,= 72(7;2') 0; €1

S(e;, €)e,=0

Proof. For each 1=i<n, we define an element of ¢°,=M,,(C)
by
0 0
. L+yoi
u,=c |1 —y—-1}i-thl C=—ie
Vv 7 ine ( 180 ED)
0 0

).

Then an easy calculation proves the following:

1) <u, 4,>=0,;
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2y R(u, @) ”"zTnLW@“u‘ O, +6,4,).
3) S (us, @) U= ,_Wﬁ(a,,u; Fouu, +8,u,),
I’ 1
S . N, = ——— . i
(u:’ u]) k 2(71"‘2) Buu i
S (uiy u)uy=0.
If we put e;=7(%,), we easily see that u, ..., u, form a basis of f.

Furthermore we see from 1°), 2°) and 3%), and Lemma 5.1 that the
basis {e, ..., e} satisfies 1), 2) and 3) in Lemma 6. 1.

Q. E. D.
Let {e, ..., €,} be as in Lemma 6.1. Then we have
;R(ej, é,.)e,.=Z'_:R(e,., é:)e;‘=ﬁen
. M . . . _ n__
showing that is an Einstein space with constant « FTCE)

6.2. Various spaces of forms and of functions. As is well known,
the differential forms on M =K/K} may be represented by the suitable
functions on K. The same holds for the differential forms on M=
K/K,. In this paragraph we formulate these facts together with some
related facts. #(resp. ) denotes the projection of K onto M (resp. onto

M), and @ the projection of M onto M.

The spaces J*(M') and 2*(M') (M'=M or M). F*(M’) denotes
the space of all complex valued covariant tensor fields of degree p on
M. Since M is a covering space of M, we may identify (M) with
a subspace of Z*(M) in a natural manner: @xo=¢ for all o€ .7 (M).
Clearly we have Fo=F¢ for all o7 (M), where V denotes the covari-
ant differentiation in the Riemannian manifold M. 2*(M’) denotes
the space of all forms in J*(M’) which are anti-symmetric. M (resp.
M) being a Riemannian manifold, we have the operators d, 6 and 4
(resp. d, 6 and 4) acting on the spaces 2*(M) (resp. on 2*(M)) (cf.
the operators d, d and 4 defined in 5.3). We have 2*(M)c 2*(M),
and dp =dg, 6p=06¢ and do =dp for all o€ D*(M). Hereafter V,d, & and
4 will be simply written as V, d, 6 and 4 respectively.

The spaces J’(K, K}). We denote by J*(K, K}) the space of all
functions ¢: K—&?*()* which satisfy the equality
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p(za) (X, ..., X,)=0(2)(Add(a)X,, ..., Ad(a)X,)
for all z€K, a€K} and X, ..., X,

Let ¢ be a function K->&?*¥)*. Then ¢ is in *(K, K}) if and only
if it satisfies the equality

XSD(XI’ ey XP)=Z¢(X1’ A ] [X, Xi]’ AR | XP)
for all X€f; and X,, ..., X,k

(p(X,, ..., X,) stands for the function on K defined by ¢(X,, ..., X,) (2)
=¢() (X, ..., X,) for all z€K.) For ¢=I*(M) we define a func-
tion o : K—>&?(F)* by

&) (D) (X, ooy, X)=0@ (XD, « vy 7u(X))))
for all 2€K and X, ..., X,€¥.

Then we have 497 (K, K}), and the assignment ¢—¢ gives an
isomorphism ¢ of J*(M) onto I*(K, K}).

Lemma 6.2. Let p=7*(M) and X,, ..., X, €.
(‘KVQD) (Xu ey Xp+1) = X1 (lKSD) (Xza ceey Xp+1)-

The spaces 92’(K, K}). We denote by 2*(K, K}) the space of all
functions ¢ in (K, K}) which take values in A’(f)*. Clearly we
have ¢ 2*(M)=2*(K, K). Therefore there are unique differential
operators dx: 2°(K, K) -2 (K, K)), ox: 2°(K, K)) —»2'7'(K, K})
and 4y: 9¢(K, K)—»92*(K, K) such that diexy =txd, Oxtx=10¢,0 and dyee=
eed.

The differential operators P, P,Q and Q. Let # (K) denote the
space of all differentiable functions K—C. Let {e, ..., ¢} be a basis
of I} having the properties in Lemma 6.1. Then the formal sums
P=3e¢, P=3 ¢e, Q=3 e, and Q=T ¢4, may be regarded as differ-
ential operators of & (K) to itself.

We shall now give the explicit expressions of dxf, dx¢, dxf and of
dxe, where f€2°(K, K}) and ¢€2'(K, K;). Clearly we have

@ H(X)=Xf for all Xk,

Using the function ¢, let us define functions 9o and o respectively
as follows :

Jep= — Tep(e) and Jep= — Fep(en).
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Then we have 9z, o€ 2°(K, K3). _ (The operators 9¢ and I respec-
tively correspond to the operators 9 and 9(cf. [9]) in the Kéhlerian
manifold M.)

Lemma 6.3. (1) &xo=39p+ %o.
(2) def=-2Pf=—2Pf.

() (o) (e) = ~2Pp(e) = ~2Pp(e) + 57 o9 ().

We also note that dg9xp= 9, d,o.

The spaces J*(K, K,) and 2*(K, K,). We denote by J*(K, K,)
(resp. 2*(K, K,)) the space of all functions in Z*(K, K}) (resp. in
2*(K, K})) which satisfy the equality

p(za) (X, ..., X)=0()(Ad@ X, ..., Ad@)X,)
for all z€K, a€K, and X,, ..., X,€l.

Clearly we have ¢ 7*(M)=9*(K, K,) and 2*(M)=2*(K, K,). And
the space 1L, 2*(K, K,) is closed under the actions of dy, d0x and of 4.
?

The spaces ¢ *?(M') and ¢*(K, K) (M'=M or M, K=K} or K,).
In §5 ¢*(M) denoted the space of all real valued (anti-symmetric) p-
forms on M, and, for any real number 2, ¢?(M), denoted the space
{oee*(M) | dp=2¢p}. Analogously we use the notations #*(M) and
(K, K') to denote the real forms in 2?(M) and the real functions
in 2°(K, K') respectively. And we use the notations #?* ()
and %’(K, K)u to denote the spaces {o=@¢?*(M) | dp=2¢} and
{pE % (K, K') | dep=12¢p} respectively. Clearly we have ¢ ? (M), =
¢ (K, KD and ¢’ (M)n=¢"(K, K)w.

6.3. The spaces ¢°(M), and ¢°(M)y,. In this paragraph we
show that #°(M) 4= ¢°(M) 4, =P (M). For this purpose we first prove
the following

Lemma 6.4. Every fEe#°(K, K}), satisfies the equation
XYZf=S8(Y, 2)Xf for all X, Y, Z&k,.
Let fe¢*(K, K)4,. For any X, Y, Z€¥, we put 2(X, Y, 2)=
XYZf-S(Y,Z)Xf. Then we have (X, Y, 2)=0(X,Z, Y)=0(Y, X, Z).
(The equality @(X, Y, Z) =0 (Y, X, Z) follows from (3) of Lemma

5.2 and the equality XYZf=YXZf-R(X, Y)Zf.) Therefore to prove
Lemma 6.4 it suffiecs to prove that A,,=A4,,=0, where A,,=?(e, ¢e,, ;)
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and A,,=0(¢é, e,, ¢,). By Lemma 6.1 A,; and A,;, may be expressed
respectively as follows:

A =eee,f,

Avjlz_e elzf+ f

2(n +2) O

Let dK be an invariant volume element on K. We define an equi-
valence relation ~ in & (K) as follows: Let f;, £fEF (K). Then fi~f,

if and only if SfldK= szdK. It is well known that Xf,~0 for any
fiEF (K) and Xt

.5. ApA~—
Lemma 6.5 i%,—; i CESIE

Proof. We have
a=Y A A =Y e (eeie,fé6,f) — Zee e.fr€e.f,

ik ik

i+ Qf-Qf.

4(n+2)

whence

a~—Y éeee,f-ée.f.

ik

We have
Teeenf=3 eeeef
| = ; eéee f+ Z'; [é., e;lee.f
= ;eje,,é,.e,.f+ Z e;[[€, e], elf
+Zelle, ¢, e1f+ S, e, ele.f

Therefore using Lemma 6. 1 and the fact that Pf= —%f ((2) of Lemma

6.3), we obtain
; R S S )
Zi:e;e.'ejekf—z?n_'_z) e f i(n+2) aij.f-
Hence

a~— Seaf-ee af+ 4, o QF Q.

4(n+2) 4(n +2)

Similarly we obtain

S e f b f~ o f

Zeekfeekf"" 8(7l+2)

2(n +2)
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Therefore Lemma 6. 5 follows. Q. E. D.

In the same manner we can prove the following

— n ) 1 a7
Lemma 6.6, % Aullun~ =302y Tamrny ¥ ¢,

From Lemmas 6.5 and 6.6 it follows that

32 A-’jk A-‘jl: + ZkAijkAiik'\“O:
ivik i,

meaning that A,,=4,,=0. We have thereby completed the proof of
Lemma 6. 4.

Proposition 6.7. ¢°(M) 4 =¢°(M) =L (M).

Proof. We show that ¢°(M) 4, =2 (M). (Similarly we can show
that ¢°(M) 4= (M).) From Lemmas 6.2 and 6.4 we see that every
fE ¢ (M), satisfies the equation

VeVl . f=S(Y, Z)Xf for all X, Y, Z€T,.

Let & (M) denote the space of all solutions of this equation. Then we
have Z(M)+RcC 2’ (M) by (2) of Proposition 5.6. Hence dim £’ (M)
= dim m+1. Converesely we assert that dim £’ (M) =<dim m+1. For
this purpose we first show that a=FFf is a cross section of 1 for
any f€2'(M). For all X, Y, ZET,, we have

VIVl Vf =Vul VVf=a(Z, S(X, V)W) —a(W, S(X, Y)Z).
On the other hand it follows from the Ricci formula that this is equal to
—a(R(Z, W)X, Y)—a(X, R(Z, W)Y).

Therefore we know from Proposition 5.5 that @ is a cross section of 1.
Now fix a point p of M. Then the assignment f— (f(p), (Vf),, FVf),)
gives an injective linear map of #'(M) to RxT*,xn, whence dim
P (M) < dim m+1. This proves our assertion. Therefore we obtain
P (M)y=2(M)+R, and hence Z(M)C¢’(M)4yHC P (M)+R. 1t is
now clear that # (M)=&°(M)4,. (Another proof of Proposition 6.7
which uses Lemma 5.11 and Proposition 5. 12 is given as follows: Let
fe? (M) and V the vector field on M dual to df. Then we have
L) (X, Y)=F(X, V)Y for all X, YET, (cf. the proof of Proposition
5.12). Thus we get dfE:;(M) and hence fE€ P (M).)
Q. E. D.
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§7. Rigidity for the canonical isometric imbeddings of the
Grassmann manifolds G*"(R), n=3.

The main aim of this section is to show that the two spaces & (M)
and &;(M) coincide for the Grassmann manifold M=G*"(R) with =
=3.

7.1. Some lemmas on the space (K, K,). Let o (K, K,) denote
the image of &/(M) by the isomorphism ¢ : #'(M)—-¢'(K, K;). For
any ¢€ %' (K, K,) we define functions A,; and B;; on K respectively as
follows :

2

Aj=ep (e;) +e;p(e) — 7&'1‘ ; e (e),

B=¢ép(e;) te0(€) —¢;p0(e) —e.p(¢)).

Lemma 7.1. ¢ is in & (K, K,) if and only if A,;=B;;=0.
Proof. If o€ %'(M), we see from Proposition 5.5 that ¢ is in
& (M) if and only if ¥Dp=0. Now take any function ¢ in #'(K, K,).
We define a function a: K->8*F)* by a(X, Y)=Xe(Y)+Ye(X) for

all X, Ye¥, and a function 4: K-S (£)*QN\*(E)* by
A(Xs Y9 Z, W):a(S(Xa Y)Z, W)—a’(Z, S(X’ Y) W)

—a(X, R(Z, W)Y)—aR(Z, W)X, Y)

for all X, Y, Z, W&t
Then it follows from the remark above and Lemma 6.2 that ¢ is in

& (K, K;) if and only 4=0. An easy calculation using Lemma 6.1
proves that 4=0 if and only if

a(e, e;) _Lﬁu 2 a(e, e)=0,
n k
a(é, e;) —a(e, €;)=0,
io €. A,-j:B,','=0- Q_o Eo D-

For any real number 2 we put & (K, K)), = (K, K) N ¢ (K, K,).
In what follows we consider a fixed function ¢ in & (K, K)),. Let us
define function f and # on K respectively by

f= Z €pe)=— 9&9’,
u= Z': ep(e;).
Note that f€ 2°(K, K9).
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Lemma 7.2, (1) Po(e)= ——g—go(e,-),
Pote)=(- " —* o).
@ Pf=Pf=-%Ff.
These facts follow immediately from Lemma 6.3 and the fact that
Ax’gxﬂo = Jedyo.

n

Lemma 7.3. (1) (m

Ly pe) e, f— —eu 0.

@ (gt =D f— 2 Qu=0.

2(n+2)

n 2 2 p

Lemma 7.4. (1) (2+4( 2T Yo(e,) —e f+éu+ Qop(é;)=0.

A+ 222y (f+ )+ QutQa=.

@ G 4(n+2)
A

n—2
3 (= +4( +2))u+Pu 0.

The six equalltles above can be obtained by succesively calculating
the functhnS Z e: ijs Z eeAu) ZeeAu, ZeBu’ Z eeBlJ and Ze e!Bl)

For the calculatlons we remark the followmg pomts

2eeple)=2ebpl)t L[4, elo)
—ef+ZIs0([[e., ¢;], e.l)

=t gty Ty e

Sedple) =éu+t Zso([[e.., ANA)

=éu+ ———— % 4(n+2) ACHE

2 6Qe@) = 5 edew @)+ 3 [¢, eley(@)
—_Zee-e;¢(e )+2Z €; [e» 3]90(6 )+ Z [[e“ €; ]’ e]go(e )
—Qﬂ+228¢([[61, el &D+2 [[e,, e.], e]p(é))

=Qa +4( +2)f
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Furthermore calculating the functions Ze, ;; and Ze,, i we get

the following

Lemma 7.5. (1) Q¢(e;)=-— ;2e,.u,
(2) Qu=0.
- n—4
Lemma 7.6. QQu= n+2+8(n+2) Yu.
Proof. Since Qu=0, we have
QQu=QQu—QQu

= z e;(e,Qu—Qeu) + Z (e,Qe;u— Qeje;u).
We have
e;Qu—Qe;u=2 Yeale, aJut Xlles &, 41w,
and
[, éJu=Lep([le, &1, &)+ XLlle, &1, ede(en).
Hence

e;Qu— Qeu= —?e u,

In the same manner we obtain

3 (e;Qeu — Qeeu) = 4(n +62) 2 _Pu,

We have thus proved the equality

QQu:—lPu+4n 6 Pu,

(n+2)
. Pu=
By (3) of Lemma 7.4 :lve have Pu= ( + 4(n+2) ————=-)u, and as is easily
verified, Pu:Pu+2—(n—+—2)~u. Therefore Lemma 7.6 follows.
Q. E. D.
7.2. The eigenvalues of the operator 4|« (K, K,)
1

Proposition 7. 7. 0, (K, K,),=0 if 2#—2—.

Proof. Let o€ (K, K)u. By (2) of Lemma 7.3 and (2) of
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Lemma 7.4 we have (l——é—) (f+ f)=0. Since dxe=—(f+/f) by (1) of

. 1
Lemma 6.3, we see that dxp=0 if 2 #7.

Q. E. D.

Proposition 7.8. If o (K, K,) w0, then 2=%or 1 or 2 or 4

n
= Gmrn)
Proof. Let ¢ be any non-zero function in & (K, K;)u. By (3) of

Lemma 7.3 and (8) of Lemma 7.4 we have

_,n—=2, n-—1
Qf= (—27—1—2 2n )b

By (2) of Lemma 7.3 we have
Qu= (o — 5D

2(n+2) 2
Hence we obtain
" nnNen—2, n-—1
W= CGrggy 2P Con A7 )%

This together with Lemma 7.6 gives the equality (2—%) A-Du=0.

Therefore we have 2=% or 1 if 0. Now assume that u=0. Then

we have (Z_Tn,:-T))f:O by (2) of Lemma 7.3. Hence A=
2—(7:;_‘2)=2x if f%0. Assume further that f=0. Then we have

x-%)go(ejho by (1) of Lemma 7.3, showing that 12#2:4"'
Q. E. D.
Lemma 7.9. Qng(ej)=—l%go(e,) for all pest (K, K,) .

Let € (K, K))wy. Then we see from the proof of Proposition
7.8 just above that u=f=0. Therefore we have Qu(¢,)=0 by (1) of
Lemma 7.5. Now the proof of Lemma 7.9 can be carried out by
calculating the difference QQQD(‘?;)—QQQD(@;), which is quite similar
to the proof of Lemma 7.6.

Proposition 7.10. & (K, K,),=0.

Proof. Let o= (K, K,)u, Since u=f=0, we see from (1) of
Lemma 7.4 that
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3n—2 2N —
m‘?’ (e;) +Qe(€;) =0.
Hence we also obtain
3n—2 5 S _
mﬂﬂ(ej) + Qe (e;) =0.

From these two equalities follows that
_ 1 .
QQQD(eJ)_ 1 ( n+2 ) (e)
On the other hand we have QQp(e,) = 1690(6) by Lemma 7. 9.

Therefore we get ¢=0. Q. E. D.
Proposition 7.11. & (K, K,) 4, Cdetx P (M).

Proof. Let o€ (K, K,)4) Since JKf=%f, we have éee,f+

5 1+2) due.,f=0 by Lemma 6.4. Hence

eQf+ 9(n +2)ef 0.

Furthermore we have u= —4Qf (see the proof of Proposition 7.8).
Therefore we obtain

- 2n

RRAEFS; e.f.
Consequently we know from (1) of Lemma 7.3 that

p(e;) = —4e,f.

Now let f (resp. f”) denote the real (resp. imaginary) part of f.
By Proposition 6.7 we have #°(K, K})4=¢°(K, K) =62 (M).
Hence we see that both f* and f” belong to ¢ (M). Let dgf”-I, denote
the function %'(K, K}) defined by (dgf"-1)) (X)= (dcf") (I,X) for all
Xeft, where the element I, in the centre of I, should be regarded as
an endomorphism of ¥, in a natural manner. (Similary the group K,
will be regarded as a subgroup of GL(f).) Then the equality ¢(e;)
= —4 ¢,f, obtained above, means that

o= —4(def +dcf"-1,).

Let us show that d¢f”-1,=0, which will prove the proposition. We first
remark that both dif” and dyf’-1, belong to #'(K, K,). Therefore



Isometric imbeddings 59

we have (I, X)..f = (al,X).f'= (LaX).f" for all zEK, a€K, and X€EL,.
Hence (al,a”*X—1,X)f"=0 for all a€K, and X&f,. However we know
that K,/K'=Z, and that al,a”*X=—IX for all acK,—K} and X€&}l.
Therefore we obtain (I,X)f"=0 for all X&¥f or dgf’-I,=0. (More
precisely we have f"=0.) Q. E. D.

7.3. The spaces & (M, f) and & (M, f).

Theorem 7.12. Consider the canonical isometric imbedding f of the
real Grassmann manifold M=G*"(R), n=3, into the Euclidean space .
Then the two spaces L (M, f) and (M, ) coincide.

Proof. By Theorem 3.8 the canonical imbedding f is elliptic, and
by Proposition 6.7 the two spaces ¢°(M)y and £ (M) coincide.

Furthermore from Propositions 7.7, 7.8, 7.10 and 7.11 we know that

the eigenvalues of the operator 4|/ (M) are 2r, 1 and 1, and that

2
A (M) oo=%"(M)yN67'(0) =L (M), & (M) 4,=dP? (M) and o (M),
=0. ‘We have thus seen that the R space M satisfies conditions (C,)
~(C,) stated in 5.5. Therefore the two spaces & (M) and & (M)
coincide by Proposition 5. 10. Q. E. D.

Let us now consider the isometric immersion f=F& of the hermi-
tian symmetric space M into the Euclidean space m. (Of course this
immersion is essentially different from the canoical isometric imbedding
of M into y—1 ¢ given in 3.3.) Clearly f is elliptic and of infinite
type. Let I be the complex structure on M induced from the element
I, in the centre of f,. For any f€Z (M) let df-I denote the 1-form
on M defined by (df-I) (X)=(df) (IX) for all X&T (), and let
# (M) denote the subspace of &' (M) 4 consisting of all the 1-forms
df-1 (fez(M)).

The notations being as above, we shall prove the following

Theorem 7.13. The space & (M, f) is calculated as follows :
o (M, f)y=o,(M, f)+ 2 ().

Let us put "Q{(M, f)(l):"d(Ma f) N %I(M)(x) and 'ME(M, f)(‘):
(M, f)yNe*(M),. Clearly we have & (M, f)=s/,(M). Hence
A (M, £)on=Ax(M) and LM, f)4,=d?(M). Since f is elliptic,
& (M, f) is of finite dimension. Furthermore we deduce from the
arguments in §5 that 4« (M, f)yc & (M, f). It follows that (M, f)
= Zd(Ma f)(l)' N

Let & (K, K}) denote the image of (M, f) by the isomorphism
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w: ¢ M)—>¢' (K, K3). For any ¢=¢'(K, K we define functions
A;;=A,;(¢) and B;;=B,;(¢) on K by the same formulas as before.
Then we see that ¢ is in & (K, K) if and only if A;;(¢) =B;;(¢)=0.
Now the space % (M) consists of all the functions dxf+I, (f€(P (M)).
We assert that & (M) C & (K, KY), i. e., # (M) C L (M, f). Indeed take
any function f in % (M) and put ¢=dif+-I,. Then we have A4,;(dcf)
=0, because dxfEdgey P (M)C (K, K3). Hence A;;(¢) =y—1 4;;(dxf)
=0. Furthermore we have €p(e;)+ep(€)=y—1 ée;f—{—1 e, f=0.
Hence B:;(¢)=0. Therefore we see that ¢E (K, K}), proving our
assertion.

Put Y (K, K)) o= (K, K}) Ng'(K, K})u. Then from the argu-
ments in 7.1 and 7. 2 we deduce the following facts: 1°. If o/ (K, K}),

20, then =2k or % or 1; 2°. 8e (K, K2 @y =0 and 6. (K, K)(, =0;

3°. (K, K94 Cdeex? (M) ~+e® (M). Consequently we know that
the eigenvalues of the operator 4| (M, f) are 2, —;— and 1, and that
AM, £) o= €MD) ey N7 (0) =L (M), &M, f)u=d2? M)+ 2 (M),
and 0% (M, f),=0. Moreover since ¢°(M)4,=Z (M) and 6 (M, ),
=0, we deduce from the proof of Proposition 5.10 that & (M, f),=
(M, f)o,. We have thus seen that & (M, f)=«/ (M, )+ 2 (M),
and have completed the proof of Theorem 7. 13.

Appendix
The non-linear equations of isometric
imbeddings and the theorem of Janet-Cartan

1. Algebraic preliminaries. Let V be an n-dimensional vector
space over a field K of characteristic zero.

By a curvature like temsor on V we mean a covariant tensor CE
ANV*QAV* which satisfies the Ist Bianchi’s identity, i. e.,

6 C(x), x, x;, 7,)=0 for all z,, ..., z,€V,
(xy. x5, 79)

where & stands for the cyclic sum with respect to the vectors z,, z,
(21.1‘271‘3)

and z,, We denote by K(V) the subspace of A’V*®@/*V* consisting
of all curvature like tensors. We also denote by K'(V) the subspace
of V*QK (V) consisting of all covariant tensors CEV*®K (V) which
satisfy the 2nd Bianchi's identity, i. e.,

© C(xls Ty Xy Xy X)) =0 for all z, ..., z,&€ V.

(zq, 7, zg)
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For any /=2 we define a subspace K (V) of @*V* by
K9(V)=S'V*QK(V) NS V*QK' (V).
Clearly we have
KO(V)=SV*QK'-»(V)NV*QK (V) (1=22),
where we put K@ (V)=K(V) and K®(V)=K'(V).
For any /=0 we define a linear map
A0 ;. @MV * SRV
inductively as follows:
UOX) (x,, x,, 2, )= X(x,, Xy Xy x,) — X(2), T, T, I;)
— X (x, T,y x,, )+ X (2, X,y T,y T,),
where Xe®'V* and z,, ..., z,€V. And
z 4P X=4"(x | X) (I=1),

where XE®'**V* and z€V. We easily see that the map 4“ maps
S1+2V*®S2V* into K(!)(V).

Let n be a subspace of S*V*. Then it is easy to see that the kernel
of the map 49: S*V*Q@n—->K®(V) coincides with the subspace
p*r(m) of S'*V*Q@m, or in other words, the sequences

w)
0—p'*2 (1) DSV Rn 4 > KD (V)
are exact for all /=0.
The notations being as above, we shall prove the following

Proposition 1. Assume that the subspace H=n+ N*V* of K*V* is
involutive. Then the map 4V : S V*Q@n—KP (V) is surjective for all
[=Z0. Hence the sequence

0—p' 2 () > S*2V*@n—> KD (V) -0

is exact for all =0

Let p and # be any integers with 0=<p=<k. We define a linear
map 6,: @' V*->&*V* by
p+1 ) i
(5,X) ($1, L] xl:) :é\—_a: (_l)'X(xU ceey Liyoany x»+1axi) ] xk)’

where XE®'V and z,, ..., z,€V. We note that the map 4° may be
expressed as the composition of the maps d,: ®*V*-> N'V*QK*V*
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and 0,: V*>R2V*Q A2V*,

For any £=0 and /= —1 we put &*'= A"V*QH, where we promise
that J@ =} and H"P=V*. It is easy to see that J,(&*') C&**'~' and
04:0,C=0 for all CE«/*'. Thus the system {«*/, §,} gives a complex,
which is nothing but the Spencer complex associated with the subspace
Y of ®*V*. Since b is involutive, we know that the sequence

3
A A LAV N B kLI

is exact for any # and any /=0 (see [10]).

We put &*'=/\*V*@p'(n). By Theorem 1.6 we see that the assign-
ment X—-X+4,,,X gives an isomorphism of &*' onto &*' (I=1).
Clearly we have 6,0,,,=08,4,0,({=2). It follows that §,(&*') C &** /71 (1=2)
and the sequence

. 3
—_—

3
h—1,141_ k"1 k1 SR+, 11
K- —> K4

is exact for any % and any /=2.

Let us now prove Proposition 1.

The case where [=0. Let CEK(V). We have C€ A?*V*XY, because
/AN*V*Ch. We have 3,C=0. Since the sequence

V*®f)(l>L>/\2V*®f)l->/\3V*®V*

is exact, there is a C,EV*QH™® such that §,C;=C. By Theorem 1.6
there is a unique X€V*®p'(n) such that C,=X+48,X. Hence 6, X+
0,0,X=C. This means that 6§, X=0 and 6,0,X=C, because §, X /\*V*Qn
and 0,0,X, C€ A?V*QA?V*. Since 6,X=0, we have XES?V*Qn. And
we have 49X=4,0,X=C.

The case where I=1. Let CEK'(V). Since z_|CEK(V) for all xE
V and since the map 4: $?V*@n—K(V) is surjective, we see that
there is an XeV*QS*V*&n such that  _|C=49(z | X), i. e.,, C=4VX,
Since 6, X A?V*Qp'(n), it follows that C,=68X+0,0, X /A\*V*QH0, A
direct calculation proves that 8,0, X=0,0,0,X=0 and hence 9,C;=0. Since
the sequence

V*RbO s A2V*RHO L AV*R)Y

is exact, there is a C,EV*®H® such that §,C,=C,. Now C, can be
expressed as C,=Y+43,Y with a unique YEV*Qp’(n). Then we have
0,Y+0,0,Y=0,X+9,6,X=0,X+6,0,X. Therefore putting Z=X-Y, we
see that ZEV*@S*V*@n and 6,Z2+6,0,Z2=0. This last equality means that
0.Z=6,0,Z=0, because 6,2 /\*V*Q@V*Q@n and 6,0,Z2€ /\*'V*QV*R/N\*V*,
Since 6,Z=0, we have Z€S*V*®@n. And we have 4VZ=4"(X-Y)=
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49 X=C. (Note that 4°Y=0, since YEV*Qp*(n)).

The case where [=2. We prove our assertion by induction on the
integer /. Assume that the map 497": S*"'V*@n—>K“™ is surjective.
Let CeK® (V). Since z_|CEeK%™" for all €V, there is an X&
V*@S™*V*Q@n such that x |C=49"(z _|X), i. e.,, C=4°X. We assert
that §,X€ /A\*V*®p'(n). Indeed for any z, yEV we have = _ly_|§,XE
SV*@n and 42 (x _ly 16, X)=x |y 1495, X. Furthermore 446, X
=0,4"X=6,C=0. It follows that 4"?(x_Jy _16,X)=0 or z_ly_|6,X€E
p'(n). Hence §,XE A*V*Q@p'(n), proving our assertion. Now we have
0,0,X=0. As we have already remarked, the sequence

V*®P1+1(n)L)AzV#@)pl(n)_’L)/\av*@Pt—l(n)

is exact. Hence there is a YEV*Qp'*'(n) such that §,X=4¢,Y. If we
put Z=X—Y, we have ZEV*QS'*'V*Q@n and 6,Z=0. These facts imply
that ZE€S'"*?V*@n. Since 4°Y=0, we obtain 4°Z=4"(X-Y)=4"X=
C.

We have thereby proved Proposition I. Q. E. D.

Corollary. dim K® (V)= fié : ”("2‘1) H, L, (120).

Proof. Let n=S5?V*. Then we have = ®?V*, which is clearly involu-
tive. Therefore by Proposition 1 we obtain the exact sequence:
0——){)’+Z(SZV*)—>SI+ZV*®SZV*—>K(')(V)—->0.

Furthermore we have p'*2(S*V*) =h+d =S+ V*QV*, From these follows

— !
the corollary. (Note that dim S"V*:,,H,:—(kn'——é_;jil))"ﬂ.)

Q. E. D.

We shall now prove Proposition 2.3, as we promised. Let 1 be an
r-dimensional subspace of $*V*. Let us consider the exact sequence:

0—p' () >SS V*@n>KU-2(V) (1=2).
We have H=p'(n). And by Corollary to Proposition 1 we have
m(z)zdim S’V*@ﬂ—dim K(I—Z)(V)

2N

— (r—N
=(r A+l+1

) .nHI'

First consider the case when 72N=%n(n—l). Then m® >0 and hence

520 for all /=2 except for r=n=0 or r=0, n=1. Next consider the
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case when r<{N. Then m®>0 and hence §"x0 if 2=<I< %i—:

Therefore Proposition 2.3 follows.

2. The equation @(f)=g and its prolongations. Let (M, g) be
an n-dimesional Riemannian manifold, and let R be the m-dimensional
Euclidean space (m=n). Let us consider the equation of isometric
immersions of (M, g) into R"

o(f) =g,

where @(f) =<df, df > and the unknown f is a local differentiable
map of M to R". Let FV be the covariant differentiation associated
with the Riemannian metric g, and let R be its curvature. The Riemann-
Christoffel curvature C is the covariant tensor field on M defined by

C(z,, x,, x4 x,)=—g(R(x,, 1,)7, x,).

(Hereafter z, x,, Z,, ..., will mean any vectors to M at any point p or
at a given point p.)

Proposition 2. Every solution of the equation @ (f) =g satisfies the
following equations :

1) <V f, V. f>=g(®, ).

Q) <V p.f, 7. f>=0.

B <PV p.f, V. f>+V. V. f, VI f>=0.

@) <PV Jf>—<TF. 1 V7 f>=Cz, 2, 2, 2,).

(5) <PV J. 1,V V. f>+V. V. f, VI V. f>
P Ty V. J =T T VP>
= (ch) (Zyy X5y Xy z,).

The equation (4) is the so-called Gaussian equation for the isometric
imbedding, which can be derived from the equation (3) and the
Ricci formula: V. V. V. f=V.V.V.f—(R(z, x,)z)f. Let P denote the
equation (1), and P® (resp. P®) the system of equation, (1) and (2)
(resp. (1), (2) and (3)). Analogously let @ (resp. Q") denote the
system of equations (1), (2) and (4) (resp. (1)~(5)). Note that P®
(resp. P®) is the first (resp. second) prolongation of P, and Q® is
the first prolongation of Q. In the following we shall be mainly concern-
ed with the system Q.

Let J*(M, m) be the vector bundle of all k-jets of local differen-
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tiable maps of M into R". As usual the systems P, P®, etc. may be
represented by subvarieties of J'(M, m), J*(M, m), etc. We wish to
have the exact expressions of the subvarieties. For this purpose we
first give the expressions of the jet bundles J*(M, m) in terms of the
covariant differentiation.

Let us consider the vector bundles:

(M, m) = 3 @T(M)* @R,

Every element w of T*(M, m) may be expressed as o= (P ; &, ..., ®),
where P is the origin of ® and o, is the /-th component of with respect
to the decomposition above. Now let # be a local differentiable map
of M to R" defined on a neighborhood at a point pEM. Then (V'u),
EQ'T(M)}X@R", and the assignment

Ju— (@5 u(®), Vw, ..., w),)

gives an injective homomorphism of J*(M, m) into T*(M, m). Thus
we may identify J*(M, m) with a subbundle of 7T*(M, m). Clearly
we have J°(M, m)=T°(M, m) and J'(M, m)=T"(M, m). u being as
above, we have V.V u=V.V.u V.V.V.u=V.V.V. u— (R(x;, x)x3)u,
and V. V. V.u=V.V.V.u Hence J*(M, m) consists of all (p; wy, o, ®,)
eT?(M, m) such that

w, (), T,) =w,(x,, T,),
and J*(M, m) consists of all (p; w, ®, @, w) ET*(M, m) such that
w,(x,, T,) =w,(x,, 1)),
@, (), Xy, X)) =w,(Xyy Ty, X)) —, (R(x,, 2,)Z,),
W, (Z,, X,y ;) =w,(T,, X, Z,).

We are now in a position to give the exact expressions of the
subvarieties P, P®, etc. First the subvariety P of J'(M, m) consists
of all (#; w, w)EJ' (M, m) such that

<o (1), 0,(x,) >=g(x, z,).

It is clear that p.,(P)=M and P is a fibred submanifold of the vector
bundle J'(M, m) over M. (In general p}(0=/<k) denotes the projec-
tion of J*(M, m) onto J'(M, m), and ", the projection of J*(M, m)
onto M.) Next the subvariety P of J*(M, m) consists of all (p; w,
o, 0,) €J*(M, m) such that (p; @, ®)EP and
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<, (2, 1), 0, (x;) >=0,

and the subvariety P® of J*(M, m) consists of all (p; @, @, @, ®,)
€J*(M, m) such that (p; @, @, ©,) EPY and

<oy (z, 2, T,), 0,(2) >+ <, (2,, 2,), w, (2, x3) >=0.

It is easy to see that p}(P®)=P and P® is a subbundle of the
vector bundle (p})'(P) over P. Let a=(?; w, ©,) EP. Then o, (T(M),)
is an n-dimensional subspace of R”, and let N, denote the orthogonal
complement of @, (T (M),) in R". The union N=UN, forms a vector

bundle over P. We note that the vector bundle P® over P is naturally
isomorphic with the tensor product S*T (M)*@N. (S*T (M)*@N stands

for the tensor product FQN, where F is the vector bundle over P
induced from $*T'(M)* by the map p-,: P—>M.)

Finally the subvariety Q of J*(M, m) consists of all (p; @, @, ®,)
€PY such that

<L, (2 ), @0, (%5 ) >— <0, (Ty, T,), (L x3)>=c(x1> Ty Zsy Z,),
and the subvariety Q® of J*(M, m) consists of all (p; wy, ), v, w,) €
P® such that (P; @, @, ®,) €EQ and

<oy (x, 2,y T3), 0,(Z,y T) >+ <0, (2, Z3), 05(2, T,y 2)>
=<y (z, Zyy Z,), 0, (X3 Ty) >— <, (Zy, X,), 0,(Z, Ty Ty) >
=F.0) (z, Ly Ty L)

3. The equation @ and the theorem of Janet-Cartan. Let 8=

(b3 @y @, 0,) EPY, We put a=pi(B)=(P; @, »), and define a linear
map 6,: N.->ST(M)} by

@,e (w) (.’L‘,, xz) = <w, W, (xn xz) >,

where wEN,. We say that 8 is non-degenerate if the map 6, is injective.
Let BEPY be non-degenerate. Then we denote by 1, the image of
N, by the map 0,, and define a subspace b, of & T (M)} by h=1n,+
NT (M) ¥
Proposition 3. Let BEPY be non-degenerate. Then Y, is involutive
if and only if there is a basis {e, ..., e} of T(M), such that the
%n(n—l) vectors w,(e;, ¢;) (1=i<j<n—1) are linearly independent.

This fact follows easily from Corollary 1 to Proposition 1. 7.
In what follows we assume that
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én (n+1) gmg%n (n+3).

We denote by P§® the subset of P composed of all BEP® such that
B is non-degenerate and such that §, is involutive. Then we see from
Proposition 1.7 or Proposition 3 that P{” is an open dense subset of
P® and p}(P®®)=P. Putting Q=P NQ, we shall show that Q; is an
involutive equation.

For each pEM we put K,=K(T(M),), the space of curvature like
tensors on T'(M),. Then the union K= U K, form a vector bundle over
M. Let K denote the vector bundle 0v:3r P induced from K by the

map p-;: P>M. For any BEP’ we define a covariant tensor £2(B)
on T(M), by

Q(‘B) (x4, L5y Zgy 2,) = <0 (T, Ty), 0, (Lyy T) >— <o, (x,, 2,), @, (Zz T;) >,

Then 2(8) €K,, and the assignment Bf—(a, 2(8)) gives a map of Py
to K, which we denote by f. Let C denote the cross section of
K corresponding to the Riemann-Christoffel curvature C which is a
cross section of K. Then we know that @ is the inverse image of
C by the map £.

For any BEPY we define a linear map 4,: ST (M)*,®n,—K, by

4,(8) (x), 24 x5, T,)
=<é(xy, 15), 0,(x;, x) >+ <w,(x,, Z,), §(x, T,) >
—<&(x)y ), 0 (T, T3) >— <, (2, 2,), §(T,, T,) >.
where £€ST (M) FQN.,. Note that 4, may be regarded as the differ-
ential at 8 of the map #: P’ N (p})'(a)—>K,. The isomorphism 6,:
N,-n, naturally induces an isomorphism of S*T(M)}®N, onto
S*T(M)}@n,, which we denote by X,:
Xﬂ(f) (Z), Xy Zyy x,) =<E(Xyy T,), 0,(Zsy Z,) >,
where €8T (M)F®N,. Then we have
4,=49:X,,

Lemma 4. P{® is a fibred manifold over K with 2 as projection.

Proof. The fact that Q (Pf;‘))zk was already shown in E. Cartan
[8]. Therefore it suffices to show that 4,(S*T(M)}@N,) =K, for all
BEP. However this follows from Proposition 1 (for !/=0), because
b, is involutive and 4,= 4“0 X,. Q. E. D.
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By Lemma 4 we have

Proposition 5. 0(Qy) =P, and Q, is a fibred submanifold of the
fibred manifold P{ over P.

Let f€Q;. We denote by g, the symbol of @4 at 8, which is noth-
ing but the kernel of the map 4,.

Proposition 6. The symbol g, is involutive.

Proof. Since b, is involutive, so is 5 (as a subspace of T (M);&H:").
Therefore it follows from Theorem 1.6 that p*(n,) is involutive (as a
subspace of T (M)}®p' (n,)). We have p'(n,) =T (M)}®n,, and the
isomorphism X,: S*T(M)}QN,—»S*T(M)*®n, maps g, onto p*(W,).
Thus we see that g, is involutive. Q. E. D.

Let us consider the first prolongation g of g,:
8" =ST(M)}QN,.NT (M)} g,
Proposition 7. The dimension of @5 is constant.

Proof. From the proof of Proposition 6 we see that gP=p*(n,).
From the exact sequence (for /=1) in Proposition 1, it follows that
dim p*(1,) is constant. Q. E. D.

We put
Q=000 () ().
Proposition 8. p}(Qf") =Q,.

Proof. Let PEQ; We define a linear map 4',: ST (M)}®N,—
K®(T(M),) by
4'4(8) (2, z,, 2,y 25y 2,)
=<é(x, x,, ), 0,(2, 2,) >+ <o, (7, 1), £(2, Z,, 2,) >
—<E(l‘, Ty, x4)> (1)2(.1'2, xs) —~<a)2(x,, x4), 5(‘1:, Loy xa) >s
where £€S8T (M) }®@N,. The isomorphism 6,: N,—n, naturally induces

an isomorphism of S*°T(M)*&N, onto S*T(M)}@n,, which we denote
by Xj:

X,; &) (&, 2,y 7, T, x,)=<E(Z, X, X,), (L, z,) >,

where £€8*T (M)}®N,. Then we have 4,=4%X;. By Proposition 1
(for I=1), we see that 4, is surjective. Hence there is a €S*T (M) }®N,
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such that 4;(y)=FC),. Let us define an element @&, of
KT (M)} Qw, (T (M),) by

<oy (z, x,, Z,), 0,(%) >+ <w,(2,, T,), 0,(Z, z,) >=0.

Then we easily see that (p; o, @, @, @&+7) belongs to Q.
Q. E. D.

By Proposition 5~8 we have proved the following

Theorem 9. Assume that %n (n+1)Em< én (n+3). Then the equa-

tion Q is involutive.

For the definition of an involutive equation, see [6].
By virtue of Theorem 9 we know that every Riemannian manifold
M of dimension 7 can be locally isometrically imbedded in the Euclidean

space of dimension én(n-l-l), where everything should be considered

in the real analytic category. This is the theorem of Janet-Cartan. A
recent paper of J. Gasqui proves Theorem 9 in somewhat different
fashion (see [5]).
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