The comodule structure of $K_*(\Omega Sp(n))$

By

Kazumoto Kozima

(Received Feb. 5, 1979)

§0. Introduction

Let Sp(n) be the *n*-th symplectic group, $\Omega Sp(n)$ its loop space. F. Clarke determined the Hopf algebra $K_*(\Omega Sp(n))$ for $n \leq 3$ where $K_*()$ is the Z_2 -graded K-homology theory, following to the corresponding result of the ordinary homology by R. Bott ([6], [9]). Recently, the Hopf algebra $H^*(\Omega Sp(n))$ was determined by Kono-Kozima [11]. Though our method used in [11] is not applicable for K-theory directly, we can determine the Hopf algebra $K_*(\Omega Sp(n))$ by some algebraic devices ([12]).

Using these results, we can fix the generators of $K_*(\Omega Sp(n))$. The purpose of this paper is to determine the $K_*(K)$ -comodule structures of $K_*(\Omega Sp(n))$, and to write down the formulas for the above generators.

Under some algebraic notations, the main result of this paper is

Theorem 3.10.

$$\Psi_{K}Z(x) = \frac{\left(\frac{d}{dx}Q(x)\right) \cdot Z(Q(x))}{1 \otimes 1 + S(x) \cdot Z(Q(x))} .$$

For details, see § 3.

This paper is organized as follows:

In §1, we recall some notations in [11], [12].

The results of [12] are written by the words of Z_2 -graded K-theory, but we can easily obtain the corresponding ones in Z-graded K-theory. So in this paper, we use only Z-graded theory.

In §2, we quote the results of [2], [3] and [15] for the structures of $K_*(K)$, $KO_*(KO)$ and the comodule structure of $K_*(BU)$ where BU is the classifying space of the infinite unitary group U.

We also summarize the result of [12] for the structure of $K_*(\Omega Sp(n))$ where $K_*()$ is Z-graded K-homology theory.

In 3, we introduce some algebraic notations which are needed to state the main result, and prove it.

Notice that the Euler class in K-theory which is used in this paper is different

from the ordinary one in [2], [15]. So, β_i used in §2, §3 is $t^i\beta_i$ in [2], or [15] where $t \in \pi_2(K)$ is the usual generator.

Throughout the paper, the ring of integers is denoted by Z, the ring of integers modulo n by Z_n , and the rational numbers by Q.

If R is a ring with unit, then the formal power series ring over R is denoted by R[[x]]. If $f(x) = \sum_{i} f_{i}x^{i} \in R[[x]]$ then the coefficient of x^{n} in f(x) is denoted by $[f(x)]_{n}$.

Then the binomial coefficient $\binom{n}{m}$ is equal to $[(1+x)^n]_m$.

§1. Notations

First, recall some notations (see [11], [12]).

Let U(n), Sp(n) be the *n*-th unitary and symplectic group, and U, Sp the infinite unitary and symplectic group, respectively.

Let C (resp. H) be the field of complex (resp. quaternion) numbers.

Let $a_{ij} \in \mathbf{H}$ and $a_{ij} = b_{ij} + jc_{ij}$ for b_{ij} , $c_{ij} \in \mathbf{C}$ and define a map $c: Sp(n) \rightarrow U(2n)$ by

$$c((a_{ij})) = \begin{pmatrix} N_{11} \cdots N_{1n} \\ \vdots & \vdots \\ N_{n1} \cdots N_{nn} \end{pmatrix},$$

where

$$N_{ij} = \begin{pmatrix} b_{ij} & -c_{ij} \\ \\ \bar{c}_{ij} & \bar{b}_{ij} \end{pmatrix}.$$

Let BG be the classifying space of a topological group G and Bf: $BG \rightarrow BH$ the map induced by a continuous homomorphism $f: G \rightarrow H$.

Let ΩX be the space of loops on a space X and $\Omega f: \Omega X \to \Omega Y$ the map induced by a map $f: X \to Y$.

Let SU(n), SU be the *n*-th and the infinite special unitary group.

Let $g: BU \rightarrow \Omega SU$ be the Bott map. Since $\Omega SU = \Omega_0^2 BU$, we may regard g as a map to $\Omega_0^2 BU$.

Let $i_n: Sp(n) \rightarrow Sp$ be the natural inclusion (see [11]).

Let $\gamma \to BU(1)$ be the Hopf line bundle. Though we usuary use $[\gamma - 1] \in K^0(BU(1))$ as the Euler class in K-theory ([2], [15]), we use $t^{-1}[\gamma - 1] \in K^2(BU(1))$ as the Euler class in K-theory where $t \in \pi_2(K) = K^{-2}(pt)$ throughout this paper.

§2. $K_*(K)$ -comodules

In this section, we quote some theorems in [2], [15], and state the main results. Let K be BU-spectrum and KO BO-spectrum. In general, we have next theorem [15].

Theorem 2.1. Suppose E is a commutative ring spectrum such that $E_*(E) = C$ is flat as a right module over $E_*(pt) = R$. Then there are homomorphisms

ϕ :	$C \otimes_R C \longrightarrow C$:3	$C \longrightarrow R$
η_L :	$R \longrightarrow C$	η_R :	$R \longrightarrow C$
<i>c</i> :	$C \longrightarrow C$	Ψ_E :	$C \longrightarrow C \otimes_R C$

and $\Psi_X: E_*(X) \to C \otimes_R E_*(X)$ for all spectra X, with the following properties:

- i) C is a commutative Hopf algebra with product ϕ having left and right units η_L , η_R and associative coproduct Ψ_E having augmentation ε ;
- ii) if $\lambda \in R$ and $x \in C$, then $\lambda x = \phi(\eta_L(\lambda) \otimes x), \quad x\lambda = \phi(x \otimes \eta_R(\lambda));$
- iii) $\varepsilon \eta_L = 1 = \varepsilon \eta_R$, $c \eta_L = \eta_R$, $c \eta_R = \eta_L$, $\varepsilon c = \varepsilon$, $c^2 = 1$;
- iv) $\Psi_E(1) = 1 \otimes 1$ and hence $\Psi_E \eta_L(\lambda) = \eta_L(\lambda) \otimes 1$ and $\Psi_E \eta_R(\lambda) = 1 \otimes \eta_R(\lambda)$ for all $\lambda \in R$;
- v) Ψ_X is natural with respect to maps of X;
- vi) Ψ_X is a coaction map;
- vii) if $\Psi_X(x) = \sum_i e'_i \otimes x_i$ and $\Psi_Y(y) = \sum_j e''_j \otimes y_j$ for $x, x_i \in E_*(X), y, y_j \in E_*(Y), e'_i, e''_j \in C$ then $\Psi_{X \wedge Y}(x \wedge y) = \sum_{i,j} (-1)^{|x_i| \cdot |e''_j|} e'_i e''_j \otimes (x_i \wedge y_j);$
- viii) $\Psi_{S^0}: R \to C \otimes_R R = C$ is just η_L .

For details, see [15]. Notice that $K_*(K)$ and $KO_*(KO)$ are right flat over $K^*(pt)$ and $KO_*(pt)$, respectively. Then (2.1) is applicable to the cases E = K, KO.

We prefer to write Ψ_K in place of Ψ_X in (2.1) because we want to clarify that we work in K-theory.

Let $t \in K_2(pt)$ be a generator and $h_i \in K_{2i}(BU(1))$ be the dual element of *i*-th power of the Euler class in K-theory. Let $\beta_i \in K_{2i}(BU)$ be the image of h_i by the homomorphism induced by the natural map $Bi: BU(1) \rightarrow BU$ (see [2], [11]).

Let $u = \eta_L(t), v = \eta_R(t)$.

If we consider BU as the 2*n*-th term of K-spectrum, then we have a homomorphism

$$e_n: K_{2q}(BU) \longrightarrow K_{2q-2n}(K).$$

Let $c: KO \rightarrow K$ be the complexification map. Then we have

$$(c \wedge c)^* \colon KO_*(KO) \longrightarrow K_*(K)$$

Proposition 2.2.

i) $K_{*}(K) \rightarrow K_{*}(K) \otimes Q = Q[u, u^{-1}, v, v^{-1}]$ is monic.

ii) the composition

$$\bigoplus_{n} KO_{4n}(KO) \xrightarrow{(c \land c)_{*}} K_{*}(K) \longrightarrow K_{*}(K) \otimes Q = Q[u, u^{-1}, v, v^{-1}]$$

is monic.

Theorem 2.3. In $K_*(K) \otimes Q$

$$\epsilon_1(\beta_n) = p_n(u, v) = \frac{1}{n!} (v - u)(v - 2u) \cdots (v - (n - 1)u), \quad \text{for } n > 1.$$

Theorem 2.4.

- i) $K_*(K)$ is spanned by $p_n(u, v)$ over $Z[u, u^{-1}, v^{-1}]$ in $K_*(K) \otimes Q$.
- ii) The image of $\bigoplus_n KO_{4n}(KO)$ in $K_*(K) \otimes Q$ is spanned by

$$q_n(u, v) = \frac{2}{(2n+2)!} (v^2 - u^2) (v^2 - 2^2 u^2) \cdots (v^2 - n^2 u^2)$$

for n > 0 over $Z[u^4, 2u^2, u^{-4}, v^{-4}]$.

In [15], Switzer also determined $\Psi_{K}(p_{n}(u, v))$ and $\Psi_{K}(q_{n}(u, v))$.

We abbreviate $p_n(u, v)$, $q_n(u, v)$ to p_n , q_n .

Put $p_0 = q_0 = 1$.

$$P(x) = \sum_{i \ge 0} p_i x^{i+1},$$

$$Q(x) = \sum_{i \ge 0} q_i x^{i+1} \in K_*(K)[[x]].$$

Theorem 2.5.

i)
$$\Psi_{K}(u) = u \otimes 1$$
, $\Psi_{K}(v) = 1 \otimes v$ and
 $\Psi_{K}(p_{n}) = \sum_{j \ge 0} [(P(x))^{j+1}]_{n+1} \otimes p_{j}$, $n \ge 0$.

ii) $\Psi_{\mathbf{K}}(q_n) = \sum_{j \ge 0} \left[(Q(x))^{j+1} \right]_{n+1} \otimes q_j, \quad n \ge 0.$

For the proofs of (2.2)-(2.5), see [2], [3] and [15]. The formulas of (2.5) are slightly different from the original ones in [15], but one can easily show that they are essentially equivalent.

Let $B: S^2BU \to BU$ be an adjoint map of the Bott map $g: BU \to \Omega_0^2 BU$. Define $\underline{B}: \tilde{K}_m(BU) \longrightarrow \tilde{K}_{m+2}(BU)$ by the composition

$$\widetilde{K}_m(BU) \cong \widetilde{K}_{m+2}(S^2BU) \xrightarrow{B_*} \widetilde{K}_{m+2}(BU)$$

Then the diagram

$$\begin{split} \widetilde{K}_{m}(BU) & \xrightarrow{\iota_{n}} K_{m-2n}(K) \\ & \downarrow^{\underline{B}} & \downarrow^{\upsilon} \cdot \\ \widetilde{K}_{m+2}(BU) & \xrightarrow{\iota_{n}} K_{m-2n+2}(K) \quad \text{commutes (see [15])} \,. \end{split}$$

Since $v \cdot is$ an isomorphism and <u>B</u> kills the decomposable elements in $K_*(BU)$, ι_n also vanishes on the decomposable elements. As a corollary of (2.2) and (2.3), we have

Proposition 2.6. $\iota_n: Q(K_*(BU)) \to K_{*-2n}(K)$ is a monomorphism where Q is indecomposable functor.

Proof. One can easily show that $\{v^{-n+1}p_i(=\iota_n(\beta_i))\}_{i>0}$ are linearly independent over $Z[u, u^{-1}]$. Since $Q(K_*(BU))$ is a free $K_*(pt)$ -module generated by $\{\beta_i\}_{i>0}$, (2.6) is clear.

Let I be the composition

$$\widetilde{K}_m(BU(1)) \longrightarrow \widetilde{K}_m(BU) \stackrel{\iota_1}{\longrightarrow} K_{m-2}(K).$$

Then (2.6) says

Proposition 2.7. I is a monomorphism.

Next we rewrite the results of [12] in the words of Z-graded K-theory. We will use the same notation both in Z_2 - and Z-graded theories.

So, put
$$b_{2n-1} = \sum_{i \ge 0} {\binom{n-1}{i}} t^i \beta_{2n-1-i} \in K_{4n-2}(BU)$$
 and
 $b_{2n} = \sum_{i \ge 0} {\binom{n-1}{t}} t^i \beta_{2n-1} \in K_{4n}(BU)$ for $n > 0$.

We define also $b_{od}(x)$ and $b_{ev}(x) \in K_*(BU)[[x]]$ to be $\sum_{i>0} b_{2i-1} x^{2i-1}$ and $1 + \sum_{i>0} b_{2i} x^{2i}$. Put $r(x) = \sum_{i>0} r_{2i-1} x^{2i-1} = b_{od}(x)/b_{ev}(x)$. Let g, c and i_n be the maps as in § 1.

Theorem 2.8. There are $z_{2k-1} \in K_{4k-2}(\Omega Sp)$ such that

- i) $K_*(\Omega Sp) = K_*(pt)[z_1, z_3, ..., z_{2k-1}, ...]$ as an algebra
- ii) $g_*^{-1}(\Omega c)_*: K_*(\Omega Sp) \rightarrow K_*(BU)$ is monic. Moreover $g_*^{-1}(\Omega c)_* z_{2k-1} = r_{2k-1}$, for k > 0,
- iii) $(\Omega i_n)_*: K_*(\Omega Sp(n)) \to K_*(\Omega Sp)$ is monic, and $\operatorname{Im} (\Omega i_n)_*$ is generated by $z_1, z_3, \dots, z_{2n-1}$ as a subalgebra of $K_*(\Omega Sp)$.

For the proofs of i)-iii), one has only to modify those of the corresponding theorems of [12].

Since the coactions are natural, and since $\Psi_K(\beta_n)$ is known, we can know the comodule structure of $K_*(\Omega Sp(n))$ or $K_*(\Omega Sp)$ by virtue of the above theorem.

In the next section, we will obtain 'internal' formulas, that is, we will write down $\Psi_K(z_n)$ by z_i , q_j and the new element $s_k \in K_*(K)$.

§3. Comodule structure of $K_*(\Omega Sp(n))$

First, we determine $\Psi_{K}(b_{2n-1})$ and $\Psi_{K}(b_{2n})$.

Let $H_{2n-1} = \sum_{i \ge 0} {\binom{n-1}{i}} t^i h_{2n-1-i}$ and $H_{2n} = \sum_{i \ge 0} {\binom{n-1}{i}} t^i h_{2n-i} \in K_*(BU(1)).$

By the naturarity of Ψ_{K} , we have only to determine $\Psi_{K}(H_{2n-1})$ and $\Psi_{K}(H_{2n})$. We

need the following lemma.

Lemma 3.1.

i) $I(H_{2n-1}) = \iota_1(b_{2n-1}) = nq_{n-1}$ and,

ii)
$$I(H_{2n}) = \iota_1(b_{2n}) = q_{n-1}\left(\frac{v-nu}{2}\right).$$

Proof. For i), we need to show that

$$\sum_{i\geq 0} \binom{n-1}{i} u^i p_{2n-1-i} = nq_{n-1}.$$

Put

$$\tilde{p}_k(x) = \frac{1}{(k+1)!}(x-1)(x-2)\cdots(x-k)$$
 and

$$\tilde{q}_k(x) = \frac{2}{(2k+2)!} (x^2 - 1)(x^2 - 2^2) \cdots (x^2 - k^2)$$

Then $p_{k+1} = \tilde{p}_k \left(\frac{v}{u}\right) u^k$ and $q_k = \tilde{q}_k \left(\frac{v}{u}\right) u^{2k}$. So we have only to prove the equation

(3.2)
$$\sum_{i\geq 0} \binom{n-1}{i} \tilde{p}_{2n-2-i}(x) = n\tilde{q}_{n-1}(x) \, .$$

For ii), we need to prove

(3.3)
$$2 \cdot \sum_{i \ge 0} {\binom{n-1}{i}} \tilde{p}_{2n-1-i}(x) = (x-n)\tilde{q}_{n-1}(x) .$$

Clearly the both sides of (3.2) (respectively (3.3)) are the polynomials of degree 2n-2 (respectively 2n-1), and have the same coefficients at the maximal degree. Since $\binom{n-1}{i}=0$ for i>n-1, the both sides of (3.2) (respectively (3.3)) have common roots 1, 2,..., n-1 (respectively 1, 2,..., n). So we may show that

(3.4)
$$\sum_{i\geq 0} {\binom{n-1}{i}} \tilde{p}_{2n-2-i+\varepsilon}(-k) = 0$$
 for $k=1, 2, ..., n-1$

where $\varepsilon = 1$ or 0. If k > 0, then we have

$$\tilde{p}_m(-k) = \frac{1}{(m+1)!} (-k-1)(-k-2) \cdots (-k-m)$$
$$= (-1)^m \cdot \frac{1}{k} \cdot \binom{m+k}{m+1}.$$

Then

$$k \cdot \sum_{i \ge 0} \binom{n-1}{i} \tilde{p}_{2n-2-i+\varepsilon}(-k)$$

$$=\sum_{i\geq 0} \binom{n-1}{i} (-1)^{i} [(1+x)^{2n-2+\varepsilon-i+k}]_{2n-1-i+\varepsilon}$$

Since

$$\begin{split} \sum_{i \ge 0} \binom{n-1}{i} (-1)^{i} [(1+x)^{2n-2+\varepsilon-i+k}]_{2n-i-1+\varepsilon} \\ &= \sum_{i \ge 0} \binom{n-1}{i} (-1)^{i} [x^{i}(1+x)^{2n-2+\varepsilon-i+k}]_{2n-1+\varepsilon} \\ &= \left[\left\{ \sum_{i \ge 0} \binom{n-1}{i} (-x)^{i} (1+x)^{n-i-1} \right\} (1+x)^{n+k-1+\varepsilon} \right]_{2n-1+\varepsilon} \\ &= [\{(1+x)-x\}^{n-1} (1+x)^{n+k-1+\varepsilon}]_{2n-1+\varepsilon} \\ &= [(1+x)^{n+k-1+\varepsilon}]_{2n-1+\varepsilon} = 0 \quad \text{for } k = 1, 2, ..., n-1, (3.4) \text{ holds and } (3.1) \\ &\text{ does.} \end{split}$$

Q. E. D.

Now we consider the following commutative diagram

As remarked in §2, $K_*(K)$ is a right flat module over $K_*(pt)$. So (2.7) says also that $id \otimes I$ is monic. Thus, to determine $\Psi_K(H_n)$, we have only to calculate $\Psi_K(nq_{n-1})$ and $\Psi_K(q_{n-1}(\frac{v-nu}{2}))$.

proposition 3.5.

$$\Psi_{K}(nq_{n-1}) = \sum_{j \ge 0} \left[\left(\frac{d}{dx} Q(x) \right) \cdot (Q(x))^{j} \right]_{n-1} \otimes (j+1)q_{j}.$$

Proof. By (2.5) ii),

$$\Psi_{K}n(q_{n-1})=n\sum_{j\geq 0}\left[(Q(x))^{j+1}\right]_{n}\otimes q_{j}.$$

So we have to prove that

(3.6)
$$n[(Q(x))^{j+1}]_n = \left[(j+1)(Q(x))^j \left(\frac{d}{dx} Q(x) \right) \right]_{n-1}$$

This is clear, because $(j+1)(Q(x))^{j}\left(\frac{d}{dx}Q(x)\right) = \frac{d}{dx}\{(Q(x))^{j+1}\}.$

For brevity, we put $s_n = q_{n-1}\left(\frac{v-nu}{2}\right)$, n > 0. Also we put $S(x) = \sum_{i>0} s_i x^i \in K_*(K)[[x]]$. Then

Proposition 3.7.

$$\Psi_{K} s_{n} = \sum_{j>0} \left[(Q(x))^{j} \right]_{n} \otimes s_{j} + \sum_{j \ge 0} \left[S(x) \cdot (Q(x))^{j} \right]_{n} \otimes (j+1) q_{j}$$

Proof. As in (3.5), we have

$$\Psi_{K}\left(q_{n-1}\cdot\left(\frac{v-nu}{2}\right)\right) = \left(\sum_{j>0} \left[\left(Q(x)\right)^{j}\right]_{n} \otimes q_{j-1}\right) \cdot \left(\frac{1 \otimes v - nu \otimes 1}{2}\right)$$

by (2.5). On the other hand, since $v \otimes 1 = 1 \otimes u$ in $K_*(K) \otimes_{K_*(pt)} K_*(K)$, we have

$$\begin{split} \sum_{j>0} (Q(x))^{j} \otimes q_{j-1}(v-ju) \\ &+ ((v-u)x + q_{1}(v-2u)x^{2} + \cdots) \otimes 1 \cdot \sum_{j \ge 0} (Q(x))^{j} \otimes (j+1)q_{j} \\ &= \sum_{j>0} (Q(x))^{j} \otimes q_{j-1} \cdot v - \sum_{j>0} (Q(x))^{j} \cdot jv \otimes q_{j-1} \\ &+ \sum_{j \ge 0} vQ(x) \cdot (Q(x))^{j} \otimes (j+1)q_{j} - \sum_{j \ge 0} u(x+2q_{1}x^{2} + \cdots) \cdot (Q(x))^{j} \otimes (j+1)q_{j} \\ &= \sum_{j>0} (Q(x))^{j} \otimes q_{j-1}v - \sum_{j \ge 0} u(x+2q_{1}x^{2} + \cdots) (Q(x))^{j} \otimes (j+1)q_{j}. \end{split}$$

So we have to prove that

$$\sum_{j>0} nu[(Q(x))^j]_n \otimes q_{j-1}$$

= $\sum_{j\geq 0} u[(x+2q_1x^2+\cdots)\cdot(Q(x))^j]_n \otimes (j+1)q_j.$

Thus we have only to show that

(3.8)
$$n[(Q(x))^{j+1}]_n = [(j+1)(Q(x))^j(x+2q_1x^2+\cdots)]_n$$

Since the right side of (3.8) is $\left[(j+1)(Q(x))^{j}\left(\frac{d}{dx}Q(x)\right)\right]_{n-1}$, (3.8) is equivalent to (3.6). Q.E.D.

As a collorary, we have

Theorem 3.9.

i)
$$\Psi_{K}b_{2n-1} = \sum_{j \ge 0} \left[\left(\frac{d}{dx} Q(x) \right) \cdot (Q(X))^{j} \right]_{n-1} \otimes b_{2j+1}$$
 and
ii) $\Psi_{K}b_{2n} = \sum_{j>0} \left[(Q(x))^{j} \right]_{n} \otimes b_{2j} + \sum_{j \ge 0} \left[S(x) \cdot (Q(x))^{j} \right]_{n} \otimes b_{2j+1}$

To determine $\Psi_K z_{2n-1}$ or $\Psi_K r_{2n-1}$, some algebraic notations are necessary. Let R be a ring with unit.

If A and B are R-algebras, then we define $i_A: A \to A \otimes_R B$ and $i_B: B \to A \otimes_R B$ by

$$i_A(a) = a \otimes 1$$
 and
 $i_B(b) = 1 \otimes b$ where $a \in A, b \in B$.

Thus we regard A and B as the subalgebras of $A \otimes_R B$.

If $f: A \rightarrow B$ is an algebra homomorphism, we can define an algebra homomorphism $f: A[[x]] \rightarrow B[[x]]$ by

$$f(\sum_{i} a_{i} x^{i}) = \sum_{i} f(a_{i}) x^{i}$$
 where $a_{i} \in A$.

So, we can regard A[[x]] and B[[x]] as the subalgebras of $(A \otimes_R B)[[x]]$.

Now we can state our main result. Let Q(x), S(x) be as before, and put $Z(x) = \sum_{i \ge 0} z_{2i+1} x^i$ where z_{2i+1} is the element in (2.8).

To determine $\Psi_{K} Z_{2n-1}$, we have only to determine $\Psi_{K} Z(x)$.

Teorem 3.10.

$$\Psi_{K}Z(x) = \frac{\left(\frac{d}{dx}Q(x)\right) \cdot Z(Q(x))}{1 \otimes 1 + S(x) \cdot Z(Q(x))}.$$

Proof. By virtue of (2.8), we may identify Z(x) and

$$\bar{r}(x) = \sum_{i \ge 0} r_{2i+1} x^i. \quad \text{Put}$$
$$\overline{b_{od}}(x) = \sum_{i \ge 0} b_{2i+1} x^i \quad \text{and}$$
$$\overline{b_{ev}}(x) = 1 + \sum_{i>0} b_{2i} x^i.$$

Then formally

$$\overline{b_{od}}(x)/\overline{b_{ev}}(x) = \frac{1}{\sqrt{x}} \cdot b_{od}(\sqrt{x})/b_{ev}(\sqrt{x}) = \frac{1}{\sqrt{x}} \cdot r(\sqrt{x}) = \overline{r}(x) .$$

Thus

$$\Psi_{K}\bar{r}(x) = \Psi_{K}(\overline{b_{od}}(x)/\overline{b_{ev}}(x))$$
$$= \Psi_{K}\overline{b_{od}}(x)/\Psi_{K}\overline{b_{ev}}(x) .$$

On the other hand, by (3.9), we have

$$\Psi_{K}\overline{b_{od}}(x) = \left(\frac{d}{dx}Q(x)\right) \cdot \overline{b_{od}}(Q(x)) \quad \text{and}$$
$$\Psi_{K}\overline{b_{ev}}(x) = \overline{b_{ev}}(Q(x)) + S(x) \cdot \overline{b_{od}}(Q(x)) .$$

Then

$$\Psi_{K}\bar{r}(x) = \frac{\left(\frac{d}{dx}Q(x)\right) \cdot \overline{b_{od}}(Q(x))}{\overline{b_{ev}}(Q(x)) + S(x) \cdot \overline{b_{od}}(Q(x))} .$$

So, we have the equation

$$\Psi_{K}\bar{r}(x) = \frac{\left(\frac{d}{dx}Q(x)\right)\cdot\bar{r}(Q(x))}{1\otimes 1+S(x)\cdot\bar{r}(Q(x))}.$$

Q. E. D.

As a corollary, we can obtain the comodule structure of $K_*(\Omega Sp(n))$ by (2.8).

As another corollary, we can obtain the comodule structures of $K_*(Sp(n))$ and $K_*(Sp)$.

Kazumoto Kozima

By the result of [4], the Atiyah-Hirzebruch spectral sequence

$$H_*(Sp(n); K_*(pt)) \Rightarrow K_*(Sp(n))$$
 collapses.

So, if $\sigma: QK_m(\Omega Sp(n)) \rightarrow PK_{m+1}(Sp(n))$ is the homomorphism induced by the *K*-homology suspension where *P* and *Q* denote the primitive and indecomposable modules, we have an isomorphism

$$K_*(Sp(n)) = \Lambda_K(\sigma z_1, \sigma z_3, \dots, \sigma z_{2n-1})$$

where Λ_K represents an exterior algebra over $K_*(pt)$ (see [9] Proposition (6.6)).

Put $w_{4k-1} = \sigma z_{2k-1}$, for k > 0. Since the homology suspension kills decomposable elements and commutes with coaction, that is, if $\Psi_K x = \sum_i a_i \otimes x_i$, then

$$\Psi_{K}(\sigma x) = \sum_{i} (-1)^{|a_{i}|} a_{i} \otimes \sigma x_{i}$$

where $x, x_i \in K_*(X)$, and $a_i \in K_*(K)$, we have

Theorem 3.11. There are $w_{4k-1} \in K_{4k-1}(Sp(n))$ for $0 < k \leq n$ such that

$$K_*(Sp(n)) = \Lambda_K(w_3, w_7, ..., w_{4n-1})$$
 and

$$\Psi_{K}(w_{4k-1}) = \sum_{j \ge 0} \left[\left(\frac{d}{dx} Q(x) \right) \cdot (q(x))^{j} \right]_{k-1} \otimes w_{4j+3}.$$

DEPARTMENT OF MATHEMATICS Kyoto University

References

- [1] J. F. Adams, Lectures on generalized cohomology, Lecture Notes in Math., 99 (1969).
- [2] —, Quillen's work on the formal groups and complex cobordism, Mathematics Lecture Notes, University of Chicago, Chicago, 1970.
- [3] —, A. S. Harris and R. M. Switzer, Hopf algebras of cooperations for real and complex K-theory, Proc. London Math. Soc., (3) 23, (1971), 385–408.
- [4] M. Atiyah-F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math. A.M.S., 3 (1961), 7–38.
- [5] R. Bott, An application of the Morse theory to the topology of Lie groups, Bull. Soc. Math. France, 84 (1956). 251-281.
- [6] ———, The space of loops on a Lie group, Michigan Math. J., 5 (1958), 35–61.
- [7] _____, The stable homotopy of classical groups, Ann. Math., 70 (1959), 313–337.
- [8] ______ and H. Samelson, Application of the theory of Morse to symmetric spaces, Amer.
 J. Math., 80 (1958), 964–1029.
- [9] F. Clarke, On the K-thory of the loop space on a Lie group, Proc. Camb. Phil. Scc., 76 (1974), 1-20.
- [10] P. E. Conner-E. E. Floyd, The relation of cobordism to K-theories, Lecture Notes in Math., 28 (1966).
- [11] A. Kono-K. Kozima, The space of loops on a symplectic group, to appear in Japanese J. Math.
- [12] K. Kozima, The Hopf algebra structure of $K_*(\Omega Sp(n))$, to appear in J. Math. Kyoto Univ.

[13] J. Milnor-J. Moore, On the structure of Hopf algebras, Ann. Math., 81 (1965), 211-264.

[14] T. Petrie, The weak complex bordism of Lie groups, Ann. Math., 88 (1968), 371-402.

[15] R. M. Switzer, Algebraic Topology-Homotopy and Hcmology, Springer-Verlag (1975).