Sur la théorie des anneaux excellents en caractéristique p, II

Par

Hamet SEYDI

(Communicated by Prof. M. Nagata, Apr. 1, 1978; Revised, Nov. 15, 1978)

Section 0. Introduction.

Dans cet article nous donnons d'abord les démonstrations de résultats énoncés aux Comptes Rendus de l'Académie des Sciences de Paris [14], en y ajoutant certains développements de travaux de Kunz (cf. [6], [7]), puis nous appliquons les résultats obtenus aux morphismes réguliers des anneaux excellents.

Dans cet article, p désignera un nombre premier. On dira qu'un anneau A est de caractéristique p, si A contient un corps de caractéristique p; si p est un idéal premier de A, k(p) désignera le corps résiduel de A_p (i. e. A_p/pA_p).

Section 1.

Théorème (1.1). Soit A un anneau noethérien de caractéristique p>0. Alors les conditions suivantes sont équivalentes:

- i) L'anneau A est une A^p -algèbre finie.
- ii) Le module Ω_A^{\perp} des différentielles absolues de A est un A-module de type fini et pour tout idéal maximal \mathfrak{m} de A, l'anneau local $A_{\mathfrak{m}}$ est universellement $j\mathbf{ap}$ onais.

De plus, si ces conditions sont satisfaites, A est excellent.

Remarque (1.1.1). Soit A un anneau noethérien de caractéristique p tel que $A^p \rightarrow A$ soit un homomorphisme fini, alors tout anneau de séries formelles à un nombre fini de variables sur A satisfait également à ces conditions et par conséquent un tel anneau est excellent.

Corollaire (1.1.2). Soient k un corps de caractéristique p>0, A une k-algèbre noethérienne et I un idéal de A. On suppose vérifiées les conditions suivantes:

- i) A est séparé et complet pour la topologie I-adique et A/I est universellement japonais.
- ii) Pour tout point fermé x de X=Spec(A), on a $[k(x):k(x)^p]<\infty$.

Alors, A est un anneau excellent.

Preuve. On peut supposer que A est intègre. D'après le théorème de Marot [8], l'anneau A est universellement japonais. D'autre part, si K désigne le corps des fractions de A, la condition ii) implique que $[K:K^p] < \infty$ (cf. [13], [3] 20.5.12). Par conséquent A est une A^p -algèbre finie.

Lemme (1.2). Soient A un anneau local noethérien de caractéristique p>0, K son corps résiduel, et \hat{A} son séparé complété.

- 1) Si $\lceil K: K^p \rceil < \infty$, alors:
 - i) $\Omega_{A/A}^{1}=0$,
 - ii) de plus, si A est excellent, on a $\Omega^1_{\widehat{A}/k} \cong \Omega^1_{A/k} \otimes_A \widehat{A}$.
- 2) Si Ω_A^1 est un A-module de type fini, alors $[K:K^p]<\infty$.

En particulier, si A est de plus universellement japonais, ses fibres formelles sont géométriquement régulières.

- *Preuve.* 1) i) La relation $\Omega^1_{\hat{A}/A} = 0$ découlers de la relation $\hat{A} = \hat{A}^p [A]$ (cf. [3] 21.1.5), puisque l'homomorphisme canonique $\hat{A}^p \to \hat{A}$ est fini (cf. [10] 30.6).
- ii) Supposons que A soit excellent. Dans ce cas $A^p \rightarrow A$ est un homomorphisme fini d'après ([13] Corollaire 1.3), donc Ω_A^1 est un A-module de type fini.

Comme on a un homomorphisme surjectif $\Omega^1_A \to \Omega^1_{A/k}$, on en conclut que $\Omega^1_{A/k}$ est un A-module de type fini. Ce qui implique que $\Omega^1_{A/k} \widehat{\otimes}_A \widehat{A} \cong \Omega^1_{A/k} \otimes_A \widehat{A}$.

D'autre part, comme $\Omega^1_{\widehat{A}/k}$ est un \widehat{A} -module de type fini, on en déduit qu'il est séparé et complet pour la topologie préadique; donc $\widehat{\Omega}^1_{\widehat{A}/k} \cong \Omega^1_{\widehat{A}/k}$.

La suite exacte

$$0 \longrightarrow \mathcal{Q}_{A/k}^{1} \hat{\otimes}_{A} \hat{A} \longrightarrow \hat{\mathcal{Q}}_{A/k}^{1} \longrightarrow \hat{\mathcal{Q}}_{A/k}^{1} = 0 \quad \text{(cf. [3] 20.7.20)}$$

montre alors que $\Omega^1_{\widehat{A}/k} \cong \Omega^1_{A/k} \bigotimes_A \widehat{A}$.

2) Supposons que Ω_A^1 soit un A-module de type fini. Soit $\mathfrak m$ l'idéal maximal de A. Alors, on a une suite exacte

$$\mathfrak{m}/\mathfrak{m}^2 \longrightarrow \Omega_A^1 \bigotimes_A K \longrightarrow \Omega_K^1 \longrightarrow 0 \qquad ([3] 20.7.8).$$

 Ω_k^1 est donc un K-espace vectoriel de dimension finie. Par conséquent, on a $[K:K^p]<\infty$. En particulier, si A est de plus universellement japonais, il est excellent (cf. [6], [7], [13]).

Lemme (1.3). Soit A un anneau local noethérien de caractéristique p>0. On suppose que l'homomorphisme $A^p \rightarrow A$ est fini. Alors les conditions suivantes sont équivalentes:

- i) A possède une p-base sur A^p .
- ii) Ω_A^1 est un A-module libre.

En particulier, si ces conditions sont satisfaites et si A est réduit, alors A est régulier.

Preuve. L'implication i) \Rightarrow ii) découle de ([3] 21.2.5). Montrons maintenant que ii) implique i). Comme Ω_{λ}^{1} est un A-module de type fini engendré par les dx, où $x \in A$, on en conclut, puisque A est local, qu'il existe $x_{1}, \dots, x_{n} \in A$ tels

que dx_1, \dots, dx_n forment une base de Ω_A^1 . D'après ([3] 21.1.7), $A = A^p[x_1, \dots, x_n]$; on voit facilement que les x_1, \dots, x_n forment une p-base de A sur A^p ; sous ces conditions, A est donc plat sur A^p , et par conséquent, d'après le théorème de Kunz [6], si A est réduit, A est régulier.

Corollaire (1.3.1). Soient k un corps parfait de caractéristique p>0, A une k-algèbre noethérienne telle que $A^p \rightarrow A$ soit un homomorphisme fini, $X=\operatorname{Spec}(A)$ et $x \in X$. Les conditions suivantes sont équivalentes:

- i) O_{X,x} est régulier.
- ii) $(\Omega_{X/k}^1)_x$ est un $\mathcal{O}_{X,x}$ -module plat at $\mathcal{O}_{X,x}$ est réduit.

Preuve. L'implication ii) \Rightarrow i) découle de (1.3). Montrons que i) implique ii). Posons $B = \mathcal{O}_{X,x}$. Alors B est une k-algèbre formellement lisse pour la topologie préadique. Comme $\mathcal{Q}_{B/k}^1$ est un B-module de type fini, c'est un B-module libre d'après ($\lceil 3 \rceil$ 20.4.1).

Corollaire (1.3.2). Soient k un corps parfait de caractéristique p>0, A une k-algèbre locale noethérienne et K son corps résiduel. On suppose que $[K:K^p]<\infty$. Alors A est un anneau local régulier si et seulement si $\Omega^1_{A/k}$ est un A-module formellement projectif (pour la topologie préadique) et que le séparé complété \hat{A} de A soit réduit.

Preuve. Comme on a la suite exacte

$$0 \longrightarrow \hat{\mathcal{Q}}_{A/k}^{1} \widehat{\otimes}_{A} \hat{A} \longrightarrow \hat{\mathcal{Q}}_{A/k}^{1} \longrightarrow \hat{\mathcal{Q}}_{A/k}^{1} \longrightarrow 0 \quad \text{(cf. [3] 20.7.18)}$$

donc $\hat{\Omega}_{A/k}^1 \hat{\otimes}_A \hat{A} \cong \hat{\Omega}_{A/k}^1$ (cf. (1.2)). Par conséquent, pour que $\Omega_{A/k}^1$ soit un A-module formellement projectif pour la topologie préadique, il faut et il suffit que $\hat{\Omega}_{A/k}^1 = \Omega_{A/k}^1$ soit un \hat{A} -module libre de type fini.

Remarque (1.3.3). (1.3.1) et (1.3.2) ont été énoncés dans [14] sans l'hypothèse que le séparé complété \hat{A} de A soit réduit. Cette hypothèse est cependant nécessaire toutefois on peut la remplacer par une autre qui lui est équivalente, de la façon suivante:

Proposition (1.3.3.1). Soient k un corps parfait de caractéristique p>0, A une k-algèbre noethérienne telle que $A^p \rightarrow A$ soit un homomorphisme fini, $X=\operatorname{Spec}(A)$ et $x \in X$. Alors les conditions suivantes sont équivalentes:

- i) $\mathcal{O}_{X,x}$ est régulier.
- ii) $\operatorname{rang}((\Omega_{X/k}^1)_x \otimes_{\mathcal{O}_{X/k}} k(x)) = \dim(\mathcal{O}_{X/k}) + \operatorname{rang}(\Omega_{k(x)}^1).$

Preuve. i) \Rightarrow ii) est une conséquence de (3.1) et de (1.3.1) ii).

ii) ⇒ i): On a la suite exacte

$$0 \longrightarrow \mathfrak{m}/\mathfrak{m}^2 \longrightarrow \Omega_B^1 \otimes_B K \longrightarrow \Omega_{K/k}^1 \longrightarrow 0 \quad \text{(cf. [3] 20.4.11)},$$

m désignant l'idéal maximal de $B=\mathcal{O}_{X,x}$ et K son corps résiduel. Par conséquent, rang $(\mathfrak{m}/\mathfrak{m}^2)=\dim(\mathcal{O}_{X,x})$.

Démonstration du Théorème (1.1): L'implication i) \Rightarrow ii) est triviale (cf. [6]). Montrons que ii) implique i). Pour tout idéal premier \mathfrak{p} de A, $\Omega_{A_{\mathfrak{p}}}^{1} \cong \Omega_{A}^{1} \otimes_{A} A_{\mathfrak{p}}$ est un $A_{\mathfrak{p}}$ -module de type fini. Par conséquent, les fibres formelles de $A_{\mathfrak{p}}$ sont géométriquement régulières d'après (1.2).

Soit B une A-algèbre finie et intègre. Alors le B-module Ω_B^1 est de type fini ([3] 21.1.7), donc l'ensemble V des points y de $Y=\operatorname{Spec}(B)$ où $\Omega_{Y,y}^1\cong(\widetilde{\Omega}_B^1)_y$ est un $\mathcal{O}_{Y,y}$ -module libre est ouvert dans Y.

Mais en tout point $y \in V$, l'anneau local $\mathcal{O}_{Y,y}$ est régulier d'après (1.3), comme le point générique de Y appartient à V, V n'est pas vide. Par conséquent, A satisfait aux conditions ii) et iii) de la définition des anneaux excellents ([4] 7.8.2); A est donc un anneau universellement japonais (cf. [4] 7.7.2).

Soient $\mathfrak{p}_1, \dots, \mathfrak{p}_n$ les idéaux premiers minimaux de $A, B_i = A/\mathfrak{p}_i$ $(1 \le i \le n)$ et L_i le corps des fractions de B_i $(1 \le i \le n)$. Comme $\Omega^1_{L_i} = \Omega^1_{B_i} \otimes_{B_i} L_i$ est un espace vectoriel de dimension finie sur L_i , on a $[L_i: L^p_i] < \infty$ ([3] 21.2.5). Par conséquent, l'homomorphisme $(A_{r\acute{e}d})^p \to A_{r\acute{e}d}$ est fini, d'où l'on déduit que $A^p \to A$ est aussi fini.

Comme nous savons déjà que A vérifie les conditions ii) et i) de la définition des anneaux excellents ([4] 7.8.2), il ne nous reste plus qu' à établir que A est universellemnt caténaire; pour cela, nous renvoyons au Théorème (2.1).

Section 2.

Théorème (2.1) (Kunz [7]). Moyennant les hypothèses et notations de (1.1), les conditions équivalentes i) et ii) de (1.1) impliquent que l'anneau A est universellement caténaire.

Preure. Nous pouvons supposer que A est un anneau local intègre. (2.1) est alors une conséquence du lemme suivant.

Lemme (2.1.1). Soient A un anneau local noethérien intègre de caractéristique p>0 tel que $A^p \rightarrow A$ soit un homomorphisme fini, K son corps des fractions, \hat{A} son séparé complété et K^* l'anneau des fractions totales de \hat{A} . Alors

 $\operatorname{rang}(\Omega_k^1) = \operatorname{rang}(\Omega_{k_i}^1) = \dim(A) + \operatorname{rang}(\Omega_k^1) \quad (1 \leq i \leq s) \quad (ou \quad k \quad désigne \quad le \quad corps$ résiduel de A et $K^* \cong K_1 \oplus \cdots \oplus K_s$.

En particulier, A est formellement équidimensionnel.

Preuve. On a la suite exacte

$$0 \longrightarrow \varUpsilon_{K^{\bullet}/K} \longrightarrow \varOmega_{K}^{1} \bigotimes_{K} K^{*} \longrightarrow \varOmega_{K^{\bullet}}^{1} \longrightarrow \varOmega_{K^{\bullet}/K}^{1} \longrightarrow 0 \qquad ([3] \ 20.6.1.1)$$

Comme $\Upsilon_{K^{\bullet}/K} = \Omega_{K^{\bullet}/K}^{1} = 0$ et $\Omega_{K^{\bullet}}^{1} \cong \Omega_{K_{1}}^{1} \oplus \cdots \oplus \Omega_{K_{s}}^{1}$ (cf. (1.2) et [3] 20.3.6), rang $(\Omega_{K}^{1}) = \operatorname{rang}(\Omega_{K_{i}}^{1})$ ($1 \leq i \leq s$), on peut donc supposer que A est complet, par conséquent, il existe un anneau local régulier complet R avec un idéal premier \mathfrak{p} tels que $A = R/\mathfrak{p}$, on a alors la suite exacte

$$0 \longrightarrow \mathfrak{p}/\mathfrak{p}^2 \otimes_R K \longrightarrow \Omega_R^1 \otimes_R K \longrightarrow \Omega_K^1 \longrightarrow 0 \qquad ([3] 20.5.14),$$

d'où l'on déduit que

$$\operatorname{rang}(\Omega_{R}^{1}) = \operatorname{rang}(\Omega_{R}^{1} \otimes_{R} K) - \operatorname{ht}(\mathfrak{p}) = \operatorname{rang}(\Omega_{R}^{1}) - \operatorname{ht}(\mathfrak{p})$$

$$= \dim(R) + \operatorname{rang}(\Omega_{R}^{1}) - \operatorname{ht}(\mathfrak{p}) \text{ (cf. [3] 21.1.9)}$$

$$= \dim(A) + \operatorname{rang}(\Omega_{R}^{1}).$$

Ce qui termine la démonstration de (1.1).

Remarque (2.1.2). E. Kunz a prouvé, de plus de la conclusion de (2.1), que A est de dimension finie ([7] Proposition 1.1). Pour voir cela, nous pouvons supposer que A est intègre. Soit alors n le nombre d'éléments d'une partie génératrice finie de \mathcal{Q}_A^1 , \mathfrak{m} un idéal maximal de A et $K=A/\mathfrak{m}$. La suite exacte

$$0 \longrightarrow \mathfrak{m}/\mathfrak{m}^2 \longrightarrow \Omega_A^1 \bigotimes_A K \longrightarrow \Omega_K^1 \longrightarrow 0 \qquad ([3] \ 20.5.14)$$

montre que rang $(\mathfrak{m}/\mathfrak{m}^2) \leq n$. Par conséquent dim $(A_{\mathfrak{m}}) \leq n$. Donc, A est de dimension finie $(\leq n)$.

Corollaire (2.1.3). Soit A un anneau noethérien de caractéristique p>0 tel que $A^p \rightarrow A$ soit un homomorphisme fini. Alors, pour tout couple d'idéaux premiers $\mathfrak{p}, \mathfrak{q}$ tels que $\mathfrak{p} \subset \mathfrak{q}, \operatorname{rang}(\Omega^1_{k(\mathfrak{p})}) = \dim((A/\mathfrak{p})_{\mathfrak{q}}) + \operatorname{rang}(\Omega^1_{k(\mathfrak{q})})$.

Lemme (2.1.4). Soient A un anneau local noethérien, hensélien, intègre, tel que sa clôture intégrale \overline{A} dans son corps des fractions K soit un A-module fini; t étant un élément A, si A/tA est formellement équidimensionnel, A est aussi formellement équidimensionnel.

Preuve. Comme A/tA est formellement équidimensionnel si et seulement si $\overline{A}/t\overline{A}$ est formellement équidimensionnel, \overline{A} est formellement équidimensionnel (cf. [4] 5.12.2). Par conséquent A est aussi formellement équidimensional.

Corollaire (2.1.5). Soit A un anneau local noethérien universellement japonais, dont le corps résiduel k est de caractéristique p>0 et tel que $\lceil k:k^p\rceil < \infty$. Alors, si A/pA et hA le hensélisé de A, sont équidimensionnels, A est formellement équidimensionnel; en particulier A est universellement caténaire.

Preuve. Comme A/pA est formellement équidimensionnel (cf. (2.1.1)), ${}^hA/p^hA$ est aussi formellement équidimensionnel; on peut donc supposer que A est hensélien, intègre et que A/pA est (formellement) équidimensionnel. Alors d'après (2.1.4), A est aussi formellement équidimensionnel.

Remarque (2.1.6). On peut donner des conditions suffisantes pour (2.1.5): Soit A un anneau local noethérien intègre et universellement japonais, dont le corps résiduel k est de caractéristique p>0 et tel que $[k:k^p]<\infty$. Si l'une des conditions suivantes est satisfaite, A est formellement équidimensionel et par conséquent universellement caténaire:

- (2.1.6.1) A est normal et caténaire.
- (2.1.6.2) A est unibranche et caténaire.
- (2.1.6.3) A est caténaire et pour tout idéal maximal $\overline{\mathfrak{m}}$ de \overline{A} (=la clôture intégrale de A dans son corps des fractions), $\dim(\overline{A}_{\overline{\mathfrak{m}}})=\dim(A)$.

Section 3.

Proposition (3.1). Soit A un anneau local noethérien régulier de caractéristique p>0, de corps résiduel K. Alors les conditions suivantes sont équivalentes:

- i) A est une A^p -algèbre finie.
- ii) A est excellent, et $[K:K^p]<\infty$.
- iii) Ω_A^1 est un A-module de type fini.
- iv) $\operatorname{rang}(\Omega_L^1) = \dim(A) + \operatorname{rang}(\Omega_K^1) < \infty$, L désignant le corps des fractions de A.

De plus, si k est un corps et A est une k-algèbre formellement lisse, alors les conditions précédentes sont équivalentes à

v) $\Omega^1_{A/k}$ est un A-module de type fini, et $[K:K^p]<\infty$.

Preuve. Les implications $i) \Leftrightarrow ii \Rightarrow iii \Rightarrow v$ sont triviales ou bien connues (cf. Remarque (3.1.1.2)).

- iii) \Rightarrow iv): Comme $\Omega_A^1 \otimes_A \hat{A} \cong \hat{\Omega}_A^1 \cong \hat{\Omega}_{\hat{A}}^1 \cong \Omega_{\hat{A}}^1$, donc rang $(\Omega_L^1) = \text{rang}(\Omega_L^1) = \text{rang}(\Omega$
 - $iv) \Rightarrow i$: Comme on a la suite exacte

$$0 \longrightarrow \Upsilon_{L^*/L} \longrightarrow \Omega_L^1 \otimes_L L^* \longrightarrow \Omega_{L^*}^1 \longrightarrow 0 \quad \text{(cf. (1.2), [3] 20.6.1.1)},$$

on en déduit que $\Upsilon_{L^*/L}=0$, L^* est donc une extension séparable de L ([3] 20.6.3). Par conséquent, A est un anneau japonais et $[L:L^p]<\infty$; A est donc un A^p -module fini.

v) ⇒ iii): Comme on a la suite exacte

$$0 \longrightarrow \Omega_k^1 \bigotimes_k A \longrightarrow \Omega_A^1 \longrightarrow \Omega_{A/k}^1 \longrightarrow 0 \quad \text{(cf. [3] 20.6.1.1, 20.6.3)},$$

 Ω_A^1 est un A-module projectif (cf. [3] 20.4.11). D'autre part, on a la suite exacte

$$\mathfrak{m}/\mathfrak{m}^2 \longrightarrow \Omega^1_A \otimes_A K \longrightarrow \Omega^1_K \longrightarrow 0$$
.

Par conséquent, Ω_A^1 est un A-module fini.

Remarque (3.1.1.1). Un résultat plus général que l'implication iii) ⇒ ii) est donné par André ([1] p. 10, Théorème).

Remarque (3.1.1.2). Sans hypothèse de régularité, on a les implications suivantes: $i \mapsto ii \Rightarrow iii \Rightarrow v$ et $i \Rightarrow iv$ (cf. (2.1.3)).

Corollaire (3.1.2). Soit k un corps parfait de caractéristique p>0 et A une k-algèbre locale régulière dont le corps résiduel est parfait. Alors les conditions suivantes sont équivalentes:

- i) A est un anneau excellent.
- ii) $\Omega^1_{A/k}$ est un A-module de type fihi.
- iii) $\operatorname{rang}(\Omega^1_{L/k}) = \dim(A)$, L désignant le corps des fractions de A.

Corollaire (3.1.3). Soient k un corps de caractéristique p>0 tel que $[k:k^p]<\infty$ et A une k-algèbre locale formellement lisse (pour la topologie préadique), dont le

corps résiduel K est une extension de type fini de k. Alors les conditions suivantes sont équivalentes:

- i) A est un anneau excellent.
- ii) $\Omega^1_{A/k}$ est un A-module de type fini.
- iii) rang(Ω_k^1)=dim(A)+deg. tr_kK+rang(Ω_k^1), L désignant le corps des fractions de A.

(cf. l'égalité de Cartier [3] 21.7.1)

Corollaire (3.1.4). Soit A un anneau régulier de caractéristique p>0. Alors les conditions suivantes sont équivalentes:

- i) A est une A^p-algèbre finie.
- ii) Ω_A^1 est un A-module de type fini.

Proposition (3.2). Soient A un anneau noethérien régulier et intègre, et L son corps des fractions. On suppose vérifiées les conditions suivantes:

- i) A est de caractéristique p>0.
- ii) rang(Ω_L^1)= $n < \infty$ (i. e. $[L:L^p]=p^n$).
- iii) Il existe n éléments x_1, \dots, x_n de A et des dérivations D_1, \dots, D_n de A dans lui-même tels que $D_i x_j = \delta_{ij}$, où δ_{ij} est le symbole de Kronecker.

Alors, A est un anneau excellent. Plus précisément, $A=A^p[x_1, \dots, x_n]$.

Preuve. Soit $B=A^p[x_1, \dots, x_n]$, son corps des fractions est L (cf. (1.3)). Donc, pour tout élément x de A, on peut écrir $x=\sum \alpha_I x^I$ où $\alpha_I \in L^p$ et $I=(i_1, \dots, i_n)$, $0 \le i_j < p$. En utilisant $D^I=D^{i_1} \cdots D^{i_n}$, on voit que $\alpha_I \in A \cap L^p=A^p$ (cf. [6]).

Proposition (3.3). Soient A un anneau local régulier de caractéristique p>0, et K son corps résiduel. On suppose que $[K:K^p]<\infty$.

Alors, A est un anneau excellent si et seulement si son séparé complété \hat{A} est une A-algèbre formellement étale pour les topologies discrètes.

Preuve. Supposons d'abord que l'anneau A soit excellent. Dans ce cas Ω_A^1 est un A-module de type fini, donc $\hat{\Omega}_A^1 \cong \Omega_A^1 \hat{\otimes}_A \hat{A} \cong \Omega_A^1 \otimes_A \hat{A}$ ([3] 21.1.7). D'autre part comme \hat{A} est une A-algèbre formellement lisse pour les topologies préadiques, on a la suite exacte

$$0 \longrightarrow \Omega_A^1 \hat{\otimes}_A \hat{A} \cong \Omega_A^1 \otimes_A \hat{A} \longrightarrow \Omega_{\hat{A}}^1 \longrightarrow \Omega_{\hat{A}/A}^1 (=0) \longrightarrow 0 \quad \text{(cf. (1.2))},$$

donc \hat{A} est une A-algèbre formellement lisse pour les topologies discrètes, comme de plus $\Omega^1_{\hat{A}/A} = 0$, \hat{A} est aussi une A-algèbre formellement non ramifiée pour les topologies discrètes. Donc, \hat{A} est une A-algèbre formellement étale pour les topologies discrètes.

Supposons maintenant que \hat{A} soit une A-algèbre formellement étale pour les topologies discrètes. Dans ce cas $\hat{\Omega}_A^1 \cong \Omega_A^1 \otimes_A \hat{A}$ (cf. [3] 20.7.6), et comme $\hat{\Omega}_A^1$ est un \hat{A} -module de type fini, Ω_A^1 est un A-module de type fini.

Section 4.

Théorème (4.1). Soient k un corps, p son exposant caractéristique et A une k-algèbre noethérienne. On suppose vérifiées les conditions suivantes:

- i) $\Omega_{A/k}^1$ est un A-module projectif.
- ii) Pour tout idéal maximal \mathfrak{m} de A, l'anneau local $A_{\mathfrak{m}}$ est une k-algèbre formellement lisse pour la topologie préadique.

Soit $B=A[T_1, \dots, T_r]$ un anneau de polynômes à un nombre fini de variables sur A, \mathfrak{q} un idéal de B, $C=B/\mathfrak{q}$, \mathfrak{p} un idéal premier de B contenant \mathfrak{q} .

- 1) Les conditions suivantes sont équivalentes:
- a) $C_{\mathfrak{p}}$ est une k-algèbre formellement lisse (pour la topologie \mathfrak{p} -adique).
- b) Il existe des k-dérivations D_i de B dans lui-même $(1 \le i \le m)$ et des éléments f_i de \mathfrak{q} $(1 \le i \le m)$, tels que les images des f_i dans $B_{\mathfrak{p}}$ engendrent $\mathfrak{q}B_{\mathfrak{p}}$ et que l'on ait $\det(D_i f_i) \in \mathfrak{p}$.
- 2) Les conditions suivantes sont équivalentes:
- a₀) C_p est un anneau local régulier.
- b₀) Il existe une sous-extension k_0 de k content k^p telle que $[k:k_0] < \infty$, des k_0 -dérivations D_i de B dans lui-même $(1 \le i \le m)$ et des éléments f_i de q $(1 \le i \le m)$, tels que les images des f_i dans B_p engendrent qB_p et que l'on ait $dét(D_if_i) \in p$.

Preuve. 1) a) \Leftrightarrow l'homomorphisme canonique $\mathfrak{q}/\mathfrak{q}^2 \otimes_B K \to \Omega^1_{B/k} \otimes_B K$ (où $K = B_{\mathfrak{p}}/\mathfrak{p}B_{\mathfrak{p}}$, [3] 22.6.2) est injectif, puisque $B_{\mathfrak{p}}$ est une k-algèbre formellement lisse. $0 \to \mathfrak{q}/\mathfrak{q}^2 \otimes_B K \to \Omega^1_{B/k} \otimes_B K$ (exacte) \Leftrightarrow b) ([3] 19.1.12), car $\Omega^1_{B/k}$ est un B-module projectif (cf. [3] 20.6.2, 19.3.3).

2) Soient $R=B_{\mathfrak{p}}$, $\mathfrak{m}=\mathfrak{p}B_{\mathfrak{p}}$ et $K=R/\mathfrak{m}$ ($=B_{\mathfrak{p}}/\mathfrak{p}B_{\mathfrak{p}}$). Comme R est une k-algèbre formellement lisse pour la topologie préadique ([3] 22.5.9), $\Upsilon_{K/k}$ est un K-espace vectoriel de demension finie ([3] 22.2.6). Donc il existe un sons-corps k_0 de k contenant k^p tel que $[k:k_0]<\infty$ et que $0\to\mathfrak{m}/\mathfrak{m}^2\to\Omega^1_{R/k_0}\otimes_R K=\Omega^1_{B/k_0}\otimes_B K$ soit exacte (cf. [3] 22.2.11, 22.2.9). Comme on a la suite exacte

$$0 \longrightarrow \mathcal{Q}^{_1}_{k/k_0} \bigotimes_{k} B \longrightarrow \mathcal{Q}^{_1}_{B/k_0} \longrightarrow \mathcal{Q}^{_1}_{B/k} \longrightarrow 0 \text{ (cf. [3] 20.6.2, 22.5.9, 20.6.3)},$$

 Ω^1_{B/k_0} est un B-module projectif.

$$a_0$$
) $\Rightarrow 0 \rightarrow \mathfrak{q}/\mathfrak{q}^2 \otimes_R K \rightarrow \mathfrak{m}/\mathfrak{m}^2$ (exacte) $\Rightarrow b_0$) ([3] 19.1.12).

 b_0) $\Rightarrow 0 \rightarrow q/q^2 \bigotimes_B K \rightarrow \Omega_B^1 \bigotimes_B K$ (exacte), et comme B_p est une F_p -algèbre formellement lisse, on a bien a_0) ([3] 22.6.2).

Remarque (4.1.1.1). Les hypothèses de (4.1) sont vérifiées lorsque A est un anneau de polynômes à un nombre fini de variables sur k, ou plus généralement une algèbre de type fini formellement lisse pour la topologie discrète sur une xtension séparable de k.

Remarque (4.1.1.2). Si k est de caractéristique zéro, l'hypothèse i) de (4.1) implique l'hypothèse ii) (cf. [11] Théorème).

Remarque (4.1.1.3). Si k est parfait, $\Omega^1_{A/k}$ est un A-module de type fini, et pour tout idéal maximal \mathfrak{m} de A, le séparé complété $A^{\hat{}}_{\mathfrak{m}}$ de $A_{\mathfrak{m}}$ est réduit; l'hypothèse i) de (4.1) implique alors l'hypothèse ii) (cf. (1.3.2), (3.1.4), et [12]).

Corollaire (4.1.2). Avec les notations et les hypothèses de (4.1), l'anneau A est excellent et l'ensemble des idéaux premiers $\mathfrak n$ de C tels que l'anneau local $C_\mathfrak n$ soit une k-algèbre formellement lisse pour la topologie préadique est ouvert dans $\operatorname{Spec}(C)$.

Corollaire (4.1.3) Soit A un anneau régulier contenant un corps tel que le A-module Ω_A^1 des différentielles absolues de A soit de type fini, $B=A[T_1,\cdots,T_r]$ un anneau de polynômes à un nombre fini de variables sur A, $\mathfrak q$ un idéal de B, $C=B/\mathfrak q$, $\mathfrak p$ un idéal premier de B contenant $\mathfrak q$. Alors les conditions suivantes sont équivalentes:

- a) C, est un anneau régulier.
- b) Il existe des dérivations D_i de B dans lui-même $(1 \le i \le m)$ et des éléments f_i de \mathfrak{q} $(1 \le i \le m)$, tels que les images des f_i dans $B_{\mathfrak{p}}$ engendrent $\mathfrak{q}B_{\mathfrak{p}}$ et que l'on ait $\det(D_i f_j) \in \mathfrak{p}$.

Par conséquent l'anneau A est excellent.

Section 5.

Théorème (5.1). Soient A un anneau local noethérien quasi-excellent (i.e. excellent sans la condition universelle de chaînes), B un anneau local noethérien et $\psi: A \rightarrow B$ un homomorphisme local faisant de B une A-algèbre formellement lisse pour les topologies préadiques. Alors $^a\psi: \operatorname{Spec}(B) \rightarrow \operatorname{Spec}(A)$ est un morphisme régulier (i.e. plat et à fibres géométriquement régulières).

Preuve. Comme A est quasi-excellent, on peut supposer que A et B sont complets (cf. [3] 7.3.4) et il suffit alors de montrer que si A est en plus intègre, la fibre de $^a\psi$ au point générique est régulière.

D'abord, il existe un anneau de séries formelles sur un anneau de Cohen $R=W[[T_1,\cdots,T_n]]$ et un idéal premier $\mathfrak p$ de R tels que $A=R/\mathfrak p$ ([3] 19.8.8). D'après ([3] 19.7.2), il exists un anneau local noethérien complet S et un homorphisme local $\Psi: R \to S$ faisant de S une R-algèbre formellement lisse (pour les topologies préadiques) tels que $B=S \otimes_R A$ et $\psi=\overline{\Psi}: R/\mathfrak p \to S/\mathfrak p S$ (l'homomorphisme induit par Ψ).

Maintenant nous traiterons deux cas séparément.

1) A contient corps (dans ce cas on peut supposer W=K un corps): D'après le critère jacobien de Nagata ([3] 22.7.3), il existe un souscorps K_0 de K contenant K^p (où p est l'exposant caractéristique de K) tel que $[K:K_0]<\infty$, des K_0 -dérivations D_i de R dans lui-même $(1 \le i \le m)$ et des éléments f_i de $\mathfrak p$ $(1 \le i \le m)$, tels que les images des f_i dans $R_{\mathfrak p}$ engendrent $\mathfrak p R_{\mathfrak p}$ et que l'on ait $\det(D_i f_j) \in \mathfrak p$. Mais comme Ψ fait de S une R-algèbre formellement lisse, on a la suite exacte scindée

$$0 \longrightarrow \hat{\Omega}^{1}_{R/K_0} \hat{\otimes}_R S \longrightarrow \hat{\Omega}^{1}_{S/K_0} \longrightarrow \Omega^{1}_{S/R} \longrightarrow 0 \qquad ([3] \ 20.7.18)$$

qui donne la suite exacte

$$0 \longrightarrow \operatorname{D\acute{e}r}_{R}(S, S) \longrightarrow \operatorname{D\acute{e}r}_{K_{0}}(S, S) \longrightarrow \operatorname{Hom}_{S}(\widehat{\Omega}_{R/K_{0}}^{1} \widehat{\otimes}_{R} S, S) \longrightarrow 0$$

et comme $\hat{\Omega}_{R/K_0}^1$ est un R-module libre de type fini ([3] 21.9.2), $\hat{\Omega}_{R/K_0}^1 \hat{\otimes}_R S \cong \hat{\Omega}_{R/K_0}^1 \otimes_R S$, d'où l'on déduit que $\operatorname{Hom}_S(\hat{\Omega}_{R/K_0}^1 \hat{\otimes}_R S, S) \cong \operatorname{Hom}_R(\hat{\Omega}_{R/K_0}^1, R) \otimes_R S \cong \operatorname{Dér}_{K_0}(R, R) \otimes_R S$. Par conséquent, toute K_0 -dérivation de R dans lui-même se prolonge en une K_0 -dérivation de S dans lui-même.

Soit donc $D_i' \in \text{D\'er}_{K_0}(S, S)$ des prolongements de D_i $(1 \le i \le m)$, alors, pour tout idéal premier \mathfrak{p}' de S au-dessus de \mathfrak{p} , on a $\text{d\'et}(D_i'f_j) \notin \mathfrak{p}'$. Par conséquent, $(S/\mathfrak{p}S)_{\mathfrak{p}'}$ est régulier (cf. [3] 22.7.3).

2) A ne contient pas de corps: Comme A ne contient pas de corps, on a $\mathfrak{p} \cap W = (0)$, donc, d'après ([15] 1.2.4), il existe des W-dérivations D_i de R dans lui-même ($1 \le i \le m$), des éléments f_i de \mathfrak{p} ($1 \le i \le m$) tels que les images des f_i dans $R_{\mathfrak{p}}$ engendrent $\mathfrak{p} R_{\mathfrak{p}}$ et que l'on ait $\det(D_i f_j) \in \mathfrak{p}$. Comme S est une R-algèbre formellement lisse, on a la suite exacte scindée

$$0 \longrightarrow \hat{\Omega}_{R/W}^1 \hat{\otimes}_R S \longrightarrow \hat{\Omega}_{S/W}^1 \longrightarrow \hat{\Omega}_{S/R}^1 \longrightarrow 0 \qquad ([3] \ 20.7.18).$$

Soit ωW l'idéal maximal de W et k son corps résiduel. Comme $\hat{\Omega}^1_{R/k}$ est un \overline{R} $(=R/\omega R)$ -module de type fini ([3] 20.7.15), $\hat{\Omega}^1_{R/W}$ est un R-module libre de type fini (cf. [3] 20.4.11). Par conséquent $\hat{\Omega}^1_{R/W} \hat{\otimes}_R S \cong \hat{\Omega}^1_{R/W} \otimes_R S$.

Donc la suite exacte

$$0 \longrightarrow \mathrm{D\acute{e}r}_{R}(S, S) \longrightarrow \mathrm{D\acute{e}r}_{W}(S, S) \longrightarrow \mathrm{Hom}_{S}(\hat{\mathcal{Q}}_{R/W}^{1} \bigotimes_{R} S, S)$$

$$\cong \mathrm{D\acute{e}r}_{W}(R, R) \bigotimes_{R} S \longrightarrow 0$$

montre que toute W-dérivation de R dans lui-même se prolonge en une W-dérivation de S dans lui-même.

Soit donc $D_i' \in \text{D\'er}_W(S, S)$ des prolongements de D_i $(1 \leq i \leq m)$, alors, pour tout idéal premier \mathfrak{p}' de S au-dessus de \mathfrak{p} , on a $\text{d\'et}(D_i'f_j) \in \mathfrak{p}'$. Par conséquent $(S/\mathfrak{p}S)_{\mathfrak{p}'}$ est régulier.

Remarque (5.1.1). Ce résultat a été énoncé sans démonstration dans [14] sous l'hypothèse: A est un anneau excellent contenant un corps.

Il a été établi sons la forme précédente par André [1] qui utilise ses résultats sur l'homologie des algèbres commutatives (aussi voir [2]).

Corollaire (5.1.2). Soient A et B deux anneaux locaux noethériens et $\psi: A \rightarrow B$ un homomorphisme local faisant de B une A-algèbre formellement lisse pour les topologies préadiques. Supposons que A soit un P-anneau (où P est une des propriétés considérées dans [3] 7.4.1). Alors $^a\psi: \operatorname{Spec}(B) \rightarrow \operatorname{Spec}(A)$ est un P-morphisme.

Corollaire (5.1.3). Soit A un anneau semi-local noethérien et hs A son hensélisé strict. Alors A est (quasi-)excellent si et seulement si hs A est (quasi-)excellent.

Preuve. A est universellement caténaire si et seulement si ^{hs}A est universellement caténaire (cf. [5] 18.8.17), il reste donc à montrer que A est quasi-excellent si et seulement si ^{hs}A est quasi-excellent.

Comme $({}^{hs}A)^{\hat{}}$ est une \hat{A} -algèbre formellement lisse et \hat{A} est excellent, on en conclut d'après (5.1) que le morphisme $\operatorname{Spec}({}^{hs}A)^{\hat{}} \to \operatorname{Spec}(\hat{A})$ est régulier. Donc le morphisme $\operatorname{Spec}(\hat{A}) \to \operatorname{Spec}(A)$ est régulier si et seulement si le morphisme $\operatorname{Spec}({}^{hs}A)^{\hat{}} \to \operatorname{Spec}({}^{hs}A)$ est régulier, puisque pour tout idéal premier $\mathfrak p$ de A, ${}^{hs}A \otimes_A k(\mathfrak p)$ est une somme finie de corps, extension algébriques séparables de $k(\mathfrak p)$.

Corollaire (5.1.4). Soient A un anneau semi-local noethérien et ${}^{hs}A$ son hesélisé strict. pour que A soit un P-anneau (où P est la propriété considérée dans ([5] 18.7.1)+ P'_1 ([4] 7.3.5)), il faut et il suffit que ${}^{hs}A$ en soit un aussi.

Section 6.

La plupart des résultats de cette partie ont été obtenus indépendamment par Matsumura [9], dont les résultats ont paru tandis que nous rédigions la version préliminaire de ce travail; pour ne pas allonger inutilement cet article, nous énoncerons sans démonstration les résultats de cette partie qui sont communs avec ceux de Matsumura.

Définition (6.1). Soit k un anneau et A une k-algèbre. On dit que A satisfait à (J_k) au point $\mathfrak{p} \in \operatorname{Spec}(A)$ s'il existe des k-dérivations D_i de A dans lui-même $(1 \le i \le s)$ et des éléments f_i de \mathfrak{p} $(1 \le i \le s)$ tels que les images des f_i dans $A_{\mathfrak{p}}$ engendrent $\mathfrak{p} A_{\mathfrak{p}}$ et que l'on ait $\det(D_i f_j) \in \mathfrak{p}$; si $k = \mathbb{Z}$, on écrit (J) au lieu de $(J_{\mathbb{Z}})$.

Proposition (6.2) (cf. [9] Theorem 14). Soit A un anneau noethérian régulier. On suppose que pour tout anneau de polynômes B à un nombre fini de variables sur A et tout ideal premier $\mathfrak p$ de B tel que l'homomorphisme $A \to B/\mathfrak p$ soit fini, B satisfait à (I) au point $\mathfrak p$. Alors A est excellent.

Proposition (6.3) (cf. [9] Theorems 6, 9 and 10). Soient k un corps de caractéristique zéro et A une k-algèbre noethérienne régulière et intègre. On suppose vérifiées les conditions suivantes:

- i) Pour tout idèal maximal m de A, A/m est une extension algébrique de k.
- ii) $\dim(A) < \infty$.

Alors les conditions suivantes sont equivalentes:

- a) A satisfait $a(J_k)$ pour tout ideal maximal m de A.
- b) $\operatorname{rang}(\operatorname{D\acute{e}r}_{k}(A, A)) = \dim(A)$.

De plus, si A satisfait aux conditions i), ii) et a) (ou b)), alors A[T], A[[T]] satisfont aussi aux mêmes conditions. A est par conséquent excellent.

Proposition (6.4) (cf. [9] Theorems 8 and 9). Soient V un anneau de valuation discrète dont le corps des fractions K est de caractéristique zéro et A une V-algèbre

noethérienne régulière et intègre.

On suppose que pour tout idéal premier \mathfrak{p} de A tel que $\mathfrak{p} \cap V = (0)$, A satisfait à (J_K) au point \mathfrak{p} .

Alors, pour B=A[T] ou A[[T]], et pour tout idéal premier q de B tel que $q \cap V=(0)$, B satisfait à (J_K) au point q.

Proposition (6.5) (cf. [9] Theorem 15, Remark p. 292). Soient k un corps de caractéristique p>0, A une k-algèbre noethérienne intègre. On suppose vérifiées les conditions suivantes:

- i) Pour tout idéal maximal m de A, A/m est une extension finie de k ou une extension algébrique de k si k est parfait.
- ii) Pour tout ideal maximal m de A, A_m est une k-algèbre formellement lisse pour la topologie préadique et un anneau universellement japonais.
- iii) $\dim(A) < \infty$.
- iv) Il existe une famille $(k_{\alpha})_{\alpha \in \Lambda}$ de sous-corps de k telle que $k^p \subset k_{\alpha}$, $[k:k_{\alpha}] < \infty$ et que $\bigcap_{\alpha \in \Lambda} k_{\alpha} = k^p$, satisfaisant

 $\operatorname{rang}(\operatorname{D\acute{e}r}_{{\pmb k}_\alpha}(A,\ A)) = \dim(A) + \operatorname{rang}(\Omega^1_{{\pmb k}/{\pmb k}_\alpha}) \ \textit{quel que soit } \alpha.$

Alors pour tout idéal maximal \mathfrak{m} de A et tout $\alpha \in \Lambda$, A satisfait à $(J_{k_{\alpha}})$ au point \mathfrak{m} .

Comme A satisfait la condition de (6.2), A est excellent; par conséquent, A[[T]] satisfait aussi aux mêmes conditions.

Corollaire (6.6) (cf. [9] Theorem 9 and 15, Remark p. 292). Si A est un anneau qui satisfait ou bien aux conditions de (6.3) ou bien à celles de (6.5), alors $A[X_1, \dots, X_m]$ et $A[[Y_1, \dots, Y_n]]$ satisfont aussi aux mêmes conditions.

En particulier, soit A un anneau satisfaisant aux conditions de (6.3) ou de (6.5), I un ideal de A; alors le séparé complété A^* de A pour la topologie I-adique est un anneau excellent.

DÉPARTEMENT DE MATHÉMATIQUES UNIVERSITÉ DE DAKAR

Bibliographie

- [1] M. André: Localisation de la lissité formelle, manuscripta math. 13 (1974), 297-307.
- [2] A. Brezuleanu et N. Radu: Sur la localisation de la lissité formelle, C. R. Acad. Sci. Paris 276 (193), 439-441.
- [3] A. Grothendieck et J. Dieudonné: Eléments de Géométrie algébrique, Publ. Math. I. H. E. S. 20 (1964).
- [4] A. Grothendieck et J. Dieudonné: Eléments de Géométrie algébrique, Publ. Math. I. H. E. S. 24 (1964).
- [5] A. Grothendieck et J. Dieudonné: Eléments de Géométrie algébrique, Publ. Math. I. H. E. S. 32 (1967).
- [6] E. Kunz: Characterisations of regular local rings of characteristic p, Amer. J. Math. 91 (1969), 772-784.
- [7] E. Kunz: On noetherian rings of characteristic p, Amer. J. Math. 98 (1976), 999-1013.

- [8] J. Marot: Sur les anneaux universellement japonais, C.R. Acad. Sci. Paris. 277 (1973), 1029-1031.
- [9] H. Matsumura: Noetherian rings with many derivations, Contributions to Algebra, A collection of Papers Dedicated to Ellis Kolchin, Academic Press, New York, 1977. 279-294.
- [10] M. Nagata: Local rings, Interscience, New York, 1962.
- [11] N. Radu: Une caractérisation des algèbre noethériennes régulières sur un corps de caractéristique zéro, C.R. Acad. Sci. Paris 270 (1970), 851-853.
- [12] N. Radu: Un critère différentiel de lissité formelle, C.R. Acad. Sci. Paris 271 (1970), 485-487.
- [13] H. Seydi: Sur la théorie des anneaux excellents en caractéristique p, I, Bull. Sci. Math. 96 (1972), 193-198.
- [14] H. Seydi: Un critère jacobien des points simples, C. R. Acad. Sci. Paris 276 (1973), 475-478.
- [15] H. Seydi: Sur la théorie des anneaux excellents en caractéristique zéro, II (à paraître).