The comodule structure of $K_{*}(\Omega S p(n))$

By
Kazumoto Kozima

(Received Feb. 5, 1979)

§0. Introduction

Let $S p(n)$ be the n-th symplectic group, $\Omega S p(n)$ its loop space. F. Clarke determined the Hopf algebra $K_{*}(\Omega S p(n))$ for $n \leqq 3$ where $K_{*}()$ is the Z_{2}-graded K-homology theory, following to the corresponding result of the ordinary homology by R. Bott ([6], [9]). Recently, the Hopf algebra $H^{*}(\Omega S p(n))$ was determined by Kono-Kozima [11]. Though our method used in [11] is not applicable for K theory directly, we can determine the Hopf algebra $K_{*}(\Omega S p(n))$ by some algebraic devices ([12]).

Using these results, we can fix the generators of $K_{*}(\Omega S p(n))$. The purpose of this paper is to determine the $K_{*}(K)$-comodule structures of $K_{*}(\Omega S p(n))$, and to write down the formulas for the above generators.

Under some algebraic notations, the main result of this paper is

Theorem 3.10.

$$
\Psi_{K} Z(x)=\frac{\left(\frac{d}{d x} Q(x)\right) \cdot Z(Q(x))}{1 \otimes 1+S(x) \cdot Z(Q(x))}
$$

For details, see § 3 .
This paper is organized as follows:
In § 1, we recall some notations in [11], [12].
The results of [12] are written by the words of Z_{2}-graded K-theory, but we can easily obtain the corresponding ones in Z-graded K-theory. So in this paper, we use only Z-graded theory.

In §2, we quote the results of [2], [3] and [15] for the structures of $K_{*}(K)$, $K O_{*}(K O)$ and the comodule structure of $K_{*}(B U)$ where $B U$ is the classifying space of the infinite unitary group U.

We also summarize the result of [12] for the structure of $K_{*}(\Omega S p(n))$ where $K_{*}()$ is Z-graded K-homology theory.

In §3, we introduce some algebraic notations which are needed to state the main result, and prove it.

Notice that the Euler class in K-theory which is used in this paper is different
from the ordinary one in [2], [15]. So, β_{i} used in $\S 2, \S 3$ is $t^{i} \beta_{i}$ in [2], or [15] where $t \in \pi_{2}(K)$ is the usual generator.

Throughout the paper, the ring of integers is denoted by Z, the ring of integers modulo n by Z_{n}, and the rational numbers by Q.

If R is a ring with unit, then the formal power series ring over R is denoted by $R[[x]]$. If $f(x)=\sum_{i} f_{i} x^{i} \in R[[x]]$ then the coefficient of x^{n} in $f(x)$ is denoted by $[f(x)]_{n}$.

Then the binomial coefficient $\binom{n}{m}$ is equal to $\left[(1+x)^{n}\right]_{m}$.

§1. Notations

First, recall some notations (see [11], [12]).
Let $U(n), S p(n)$ be the n-th unitary and symplectic group, and $U, S p$ the infinite unitary and symplectic group, respectively.

Let \mathbf{C} (resp. H) be the field of complex (resp. quaternion) numbers.
Let $a_{i j} \in \mathbf{H}$ and $a_{i j}=b_{i j}+j c_{i j}$ for $b_{i j}, c_{i j} \in \mathbf{C}$ and define a map $c: S p(n) \rightarrow U(2 n)$ by

$$
c\left(\left(a_{i j}\right)\right)=\left(\begin{array}{c}
N_{11} \cdots N_{1 n} \\
\vdots \\
N_{n 1} \\
N_{n} \\
N_{n n}
\end{array}\right),
$$

where

$$
N_{i j}=\left(\begin{array}{cc}
b_{i j} & -c_{i j} \\
\bar{c}_{i j} & \bar{b}_{i j}
\end{array}\right)
$$

Let $B G$ be the classifying space of a topological group G and $B f: B G \rightarrow B H$ the map induced by a continuous homomorphism $f: G \rightarrow H$.

Let ΩX be the space of loops on a space X and $\Omega f: \Omega X \rightarrow \Omega Y$ the map induced by a map $f: X \rightarrow Y$.

Let $S U(n), S U$ be the n-th and the infinite special unitary group.
Let $g: B U \rightarrow \Omega S U$ be the Bott map. Since $\Omega S U=\Omega_{0}^{2} B U$, we may regard g as a map to $\Omega_{0}^{2} B U$.

Let $i_{n}: S p(n) \rightarrow S p$ be the natural inclusion (see [11]).
Let $\gamma \rightarrow B U(1)$ be the Hopf line bundle. Though we usuary use $[\gamma-1] \in$ $K^{0}(B U(1))$ as the Euler class in K-theory ([2], [15]), we use $t^{-1}[\gamma-1] \in K^{2}(B U(1))$ as the Euler class in K-theory where $t \in \pi_{2}(K)=K^{-2}(p t)$ throughout this paper.

§ 2. $\quad \boldsymbol{K}_{*}(\boldsymbol{K})$-comodules

In this section, we quote some theorems in [2], [15], and state the main results.
Let K be $B U$-spectrum and $K O B O$-spectrum. In general, we have next theorem [15].

Theorem 2.1. Suppose E is a commutative ring spectrum such that $E_{*}(E)=C$ is flat as a right module over $E_{*}(p t)=R$. Then there are homomorphisms

$$
\begin{aligned}
\phi: & C \otimes_{R} C \longrightarrow C & \varepsilon: & C \longrightarrow R \\
\eta_{L}: & R \longrightarrow C & \eta_{R}: & R \longrightarrow C \\
c: & C \longrightarrow C & \Psi_{E}: & C \longrightarrow C \otimes_{R} C
\end{aligned}
$$

and $\Psi_{X}: E_{*}(X) \rightarrow C \otimes_{R} E_{*}(X)$ for all spectra X, with the following properties:
i) C is a commutative Hopf algebra with product ϕ having left and right units η_{L}, η_{R} and associative coproduct Ψ_{E} having augmentation ε;
ii) if $\lambda \in R$ and $x \in C$, then $\lambda x=\phi\left(\eta_{L}(\lambda) \otimes x\right), \quad x \lambda=\phi\left(x \otimes \eta_{R}(\lambda)\right) ;$
iii) $\varepsilon \eta_{L}=1=\varepsilon \eta_{R}, \quad c \eta_{L}=\eta_{R}, \quad c \eta_{R}=\eta_{L}, \quad \varepsilon c=\varepsilon, \quad c^{2}=1$;
iv) $\Psi_{E}(1)=1 \otimes 1$ and hence $\Psi_{E} \eta_{L}(\lambda)=\eta_{L}(\lambda) \otimes 1$ and $\Psi_{E} \eta_{R}(\lambda)=1 \otimes \eta_{R}(\lambda)$ for all $\lambda \in R$;
v) Ψ_{X} is natural with respect to maps of X;
vi) Ψ_{X} is a coaction map;
vii) if $\Psi_{X}(x)=\sum_{i} e_{i}^{\prime} \otimes x_{i}$ and $\Psi_{Y}(y)=\sum_{j} e_{j}^{\prime \prime} \otimes y_{j}$ for $x, x_{i} \in E_{*}(X), y, y_{j} \in$ $E_{*}(Y), e_{i}^{\prime}, e_{j}^{\prime \prime} \in C$ then $\Psi_{X \wedge Y}(x \wedge y)=\sum_{i, j}(-1)^{\left|x_{i}\right| \cdot\left|e^{\prime \prime} j\right|} e_{i}^{\prime} e_{j}^{\prime \prime} \otimes\left(x_{i} \wedge y_{j}\right)$;
viii) $\Psi_{s^{0}}: R \rightarrow C \otimes_{R} R=C$ is just η_{L}.

For details, see [15]. Notice that $K_{*}(K)$ and $K O_{*}(K O)$ are right flat over $K^{*}(p t)$ and $K O_{*}(p t)$, respectively. Then (2.1) is applicable to the cases $E=K, K O$.

We prefer to write Ψ_{K} in place of Ψ_{X} in (2.1) because we want to clarify that we work in K-theory.

Let $t \in K_{2}(p t)$ be a generator and $h_{i} \in K_{2 i}(B U(1))$ be the dual element of i-th power of the Euler class in K-theory. Let $\beta_{i} \in K_{2 i}(B U)$ be the image of h_{i} by the homomorphism induced by the natural map $B i: B U(1) \rightarrow B U$ (see [2], [11]).

Let $u=\eta_{L}(t), v=\eta_{R}(t)$.
If we consider $B U$ as the $2 n$-th term of K-spectrum, then we have a homomorphism

$$
\iota_{n}: \quad K_{2 q}(B U) \longrightarrow K_{2 q-2 n}(K) .
$$

Let $c: K O \rightarrow K$ be the complexification map. Then we have

$$
(c \wedge c)^{*}: K O_{*}(K O) \longrightarrow K_{*}(K)
$$

Proposition 2.2.

i) $\quad K_{*}(K) \rightarrow K_{*}(K) \otimes Q=Q\left[u, u^{-1}, v, v^{-1}\right]$ is monic.
ii) the composition

$$
\oplus_{n} K O_{4 n}(K O) \xrightarrow{(c \wedge c)_{*}} K_{*}(K) \longrightarrow K_{*}(K) \otimes Q=Q\left[u, u^{-1}, v, v^{-1}\right]
$$

is monic.

Theorem 2.3. \quad In $K_{*}(K) \otimes Q$

$$
c_{1}\left(\beta_{n}\right)=p_{n}(u, v)=\frac{1}{n!}(v-u)(v-2 u) \cdots(v-(n-1) u), \quad \text { for } n>1 .
$$

Theorem 2.4.

i) $\quad K_{*}(K)$ is spanned by $p_{n}(u, v)$ over $Z\left[u, u^{-1}, v^{-1}\right]$ in $K_{*}(K) \otimes Q$.
ii) The image of $\oplus_{n} K O_{4 n}(\mathrm{KO})$ in $K_{*}(K) \otimes Q$ is spanned by

$$
q_{n}(u, v)=\frac{2}{(2 n+2)!}\left(v^{2}-u^{2}\right)\left(v^{2}-2^{2} u^{2}\right) \cdots\left(v^{2}-n^{2} u^{2}\right)
$$

for $n>0$ over $Z\left[u^{4}, 2 u^{2}, u^{-4}, v^{-4}\right]$.
In [15], Switzer also determined $\Psi_{K}\left(p_{n}(u, v)\right)$ and $\Psi_{K}\left(q_{n}(u, v)\right)$.
We abbreviate $p_{n}(u, v), q_{n}(u, v)$ to p_{n}, q_{n}.
Put $p_{0}=q_{0}=1$.
Put

$$
\begin{aligned}
& P(x)=\sum_{i \geqq 0} p_{i} x^{i+1}, \\
& Q(x)=\sum_{i \geqq 0} q_{i} x^{i+1} \in K_{*}(K)[[x]] .
\end{aligned}
$$

Theorem 2.5.

i) $\quad \Psi_{K}(u)=u \otimes 1, \quad \Psi_{K}(v)=1 \otimes v \quad$ and

$$
\Psi_{K}\left(p_{n}\right)=\sum_{j \geqq 0}\left[(P(x))^{j+1}\right]_{n+1} \otimes p_{j}, \quad n \geqq 0,
$$

ii) $\quad \Psi_{K}\left(q_{n}\right)=\sum_{j \geqq 0}\left[(Q(x))^{j+1}\right]_{n+1} \otimes q_{j}, \quad n \geqq 0$.

For the proofs of (2.2)-(2.5), see [2], [3] and [15]. The formulas of (2.5) are slightly different from the original ones in [15], but one can easily show that they are essentially equivalent.

Let $B: S^{2} B U \rightarrow B U$ be an adjoint map of the Bott map $g: B U \rightarrow \Omega_{0}^{2} B U$. Define $\underline{B}: \widetilde{K}_{m}(B U) \longrightarrow \widetilde{K}_{m+2}(B U)$ by the composition

$$
\tilde{K}_{m}(B U) \cong \tilde{K}_{m+2}\left(S^{2} B U\right) \xrightarrow{B_{*}^{*}} \tilde{K}_{m+2}(B U) .
$$

Then the diagram

Since $v \cdot$ is an isomorphism and \underline{B} kills the decomposable elements in $K_{*}(B U)$, t_{n} also vanishes on the decomposable elements. As a corollary of (2.2) and (2.3), we have

Proposition 2.6. $\iota_{n}: Q\left(K_{*}(B U)\right) \rightarrow K_{*-2 n}(K)$ is a monomorphism where Q is indecomposable functor.

Proof. One can easily show that $\left\{v^{-n+1} p_{i}\left(=\iota_{n}\left(\beta_{i}\right)\right)\right\}_{i>0}$ are linearly independent over $Z\left[u, u^{-1}\right]$. Since $Q\left(K_{*}(B U)\right.$) is a free $K_{*}(p t)$-module generated by $\left\{\beta_{i}\right\}_{i>0}$, (2.6) is clear.

Let I be the composition

$$
\tilde{K}_{m}(B U(1)) \longrightarrow \widetilde{K}_{m}(B U) \xrightarrow{\iota_{1}} K_{m-2}(K) .
$$

Then (2.6) says
Proposition 2.7. I is a monomorphism.
Next we rewrite the results of [12] in the words of Z-graded K-theory. We will use the same notation both in Z_{2} - and Z-graded theories.

So, put $b_{2 n-1}=\sum_{i \geqq 0}\binom{n-1}{i} t^{i} \beta_{2 n-1-i} \in K_{4 n-2}(B U)$ and

$$
b_{2 n}=\sum_{i \geqq 0}\binom{n-1}{t} t^{i} \beta_{2 n-1} \in K_{4 n}(B U) \text { for } n>0
$$

We define also $b_{o d}(x)$ and $b_{e v}(x) \in K_{*}(B U)[[x]]$ to be $\sum_{i>0} b_{2 i-1} x^{2 i-1}$ and $1+$ $\sum_{i>0} b_{2 i} x^{2 i}$. Put $r(x)=\sum_{i>0} r_{2 i-1} x^{2 i-1}=b_{o d}(x) / b_{e v}(x)$. Let g, c and i_{n} be the maps as in § 1 .

Theorem 2.8. There are $z_{2 k-1} \in K_{4 k-2}(\Omega S p)$ such that
i) $K_{*}(\Omega S p)=K_{*}(p t)\left[z_{1}, z_{3}, \ldots, z_{2 k-1}, \ldots\right]$ as an algebra
ii) $g_{*}^{-1} \circ(\Omega c)_{*}: K_{*}(\Omega S p) \rightarrow K_{*}(B U)$ is monic. Moreover $g_{*}^{-1} \circ(\Omega c)_{*} z_{2 k-1}=$ $r_{2 k-1}$, for $k>0$,
iii) $\left(\Omega i_{n}\right)_{*}: K_{*}(\Omega S p(n)) \rightarrow K_{*}(\Omega S p)$ is monic, and $\operatorname{Im}\left(\Omega i_{n}\right)_{*}$ is generated by $z_{1}, z_{3}, \ldots, z_{2 n-1}$ as a subalgebra of $K_{*}(\Omega S p)$.

For the proofs of i)-iii), one has only to modify those of the corresponding theorems of [12].

Since the coactions are natural, and since $\Psi_{K}\left(\beta_{n}\right)$ is known, we can know the comodule structure of $K_{*}(\Omega S p(n))$ or $K_{*}(\Omega S p)$ by virtue of the above theorem.

In the next section, we will obtain 'internal' formulas, that is, we will write down $\Psi_{K}\left(z_{n}\right)$ by z_{i}, q_{j} and the new element $s_{k} \in K_{*}(K)$.

§3. Comodule structure of $K_{*}(\boldsymbol{\Omega S p}(\boldsymbol{n}))$

First, we determine $\Psi_{K}\left(b_{2 n-1}\right)$ and $\Psi_{K}\left(b_{2 n}\right)$.
Let $\quad H_{2 n-1}=\sum_{i \geqq 0}\binom{n-1}{i} t^{i} h_{2 n-1-i}$ and

$$
H_{2 n}=\sum_{i \geqq 0}\binom{n-1}{i} t^{i} h_{2 n-i} \in K_{*}(B U(1)) .
$$

By the naturarity of Ψ_{K}, we have only to determine $\Psi_{K}\left(H_{2 n-1}\right)$ and $\Psi_{K}\left(H_{2 n}\right)$. We
need the following lemma.

Lemma 3.1.

i) $\quad I\left(H_{2 n-1}\right)=\ell_{1}\left(b_{2 n-1}\right)=n q_{n-1}$ and,
ii) $\quad I\left(H_{2 n}\right)=\iota_{1}\left(b_{2 n}\right)=q_{n-1}\left(\frac{v-n u}{2}\right)$.

Proof. For i), we need to show that

$$
\sum_{i \geqq 0}\binom{n-1}{i} u^{i} p_{2 n-1-i}=n q_{n-1} .
$$

Put

$$
\begin{aligned}
& \tilde{p}_{k}(x)=\frac{1}{(k+1)!}(x-1)(x-2) \cdots(x-k) \quad \text { and } \\
& \tilde{q}_{k}(x)=\frac{2}{(2 k+2)!}\left(x^{2}-1\right)\left(x^{2}-2^{2}\right) \cdots\left(x^{2}-k^{2}\right) .
\end{aligned}
$$

Then $p_{k+1}=\tilde{p}_{k}\left(\frac{v}{u}\right) u^{k}$ and $q_{k}=\tilde{q}_{k}\left(\frac{v}{u}\right) u^{2 k}$.
So we have only to prove the equation

$$
\begin{equation*}
\sum_{i \geqq 0}\binom{n-1}{i} \tilde{p}_{2 n-2-i}(x)=n \tilde{q}_{n-1}(x) . \tag{3.2}
\end{equation*}
$$

For ii), we need to prove

$$
\begin{equation*}
2 \cdot \sum_{i \geqq 0}\binom{n-1}{i} \tilde{p}_{2 n-1-i}(x)=(x-n) \tilde{q}_{n-1}(x) . \tag{3.3}
\end{equation*}
$$

Clearly the both sides of (3.2) (respectively (3.3)) are the polynomials of degree $2 n-2$ (respectively $2 n-1$), and have the same coefficients at the maximal degree. Since $\binom{n-1}{i}=0$ for $i>n-1$, the both sides of (3.2) (respectively (3.3)) have common roots $1,2, \ldots, n-1$ (respectively $1,2, \ldots, n$). So we may show that

$$
\begin{equation*}
\sum_{i \geqq 0}\binom{n-1}{i} \tilde{p}_{2 n-2-i+\varepsilon}(-k)=0 \quad \text { for } \quad k=1,2, \ldots, n-1 \tag{3.4}
\end{equation*}
$$

where $\varepsilon=1$ or 0 .
If $k>0$, then we have

$$
\begin{aligned}
\tilde{p}_{m}(-k) & =\frac{1}{(m+1)!}(-k-1)(-k-2) \cdots(-k-m) \\
& =(-1)^{m} \cdot \frac{1}{k} \cdot\binom{m+k}{m+1} .
\end{aligned}
$$

Then

$$
k \cdot \sum_{i \geqq 0}\binom{n-1}{i} \tilde{p}_{2 n-2-i+\varepsilon}(-k)
$$

$$
=\sum_{i \geqq 0}\binom{n-1}{i}(-1)^{i}\left[(1+x)^{2 n-2+\varepsilon-i+k}\right]_{2 n-1-i+\varepsilon}
$$

Since

$$
\begin{aligned}
& \sum_{i \geqq 0}\binom{n-1}{i}(-1)^{i}\left[(1+x)^{2 n-2+\varepsilon-i+k}\right]_{2 n-i-1+\varepsilon} \\
& \quad=\sum_{i \geqq 0}\binom{n-1}{i}(-1)^{i}\left[x^{i}(1+x)^{2 n-2+\varepsilon-i+k}\right]_{2 n-1+\varepsilon} \\
& \quad=\left[\left\{\sum_{i \geqq 0}\binom{n-1}{i}(-x)^{i}(1+x)^{n-i-1}\right\}(1+x)^{n+k-1+\varepsilon}\right]_{2 n-1+\varepsilon} \\
& \quad=\left[\{(1+x)-x\}^{n-1}(1+x)^{n+k-1+\varepsilon}\right]_{2 n-1+\varepsilon} \\
& \quad=\left[(1+x)^{n+k-1+\varepsilon}\right]_{2 n-1+\varepsilon}=0 \quad \text { for } k=1,2, \ldots, n-1,(3.4) \text { holds and }(3.1)
\end{aligned}
$$ does.

Q.E.D.

Now we consider the following commutative diagram

As remarked in $\S 2, K_{*}(K)$ is a right flat module over $K_{*}(p t)$. So (2.7) says also that $i d \otimes I$ is monic. Thus, to determine $\Psi_{K}\left(H_{n}\right)$, we have only to calculate $\Psi_{K}\left(n q_{n-1}\right)$ and $\Psi_{K}\left(q_{n-1}\left(\frac{v-n u}{2}\right)\right)$.
proposition 3.5.

$$
\Psi_{K}\left(n q_{n-1}\right)=\sum_{j \geqq 0}\left[\left(\frac{d}{d x} Q(x)\right) \cdot(Q(x))^{j}\right]_{n-1} \otimes(j+1) q_{j}
$$

Proof. By (2.5) ii),

$$
\Psi_{K} n\left(q_{n-1}\right)=n \sum_{j \geqq 0}\left[(Q(x))^{j+1}\right]_{n} \otimes q_{j} .
$$

So we have to prove that

$$
\begin{equation*}
n\left[(Q(x))^{j+1}\right]_{n}=\left[(j+1)(Q(x))^{j}\left(\frac{d}{d x} Q(x)\right)\right]_{n-1} . \tag{3.6}
\end{equation*}
$$

This is clear, because $(j+1)(Q(x))^{j}\left(\frac{d}{d x} Q(x)\right)=\frac{d}{d x}\left\{(Q(x))^{j+1}\right\}$.
For brevity, we put $s_{n}=q_{n-1}\left(\frac{v-n u}{2}\right), n>0$. Also we put $S(x)=\sum_{i>0} s_{i} x^{i}$ $\in K_{*}(K)[[x]]$. Then

Proposition 3.7.

$$
\Psi_{K} s_{n}=\sum_{j>0}\left[(Q(x))^{j}\right]_{n} \otimes s_{j}+\sum_{j \geqq 0}\left[S(x) \cdot(Q(x))^{j}\right]_{n} \otimes(j+1) q_{j}
$$

Proof. As in (3.5), we have

$$
\Psi_{K}\left(q_{n-1} \cdot\left(\frac{v-n u}{2}\right)\right)=\left(\sum_{j>0}\left[(Q(x))^{j}\right]_{n} \otimes q_{j-1}\right) \cdot\left(\frac{1 \otimes v-n u \otimes 1}{2}\right)
$$

by (2.5). On the other hand, since $v \otimes 1=1 \otimes u$ in $K_{*}(K) \otimes_{K_{*}(p t)} K_{*}(K)$, we have

$$
\begin{aligned}
\sum_{j>0} & (Q(x))^{j} \otimes q_{j-1}(v-j u) \\
& +\left((v-u) x+q_{1}(v-2 u) x^{2}+\cdots\right) \otimes 1 \cdot \sum_{j \geqq 0}(Q(x))^{j} \otimes(j+1) q_{j} \\
= & \sum_{j>0}(Q(x))^{j} \otimes q_{j-1} \cdot v-\sum_{j>0}(Q(x))^{j} \cdot j v \otimes q_{j-1} \\
& +\sum_{j \geqq 0} v Q(x) \cdot(Q(x))^{j} \otimes(j+1) q_{j}-\sum_{j \geqq 0} u\left(x+2 q_{1} x^{2}+\cdots\right) \cdot(Q(x))^{j} \otimes(j+1) q_{j} \\
= & \sum_{j>0}(Q(x))^{j} \otimes q_{j-1} v-\sum_{j \geqq 0} u\left(x+2 q_{1} x^{2}+\cdots\right)(Q(x))^{j} \otimes(j+1) q_{j} .
\end{aligned}
$$

So we have to prove that

$$
\begin{aligned}
& \sum_{j>0} n u\left[(Q(x))^{j}\right]_{n} \otimes q_{j-1} \\
& \quad=\sum_{j \geqq 0} u\left[\left(x+2 q_{1} x^{2}+\cdots\right) \cdot(Q(x))^{j}\right]_{n} \otimes(j+1) q_{j}
\end{aligned}
$$

Thus we have only to show that

$$
\begin{equation*}
n\left[(Q(x))^{j+1}\right]_{n}=\left[(j+1)(Q(x))^{j}\left(x+2 q_{1} x^{2}+\cdots\right)\right]_{n} . \tag{3.8}
\end{equation*}
$$

Since the right side of (3.8) is $\left[(j+1)(Q(x))^{j}\left(\frac{d}{d x} Q(x)\right)\right]_{n-1},(3.8)$ is equivalent to (3.6).
Q.E.D.

As a collorary, we have

Theorem 3.9.

i) $\quad \Psi_{K} b_{2 n-1}=\sum_{j \geq 0}\left[\left(\frac{d}{d x} Q(x)\right) \cdot(Q(X))^{j}\right]_{n-1} \otimes b_{2_{j+1}} \quad$ and
ii) $\quad \Psi_{K} b_{2 n}=\sum_{j>0}\left[(Q(x))^{j}\right]_{n} \otimes b_{2 j}+\sum_{j \geqq 0}\left[S(x) \cdot(Q(x))^{j}\right]_{n} \otimes b_{2 j+1}$

To determine $\Psi_{K} z_{2 n-1}$ or $\Psi_{K} r_{2 n-1}$, some algebraic notations are necessary.
Let R be a ring with unit.
If A and B are R-algebras, then we define $i_{A}: A \rightarrow A \otimes_{R} B$ and $i_{B}: B \rightarrow A \otimes_{R} B$ by

$$
\begin{array}{ll}
i_{A}(a)=a \otimes 1 & \text { and } \\
i_{B}(b)=1 \otimes b & \text { where } \quad a \in A, b \in B .
\end{array}
$$

Thus we regard A and B as the subalgebras of $A \otimes_{R} B$.
If $f: A \rightarrow B$ is an algebra homomorphism, we can define an algebra homomorphism $f: A[[x]] \rightarrow B[[x]]$ by

$$
f\left(\sum_{i} a_{i} x^{i}\right)=\sum_{i} f\left(a_{i}\right) x^{i} \quad \text { where } \quad a_{i} \in A .
$$

So, we can regard $A[[x]]$ and $B[[x]]$ as the subalgebras of $\left(A \otimes_{R} B\right)[[x]]$.

Now we can state our main result. Let $Q(x), S(x)$ be as before, and put $Z(x)$ $=\sum_{i \geqq 0} z_{2 i+1} x^{i}$ where $z_{2 i+1}$ is the element in (2.8).

To determine $\Psi_{K} z_{2 n-1}$, we have only to determine $\Psi_{K} Z(x)$.

Teorem 3.10.

$$
\Psi_{K} Z(x)=\frac{\left(\frac{d}{d x} Q(x)\right) \cdot Z(Q(x))}{1 \otimes 1+S(x) \cdot Z(Q(x))}
$$

Proof. By virtue of (2.8), we may identify $Z(x)$ and

$$
\begin{aligned}
& \bar{r}(x)=\sum_{i \geqq 0} r_{2 i+1} x^{i} . \quad \text { Put } \\
& \overline{b_{o d}}(x)=\sum_{i \geqq 0} b_{2 i+1} x^{i} \quad \text { and } \\
& \overline{b_{e v}}(x)=1+\sum_{i>0} b_{2 i} x^{i} .
\end{aligned}
$$

Then formally

$$
\overline{b_{o d}}(x) / \overline{b_{e v}}(x)=\frac{1}{\sqrt{x}} \cdot b_{o d}(\sqrt{x}) / b_{e v}(\sqrt{x})=\frac{1}{\sqrt{x}} \cdot r(\sqrt{x})=\bar{r}(x) .
$$

Thus

$$
\begin{aligned}
\Psi_{K} \bar{r}(x) & =\Psi_{K}\left(\overline{b_{o d}}(x) / \overline{b_{e v}}(x)\right) \\
& =\Psi_{K} \overline{b_{o d}}(x) / \Psi_{K} \overline{b_{e v}}(x) .
\end{aligned}
$$

On the other hand, by (3.9), we have

$$
\begin{aligned}
& \Psi_{K} \overline{b_{o d}}(x)=\left(\frac{d}{d x} Q(x)\right) \cdot \overline{b_{o d}}(Q(x)) \quad \text { and } \\
& \Psi_{K} \overline{b_{e v}}(x)=\overline{b_{e v}}(Q(x))+S(x) \cdot \overline{b_{o d}}(Q(x)) .
\end{aligned}
$$

Then

$$
\Psi_{K} \bar{r}(x)=\frac{\left(\frac{d}{d x} Q(x)\right) \cdot \overline{b_{o d}}(Q(x))}{\overline{b_{e v}}(Q(x))+S(x) \cdot \overline{b_{o d}}(Q(x))} .
$$

So, we have the equation

$$
\Psi_{K} \bar{r}(x)=\frac{\left(\frac{d}{d x} Q(x)\right) \cdot \bar{r}(Q(x))}{1 \otimes 1+S(x) \cdot \bar{r}(Q(x))} .
$$

Q.E.D.

As a corollary, we can obtain the comodule structure of $K_{*}(\Omega S p(n))$ by (2.8).
As another corollary, we can obtain the comodule structures of $K_{*}(S p(n))$ and $K_{*}(S p)$.

By the result of [4], the Atiyah-Hirzebruch spectral sequence

$$
H_{*}\left(S p(n) ; K_{*}(p t)\right) \Rightarrow K_{*}(S p(n)) \quad \text { collapses. }
$$

So, if $\sigma: Q K_{m}(\Omega S p(n)) \rightarrow P K_{m+1}(S p(n))$ is the homomorphism induced by the K-homology suspension where P and Q denote the primitive and indecomposable modules, we have an isomorphism

$$
K_{*}(S p(n))=\Lambda_{K}\left(\sigma z_{1}, \sigma z_{3}, \ldots, \sigma z_{2 n-1}\right)
$$

where Λ_{K} represents an exterior algebra over $K_{*}(p t)$ (see [9] Proposition (6.6)).
Put $w_{4 k-1}=\sigma z_{2 k-1}$, for $k>0$. Since the homology suspension kills decomposable elements and commutes with coaction, that is, if $\Psi_{K} x=\sum_{i} a_{i} \otimes x_{i}$, then

$$
\Psi_{K}(\sigma x)=\sum_{i}(-1)^{\left|a_{i}\right|} a_{i} \otimes \sigma x_{i}
$$

where $x, x_{i} \in K_{*}(X)$, and $a_{i} \in K_{*}(K)$, we have

Theorem 3.11. There are $w_{4 k-1} \in K_{4 k-1}(S p(n))$ for $0<k \leqq n$ such that

$$
\begin{aligned}
& K_{*}(S p(n))=\Lambda_{K}\left(w_{3}, w_{7}, \ldots, w_{4 n-1}\right) \quad \text { and } \\
& \Psi_{K}\left(w_{4 k-1}\right)=\sum_{j \geq 0}\left[\left(\frac{d}{d x} Q(x)\right) \cdot(q(x))^{j}\right]_{k-1} \otimes w_{4 j+3} .
\end{aligned}
$$

Department of Mathematics Kyoto University

References

[1] J. F. Adams, Lectures on generalized cohomology, Lecture Notes in Math., 99 (1969).
[2] , Quillen's work on the formal groups and complex cobordism, Mathematics Lecture Notes, University of Chicago, Chicago, 1970.
[3] -, A. S. Harris and R. M. Switzer, Hopf algebras of cooperations for real and complex K-theory, Proc. London Math. Soc., (3) 23, (1971), 385-408.
[4] M. Atiyah-F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math. A.M.S., 3 (1961), 7-38.
[5] R. Bott, An application of the Morse theory to the topology of Lie groups, Bull. Soc. Math. France, 84 (1956). 251-281.
[6] ——, The space of loops on a Lie group, Michigan Math. J., 5 (1958), 35-61.
[7] —, The stable homotopy of classical groups, Ann. Math., 70 (1959), 313-337.
[8] and H. Samelson, Application of the theory of Morse to symmetric spaces, Amer. J. Math., 80 (1958), 964-1029.
[9] F. Clarke, On the K-thory of the loop space on a Lie group, Proc. Camb. Phil. Scc., 76 (1974), 1-20.
[10] P. E. Conner-E. E. Floyd, The relation of cobordism to K-theories, Lecture Notes in Math., 28 (1966).
[11] A. Kono-K. Kozima, The space of loops on a symplectic group, to appear in Japanese J. Math.
[12] K. Kozima, The Hopf algebra structure of $K_{*}(\Omega S p(n))$, to appear in J. Math. Kyoto Univ.
[13] J. Milnor-J. Moore, On the structure of Hopf algebras, Ann. Math., 81 (1965), 211-264.
[14] T. Petrie, The weak complex bordism of Lie groups, Ann. Math., 88 (1968), 371-402.
[15] R. M. Switzer, Algebraic Topology-Homotopy and Hcmology, Springer-Verlag (1975).

