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1. Introduction

The purpose of the present paper is to investigate an  interacting system de-
scribing an evolution of gene frequencies in population genetics. In particular, we
are interested in the effect of geographical structure in the process of evolution.

We shall first explain our interacting system. Let S  be a countable set. Each
element i of S is called "a  co lony". W e assume that there are two alleles A  and
B at each colony and denote by x i (1—x i)  the gene frequency of the A-allele (resp.
the B-allele) for the colony i e S .  A time evolution of gene frequencies is caused by
the following three factors;

(1) mutation in each colony,
(2) migration among colonies, and
( 3 )  random sampling drift.

It is described by means of the following stochastic differential equation,

(1.1) clx i(t)=a(x i(t))dB i(t)+(y — (u+v )x i(t)+ E q  i (t))dt
jE S

where a(Y )— v 2
1

N  Y ( 1 — 31) i f  O y l

=0 otherwise,

with a positive constant N , u and y are constants such that u  . 1:) and  !) .0, q i i

(i, je  S ) are constants such that q i #  j  a n d  E q t ; = 0  fo r  every i ,  and
j e s

{Bi(t)} i e s  is  an  independent system of one-dimensional Brownian m otions. N  de-
notes the population size of each colony at random sampling, u and y denote muta-
tion rates between A  and B , and for i*  j, q i i  denotes the migration rate from j e S
to i e S.

We assume

(1.2) sup lq i i l < 09.
ie S

Then it is known that if 0 _ x i(0) 1  f o r  all i e S, (1.1) has a unique solution satisfying

(1.3) 0  x i(t) 1 for all i E S and a.s. (cf. Shiga-Shimizu [10])
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Accordingly, (1.1) defines a  diffusion process on X = [0 fls, where X  is equipped
with the product topology. This system is also described analytically as follows.

Let C(X) be the set of all continuous functions on X  and let C6(X) be the set
of all functions f e C(X) which depend only on finite number of coordinates of X
an d  a re  twice continuously differentiable. Then there exists a  un ique  strongly
continuous semi-group {T } on C(X) such that

(1.4) 71=1 and Tt f  0 for every fe C (X ) satisfying f  0, and

t
(1.5) T, f — f= (3 T s Af ds for every f E C (X ), where A f(x )=

E  ,! a 2 (x.)D?. f (x )+  E (v—(u+v)x i + E  q u x i )D i f (x )
i s  L t t t

i e S j e S

a0 2
f o r  x= {x i } e X , D,— , and D?.,—  .. 2  .

axi ° x i

In fact, {T,} is obtained by using the solution of (1.1). That is, denoting by {x(t: x)}
the solution of (1.1) with the initial condition x(0) = x, we have 7', f (x)= E[f (x(t : x))]
for each f eC(X).

Such a  system is called a  continuous tim e stepping stone m o d e l. Discrete
time models have been investigated by m any authors. cf.  Kimura-Weiss [5],
Fleming-Su [1], Maruyama [8], Itazu [2], and so o n . O n  th e  other hand Nagylaki
[9] considered recently an continuous time one-dimensional model by means of con-
tinuous approximations in space. However there is no systematic study known to
us concerning stationary states in either case.

In  this paper we shall study stationary states and ergodic behaviors o f this
system.

Let .9(X) be the set of all probability measures on X endowed with the topology
of weak convergence. Then 9 (X ) is compact since X is compact metrizable. Let
us denote by {Tn the adjoint semi-group on 9 (X ) induced by {T,} and denote by
.9' the  se t o f all fixed points of {T n, i.e. 9 9 = {pt e .9 (X ); T u = ,u  for all 0}.
Each element o f „99  is called a  stationary  state o r  an  equiliblium state o f  {7 } .
Since .1' is a  non-empty compact convex set, we shall investigate the structure of
Y e „, the set of all extremal elements of Y.

In §2 we shall obtain the following general result in the case with mutation.

Theorem 1 .1  Suppose that u + v > 0 . T hen there ex ists a un ique  v e 9(X)
such that

(1.6) lim  T;k(5x =v holds f o r every x e X , w here (5x stands f or the  poin t m ass at
x e X.

Thus, ,9' i s  a s in g le to n . In  particular if  u=0 and  v>0  (u>0  and  v=0), then
v=3 1 (resp. 3 0 ) where 1 e X  and 0 e X  are def ined by  1= {x i =1} and 0= {x i = 0}.

Next we shall investigate the case without mutation, that is, the case u = v=0.
Let us introduce three cases classified by the condition on migration rates. For
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this, we prepare several definitions and notations. L et Q=Ig i i l  and set P,=etQ.
By (1.2)13 , is well-defined and satisfies

(1.7)P 0 ,  P t l = 1 and  dd
P
i t =P,Q =Q P, for every O.

Let us define a transition probability P,OP, on S x S by

(1 .8 )  P,OP,(1, j)=P,(i i , j
1
)Pr(i 2 ,1 2 ) f o r  e a c h  .1=(i 1 , i 2 )e  S x S  a n d  /=(i1,./2)

e S x S .

W e denote by (X„ P4 2))  the  continuous time Markov chain on  S  x  S  associated
with P O P .  We assume that Q= {gi i }  is irreducible and  introduce the following
classification.

Case I P r  [171, 2 (X t )dt= + col= 1 for all I e S x  S,

Case II P-r 2(X t)dt < + ool= 1 f o r  a l l  le S x  S ,  and

Case III0 <  „  [1
0  

14 2 (X ( ) d t =  + ool<1 for all i e S x  S,

where z1 2 ={(i 1 , i 2 ) e S x S j i ,=i 2 }.
Since Q is irreducible Case I, Case II, and Case III exhaust all possibilities.

In §3 we shall consider Case I  and obtain the following.

Theorem 1 . 2  Assume Case I. T hen w e hav e

(i) 6 °  ex= Ow  6 11
and
(ii) f o r  a  y e  g(X ), T i  c o n v e r g e s  a s  t-->œ  i f  a n d  only  i f  E j) u(dx )x ;

jeS
con verges a s t--+cx) f o r  each i e S.

I f  this con d ition  is satisf ied, tli.rn.  j Ec s Ipt (i, j)1,u(dx)x j =-A is independent o f  i  and
Ern TPti = A6, +(I
I

Results on  C ase II and Case III  are closely related to Q-harmonic functions. A
function h  defined on S  is said to be Q-harmonic i f  E gu h (j)=0  fo r  each  i e S.

j E S

Let us denote by ,Ye the set of all Q-harmonic functions satisfying h :5_1. Each
h e A° can be regarded as an element of X  and Sh  denotes the point mass at h. Then
we have

Theorem 1 . 3  A ssum e Case II. Then,

( i)  lim T PS h =v h  exists f o r  each h E

(ii) v„(dx)x i =h(i) for each h e i e  and i E S,
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and
Yex={ 1'n; h G dr}

Theorem 1 .4  A ssume the sam e conditions as in Theorem  1.3. L et pe..9(X )
and h e * '.  T h e n  lirn T `p=v „ if  and only  if

t
( L i m  E D x j conv erges to h(i) in  probability  w ith respect to  p  f o r each

j e S
i e S.

The above theorems will be obtained in  § 4  a n d  § 5 . In § 6 we shall study Case III
and give a n  example which illustrates a  different phenomenon from Case I  and
C ase  II . In §7  we shall give some examples and remarks.

Finally it would be interesting to compare our results and methods with those
of Liggett [6] in the theory of infinite particle system with interactions.

2 .  Auxiliary Markov chains and the case with mutation

L e t /  be the set of all non-negative integer-valued functions a  defined o n  S
satisfying =  ai < +o o .  a  is denoted by el if a i =1  and  a f = 0  fo r  j = i. For

j e S
a e l  and  fie l, a+ f3e / is defined by (a-1-13) i = ai +fl i fo r  each i e S .  If for
all i E S we denote it by a and in such case, a — /3e / is defined by (a-13) i = a,— 13,
for each i e S.
Now, let us introduce two kinds of continuous time Markov chains on I. S e t

if /3= a — e i+c ie l  (i 0 i)

1  
4 N  

a ( a - 1 ) +  v a i if  /3 = a — ie /
(2.1) R„,p=

1 
sœ l q i i 4 N  i s cci(cci — 1 ) —i f  fi =ot

0 otherwise.

0 otherwise.

Then it follows easily that under the condition (1.2) R = { R }  (resp. .17 ={ })fi })
generates a unique continuous time conservative Markov chain (a t , P„)„E i (resp.
(a„  P ii) ) on / such that

l i m  
P Œ (; = /3/ — 4 , f i  (2.3) f o r  a, fie/

tto

(2.2) R O E ,

°Ca if f3=a — e i+s ie l  ( i0 j )

iEs cxi q i i i f  f l = a

POE(a, = fi) 1
1 ,fi(2.3)' —R

a , f lt1 .0
fo r a , /3e  /
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1 if a=fl
where i = {

O otherwise.

In fact, it is easy to see that fa„ /JOEL , is  an  independent system o f  la l number of
Pr Markov chains, i.e. it satisfies

(2.4) i ' [ g ( a t ) ]  =  E  • • •  E p t ( i k , i k ) , ( 0 i +  • • •  + 0 . )

if a =E i ' +  •  -Feim, for every bounded function g  on I. In particular, if v=0 and
la' = 1 , both  (a„ P OE)  and  (a t , P OE) can be regarded a s  Pt-M arkov c h a in s . L e t A
= f a  / I 2 for  so m e  i eS } . If  v=0, (a„ P OE)„c i  h a s  th e  sam e probabilitic be-
havior as (a„ POEL E,  up to the hitting time for A .  But when a lies on A , there is a
possibility that one of particles disappears.

Let 11„ be the n-th jumping time of {at }, i.e. ij = inf ft; a t  k ao l, n2= 111+ 111(9 ),
•••5 = 1111-i +'j(9,_),  where 9  stands for the shift operator of the Markov chain
(at , PO or (a„ P OE). T h en  w e  have immediately the following.

Lemma 2 . 1  I f  a e 4, then
c q J

ieS  
Pct[la„11 .-'1 0(01] =

;ezilqii1+ . 4
I

N  ;

For each a E I, we put f x (x)= and .fo(x) I .  T h e n  w e  have the following.
iE S

Lemma 2 .2  For A  defined in (1.5), it holds that

(2.5) A L(x)=0EIRoe,fl.63 (x) — ulal.f.(x) f o r e ac h  c e I.

P ro o f .  N oting  that Di f,c(x )=a i f , ( x )  a n d  Gqi f ,c(x )=a i (ai -1 )x  L _ 2 ,1(x), it
follows easily that

A f cc ( x ) = ; ( 4
1
N  a i (a i - 1 ) +v a i ) ( f , (x)— fc,(x ))+

E  EieS jeS

The following lemma plays an essential role throughout this paper.

Lemma 2.3

(2.6) T t .l« (x )=E „L f (x )e x p (-1 1 1 :la 5 Ids)1 f o r a l l  a  e I.

P ro o f . By (1.5) and Lemma 2.2, we see that for each a E

(2.7) Tif.(x)— f . ( x )=  >R o

Hence g(t, a)= 7; f oe(x) satisfies the following equation,
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(2.8)
d

' g (t  a )=  E R„ p g(t, 13)—ulalg(t, a)dt 13,1

get', a) =  fOE(x)

On the other hand it is well-known that (2.8) is uniquely solved by means of the
Feynman-Kac formula as follows: (cf. Ito [3])

(2.9) g(t, a) = E„[f„,(x) exp ( — u  1;1 d s )].

Thus we get (2.6).

Lemma 2.4 Let Co = inf 0; 1;1= 0}. Then

(i) if v > 0, PAC° < + oo] =1 for every a E
and
(ii) if v=0, POE[ 0 = + oo]=1 for every a# 0 E I.

P ro o f . (ii) is trivial because of the definition of (at, P OE). By Lemma 2.1,

su.plqu1
Pa[lŒuil= Icxol] suPi lq••1+ v

for e v e ry  0( E
i i t

Let C=inf {t 0; lati< 40 1}. B y the strong Markov property, w e have P Œ [=
+ c o ]  Panati i i =1;1 2 i=  =11,1„1=iloli An —>0 a s  n—*cc. H e n c e  P Œ [ <  + cc] = 1
for every a E I  with I I  1 ,  and (i) follows from this.

Now we can prove Theorem 1.1. Let v>0. Then it follow s from  Lemma 2.3
and Lemma 2.4 that

c
(2.10) l im r ,  f c, (x )= E OE Lexp(— u

o
ds)1 for a n y  a E a n d  x e X.

Hence there exists a unique probability measure v on X  such that lim (x )=
t—■00

<y, f> for all fe C(X). 1 )
In particular if u =0, then lim Tt f,(x )=1  for every a E I, namely v

t-oo
On the other hand if u > 0  a n d  v=0, P OE[,=  +  o o ]= 1  by  Lemma 2.4. Hence it
follows that lim Tr f OE(x)= 0 for any a e I with a # 0 and x E X, namely v = S„. There-

t - , 00

fore we complete the proof of Theorem 1.1.

R em ark  If  u>0, we can easily see that

(2.11) I Tt f OE(x)— <v, f>1.5= e- "1f o r  a l l  cc E I  and  x e X.

3. Case I

Hereafter we investigate the case without mutation, namely the case u = v=0.

1) <v, f > = t,(d x)f (x)
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Then (a„ P A ,  can be interpreted as follows: each particle in a moves independently
according to the transition law P r until two particles occupy the same site in S.
When more than two particles occupy the same site in S, one of them may disappear
with positive probability at the next jumping time.

Let us introduce the following Markov times.

C=inf k=inf k}  for k=0,

T1 =inf {t_0; ;e  1 0 ,  and icc,I=laol},

=inf a, E LI} and T„ and a n are defined inductively by

o-„_  -F. ti(9 „.„_,) and a n = T„ o-,(9„ . ), where c o  =0.

Lemma 3.1

( i ) Tt f„(x )=E OE[f OE,(x)] for every  CC E I  and x E X.
(11) E OE[g(at ); a t = + co]=É OE[g(oct ); a l = + co] f or ev ery  bounded function g  o n
I, if cce
(iii) F or each integer m_2, there ex ists a  con sta n t 2,(m )<1  such  that P lia n ,i
=Icxol]-/I(m) if a E tl and lot' = m•
(iv) [C= + co] = Lc, <  + ,  o -,, =  cc fo r  some a.s. P .

P ro o f . (i), (ii) and (iii) follows from Lemma 2.1, Lemma 2.3 and the defini-
tion of the Markov chains. So we show only (iv). Let l e  A .  Then

P ae[ = CO , =  CO] E zl, aun E zl, = iaoi]

E„[P.„„_,[la„,1=laol]; oc„, e ezI, = I I ]

- 11(lal)13cc[CC„i E ann-i Icc„.-il = lœ01].5, 1(1Œ1).

Hence we have

(3.1) Pe [ = + 0 0 ,  t i CO]=0.

Also,

PE— +00\tn < +00, a n = + oo for some n

=p [ = +  co,  ar1 _ 1 < +00, t n = +Go for some n 1] + POE[o-
n < + co for all n]

the first term= E OE[POE[ = + co, T = + G o]; cy„_ < + co] = 0
n=1

by (3.1), and
the second term= P „[o- < + co] = E OE[P„ . .  i [a 1 < + c0] ; an -I< + 0 0 ]

E OE{ P . , =  la d ]; a„- i < + oo]

it(lœl)1 3 .[u n - t < + co]52(1a1)" 0  a s  n oo.

Thus we obtain [,r = + oo]c [T n < + co, an = + co for some n POE-a.s.. But the
converse inclusion is trivial.
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111=2

111.,a1 
I + 111.,„ I
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Lemma 3 . 2  The following (i), (ii) and (iii) are mutually equivalent.
(i) Q = Iq u l satisfies the condition of Case I.
(ii) /3„[a„< + co f or every n.._.1]=1 f or every ŒeI with Ial =2.
(iii) PAC < + cc] = 1 f or every ae I.

Proof. " ( i ) -(ii)" is  trivial. Next let us assume (ii) and let 10,41= 2 .  Then

É OE [exp  (- (T
n + 1

„ ) ) ; <  +  0 0  for every n _ l]
n=1

= kOELexP ( - (T2 - a 1)):tœ„ EexP ( - (t 1 c„)) ; a„ <  +  co for all n];
, 1 

t 2 < + co]

sup ÉOE[exp ( E (t,, a„) ) ; a„ < + co  for all n] X
la1=2 n=1

sup [exp ( - (T2 -  a1))]1.1=2

Also for = 2

2 sup lq i i i
<1.<  

 l+2supIq

Here we used the fact that the probability law of ( , ,  P OE)  is the  exponential dis-
tribution with parameter lkœl.
Hence we obtain

k a [exp  (- E er„+ 1 -0-0)] ---C[exp ( -  E (t,, a„<  +  oo  for all n]=0
n=1 n-=1

Accordingly we have

■ac'° Izi (a t )d t=  E ( t 1 — 0-)= Go a.s . (POE ).
n=1

Thus " ( ii) - (i) is proved.
Next we shall show " ( ii) -*(iii)". First we note P a [o-  = + co] = P o [o-  1 = + co] = 0,
if a E Ad and By Lemma 3.1

PA C= + co] = PAT „ < +cc , or„= + cc for some n .1 ]

= E [1 3  [ a 1 =  +co ]; T„<+(x)]=0.
n=1

Hence POE[c< + co] = 1 if 2. This implies (iii).
Conversely we assume that ( i i i )  holds. F or ae IVA with lai =2, POECal <

13 „[a < + oo] < + co] = I .
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(ii) follows from this.

Lemma 3 .3  A ssum e Case I. Then every  bounded Q-harm onic function is
constant.

P ro o f . Let h be any bounded Q-harmonic function. Then Ph =h for all
Let us consider a  continuous time Markov chain ( (X  X ?) , P o i  ,1 2 ) )  on S x S  such
that

( i )  E ( 1 1 , 1 2 ) [g C M ]= P i g ( i,) , and

E ( r i , 1 2 ) [g(X ?)]= P r g(i 2 ) for any bounded function g on S,

(3.2) (ii) P(11,12
)N < + 00]= 1 f or all (i 1 , i 2 ) E S X S , and

P ( i , r 2 ) [,10 =  X ? for all I,

w here  =in f  {t = X } .

In fact, noting the condition of Case I , we can construct it as fo llow s. Let (( a ,
X ?), P (1 1 ,1 2 )) be a continuous time Markov chain on S x S  with P r OP, as its transi-
tion  p robab ility . Then, =inf { t  0; JO =X?} < cx) P (1 1 ,r 2 ) -a.s.. Set =TO,
.?q =X . f o r and X t4= )7  for Then ((X i, X ?), P (1 1 ,12 ) )  satisfies (3.2).
Moreover, for j 1 i 2  E S,

ih(i i ) — h(i2 )I =IE r r 1 2 ) [h(X )—

Pcii,i2)N> t] • 11h11.0 - > 0  a s  t co.

Thus we see that h is constant.

Proof of Theorem 1.2
W e shall prove only (ii) since (i) follows from (ii). Suppose th a t lim

exists for u E .9 (X ).  Set

mt(a)=  < T i ,  f.> = Tf.>=E. [ <P, f >]=E Œ [inac tt)] (by Lemma 3.1).

Then lim m r(1)=171(a) exists.

In particular, we see iff(ei)—tim E j)mo(vi).
t-co j e S

Since iTi(vi) is a Q-harmonic function as a function on S , m ())= A is independent of
e S  by Lemma 3.3.

Thus we have

(3.3) lim mt(a )= ) .  if =1.
t-■CO

For jai

in1(a)=E2[nl0(cet)]=EŒEmo(00; CI <  +E.[mo(a); CI >t]

=EAEŒc i [maat-snls=c,; Ci<t]+E.Etno(00;
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By using Lemma 3.2 and (3.3), we get

(3.4) lim m f ( a ) =) .  for a l l  a #0.
t - 0 00

It follows immediately that

(3.5) lim 7.rit= 11.(5,+ (1— 11) 6 0.

We can also prove the converse by an analogous argument.

4 .  Case II, Structure of ,9°

In § 4 and § 5 we always assume C ase //.

Lemma 4.1

(i) PA C< + co ]<1  for every  °tel.
(ii) POE[-c„< + oo, and  0„= +oo f o r  some n . 1] = 1  for every a e i .

P ro o f . It follows easily from the irreducibility of Q=Iq i i l  th a t  if  Ifil =
then P/a,=/.1] > 0 for all t > O. S o  w e  have P i [T i  < + oo] >0 for each a e /. By
the condition of C ase II

I 4 (ott )dt < + col= 1 for e v e ry  a E I  with Iocl 2 .

This implies that i ' a [o- , < + co] <1 holds for every a e I\ A with jal 2 ,  by an argu-
ment similar to Lemma 2.1 in Liggett's paper [6].
Hence we have

POE[c= + co] =PAT, < +co, c= +co] (by Lemma 3.1)

[ = + oo]; t < + co] E i [13, i [o-
 1 = + co]; Ti < CO] > O.

oo
( 1 0 :  In the proof of Lemma 3.2 we showed t„ Lexp (— ./4 (at )dt); u n < + oo for

every n .1 1 = 0 for every a E / with = 2 .  Since Ç 1,100d t  < oo a.s. (POE)  by the
condition of C ase II , we see i'„[o-

n < + co for ever; n..1] = 0  for a ll a G I with
lal =2, and moreover this holds for all a e I  w ith  ja i 2. Thus we see that (ii) holds.

Now let us introduce the following spaces of harmonic functions.

= {g(a); defined on  I, (31.g and E a [g(;)]=g(a) f or all a e I  and  t_0}-

={h(Œ); defined on I, and É n [fi(ott )]=13(a) f o r  all a e I  an d  t. - 0}

In the following lemmas we shall establish a  one-to-one correspondence between
V and

Lemma 4 .2  F or every h E lim EOE[Ft(xi )] exists.
t -■ 00
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P ro o f . For ot EI\z1,

k[h(at); a  = + oo]= k[ii(oc t ); a i  = + co]

=kOE[RatA — ka[Rat); ai < + co]

= r (Œ) — ka[i(at); < t] — kOE[ri(Œr); t50-1 < +09].
Since

ka[Rat); ai =ka[ka..,[h(at-)i1 ; a i < t ]= -É „[Ii(cx, i ); a l  < t],

we have

(4.1) lim E„[ri(ct t ); o-
i =-- + oo]= Rot) o-i< + oo].

We denote the right-hand side of (4.1) by 1i 1 (Œ).
Then

Eoe[Rat); + ()A = E alii(oc t ) ;  t „<  + 0 0 , a n = + 09] (by Lemma 3.1)
a=1

= E .[ E .  uri(ctt_s); a l=  +Goiis=r„; ta<0+
n=1

E c,[h(cc r ); + 09, 0" 1  = + 00],
n= 1

and consequently

(4.2) Hm E a [ i at ); C=--  +  o o ]=  OEE  E ct rii i (rx,„); t n < + co].
a=1

Denote the right-hand side of (4.2) by 1712 (a).
Then

lai
E x [h (a r )]= ,, 1 -EŒ[h(cct); Ck< + 00, C k _ i  =  +

al
=  E  E OE[E , [R a t-s ); C =  + 0 0 ]is=c,; Ck<t]

k=1

lai
+  E  E,,[h(a r ); t 5 C k <  °O, Ck—i C O ].

k=1

Therefore we get

lai
(4.3) limEOE[Rat)] =-- E  E .[ 112(ack); Ck < C O ].

t—.co k=1

R e m a rk . For each Fie itz', denote Ori(a)=1im EOE[Roct)]. Then 0  is  a map

from 4 9- to V. Furthermore it should be noted that we did not use the condition
of C ase II  in the above proof. Thus Lemma 4.2 holds generally.

Lemma 4 .3  F or each g  e V, lim É cc [g(oft ) ]  exists.
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P roo f. F o r  a e  I\A , É c t [g(at ); o = + oo]=E OE[g(at ); = + oo]=E a [g(a,)]—
E OE[g(;); o -

i < + co].
By an argument similar to Lemma 4.2, we have

(4.4) lim t OE[g(a t ); a. , = + co] = g(a)— E OE[g(a a ,); a l < + co].
(—POO

Denote the right-hand side of (4.4) by g 1 (Œ). T h e n

t a [g(a r )] = L 'a [ g  ( ; ) ;  t n < +Go, an =  + 09] (by Lemma 4.1)
n=1

= [ R a  [ g  ( a t - s )  ; = tn < i]  +
n-=.1

k [g ( a f ); + 00, =  +  a)].
n=1

Thus we have

(4.5) lim (at)] =  E E.[gi(at,) ; <  O E 3 ] .
t-400 n=1

For each g eV, we denote Tg(a)=1im E OE[g(a,)]. Then V' is a  map from g  to  .Y7.
t-co

Lemma 4 .4  0 is a bijection from .Y? to g  and 0 - 1  =-7I.
P roo f. Let g  e g  and ri=  71g . We shall show oh = g .  L et u s  calculate h ,

and in the proof of Lemma 4 .2 .  Let a e A z 1. By (4.1) and (4.5) we have

g (a) — tOE[VI g (a, i ) ; o- < + oo]

= ( t c,[g 1 (ar n ); T n < + co]—E„[E Œ [ g 1 (c ) ;+  0 0 ]  ;  a l <  + CO]
n=1 n=1 '1

= (ta{g1(OET„) ; <  OE) ] — Ê. [ 91(ar„, i ); T .+1< +° 9 ])
n=1

= g1(a)

and

r12(a) = Ea [ h l ( œ )  ;  t n  <  C O ]  = E 1 (aT„) ; <  +  0 0 ]
n=1 n=1

= (E OE[g(a.„); z n <+oo]— E OE[E,„ [g(a 0 ,); a i < + cc]; x„< +co])
Z1

= (E a [g(a, n ); 2,3 G  +  CO] —EOE[g (a,) ; an < + COD
n=1

= 01M  E OE [g(a t ); an = + co] — lim E„[g(a„); .r n = +oo])
n=1 t-.00 t-,co

= lim E OE[g (a,) ; T y, G  +  C O ,  and cr„ = + co for s o m e  n  1 ]
t-4c0

= lim E OE[g (a r ) ; =  +  co] (by Lemma 3.1)
t—, 00

=g(Œ) —En [g(c1/4); < +  cc].
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Thus it follows from (4.3) that

ial
Ph(Œ) = kE i E,,[h2(ack ); Ck< + 00]

121 121
=

 k=1 
EOE[g(ccc z );  Ck < + CO] E  E 2 [E [g (0 ) ; C< + co]; Ck < + 00]

 k = 1
nIa l=  E  E z [g(a c k ); C k < + co] — E  E 2 [g (o ,) ; < + CO]

k=1 k=1

= Ez [g (k . i ); C 12 1 < + co] = g (a).

Conversely, let r, e di' and g = O h .  For a e

lim E z [g (a i ) ; =  +  co] = lim EOE[lim E„,[h(a s)] ; o- =  +  co]
s-.00

=limlim E„[E„,[ii(a z )] ; o t] = lim lim E z [li(a r ,  ); o 1 > 1]
t - .0 0  f - ,0 0 s -.0 0

=lim lim EOE [rl(ar +s) ; a 1 = + 0 0 ]  =  1 ( aC) •t-, Y) s-P00

Accordingly we have

g (a) = lim E.
z [g (a t )]

=  liM  i k a E g ( X t ) ;  T n < + co, a- n = +co] (by Lemma 4.1)
t-.00 n=1

= l iM  i  EI „LE,„ [gex t _z ; a i = + co] z =z n ; Tz < t]
t-.09 n=1 n

-E llin  i  k [ g (a t ); t .r.„< + co, an = +cc]
t-..:0 n=1

= k cc[h  1 (a rn )  
t , <

 C C ]
n=1

= ( -E z [ii(a z n );  Tn .< + co] —Ez [li(a,„); o- „< + co])
n=1

kOEEkat); Tn< + 0 0, 0 n = + C O  for some n .1 ]

h(a) (by Lemma 4.1).

Thus we complete the proof of Lemma 4.4.

The following lemma is a  slight modification of Lemma 3.1 of Matloff [7].
His original proof can be applied also in this case.

Lemma 4 .5  L et {t„} be an  increasing sequence tending to co and  le t {f„} be
a sequence of functions on S such that
(i) fz 1 f o r a i t  n ,  and
(ii) j(i)=Iim  (P tn f„)(i) exists f or each i e S.

n-.00

Then f  is Q-harmonic.
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Corollary 4 .6  Let { f ,(0} ,, 0  be a family of functions on S  such that
(i) 0. f t .1 for each t > 0 ,  and
(ii) g(i)=P t f , ( i )  f or each  t >0  and i e S.
Then g

Lemma 4 .7  Let ri e 1 7 . Fo r arbitrarily fixed a e I, se t 140= R a+ e i). Then
hcc e.Ye.

P roo f. Noting (2.4), we have

hOE(i)=Ii(a+v i )= kx+ ARGO] =  E i*Œ[ri(tx t+6.0].
€

Therefore hOE a Yea by Corollary 4.6.

Remark. Lemma 4.7 is interesting in itself, and it is generalized as follows.
Let (X e , P D  and (Ye, P )  be two Markov processes on state spaces (X, .F 1)  and
( Y , , 2 ), which are generated by bounded infinitesimal generators and let ((X e ,  Ye),
/3

(X ,y ) =P x O P y ) be their direct product Markov process. If a bounded measurable
function f (x , y )  o n  (X  x Y, x ,F 2)  satisfies that E ( x ,y ) [f (X „ Y e)]=f (x , y) for
every (x, y) eXx Y and a l l  t > 0 ,  then it holds that E l[f (X „ y )]=f (x , y )  and
g [f (x , Y e )] =1(x, y) for every (x, y) aXxY and all t >0.

Lemma 4 .8  L et fi j =li c ,± ,j [o- , <+ c o ] .  Then, we have

lim E p f i ,k =0  f or each i and k  of S.
t-.00 jeS

P roo f. For each S > 0 , set f f 1= + j [ ; o a 4  f o r  some 1]. Note that

I A (oc,o )<  +  co] = 1  by the condition of C ase  II . Then we have
n=1

(4.6)f = E 2ern] 2 i5
c „,[a„, e \ .4 for a l l  n  1 ]

n=1 meS

CO

= E E Pn6(i, m )Pna(i, m) (1 — fg„,n)
n=1 meS

Let J be any finite subset of S , and N  be any positive integer. Then,

E  E  13.6(i, m)Pna(.1, m) ( 1 —  f t o n)) 2

n=1 mc./

P„a(i, 112)2 ( 1 — .Pn,m))( E Pn a(i, n ) 2 ( 1
 — f ! , m ) )

(n ,m ):n > N  or m 4./ n=1 meS

=( Pn6(i M ) 2 ( 1 —  fg„.) W ,j•
(n ,m ):n > N  or m 4.1 .

Here we used the Schwarz's inequality and (4.6).
For any e> 0 there exist J and N  such that

PL (i , m) ( 1 — f  t„n )<8 2 .
(n ,m ):n > N  or m4./

Thus, we get
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E  E  Pna(i,m )Pna(..1, /12) + e  for a n y  j e  S.
n = lm e J

So,

E E  E  P„.3(k , in)Pt-F„6(1, m )+E•
je S —  n=1 m eJ

Since the condition of Case II implies that {P (i , j)}  is not positively recurrent, it is
well-known that

lim P t (i, j)= 0  for a n y  i and je S.

Hence we obtain lirn E Pz(i, Df
je S

Also for i k  j  and (5> 0

f i , j = 1 5 e .+ 0 [ 131 ‹  GC) ] = 1 1 5e i+ 0 [ 6 1 <  ± c c , 1110 a 1 ) ( 5 ] + f i c i + o [ a  1 < + co,

.ki+A 15. 0 .,E1/1 (.5] ;  a l<  + c c ]  + . n i

sup î + f t = sup 0  — exP (—
la i= 2 la j5 2

Noting sup1R a  < + co, we can conclude that
1a1=2

lim E 13 ,0 , f i , k =  0  for any i  and k  of S.
z-.09 je S

Lemma 4 .9  F or any  g e .9', s e t  g(a)= 01, fcc>  an d  V g(Œ)=i(Œ). Then f o r
each a e I  and k e  S,

-
(4.7) lim lim E a [E ,[ i i (a 5 + 0)]] = rz (a+ sk ).

z-co s-, c0

P ro o f .  1 .  Let us consider a Markov chain ((c4, 4), P„, o )  which satisfies the
following conditions.
( i ) ( 0 4 ,  eD, Pr( „,

)
) is a Markov chain on l' =I x {ot e I;

(ii) .13 )) is identical with (a„ Pa ) in the sense of probability law,
and
(iii) (c4 +4, P ) ) is identical with (oc„ 1:1. + ) in the sense of probability law.
In fact, ((c4, 4), .1:1 0 i.c ) ) can be constructed by the following infinitesimal matrix,

a ig u i f  /3= (cc— si +si, sk)

q k j i f  fi =(Œ si) ( f 0  k )

(4.8)

1 
4 N  Œi(Œ i 1 )

1 
2 N  Œk

i f  /3= (a— si,Ek)

i f  13-- (cc, 0)
R'(c,,,k ) ,fl =

-1  
i ; œ i q i i -E q k k  4 N i; c " ;  1 ) 2 N  l cd  i f  ) 6 =

0 otherwise,
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and

i f  f3= (a - 0 +ei, 0 )  (i 0j)

1 
4 N  a t (a i - 1 ) i f  /3= (a— vt, 0)

-R(ct,0),13 =

E a i g i i —  A , a i (a i - 1 ) i f  ,6= (a, 0)
l eS ieS

0 otherwise.

2°. Next, we claim that

(4.9) POE013,,[-re t].11"OEO PEk[-"e t ] ,  where i= inf It 0; a, .

In order to show (4.9) it is sufficient to construct a  Markov chain ((5i„ fie), P p )
such that
( i ) ((d,, ;6-,), P ( o ) ) is a M arkov chain on I={ (a, x /3},
(ii) (cTct, 1-3 ( „,p) has the identical probability law with (cc„ POE) f o r every /3 e I with

and
(iii) (p„ P (OEo ) )  has the identical probability law with (a„ P p ) f o r every a e I with

The infinitesimal matrix of ((4, fit), P(„ ,p)) is given by

a i g i i i f  ( a ' ,  6') = (a —si fl — ei + 0 )  (i 0 j)

(13 i —  a i )g i f i f  ( a ' ,  /3') = (a, )6- 0 + 0 )  (i j )

1 4N ( —  1)i f  ( a ' ,  /3 ') =(c —e, fl)

s f l i q i i 4 1N  ; OEI(Œi— l ) i f  ( a ' ,  /3 ') = (a, fl)

0 otherwise.

3°. By Lemma 4.7 we have

(4.11) ÉOE[E„,[ii(as+ O ) ] ] =  ÉOE(DEEk[E„,0E,,[13(as +s,)]] .

4 ° .  It follows from Lemma 4.2, Lemma 4.3 and Lemma 4.4 that for h = Pg

(4.12) ti(a +6k) = lim [lim E„,[ii(a s )]].

= lirn lim É,,OE c k[E„,, g ,[fi(ot s ) ]

t -4 CC s  00

= lim lira i c,Okk [ E , , „ ) [ rz(a's  +B)]]
-11DO s —.00

(4 .1 0 )  R(Œ,p),(,e,r) =

5°. Obviously we have
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(4.13) E(Œ,09[17i(a's+e's); s<f]=k0E s k[..g(a s +8,); s <ti]

6'. Hence it follows that

Ilim lirn i ' OE[E„,[1:i(ocs + ek)] — Rot + 0)1
t—. 0 0  S—.00

=lim lim li' OE OEc k[E2 ,0E s t [ii(a s +en]
s— ' 0 0

0Eek[4,„co[h(ces+ EDEI

=lira lira Ik a, OE s k [E ® E s t [ri(a s + es ) ; s t ] ]
( .0 0  S — .0 0

(by (4.11) and (4.12))

— kOE0E,,,[E c,,[h(ot's +E ) ;

iim k a OE Ek[P s t ®P s ,[-ti s ] ]

Ern lira ÉG,(3, .kk [POE,O P E , [ t  s ] ] (by (4.9))

^lirn lim E  i ' d ± s k[ce,, e .4 for som e t <u<t + s]
t-co S — .CO . ce

E  P g i+ o [c t,e

=0.

(by (4.13))

for some indreasing sequence {t„}, tending to co]

Thus we complete the proof of Lemma 4.9.

Now we can prove Theorem 1.3.
1°. For each h e  . r ,  we put rz (a)= F 1 h (i). Then e B y  L em m a 4.2,

ieS
lim < TN,„ fOE> =lim EOE[ h ( ;) ]  exists for each a E /.
t - 4  CO

Hence there exists a probability measure vh on X such that

lirn P`S h = v h .
t .0 0

2°. < 77.5h , f e i> = E e ,[ii(a t )] =  Ph(i)= h(i).

(ii) follows from this.
3°. Let it e „Ve x . Since v 0 =6 0  and  v 1 =5 1 , w e  assume 1.206 0 , .5,. Then for
some k e S, 0 <1.t(dx)x k <1 holds. But we can see easily that 0 < 1.1(dx)x,<1 holds
for all k e S.
Let any k e S be fixed. We define two probability measures p i  and 122  by

<u i ,f  > = 1.1(dx) f(x)x k 6 2 (d x )x k

(4.14) <12,f> = 1,1(dx) fix)(1— xk)/tt(dx)(1— xk),

for a l l  feC (X ).
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Then it holds that it --)4t 1 + (1 -  41,2 for A = ii(dx)xk.
First we claim

r
(4.15) r - .

0 T:p ds = p .

Suppose tha t for some increasing sequence {t„} tending to

converges to E 9 ( X ) .  Then lim  
i

1t " T
2

:g  d s = =  exists
n—■co n 0 11

holds. Since  i  e e e99 ,  and y e .99
e x , we have fi =

O
li M T:g i ds= g because of the compactness of .9(X).
t ."" 
4°. Let g(a)= <II, f a > (a e I). Then ft e ,96' implies that g  E g.

(4.16) lim 1t ds E  [g + ek)] =g(ek)g(a).
r - .  t  o

Indeed, noting that <p 1 , L > = g (a + e k )Ig (s k ), we obtain (4.16) by using (4.15)
Lemma 3.1.
5°. Next, we claim that for fi =Tg

-(4.17) lim 1 E a [E a u [g(a s +ek )]] d s  it' (a + ek).
11- •CO t- . 0 9

It follows from Lemma 4.4 that

(4.18) "É a [E a .[g(ocs +ek )]]=  i'[E„.[lim  E  a s + [13(a,)]]]

=lim ÊŒ [E a . [E ( a s ,,k) [13 (cc;, +  e ) ] ] ]
v-00,

Noting that E(Œ k) [ii(a;, +4); y<fl=  E® E ck[Rav + 8  ) ;  V  < 'f] we see

k[ii(a,-1-e v )]](4.19) l i m  OE [E OE.[Ego c s k) [h(a'„+ e )]  - E a s 0E, 1

lim ta [E a . [P a s 0 P 8k [f<y ]

= cc[Pœ “O PgkEat+s et for some 0]

È „ [i ' o e . O P Ek [a t + , et f o r  s o m e  t 0]

-rk2E E  f i . k ]

Here we notice that these inequalities are justified rigorously by making use of the
process Ott , PO, Potdo).
On the other hand it follows from Lemma 4.7 that

(4.20) ta[Ea.[Eas0E&k [ i i ( a , + e , ) ] ] ] =  t a [E a . [E a s [ii(oc, + ek )]]]

=&E.E.„[Fl(cts+ v+ OM  •

Thus by (4.18), (4.19) and (4.20), we have

co, lim Y' T*g i ds
v+. o s

an d  kt = 4 + ( 1  - ,1)/1

Hence it follows that

Then we have

and
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(4.21) ik [L ' [g  (as + ek)]] — lim [Ii (a  + 8 k )]]1
V — , C0

„E
j :Ei ccu+s

Hence by using Lemma 4.8, Lemma 4.9 and (4.21), we obtain

li m lim 1 5 ' [ E  [g(ot -1-8k)]]ds— /( +&')
0 OEO E " s

=  l i M E E  [ g  (cc + Ek)]] ds — lim lim É OE [E „ [ l-4 a  + ck)]]1
u-cot—.0 o v— co

6_ 1 LT Eg (a s  + ck)]] — lim ÉG,EE„,, Er! (a t, + sk)] I I ds

Jim
1— 

)7 f j .  1 d =  0
u-.00 t-.03 0 i  

6'. By (4.16) and (4.17), we have

(4.22) rz(a+Ek)= g(a)g(ek)-= rt(a)g(Ek).

Setting g(sk)= h(k), we see easily that

(4.23) he . ° a n d i ( Œ) =JJh(i)21.
ieS

Therefore we can conclude that p. = v„. Thus we see

(4.24) <99OEOE { v h ; h  Jr}  .

Conversely let any h o e <Ye be fixed. Then by the Choquet's representation
theorem and (4.24), there exists a probability measure m(dh) on <Ye such that

(4.25) v„.= hm(dh).

L et gh(a)= <v h , f a >. T hen  gh E g  a n d  W gh(a)=11h(i)a , b y  L em m a 4.4. A c-s

cordingly by (4.25) we have

(4.26)1 J  h ( i ) ° '  = fl h(i)aim (dh) for every a e I.
ieS ieS

Now, let us introduce the following topology on <Ye. Let {h„} be  a  sequence of
.ye {h„} converges to  a  h e <Ye" if and only lim h „(i) = h(i) for a ll i e S. Then <Ye°
is compact m etrizable. Let us denote by C( °) the set of all continuous functions
on <Ye. For each a E.!, set F ( h ) = f l  h(i)Œ i. Then F c, e C ( I )  and the linear hull

ieS
of {FOE ; a E I I  is dense in C(A°) with the uniform norm by the Stone-Weierstrass's
theorem. Hence by (4.26) we have

(4.27) F(ho) F(h)m(dh) f o r a i t  F e  C ( .') .
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(4.27) implies m =6 0 . 1 , that is, the point mass a t  ho . Hence vho e Y e x . Thus we
complete the proof of Theorem 1.3.

5. E rgodic theorems for Case II

This section is devoted to the proof of Theorem 1.4.
10 . Suppose that fo r jte.9(X ), T i  converges t o  vh  a s  t—>cc fo r  som e h e ." .
Set g(a)=<pt, f„> and gh(a)= f Œ>. Then by Lemma 3.1 we have

(5.1)u r n  "C [g(a,)]=gh(a) for e v e ry  a  El.

For a e , it follows from (5.1) that

(5.2) lim t c,[g ( a t )  ; a l  = + c0 ]=  lim  E [g (a t ) ; a 1 = + co]
I c o

=lirn k [g (a,)] — lim E [ g  (cx,) ; a l<  + 0 0 ]
t 1 -4 ,0

=gh(a)— E Œ [g"(a,,); a,< +co].

We have

É ci [g(at)]= Ê OE [g(a t ); r„< + CO, an = +OD] (by Lemma 4.1)
n=1

= ark c e ,  [ g (C le t— u ) ;  ai = + 0 0 1.---t„; t„<i]it= t

+ k [g (z ,) ; td  T„<  +CO, Cr„= +00],
n=1

Accordingly we get by (5.2)

(5.3) lirn É„[g(a f ) ]= È OE [gh(ar „)— E„ [gh(a, i ); a t < +oo]; -c n < + 0 0 ]
t— P n=1

In particular (5.3) is valid for g = g". Thus we have

(5.4) lim [g (a t )] = lim E„[g "(a f )]t-.00

=  h (i)Œ i( b y  Lemma 4.4).
iSo

Furthermore we can see easily that (5.4) is equivalent to

(5 .5 ) E Pt (i, j)x i  converges to h(i) as t- *cc, in  probability  w ith respect to p.
;es

Conversely let us assume (5.5). Then (5.4) holds. We obtain easily that

(5.6) lim E OE [g(oc t ); a 1 = + cc)] = Ft(a)— É„[13(a,,); < + co]
I

for a e where ii(a)= T 1  h ( i) '.
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Thus we have

(5.7)

and

(5.8)

lim E oe [g(a,); 0 1 = + co] =lim EOE[h(c(t) ; + co],
t , 0 0 t . 0 0

lim E OE [g(cx,)]=1im E [Ra t n•

This implies lirn T ,u=v h .

Corollary 5.1 Suppose that p e g(X ) satisfies the following condition,

(5.9) <p, f oe > — 11p(dx )x l , f o r e a c h  a  e I.
Ic S

Then TP p converges to vh  as  t—*œ  f or some h e Ye if  and only  if

(5 .10 ) E P,(i, Din i  converges to h(i) as t-+oo f or all j e S , where mi =1p(dx)x i .iEs

Pro o f . Assume (5.10). Then

/2(dx)(E P,(i, j)x i — h(i)) 2 =
5

p(dx )EE  P,(i, j)P,(i,
jeS j944

+14.(dx) E j) 2 x 3-2h(i)E P,(i, + h(0 2

;ES je S

= (  E P,(i, p m ;  — h(i)) 2  + E P,(i, j) 2 (1p (dx) xi — m3)iGs ics

Note that the condition of Case II implies that lim E P,(i, j) 2  = 0 .  Hence we have
je S

lim  it(dx)(E  P,(i, j)x i — h(i)) 2  =0.
i E S

Therefore by Theorem 1.4 we have lim T r' p=v h .
t —.00

Corollary 5.2 Let X E X . S uppose that lim TPS oe exists. T h e n
( — , 0 0

lim T;'6 oe =v ,, f o r so m e  he.re.

is fulfilled for h(i)=iim  E P,(i, j)x i .
i " -OaD iES

Corollary 5.3 Let p E .9(X ) and let U be an open subset of  .9(X ) containing
,g. Then there exists a positive number t , such that 7-1p e U f o r all t > to .

P ro o f . It suffices to show that if  {T,'„p} converges t o  j  E .9 (X ), fo r  a n  in-
creasing sequence {t,,} tending to co, t h e n  e 9'. Set <p, f oe> = g(a) and < i 2  f OE>=
g  .  Then, lim E[g(a t n )] = g (ca) . Since we can apply L em m a 4.5 for (cx„ P„), we

71- .0 0

obtain that g e g .  Therefore 1.-1 E .9' holds.

P ro o f . It follows immediately that lirn E P,(i, » x i  exists for all i e S and (5.5)
t—■co jeS
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6 .  Case III

In this section we shall investigate an example of Case III, which illustrates an
different phenomenon from Case I  amd Case II.

Let S={,s=(i, n ); i= l,k  n = 1 ,  2,...} u {0} + oo), and Q= Iq
be defined as follows:

ai>0 i f  s= 0 a n d  s' = (i, J)

if s= s' =0
- i=1

i f  s = (i, n) and  s' =(i, n +1)

p n >0 i f  s = ( i ,  n )  and  s' = ( i, n -1 )

- p„) i f  s =s '=( i, n )

0 otherwise.

(6.1) q S .  =

Let us assume

(6.2) sup (AH +1-) < + Go a n d  E a i < + o o  if  k = c c .
It

T hen  Q  { q , }  generates a  u n iq u e  continuous time Markov chain (X„ P)s=5
satisfying

(6.3) P.,E X t=s1  P r (s, s') w h e r e  Pr = et (
 2.

For s E S let us define yo(s) and Is by s =((p(s), Is% where if s = 0, (p(s)= 0 and Is' =O.
Then we can see that (IX,I, Ps ) is a  birth and death process with a reflecting barrier

at the origin associated with {/ , pH} , where ilo =  E a i .i=i
If the {A„, /r„}-birth and death process is recurrent, Q satisfies the condition of Case I
or C ase  I I . So we shall assume that the {).„, p„}-birth and death process is transient.
Then it follows obviously that

(6.3) P,[lim I X, I = + oo] = 1 for all s e S.

Now, let us consider a compactified space S of S by adding k number of infinity
points {lœ, le }  in such sense that a  sequence o f SD {s„} converges to  V° if
and only if lim Is,' = + œ  and lim 9(s„)=i. (1

n.00
We denote by Ye e ,  the set of all extremal elements of Y e .  Then we have

Lemma 6 .1  Let h i(s)=P s [lim X i = i"]. T hen ,

( i ) hi e r  and satisfies that h i(s )>0  f o r all s  S, and
n -= 1

(ii) lim  hi( s )= 0  i f  j  i ,  a n d  lirn h i(s)= I,
s-i-
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and
( ) „ =  {hp' fl OE {1, 2,—, k } } ,  where hp (s)= h ( s ) and h0 = 0.

fl

P ro o f .  Since (i) and (ii) are easy, we will show only (iii). Let h e  e .  We
can see easily that h ( j )  =lirn h(s) exists and h(s)= E  h ( j ) h ( s )  for each s e S.

J=1
Suppose th a t hp = (h'+ h") for some h ' and h" of Then it follows from (ii)
that

h '0 ")= 1 1
if J E  fl

Suppose that 0 < h (i ')<  1 for some i .

Thus we have hf l e,Ye„.

Then h(s) is represented as follows.

0 otherwise. Hence h' = h" =h p .

Next, we sha 1 show the converse. Let h e  „.

" ih(s)=h (i")h i (s)— (1— h(i"))h'(s) with h '(s )—  h ( s ) —  h ( i) h ( s )  
1— h(i") •

Since h' e <Yea and h e ' „ ,  w e have h(s)=h i ( s )  and h ( i ) =  I. S o ,  t h a t  i s  a
contradiction. Thus we see that h ( j ) — 0 o r  1 for any j.  Hence h=h p  fo r
fi = { i ;  h ( i )=  1}.

Let ((X I, X ) , P ( s i ,s 2 ) )  b e  a  continuous time Markov chain  on  S x S  with
P r OP, as its transition probability . The following lemma implies that Q={q s,.}
of (6.1) satisfies the condition of C ase III.

Lemma 6 .2

OE) I.
0<  P ( s ' 5 2 ) L1 XDdt= + c o l=  E h i ( s o h i ( s , )<  I for all ( s i , s2).

0 1=1

P ro o f. We refer to Karlin-McGregor's result [4] that {.1„, mi }-birth and death
process has the coincidence property almost surely under our assumption. Ac-
cordingly we have

(6.4) P(Si,s2) 10(IXt
dt = + ool= 1

_ o
for all (s 1 , 52 ),

   

where I 0 (n, m)= 0 if n  m , and I 0 (n, n)=1.

Hence it follows that

Poi.s2)[S
o

Xt)dt= + col

= P(s1,s2) [10
 -142(.X1, X?)dt= + oo, lim  XI=limXIIz—zo

CO

= E Po i 
2

s )[1 iX n)dt= + 0 o , lim  X  = l im  X =  i ]
1=1 0 t -  ŒDt - . 0 0
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= E s = i i m  x ? = i l
1_i l o  2 ,

= E hi(s1)h1(s2).
i =1

Lemma 6.3

(i)

(ii)

O<POE E  I A(cx,)dt= + col<1

r  I A(ccr)dt = + col= 1 if

Icx15_k.

Ldo

Proof. Let ((X1,..., Xr), Po i ,...," )  be the
m number of Pt -Markov chains on S.
For k and a= S i

B  +  •  •  •  +

t—• 00 t— .00

direct product Markov process of

i [ S ° I4 (ar )dt< + ool= , s ,,,) [ 0 X T ) d t <  +  col

P [him X i! =_ ,s„,) , lim = = h i (s 1 )• •-hm ( s )> 0.

Hence we have

.11„[Ç° ,(a O d t + col< 1 f o r  laj k.

For m +1 and a= Esi•-• +Es-, it follows from (6.4) that

ii,i[co .
o  

l,(a f )dt= + co l=  Po i ,.. „ ) [1
0  

1,,,2 (X f, X l) dt = + co,

for som e p0 qe {1,..., trz}]

Froo

P ( s i '''' s'")00 
14 2 (Xf , AP)dt = + co, lim X f =lim X l,

t - 4 00 Z. 0 0

for som e pOqe{ 1,..., m}1

r r
= Io(IX fl, IX Ddt= + co , lim Xf -+-lim

t—fcr)

for some p  q  e

= Po i ...... s,,,) [him X =lim  X ? , for som e pOqe {1,..., m}] =1.
(-00

We regard an element of I  as a bounded counting measure (i.e. integer-valued
measure) on S .  Let us denote by I the set of all bounded counting measures on S
and introduce on Ï  the weak topology namely, an ->a as n --p co means that <an , f>

as n,-+oo for all continuous function f  on S .  Let us define J={Œ
Œ(S)=0} and J o = faE J la({ i"} ) 1 for each ie {1 ,-, k } } . An element a of Jo  is
denoted by /3' = i }  if the support of a is i }  and /3=
c{1,..., kl.
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Lemma 6.4
( i ) P a [Ck < + co] =  1  i f  k < + co.
(ii) P a [lim a, exists in J 0 ] = 1  f o r every a e I w ith a00.

t

(iii) P,,[lim a, = > 0  if  f i e J 0 ,  a E I, and  II3P IŒI A k.
t—rc0

P ro o f . (i): Let jŒ! k + 1 .  Then it follows from Lemma 6.3 that

(6.5) + 00]= I i f  OC e

But by Lemma 3.1

PŒ [
C = +  0 0 ] = P c,[t „< „ co] = E Œ[P a [ 0 - ±  00] ; 2„ < C O ]..„n=1 n=1

Thus we have P Œ [ <  + co] = 1  if lal k +1, and (i) follows from this.
(ii): First we note that Pa [1im a, exists in J]= 1 by Lemma 6.1.

j-co
For a e Ad and jaj we have

P. [al = + 0 0 ]  = i3a[u1= + 0 0 ] = 1.5„[ul= + oo, lim a, exists in Jo]t-cc

=P„[0. ± co, lim a, exists in J 0 ],
t—000

and

P ŒU= + 00] =  E  P a pcn <  + 00 , a„ = + oo]= Eoe [ P ,  [0-  ±  0 0 ] ;  Tn <  + CO]
n=1 n=1

= E  [P ± co, urn a1 exists in Jo] ; -r„ < + co]CC CX,,,
n=1 t , c o

=P.[C = + co , lirn a, exists in Jo].t-.«)
Accordingly we see

1.1 Ak
P a [lim a, exists in .10 ] =  E at exists in Jo , C,„< + oo, („,_ 1 = + co]

t—oco ni=1

ini Ak
= E a [P ccr [lima, exists in Jo , C= + co]; C„,< + oo]

m=1m t-.00
lalnk lalnk

=  E  E a [P . [C= + 0 0 ];  C.< + 0 0 ] =  E  P.[Cm< +00, Cm—i= + 00] = I.ç,„m=1 rn=1

(iii): First we note that if and s i =(1, n,„),

P ( ,,X = 1 , • • ' ,  urn X =m " , = + oo]

P., , [X  0 0  for all 0] • P[X 7,7 ' 0  for all t 0] > 0.

This implies that for each /3" E Jo and a c l  with lai =1,61,

Pa[lim  at = r ,  a l = + cc] >0.
t
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Let a e / and 1 /3 '1 = m  ia l k. Then,

at —fil = P.[Cm < + 0  0 Cm- =  cc, lim a, =

E a [P [  =  +  , lim a, = /3] ; ( < + co]

< + oo, a 1 = +oo, lim = /3w] ; + co]
( - › . 0

E a[E [ P OE [ a =  + oo , lim a t = /3"] ; t i  <  0 0 ]  ;  Cm < +  CO]

It is obvious that

= + co, ; = / ] = a  [ a l  = + co, lirn ;=/3']  >0,
r.co f Œ

P a[ti <  +  oo] >  0  a n d  P„[(,,< + co] > O.

Consequently we have P„[ lim a,= [3 ] >0.

Lemma 6 .5  L et g e 6 .  Then f o r  each /3  e J o , g(r)= lim  g(a) exsits and
OE-p=

(6.6) 900=fic..;.9(f3x)P2Elim =131

P ro o f . Let r  E J o . For every a E I , c f l I  P a [lim a 1 =/3 ] > 0  holds by
f ED

L em m a 6.4. H ere w e note th a t  Ig(a,), Pa }  is  a  bounded martingale and P OE •
[lim g(a,) exists] =  1 . This im plies that lim g(a) exists for each  [3' eJ„) . Also

(6.6) is evident.

Now, we can prove the following.

Theorem 6 .6  A ssume that k < + o o .  Then we have
(i) ex =  {vh ; h e ' }

and
(ii) L e t  e (X ) a n d  s e t  f (a)=01, f cc> f o r  each a E L  Then lim 17/.1 converges

a s t->+ oo if and  only  i f

(6.7) lim  f (a) exists f o r  each fix e J o .

P ro o f . Let h e <Ye e x . Then h= hp for some 13 {1,..., k} by Lemma 6.1. De-
noting lip (a)- h,(02,, we have

LES

<v„fl , =lim  Ea [iip(a ,) ]=  E  ( urn Ft fl (a))13 „[1im a, = yx].
( . 0 0 Y—eJo

Since lirn rip (a)= f  1

0

if  y fl c
, we obtain

otherwise

(6.8) <vh„, fOE> = E D i m  =
V—eJo t,co
y zfl
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Suppose th a t  vh s( v '  +  v " )  for some y' and y " e S .  Denote f  P (Œ)= <vh,, f.>,
f '(a)= ,  f cc > and f " (a) = <v", f a > . Then f POO (f '(a) + f "(a)). S in c e  f ' and

f" e g ,  lim f '00=f '(ym )  and lirn f"(cx)=4"(y') exist for every r ° e Jo- M oreover
ct-■-r°

by (6.8)

1 i f  y
f f i (v )= Hence f'(),')=f"(y`")=fP(yœ) hold.

0  otherwise.

Thus we have f ' =f "  =f . This means vhs E .99
e x .

Next we shall show the converse.
Let y e .99 and set f(a)= <v, f c >. Then it follows from Lemma 6.5 that

(6.9) f(Œ)= E  f ( r ) P . E l i m  =
fl . {1 ..... k}

By (6.8) and the Möbius inversion formula, we get

(6.10) P aP iin . at = 131 =  E (— 01P \Yip GO
Y=P

Then it follows from (6.9) and (6.10) that

(6.11) f (a) = E ( (— 1 ) 119\ Y V  ( r ) / f Y (Œ).
fl . ( 1 .......... k ) Y .P c { 1 ....,k)

Set .1.7 = E (— DIP\Y If( r  ) .  Then we have
y.fl.{1 ..... k)

(6.12) fly 0  fo r  e a c h  y c lc} and E  /Iv  =1.
y.{1,..., k)

For

= E ( — 010 Yllim 1/(dx) F1 X0 , 0Y y c f ic { 1 ,. . . ,k ) n- .00 iefl

= limSv(dx) E (_01fily1fi X 1
n . 0 0 Y a P a { 1 k )

lim  v(dx)FI.x (1 )n (1 —x( f ,„) ) 0 ,
n - 4 0 0 icy jel1,...,k)1y

and

E Ay = litn v(dx) E fi x( i ,„)F i (1 — xc h n o= 1.
y {.1 ..... k)............n - ,co y.{1 k ) icy.............. je{1,...,k)1y

Accordingly we have v= E  A y vh y . Thus we obtain ( i ) .  Next, we shall show
y . {1  ,. ..,k )

the latter half. Suppose that lim r t'p  exists. Then w e can easily see that (6.7) is

v a lid . Conversely we assume (6.7). Then

lim < T7P, f .> =lim  E  <  f Œ ,>] =lim E  EOE[gott); Lim  = )6 x ]
.0 0 t..co /3 E•t0

=  E  f(/6°0 )PŒE lim = /31-
Pr.e.10 t . 0 3
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Thus T i  converges as t o o .

Rem ark. It sh o u ld  b e  n o ted  th a t {vh ; he.Y e e x }c Y , „  holds f o r  k = + co.

7 .  Examples and discussions

Let us consider only the case without mutation.
1°. Let S be a finite set and let us assume that WO is irreducible. Then obviously
{qi i } satisfies the condition of Case I. Hence we have .rex= {

6
 0 9  

6 11.
2 ° . L et S={1, 2, 3}. Assume th a t q1 3 =q 2 3 =m, q 11 =q 2 2 =  -m  and q 1 2  =q 3 1

= q 3 2  = q3 3  = O . (m  >0). Then the evolution of gene frequencies is given by

dx JO= a(x i (t))dB 1 (t) + m(x 3 (t)- x  JO) dt

(7.1)d x 2 ( t ) =  a ( x  2 (t))dB 2 (0 + m(x 3 (t)- x  2 (t))dt

dx 3 (t)= a(x 3 (t)) dB 3 (t)

where a(y )=
1 , 1  y ( 1 -  y )  i f  0 5  y  5 .1

0 otherwise 
, {B (t)} 1 ,2 ,3i _ a re  a n  independent system of

one-dimensional Brownian m otions on (0 , ,F , P) . Let =inf x3(t)=0 or
1 ) .  Then we can see easily that + a) P-a.s. and

P [lim x 1 (t) =lim  x 2 (t) =0 x 3 ( 3 ) =0] = 1, and
j . 0 0 t - .0 0

(7.2)
pu im x 1 (0 =iim x2 (t) = 1 1x3(3) = 1]=1.

t , C 0 t-.09

H ence Y e.=  {6 0, 6 1 }  a n d  lim TPA= AS +(1 -  ))( 5 0 , where A =  pt(dx)P[x 3 ( 3 )
t-

= lix(0)=x].
3°. Let S = {1, 2, 3}. Assume tha t q3 1  =q 3 2 =m, q 3 3  = -2m, and qi i =0  fo r  all
other (i, j). Then the evolution of gene frequencies is given by

dx 1(0= a(x 1 (0)dB i (t)

(7.3) dx2(0= a(x 2 (t))dB2(t)

dx 3 (t)= a(x 3 (t)) dB 3 (0 + m(x JO+ x 2 (t) - 2x 3 (t)) dt

Let xi(t)=0 or 1} (i =1, 2). T h e n  < + GO, + CO P-a.e. and

P Dim x 3 (1) =01x  1 ( i)  x2( 2) = 0 ] = I,

(7.4)
P [lim  x 3 (t) = lix  i)  = x  2 )  = 1 ] = 1 ,

and the limiting distribution of {x 3 (t)} under P [  x 1 (c 1 )0 x2( 2)]
following probability density function,

C„,(x(1- y)) 2 m- 1  i f  0  y  1

is given by the

(7.5) p m ( y ) -
otherwise,
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where Cm  is the normalizing constant.
H e n c e  ex

=
 0 0 5  

6
1 1

 y 1 ,
 v 2 1 9  where v, and v2 are defined by

<1, f> =1 f( 1, 0, Y)Pm(Y)dY
(7.6)

<v2, f > =1
o
f  (0, I, Y) Pm(Y) dY for a l l  f eC ([0  1 ] 3 ).

Thus Y e x = {vh ; h e ,Yee x } holds.
43• G enera lly  if Q—{q u } is irreducible and if every Q-harmonic function is con-
stant, Q satisfies the condition of Case I  o r  C a s e  I I .  L et S=Zd (d-dimensional
integer lattice space) and let

ni

{

if I i —il = I

ch —2dnii = if i--j

0 otherwise.

Then the  corresponding 13 ,=efQ is  the  d-dimensional simple random  w alks. If
d= 1 or 2, then Case I holds and 9 9

e x = { 6 0 , (5 1 ) ,  and if d - 3, then Case II holds and
9 9 e x = {V c ;  CI C-- 1}.
5°. Let us consider the case that {q,1} is symmetric. Then we can see easily that
if the corresponding Pr Markov chain is transient, then Case I I  holds, and if it is
positively recurrent, then Case I  holds. However even if it is null recurrent there
are examples of C a se  I I .  (cf. Liggett [6])
6'. It is  possible to construct a  strongly continuous Markov semi-group {T} on
C(X) associated with (1.1) without using stochastic differential equations. W e
shall show an outline of such a construction. Let Lo  b e  the set of all functions
satisfying that

(i) f =  c . f .  w h e re  c„ e l 0  a n d  E icŒi < +co,
a e l ael

and
(ii) there exists a constant M> 0 such that c,c = 0 if jal >M .
Then we can see that every f e Lo  is twice continuously differentiable on X and Af
of (1.5) is well-defined. Also (A , D(A)= L 0 ) is dissipative as an operator on C(X).
Hence it is closable. We denote by (A, D(A)) the closure of (A, D(A)).

Next, let us consider the following equation,

(7.7) A)u = f w h ere  2> 0 and  f e Lo .

For f=  E cŒf c, set u(x)= E cOE1 Ea [f(x )exp  ( —At — u1t I ots i ds)ldt. Then it is
a e l a e l 0 0

easy to see that u e L0 a n d  u  satisfies the equation (7.7) by the  Feymnan-Kac's
theorem. Thus we see that the range of 2—A is dense in C (X ). Hence by virtue of
th e  Hille-Yosida's semi-group theory, there exists a  un ique  strongly continuous
semi-group {7;} su c h  th a t  th e  infinitesimal generator o f  {7;} coincides with
(A, D(A)).
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