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1. Introduction

The purpose of the present paper is to investigate an interacting system de-
scribing an evolution of gene frequencies in population genetics. In particular, we
are interested in the effect of geographical structure in the process of evolution.

We shall first explain our interacting system. Let S be a countable set. Each
element i of S is called *““a colony’’. We assume that there are two alleles A and
B at each colony and denote by x; (1—x;) the gene frequency of the A-allele (resp.
the B-allele) for the colony i€ S. A time evolution of gene frequencies is caused by
the following three factors;

(1) mutation in each colony,

(2) migration among colonies, and

(3) random sampling drift.

It is described by means of the following stochastic differential equation,

(1.1) dx(t)=a(x;(¢))dB;() + (v— (u+v)x;(1) + z;sqijxj(t))dt
Jje
where a(y)=ﬁ\/y(l—y) if 05y=<1
=0 otherwise,

with a positive constant N, u and v are constants such that u=0 and v20, q;;
(i, je S) are constants such that ¢;;20 for ixj and } ¢;;=0 for every i, and
Jes

{B{1)};s 1s an independent system of one-dimensional Brownian motions. N de-
notes the population size of each colony at random sampling, u and v denote muta-
tion rates between 4 and B, and for i j, q;; denotes the migration rate from je S
toieS.

We assume

(1.2) sup |q,~i|<+00.
ieS

Then it is known that if 0<x,;(0)<1 for all i e S, (1.1) has a unique solution sétisfying

(1.3) 0=x()<1 forall ieS and t=0, a.s. (cf. Shiga-Shimizu [10])
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Accordingly, (1.1) defines a diffusion process on X=[0 115, where X is equipped
with the product topology. This system is also described analytically as follows.

Let C(X) be the set of all continuous functions on X and let C3(X) be the set
of all functions fe C(X) which depend only on finite number of coordinates of X
and are twice continuously differentiable. Then there exists a unique strongly
continuous semi-group {7;} on C(X) such that

(1.4) T,1=1 and T,f =0 for every f e C(X) satisfying f =0, and

(1.5) T, f—f= S; T,Af ds for every fe C3(X), where Af(x)=

i€

S 5@ Ge)Dhf)+ T (0=t v)xi+ 3 g,5x,) Di fx)

for x={x;}eX, D;= %, and D} =
i

62
ox?
In fact, {T;} is obtained by using the solution of (1.1). That is, denoting by {x(t: x)}
the solution of (1.1) with the initial condition x£(0)=x, we have T,f(x)=E[f(x(t: x))]
for each f e C(X).

Such a system is called a continuous time stepping stone model. Discrete
time models have been investigated by many authors. cf. Kimura-Weiss [5],
Fleming-Su [1], Maruyama [8], Itazu [2], and so on. On the other hand Nagylaki
[9] considered recently an continuous time one-dimensional model by means of con-
tinuous approximations in space. However there is no systematic study known to
us concerning stationary states in either case.

In this paper we shall study stationary states and ergodic behaviors of this
system.

Let 2(X) be the set of all probability measures on X endowed with the topology
of weak convergence. Then 2(X) is compact since X is compact metrizable. Let
us denote by {TF¥} the adjoint semi-group on £(X) induced by {T;} and denote by
& the set of all fixed points of {T¥}, ie. ¥={ue2(X); T{u=p for all t=0}.
Each element of & is called a stationary state or an equiliblium state of {T,}.
Since & is a non-empty compact convex set, we shall investigate the structure of
& x> the set of all extremal elements of &.

In §2 we shall obtain the following general result in the case with mutation.

Theorem 1.1 Suppose that u+v>0. Then there exists a unique ve 2(X)
such that

(1.6) lim T¥S5,=v holds for every xe X, where 0, stands for the point mass at
t—
xeX.

Thus, & is a singleton. In particular if u=0 and v>0 (u>0 and v=0), then
v=4, (resp. 6,) where 1€ X and 0e€ X are defined by 1={x;=1} and 0={x,=0}.

Next we shall investigate the case without mutation, that is, the case u=v=0.
Let us introduce three cases classified by the condition on migration rates. For
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this, we prepare several definitions and notations. Let Q={q;;} and set P,=¢'2.
By (1.2) P, is well-defined and satisfies

(1.7) P,20, P,1=1and ‘iff = P,0=0QP, for every 1=0.

Let us define a transition probability P,® P, on S x S by

(1.8) P,®P(i, )=P(iy, j)P(iy, j,) for each i=(i;, i;)eSxS and j=(j,Jj2)
eSxS.

We denote by (X,, P.i‘”) the continuous time Markov chain on Sx S associated

with P,®P,. We assume that Q={q;;} is irreducible and introduce the following
classification.

Case I P£2)[SwIA2(X,)dt=+ooj|=l forall ieSxS,
0

Case II P@Uw I,,(X,)dt< +oo]= | forall ieSxS, and
0

Case Il 0< PiZ)[Sw L,(X)dt=+ oo}< | forall ieSxS,
0

where 4,={(i,, i,)eSxS|i;=i,}.
Since Q is irreducible Case I, Case I1, and Case I11I exhaust all possibilities.
In § 3 we shall consider Case I and obtain the following.

Theorem 1.2 Assume Case I. Then we have
(l) yex={5o9 61}’
and
(i) for a pe 2(X), T¥u converges as t—oo if and only if Z P, ])S u(dx)x;

converges as t—oo for each i€ S.

If this condition is satisfied, im Y P(i, j) Su(dx)xj=l is independent of i and
120 je§
lim THp=28, +(1 — 1), ’

100

Results on Case 11 and Case I1I are closely related to Q-harmonic functions. A
function h defined on S is said to be Q-harmonic if Z q;;h(j)=0 for each ieS.

Let us denote by s# the set of all Q-harmonic functlons satisfying 0<h<1. Each
h e # can be regarded as an element of X and 8, denotes the point mass at h. Then
we have

Theorem 1.3 Assume Case II. Then,

(i) lim T}S,=v, exists for each he #,
t—>

(i) g vi(dx)x;=h(i) for each he # and i€ S,
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and
(iii) &L={vy; hes#}.

Theorem 1.4 Assume the same conditions as in Theorem 1.3. Let ue 2(X)
and he s#. Then lim T¥*u=v, if and only if
t—
(1.10) X P(i, j)x; converges to h(i) in probability with respect to u for each
Jjes
ieSs.

The above theorems will be obtained in §4 and §5. In §6 we shall study Case II1
and give an example which illustrates a different phenomenon from Case I and
Case II. In §7 we shall give some examples and remarks.

Finally it would be interesting to compare our results and methods with those
of Liggett [6] in the theory of infinite particle system with interactions.

2. Auxiliary Markov chains and the case with mutation

Let I be the set of all non-negative integer-valued functions o« defined on S
satisfying |°‘|=Zs“i< + . ais denoted by & if a;=1 and ;=0 for jxi. For
ael and ﬁel,lcoc+ﬁel is defined by (a+f);=a;+f; for each ieS. If ¢;=f; for
all i e S we denote it by a=f, and in such case, x — f e[ is defined by («— f);=a;— f3;
for each i€ S.

Now, let us introduce two kinds of continuous time Markov chains on I. Set

a4 if f=a—sei+eiel (i#])

ﬁai(ai—l)+va,~ if fB=a—¢'el
(2.1) R, ;=

Souqu— gy Soule— 1) —olal if f=a

0 otherwise.

g if f=a—ci+eiel (i#]))
(2.2) R, p={ X4 if f=a

0 otherwise.

Then it follows easily that under the condition (1.2) R={R,} (resp. R={R,;})
generates a unique continuous time conservative Markov chain (e, P,),; (resp.
(ot f’,),e,) on I such that

Pa(ar=ﬁ)_]a
t

(2.3) lim

L =R, for a, el
tlo

(2.3 lim P“(“'=f)'l"” =R

for o, fel
110 a,p 9ﬁ
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1 if a=p
where I, 5=
0 otherwise.

In fact, it is easy to see that {a,, i’,}ae, is an independent system of |a| number of
P,-Markov chains, i.e. it satisfies

(2.4) Elg@)]= % 3 [T Plic g+ +em)
if a=git+---+¢im, for every bounded function g on I. In particular, if v=0 and
la|=1, both (x, P,) and (a, P,) can be regarded as P,-Markov chains. Let 4
={ael|o;=2 for some ieS}. If v=0, («, P,),; has the same probabilitic be-
havior as (,, f’a)ae, up to the hitting time for 4. But when « lies on 4, there is a
possibility that one of particles disappears.

Let 7, be the n-th jumping time of {a,}, i.e. n; =inf {t; o, =% o}, ny=n,+n,(8,,),
vy Ny =N,y +1,(3, _), where 3 stands for the shift operator of the Markov chain
(«, P,) or (o, ﬁa). Then we have immediately the following.

Lemma 2.1 [fae€Ad, then

Zs ;g
Pa[lanll:laOI]: 'El .
Egailqiil + aGN ieZS ai(o;— 1)+ vlaf
For each a e I, we put f(x)=[] x#' and fo(x)=1. Then we have the following.
ieS

Lemma 2.2 For A defined in (1.5), it holds that
(2.5) Af (x)=2 R, pfp (x)—ula| fo(x)  for eachael.
) Bel

Proof. Noting that D;f(x)=0;f,_.(x) and D% f(x)=oa;— 1) X f,_,.(x), it
follows easily that

A )= 3 (G @il = D+ 0, (fumal®) — fu(@) +

ieS

Z Z‘ai(lijfa—n‘-fc-" _ulalfa(x)'

ieS jeS§
The following lemma plays an essential role throughout this paper.

Lemma 2.3

(2.6) T,f,,(x)=E,[fat(x)exp(—ug;chslds)J for all ael.

Proof. By (1.5) and Lemma 2.2, we see that for each e ]

@7 TSu®)= [u&)= 3 Ra || Tfy@)ds —ulolT, 1)

Hence g(t, @) =T, f(x) satisfies the following equation,
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d = —_—
(2.8) { 2 9= ElRa,ﬂg(t, B)—ulalg(t, o)
g(o’ a)=fa(x)

On the other hand it is well-known that (2.8) is uniquely solved by means of the
Feynman-Kac formula as follows: (cf. Ito [3])

(2.9) 9, )= f. @ exp(-u{ wlas)]
0
Thus we get (2.6).
Lemma 2.4 Let {,=inf {t=0; |o,|=0}. Then

(i) ifv>0, P[{o<+o0]=1 for every ael,
and
(ii) ifv=0, P[{,=+c0]=1 for every ax0¢€l.

Proof. (ii) is trivial because of the definition of (a,, P,). By Lemma 2.1,

suplq;;l

= S
Pa[laml IaOI]: SI:p|‘1i.-|+U

=1 forevery acel.

Let {=inf{t=0; || <l|tp|}. By the strong Markov property, we have P,[{=
+ 0] SP,[la, | =lay,| =" =|o, |=]ao|]SA">0 as n—oo. Hence P,[{<+o0]=1
for every a € I with |a|=1, and (i) follows from this.

Now we can prove Theorem 1.1. Let v>0. Then it follows from Lemma 2.3
and Lemma 2.4 that

Lo
(2.10) UimT, f,(x)=E, [exp(— u go |as|a’s)] forany o€l and xelX.
t— 00

Hence there exists a unique probability measure v on X such that lim T,f (x)=
t— 0

(v, f) for all fe C(X).D
In particular if u=0, then lim T,f(x)=1 for every a € I, namely v=94,.
1=

On the other hand if u>0 and v=0, P,[{,=+4+0]=1 by Lemma 2.4. Hence it
follows that lim T, f(x) =0 for any a € I with %0 and x € X, namely v=49,. There-
t—00

fore we complete the proof of Theorem 1.1.

Remark Ifu>0, we can easily see that

(2.11) [T f ) =<y, fO|Se ™ Jorall ael and xe X.

3. Casel

Hereafter we investigate the case without mutation, namely the case u=v=0.

D ¢ fy={udns@
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Then («,, P,),; can be interpreted as follows: each particle in « moves independently
according to the transition law P, until two particles occupy the same site in S.
When more than two particles occupy the same site in S, one of them may disappear
with positive probability at the next jumping time.

Let us introduce the following Markov times.

{=inf {t20; log| <ltol}, e=inf {120; || <k} for k=0, L,...,
T, =inf {t=20; ¢, € I\4, and |o,| =]to]|},
o,=inf{t=7,; o,€ 4} and 1, and g, are defined inductively by

T,=0,_1+1,(9,,_) and 6,=1,+0,(9,,), where o,=0.

Tn-1

Lemma 3.1

(1) Tffx)=E,[f,(x)] for every acl and xe X.

(i) E,[g(x): al=+oo]=E~a[g(oc,); g,=+ 0] for every bounded function g on
I, if a e 1\A.

(iii) For each integer m=2, there exists a constant A(m)<1 such that P,[|o
=l|agl]=A(m) if ae 4 and |a|=m.

(iv) [{=+oo]=[r,<+ 0, 6,=+ 0 for some n=1] a.s. P,.

'le

Proof. (i), (ii) and (iii) follows from Lemma 2.1, Lemma 2.3 and the defini-
tion of the Markov chains. So we show only (iv). Let xe4. Then

P,[{=+00, 1,=+0]=P,[a, €4,...,a, €4, |, | =|xol]
éEa[Pa’ln—l[la'lll = |a0|]; aﬂl € A""’ a'ln—l EA’ |a'1n-l| = |a0t]

SMo)P,[ay, € 4,.... a,,_, €4, |a,, | =]oo|]SA(l])".

> Oy
Hence we have
(3.1 P,[{=+00,1,=400]=0.
Also,
P,[{=+o©\t,< + 0, 6,= + oo for some n>1]
=P,[{=+ 00, 0,_; <+ 00, T,=+ 00 for some n=1]+P,[0,< + oo for all n]

the first term = f: E[P, [(=+4+o,1,=+®];0,-;<+0]=0
n=1 n-t

by (3.1), and
the second term=P,[0, <+ 0]=E,[P,, -.[01 <+o0w];0,-;<+00]

SE[P, [l l=looll: 0,oy < +00]
<H(a)P,[0,- < +@0]SMa)' — 0 as n—s co.

Thus we obtain [{=+ w]c[1,<+ 0, 6,=+ 00 for some n=1] P,-a.s.. But the
converse inclusion is trivial.
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Lemma 3.2 The following (i), (i) and (i) are mutually equivalent.
(i) Q={qi;} satisfies the condition of Case I.
(ii) 13,,[0,,< + 00 for every n=1]=1 for every a el with |o|=2.
(iii) P,[{,<+o0]=1 for every a€el.

Proof. **(i)—(ii)” is trivial. Next let us assume (ii) and let ja|=2. Then

E, [exp (— i (Tye1—0,)); 6,<+ 00 for every n=1]
n=1

=E~'¢[exp (— (12_ al))Ea,Z[exp(_ 'gl (Tn+1 - dll)); O'"< + o fO].' al]- n] :

7,< + 0]

< sup £, exp ( 3 (tar1—04)); 0,< 400 for all n]x
la|=2 n=1

Iilllgl?a[em (= (12— 0))]
Also for |a|=2

B (oxp (= (ta— 01))] = EulEs, [e-"]: 0y < +00] < sup — el
! jaj=2 14+ IRa,al

< 2sup |g;il |
< i <l
= 1+2suplgyl

Here we used the fact that the probability law of (1, 15‘,) is the exponential dis-
tribution with parameter |R, ,|.
Hence we obtain

E‘a[exp ( - il(TIWI - O',,))] =E~a[exp (_ il(‘t:ﬁl - O'")) M <+ for all n] =0
Accordingly we have
[ L@ydi= ¥ (ui=o)=00 as. (B,

Thus *‘(ii)— (@) is proved.
Next we shall show ‘‘(ii)—(iii)”. First we note P,[o;=+0o0]=P,[0,= +o0]=0,
if ee \d and |«|=2. By Lemma 3.1

P,[{=+o]=P,[1r,<+ o, 0,=+00 for some n=1]

= $ E,[P, [0,= +®];1,<+]=0.

n=1

Hence P,[{ < +00]=1if |a|=2. This implies (iii).
Conversely we assume that (iii) holds. For ael\4 with |o|=2, PJo, < + o]
=Po,<+0]2P[{<+o0]=1.
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(ii) follows from this.

Lemma 3.3 Assume Case I. Then every bounded Q-harmonic function is
constant.

Proof. Let h be any bounded Q-harmonic function. Then P,h=h for all t=0.
Let us consider a continuous time Markov chain (X}, X2), P, ,)) on SxS such
that

(i) Eu,inlg(XH1=Pg(i,), and

Ei,,inlg(X2)]=P,g(iy) for any bounded function g on S,
(3.2) () Pu,i,E<+ow]=1 for all (iy,i,)eSxS, and
P, i [Xi=X? for all t2{]=1,

where E=inf {1=20; X} =X?2}.

In fact, noting the condition of Case I, we can construct it as follows. Let ((X},
X?), P, 1,y be a continuous time Markov chain on Sx S with P,®P, as its transi-
tion probability. Then, &=inf {=0; X!=X2}<+ 0 P, ;,y-a.5.. Set X!=X},
X2=X2 for t<& and X2=X! for t2¢ Then (X}, X?), P,..,) satisfies (3.2).
Moreover, for i; xi, €S,
|h(iy) = h(i)| = E, iy [H(XT) — H(X?)]|
SPi,iplé>t]-llh|, >0 as t—o0.

Thus we see that h is constant.

Proof of Theorem 1.2
We shall prove only (ii) since (i) follows from (ii). Suppose that lim T*u
j Sad )

exists for ue 2(X). Set
my@) =< TFp, fo =< Tfed =E [, [ 1=E[mo(a)] (by Lemma 3.1).
Then lim m,(«) = m(a) exists.
t—=0

In particular, we see m(e")=Ilim X P,(i, j))mq(e).
t—o jeS§

Since m(e') is a Q-harmonic function as a function on S, m(ef)=4 is independent of
ieS by Lemma 3.3.
Thus we have

(3.3) lim m(a)=24 if |o=1.
For |a| =1,
mya)=E,[mo(a)] =E,[mo(); {; <t]+E,[mo(a); {;21]
=E,[Eq; [mo(o-5)]ls=¢,s i <t]+E[mo(a); {1 21].



222 Tokuzo Shiga

By using Lemma 3.2 and (3.3), we get

(3.4) lim m,(¢)=4 forall a=x0.
t—©

It follows immediately that

(3.5) lim T*u =28, + (1—2A)3,.

=0

We can also prove the converse by an analogous argument.

4. Case II, Structure of &
In §4 and §5 we always assume Case I1.
Lemma 4.1

(i) PJl{<+oo]<l forevery a€l.
(>ii) l?’a[r,,< + o0, and o,= + o for some n=1]=1 for every ael.

Proof. 1t follows easily from the irreducibility of Q={g;;} that if |B|=]al,
then P,[oa,=p]>0 for all t>0. So we have P,[t,<+0o0]>0 for each ael. By
the condition of Case I

ﬁaB: I (a)dt< +oo:i=1 for every ael with |o|22.

This implies that l~’a,[0'1 < +00]<1 holds for every a € I\4 with |¢|=2, by an argu-
ment similar to Lemma 2.1 in Liggett’s paper [6].
Hence we have

P[{=+00]=P,[t,<+ 00, {=+ 0] (by Lemma 3.1)

=E,[P, [{=+0]; 1, <+0]2E,[P, [0,=+00]; 1;<+0]>0.

(ii): 1In the proof of Lemma 3.2 we showed E’a [exp(—gOo IA(a,)dt>; g,<+oo for
0

every @1]:0 for every a el with |a|=2. Since Sw I,(¢)dt<oo a.s. (P,) by the
~ 0

condition of Case II, we see P,[o,<+ oo for every n=1]=0 for all ael with

|| =2, and moreover this holds for all & € I with |¢|=2. Thus we see that (ii) holds.

Now let us introduce the following spaces of harmonic functions.
@ ={g(a); defined on I, 0=g=<1 and E [g(o,)]=9g(a) for all a €I and t=0}
H ={h(a); defined on I, 0Sh<1 and E [(a)]=h() for all ael and 120}

In the following lemmas we shall establish a one-to-one correspondence between
@ and #.

Lemma 4.2 For every he i, lim E,[h(a,)] exists.
=
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Proof. For ael\d,
E,[i(x): 0,=+0]=E,[i(x); 6,= + o]
= E,[h(o)]-E,[h(2); o1 < + 0]

=h(@) - E,[(#); 0, <t]1—E,[i(x); t<o, < +o0].
Since

E[i(o); 0, <t]=E,[E,, [F(0,-)ls=s,; 01 <1=E,[h(%,); 0, <1],

we have
4.1 limE,[h(x,); 0,= + 0] = h(x) —E,[ﬁ(a,l); ;< + 0].
t—>o

We denote the right-hand side of (4.1) by h,(«).
Then

E,[h(a); {=+00]= 3 E,[i(a);1,<+0, 0,=+n]  (by Lemma 3.1)
n=1

8

= Z a[Ea, [h(d, s)s 0,= +<D]|s ths T <t]+

n=1

iMs

—

E,[h(2,);t<1,<+ 0, 6,= + 0],

and consequently

(4.2) lim E,[fi(x): {=+00]= il E,[Fy(2.); t< + o]
t—> 0 =

Denote the right-hand side of (4.2) by hi,(a).
Then

E.[i@)]= $ Blh); Le< +00, iy = +c0]
= $ BB, 75 (= + ®]lemgy; (<]

lal -
+ kz_‘,l E [h(a);tS{<+ 0, {_1=+o].

Therefore we get
. ~ |a] ~
(4.3) lljg E [h(a)] = P E,[hy(ag,); <+ 0].

Remark. For each /e 2, denote cbh(a)—llm E,[h(«)]. Then & is a map

from # to . Furthermore it should be noted that we did not use the condition
of Case II in the above proof. Thus Lemma 4.2 holds generally.

Lemma 4.3 For each ge ¥, lim E",,[g(a,)] exists.
t—
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Proof. For ael\d, E[g();0,=+0]=Elg(); 6,=+0w]=E,[g(x)]~
E [g(x); 01 < +©].
By an argument similar to Lemma 4.2, we have

4.4) lim E,[g(@); 01=+0] =g () ~E,[9(,); 0, < +o].
Denote the right-hand side of (4.4) by g,(a). Then

E.lg@)]= ¥ E.lg(@): 1< +00, 0,= +00] (by Lemma 4.1)

8

= lEa[Ea,"[g(al—s); dl=+w]|s=tn; tn<t]+

3
i

M8

) E, [g9(x);t<1,<+ 0, 0,=+x].

Thus we have

(4.5) lim E,[g (@)1= £ Eulg:(,); 7, < +0].

For each g € ¢, we denote 'Pg(a)=rli_)12 E,[g(2)]. Then ¥ is a map from ¢ to .

Lemma 4.4 & is a bijection from # to ¥ and &~ '=VY.
Proof. Let ge% and h=¥g. We shall show ®h=g. Let us calculate h,
and f, in the proof of Lemma 4.2. Let aeI\d. By (4.1) and (4.5) we have

hi@)=Yg(@)—E,[Pg(x,); 6,<+x]

= 3 (E.[g1@); u<+ 0] -E[ X By, [9:(x,); 1,<+0];0,< + 0]

= 3 (E.[9:(0); 1<+ 0] E,[9:(a0,.,); T < +0])

=g4(a)

and

ha@= 3 Elhy(@,); 7 <+0]= 3 Elg1(x.); 7, < + o]

iiMs

. (Ea[g(at"); T,,< + w] _Ea[Ea,"[g(am); O'1< + w]s 7,< +w])

Ms

L (Ea[g(arn); Tn< + w] _Ea[g(aa"); 0',,< + w])

= 3 (imE,[g(x); 6,=+©]—1lim E,[(2); T,= +0])
n=1 t—® t—©

=limE,[g(a); t,<+c, and o,=+4+0c0 forsome n=1]
1=

=1limE [g(a,); {=+ ] (by Lemma 3.1)
t—o©

=g(@)—E,[g(a); { <+ 0].
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Thus it follows from (4.3) that

Sh)= 3 E,[hy(a,); i< + 0]

=1

a

la
= 3 B9 G<+ 1= & BB, [9(); (< +0]; (< +00]

— &

—
U

a|

= 3 E.lg(a); (< + 1= £ E[0(0,.); i< + 0]
=E,[9(x,,); (o)< +0]=g(a).
Conversely, let he # and g=®h. For ael\4,
lim E,[g(z,); 0, =+ 0] =lim E, [lim E,,[A(2)]; 0, = + 0]
=lim lim E.[E, [h(2)]; 0> =lim lim E,[A(%+.); 01>1]

=limlim E,[A(%.4,); 0, =+ 0] =h, ().

1= s 00

Accordingly we have

¥g(x)=lim E,[g(x)]

-~ 1‘
8
Ms
=

<Lg(a); 1,<+00,0,=+0] (by Lemma 4.1)
=lim i Ea[Eag [g(at—u; 0= +w]ll=t'|; Tn<t]
t 1 n
+1lim i E',,[g(a,); t<t,<+0,0,=+0x0]
t—0 n=1

= 21 Ea[ﬁl(at"); 1n< +w]

Ms

(B [h(.,); ty< + 0] = E,[h(2,,); 0,< + 0])

=limE [h(e,); t,<+®, 6,=+0 forsome n=1]
=00
=h(a) (by Lemma 4.1).
Thus we complete the proof of Lemma 4.4.

The following lemma is a slight modification of Lemma 3.1 of Matloff [7].
His original proof can be applied also in this case.

Lemma 4.5 Let {t,} be an increasing sequence tending to co and let {f,} be
a sequence of functions on S such that
(i) 0=f, =1 foralln, and
(i) fG)=lim (P, f,)(i) exists for each i€ S.
Then f is Q-harmonic.
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Corollary 4.6 Let {f(i)};>0 be a family of functions on S such that
(i) 0Zf,£1 foreach t>0, and
(i) g(i))=P,f(i) for each t>0 and ieS.
Then g e 5#.

Lemma 4.7 Let he 5. For arbitrarily fixed a €1, set h(i)=h(a+¢). Then
h,€ #.

Proof. Noting (2.4), we have
ho(i) = h(o-+2) = B U] = T Plis DELh(o+87)].

Therefore h, € s# by Corollary 4.6.

Remark. Lemma 4.7 is interesting in itself, and it is generalized as follows.
Let (X,, P}) and (Y,, P2) be two Markov processes on state spaces (X, #') and
(Y,%?), which are generated by bounded infinitesimal generators and let ((X,, Y)),
P, =P,®P,) be their direct product Markov process. If a bounded measurable
function f(x, y) on (X xY, F1xF?) satisfies that E, ,[f(X,, Y)]=f(x, y) for
every (x, Y)eXxY and all >0, then it holds that EL[f(X,, y)]=f(x, y) and
E2[f(x, Y)]1=f(x, y) for every (x, y)€ X X Y and all >0.

Lemma 4.8 Let f, ;= ~gi+e,[al <+ o0]. Then, we have
lim X P(i, j)f;x=0 for each i and k of S.
t—= jeS

Proof. For each 6>0, set f?;= P, [a,€4 for some n=1]. Note that
If’eiﬂ,[ § I (a,;)< +o0]=1 by the condition of Case II. Then we have
n=1

(4.6) 2= ﬁl Pl =26"1:P ol € 1\A for all n21]
= ";1 'ESPné(is m)Pné(js m) (1 _fgr,m)

Let J be any finite subset of S, and N be any positive integer. Then,

(1= 3 5 Poslis m)Poy(jy m) (1= f3.))2

n=1 melJ

SC s Pl m U—fR)(E T Pl m)(1=fhm)

(n,m):n>N or m&J

, Pralis m*(1 AN

(nym):n>Norm

Here we used the Schwarz’s inequality and (4.6).
For any £>0 there exist J and N such that
P2s(i, m) (1—fh,m) <€
(n,m):n>N or m&J

Thus, we get
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N
Fhis B X Pus(i, m)Pyy(j, m)+e for any jeS.

me

So,
TP NS4S 2T Pastles m) Prasaliy m) 4,

Since the condition of Case II implies that {P,(i, j)} is not positively recurrent, it is
well-known that

lim P(i, j)=0 forany iandjeS.
t—oo
Hence we obtain lim Z Pi, j)f4,=0.

t—® jeS

Also for i j and 6>0

fii=Porulo;<+0]=P, [0,<+0, n(3,)<81+P,,,,[0,< + o,
11(8,,) >9]
échﬂJ[Pa,,l [11=0]; 0, <+ ] +f?,j
= sup P, AUVETIENEY = Sup (1=exp (=R, [-0) +17,.

Noting sup |R,,| < + 00, we can conclude that
|a|=2

hmZ P,(i, j)fj =0 for any i and k of S.

Lemma 4.9 For any pue, set g(a)=<_u, f,» and ‘I’g(a) h(oz) Then for
eachael and ke S,

4.7 lim lim E,[E, [h(o,+£47] = fi(a+eb).

t—>00 §—00

Proof. 1°. Let us consider a Markov chain ((a;, &), P, which satisfies the
following conditions.
(1) ((«, &), Pis,y) is a Markov chain on I'=Ix {aeI; |x| <1},
(i) (a7, Py is identical with (o, P,) in the sense of probability law,
and
(i) (a;+e;, Py, is identical with («,, P,,,) in the sense of probability law.
In fact, ((«;, &), P(,,.)) can be constructed by the following infinitesimal matrix,

«q;; if f=(a—¢'+el,e*) (i#))
dkj if B=(x, /) (j#k)
@1 if p=(a—sieh)

(4.8) Riy ey, 5=

S if f=(x0)

_ 1 T ; — k
Es“ﬂit‘l‘%k AN Es“i (;=1) AN lo| if  B=(a, &¥)

0 otherwise,
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and

ot,q” if ,3=(0t—8i+81, O) (i#j)
v w@=1 if f=(a—e',0)

Ria,0y,8=
_1 _ : _
Esaiq”— aN Esai(“i 1) if f=(a,0)

0 otherwise.
2°. Next, we claim that
4.9) POP.[i<f1<P,@P,[i<t], where T=inf{r20;02¢}.

In order to show (4.9) it is sufficient to construct a Markov chain ((&, B)s Piapy)

such that

(i) (@ B)» Py is a Markov chain on I={(a, p)eIxI; a =B},

(ii) (&, P,p) has the identical probability law with («,, P,) for every fel with
<P,

and

(iii) (Be Peaypy) has the identical probability law with («, Py) for every ael with
aZp.
The infinitesimal matrix of (&, B,), P(s,p) is given by

wg; if (@, B)=(a—e'+el, f—ei+el) ((#))
Bi—a)gi; if (@, B)=(x, B—e+e&)) (i#))

(4.10) Rz py, a8 = 4IN a;(a;— 1) if (o, p)=(—¢, B)

S B gy L= if @)= B

0 otherwise.

3°. By Lemma 4.7 we have

(4.11) E[E,[h(o,+e)]1=E,QEE,QF, [h(o,+¢)]].
4°. Tt follows from Lemma 4.2, Lemma 4.3 and Lemma 4.4 that for h=¥g

(4.12) fi(a+ek)=1im E,, «[lim E, [A(x)]].
t—®© §—00

=limlim E,®E[E, ., [(x)]

t—>00 §—00

=lim lim E,®E[Eq,,.,,[7(c; +£)]]

t—00 §— 0

5°. Obviously we have
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(4.13) E{y oy [h(a;+¢;); s<T]1=E,QEx[h(a,+¢,); s<7]
6°. Hence it follows that

lim lim E,[E, [(x;+¢&*)] — h(a+e)]

=0 §—00

=lim lim |E,®E .[E,,®F,,[f(x,+¢)]]

t—>00 §—00

—E,®E[E,,.,[h(+£)]]]  (by (4.11) and (4.12))
=lim lim |E,QE[E, ®F, [h(x+s,); s2]]

=00 §— 0
—E,®E.[E,, . [h(+e); s2T]]]  (by (4.13))
<lim lim E,QE [P, ,®P, [T <s]]

t—0 s—00

<lim lim E,QE [P, ®P, [T<s]]  (by (4.9))

t—00 §s— 00

<lim lim Z ,ﬂk[a €d forsome (<u<t+s]

t—0 s—0 jigJ
g Z +ex[,, €4 for some indreasing sequence {¢,}, tending to o]
d

=0.

A}

Thus we complete the proof of Lemma 4.9.
Now we can prove Theorem 1.3.
1°. For each hes#, we put h(a)= H h(i)*:. Then hes. By Lemma 4.2,
lim {(T*$,, f.> =lim E,[A(a,)] exists for each ael.
t— 00 t—0

Hence there exists a probability measure v, on X such that

lim T;kéh =V

t—

2°. KT¥oy, fu> =E [ h(a,)]= Ph(i) = h(i).

(ii) follows from this.

3°. Let pue#,,. Since vo=0, and v,=0,, we assume u#d,, d;. Then for
some k€ S, 0<Su(dx)xk<1 holds. But we can see easily that 0<Su(dx)x,,<1 holds

for all ke S.
Let any ke S be fixed. We define two probability measures u, and u, by

S f> = (utdn) 7Gx |y,

(*.14) S > = ) 100 (1 =50 [ u(@n - 2,

for all feC(X).
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Then it holds that = Az, +(1 — A, for A= Su(dx)xk.

First we claim

(4.15) 1imltg' T*u,ds = .
t—© 0
Suppose that for some increasing sequence {t,} tending to oo, lim %St T¥u,ds
th n=+o0 tn JO
converges to e P(X). Then lim tLS T¥u,ds=p exists and pu=Ap+(1—A)i
n—o ‘n JO

holds. Since jie &, fie &, and ue&,,, we have i=ji=p. Hence it follows that
lim St T*u,ds=p because of the compactness of 2(X).

t—© JO

4°. Let g(0)=<{u, f,> (xeI). Then pe& implies that ge¥. Then we have

(4.16) lim - So ds E,[g(a,+&")] =g (e9)g(x).

t-e L

Indeed, noting that {u,, f,> =g(x+¢¥)/g(e¥), we obtain (4.16) by using (4.15) and
Lemma 3.1.
5°.  Next, we claim that for h=¥g

(4.17) lim lim - S;Ea[Eau[g(as+ek)]] ds=h(a+eb).
- u—00 t—00 . )
It follows from Lemma 4.4 that

(4.13) E,[E, [9(a+e)]]=E,[E, [lim E, . .[A(x,)]]]
=1im E,[E,, [E{, . [A (2, +2,)]]1]

Noting that E{a,ak,[ﬁ(a; +¢); v<T]=E,QE[h(x,+¢,); v<T] we see

4.19) Tm |E,[E, [E{,, «[h(2;+£)] - E,@E.[i(x,+8,)]]l
émEaEEau[Pa,C@Pe"[fév]

=E,[P, ®P,[a,,=¢, for some ¢=0]
§E¢[I~’¢u®Psk[a,+sgs, for some =0]

éEa[ Z fj.k]

JiedSau+s
Here we notice that these inequalities are justified rigorously by making use of the

pl’OCCSS ((&n Bt), P(a,ﬂ))'
On the other hand it follows from Lemma 4.7 that

(4200  E,[E, [E, ®E.[h(,+¢,)111=E,[E,[E, (2, +c)]]]
=E,[E, [h(,+E]].
Thus by (4.18), (4.19) and (4.20), we have
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@.21)  |E,[E, [g(a,+91]1—lim E, [fi(a, +&)1]|

<E[ 3 fiil

JiedSau+s

Hence by using Lemma 4.8, Lemma 4.9 and (4.21), we obtain

lim lim L S B [E, [9(t,+£9]1ds — fi(a+e)

u—0 t—® t

lim lim - S E,[E, [g(a+e)]1ds—lim lim E,[E,,[i(x, +¢)]]

U= t—+00 1

<fmim L S B, [E,,[g(z, +2)1] - lim E,[E,, [i(x,+ 2911l ds

U= t—+0

<hmhmtg El X Sfixlds=0

u—0 t—>w jieiSau+s
6°. By (4.16) and (4.17), we have
(4.22) hi(o+ &) = Wg(a)g(e*) = h(a)g(e*) .
Setting g(e¥) = h(k), we see easily that
(4.23) ‘hes# and h(a)= gh(i)“'.

Therefore we can conclude that g=v,. Thus we see.
(4.24) Lo {Vy; he#}.

Conversely let any h,e s be fixed. Then by the Choquet’s representation
theorem and (4.24), there exists a probability measure m(dh) on 5 such that

(4.25) Vi = Szvhm(d/z).

Let gh(a)=<{v, f,»>. Then gte¥ and Yg"(a)=[]h(i)** by Lemma 4.4. Ac-
ieS
cordingly by (4.25) we have

(4.26) ]‘;ho(i)‘“= S [TAG)*m(dh) forevery ael.
ie X ieS

Now, let us introduce the following topology on s#. Let {h,} be a sequence of
#. {h,} converges to a he s if and only llm h,(i)=h(i) for all ieS. Then s

is compact metrizable. Let us denote by C(.%’) the set of all continuous functions
on s#. Foreachael, set F(h)= Hh(z)“- Then F,e C(s#) and the linear hull

of {F,; ael} is dense in C(s#) w1th the uniform norm by the Stone- Weierstrass’s
theorem. Hence by (4.26) we have

(4.27) Flhy) = Sy F(h)ym(dh) forall FeC(#).
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(4.27) implies m=4,,,, that is, the point mass at ho. Hence v, € &,,. Thus we
complete the proof of Theorem 1.3.

5. Ergodic theorems for Case II

This section is devoted to the proof of Theorem 1.4.
1°. Suppose that for pe 2(X), T#u converges to v, as t—oo for some he#.
Set g(a)=<u, f,» and g"(a@)=<v,, f,». Then by Lemma 3.1 we have

(5.1 }irg E.[9(a)]=g"(x) forevery a€l.

For a e I\4, it follows from (5.1) that

(5.2) lim E,[g(2,); 0, = + 0] = im E,[g(x,): 5,= + ]
=}£q,}Ea[g(a,)] —}grgEa[g(a,); 0,<+o]
=g"(@)—E,[g"(%,,); 6,< +0].

We have

E,[g(x)]= g] E,[g(x);1,<+®,0,=+o] (by Lemma 4.1)
= ngl Ea[Ea,"[g(“l—u); al = +w]|u=r": Tn<t]

+ £ Elg@)i S5, <+, 0,= + ],
Accordingly we get by (5.2)
(5.3 limE[g@)]= ¥ E,[g"@,)~E,, [g"@,): 0, < +0]: 7, < +o0]
In particular (5.3) is valid for g=g". Thus we have
(5.4) lim E,[g(«,)] =lim E,[4"(,)]
=l1;[sh(i)“" (by Lemma 4.4).
Furthermore we can see easily that (5.4) is equivalent to

(5.5) X P(i, j)x; converges to h(i) as t—o0, in probability with respect to p.
Jjes

Conversely let us assume (5.5). Then (5.4) holds. We obtain easily that
(5.6) limE,[g(2,); 0,=+0]=h(a)—E,[f(a,); 0, < + 0]

for a e I\4, where ﬁ(oc)=i1'[ O
€S
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Thus we have

(5.7) limE,[g(«,); 0,= +0]=lmE,[h(x,); 0,= + ],
t—o0 t—00
and
(5.8) limE,[g(a,)]=lim E,[i(x,)].
t—00 t— o0

This implies 11112 Tfu=v,.
Corollary 5.1 Suppose that pe P(X) satisfies the following condition,

(5.9) <u, f,> =£[sgu(dx)ng for each el

Then T¥u converges to v, as t—co for some he s# if and only if

(5.10) JES P(i, jym; converges to h(i) as t—oo for all i€ S, where m;= gu(dx)xj.
Proof. Assume (5.10). Then

fucax P D= (D)= { W) ST P, )P, K
+\u(dx) 3P0, )= 2h)E P, iy +hCD)?
Jes jes

= (%, P, = b0+ £_PG, (| ndx) 53— m3)
jes Jjes

Note that the condition of Case II implies that lim Y P(i, j)2=0. Hence we have
t=© je§

lim Su(dx)( % Pili, )%= h(D))*=0.

Therefore by Theorem 1.4 we have lim T¥u=v,.

t— o0

Corollary 5.2 Let x€ X. Suppose that lim T¥d_ exists. Then

1=

lim T¥0,=v, for some hef.

1=

Proof. It follows immediately that lim 3 P(i, j)x; exists for all ie S and (5.5)
t-w je§
is fulfilled for h())=lim ¥ P(i, j)x;. ’
t=0 je§

Corollary 5.3 Let pe 2(X) and let U be an open subset of P(X) containing
&. Then there exists a positive number t, such that T¥ue U for all t>1t,.

Proof. It suffices to show that if {TF u} converges to jie 2(X), for an in-
creasing sequence {t,} tending to oo, then ie &. Set <u, f,>=g(x) and <{j, f,>=
g(®). Then, lim E,[g(a, )]=g(x). Since we can apply Lemma 4.5 for (o, P,), we
obtain that ge¥. Therefore jie % holds.
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6. CaseIll

In this section we shall investigate an example of Case III, which illustrates an
different phenomenon from Case I amd Case I1.

Let S={s=(i, n); i=1,2,....,k n=1,2,..}U{0} 2Lk=+0), and Q={q,}
be defined as follows:

a;>0 if s=0and s'=(, 1)
k .

- 2 a; if s=s5=0
i=1

(6.1) Gowr=1{ >0 if s=(i,n) and s'=(, n+1)
1y>0 if s=(,n) and s'=(,n—1)

—(lu‘l'll,.) if S=S'=(i, n)

0 otherwise.

Let us assume
(6.2) sup(A,+p,) <+ and 3 a;<+o0 if k=oo.
n - . i=1

Then Q={q,,} generates a unique continuous time Markov chain (X,, Pyses
satisfying

(6.3) P[X,=s']=P(s,s’) where P,=e'?

For se S let us define ¢(s) and |s| by s=(¢(s), |s|), where if s=0. ¢(s)=0 and [s|=0.
Then we can see that (|X,|, P,) is a birth and death process with a reflecting barrier
k
at the origin associated with {4,, u,}, where 1,= Y a,.
i=1

If the {A,, u,}-birth and death process is recurrent, Q satisfies the condition of Case I
or Case II. So we shall assume that the {4,, u,}-birth and death process is transient.
Then it follows obviously that

(6.3) P [lim [ X,|=+0]=1 for all seS.
t—o0

Now, let us consider a compactified space S of S by adding k number of infinity
points {1®, 2%,..., k*} in such sense that a sequence of S>{s,} converges to i® if
and only if lim |s,| = + 00 and lim ¢(s,)=i. (1<igk)

We denote by s, the set of all extremal elements of »#. Then we have
Lemma 6.1 Let h(s)=PJ[lim X,=i®]. Then,
jAud®

(i) h;es# and satisfies that h(s)>0 for all se S, and i h;=1,
n=1
(i) limh(s)=0 if j#i, and lim h(s)=1,
s j> s i
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and

(iii) . ={hgl B={l, 2,..., k}}, where hy(s)= h(s) and h,=0.
icp

Proof. Since (i) and (ii) are easy, we will show only (iii). Let hes. We
can see easily that h( j°°)—11m h(s) exists and h(s)= 2 h(j*)h;(s) for each seS.
Suppose that hy= —(h +h”) for some h' and h” of 92’ Then it follows from (ii)
that

1 if jep

0 otherwise. Hence h'=h"=h, Thus we have h; e #,,.

(=)=

Next, we shall show the converse. Let hes#,,.
Suppose that 0 <A(i®) <1 for some i. Then A(s) is represented as follows.

h(s) = hi=)h(s)

h(s) = h(i)hy(s) = (1 = hG=) (s) with K (5) = 22 nas

Since A'€s# and hes#,,, we have A(s)=h;(s) and A(i®)=1. So, that is a
contradiction. Thus we see that 4(j*°)=0 or 1 for any j. Hence h=h,; for

B={i; hG*)=1}.

Let (X!, X?), P, s,) be a continuous time Markov chain on SxS with
P,®P, as its transition probability. The following lemma implies that Q={q,}
of (6.1) satisfies the condition of Case I11.

Lemma 6.2
@ k
0< Py )B L, (X!, X2)di= +oo1 = 3 hi(s)hi(s) <1 forall (s, s,).
0 i=1

Proof. We refer to Karlin-McGregor’s result [4] that {4,, u,}-birth and death
process has the coincidence property almost surely under our assumption. Ac-
cordingly we have

64)  Posn| |, WUXI, XNt =+ =1 forall (s, s),
0
where Io(n, m)=0if n#m, and Iy(n, n)=1.
Hence it follows that

Piyony [go L, (X!, X?)dt=+ oo]

= P(S],sz) |:S IAz(ths Xz)dt— +OO llm Xl_llm XZ:I

t— 0

k
s p(shsz)[g I X1, IXF)dr=+co, lim X} =lim X7 =i |
i=1

t—o0
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M=

P, s [lim X} =lim X7 =i®]
1~ t—

i=1
k
= El hi(s1)hi(s3).
Lemma 6.3
() 0<I;a|:gmld(a,)dt=+oo]<l ir <k,
0
(i) ﬁa[g L (a)di= +oo]=1 if k41
0
Proof. Let ((X},..., X¥), P,,..s.)) be the direct product Markov process of

m number of P,-Markov chains on S.
For m<k and a=¢t 4. + &5,

B, UZIA(a, )t < + oo:| - P()B: L(X1,..., X™di< + oo:l

Z Psryys LM Xy = 1%, im X2 =m =] = hy(51) " hn( ) >O0.

=20
Hence we have

ﬁ,[gwld(a,)dz=+oo}<1 for |o<k.
0

For mzk+1 and a=¢st--- + ¢, it follows from (6.4) that
P, Bw I(e)di=+ oo} - P(s,__,.,s",,[go L,(X?, X%) di= + o,
0
for some p#qgefl,..., m}:l
> P(sh,,._s,",[sw L, (X?, X9)dt = + oo, lim X?=lim X,
O = t—00

for some p#ge{l,..., m}:l

o
= Plvsam| |, ToIX21, 1X2])dt= + co, lim X7 =lim X7,

=0
for some p#gqge {1,...,m}:|

=P,,...s,y[lim X} =lim X?, forsome p#ge{l,..., m}]=1.
t— t— o0

We regard an element of I as a bounded counting measure (i.e. integer-valued
measure) on S. Let us denote by I the set of all bounded counting measures on S
and introduce on I the weak topology namely, o,—a as n—oco means that {a,, f>
—{a, f> as n—oo for all continuous function f on S. Let us define J={axel|
a(S)=0} and Jo={xeJ|({i®})=<1 for each ie {l,..., k}}. An element a of J, is
denoted by B*={i?,..., i%} if the support of a is {i¥,..., %} and B={ij,..., ipm}
c{l,..., k}.



Interacting system 237

Lemma 6.4
(i) PJl<+o0]=1 if k<+oo0.
(ii) P,[limo, exists in Jo]=1 for every a el with a#0.
t—o0

(iii) PJflima,=p*]>0 if p*ely, ael, and |B|<|a| A k.
t—>

Proof. (i): Let |¢|=k+1. Then it follows from Lemma 6.3 that
(6.5) Plo,<+o]=1 if ael\d.
But by Lemma 3.1
P,[{=+0]= 3 P,[1,<+,0,=+0]= 3 E[P, [6,=+%];7,<+o].

Thus we have P,[{ < +o0]=1if ||=k+1, and (i) follows from this.
(ii): First we note that ﬁ,[lim o, exists in J]=1 by Lemma 6.1.

For « e I\4 and || £k, we have
P,[o,=+ ] =l~’,,[ol =+ 0] =f’,,,[o1 = + 00, lim «, exists in J,]
t—a
=P,[0,=+ 00, lim «, exists in J;,],
t—o0
and

P,[{=+0]= ¥ P,[t,<+,0,=+0]= ¥ E,[P,, [0,= +®];7,< +]
n=1 n= n

= 'gl Ea,[Pmc“[o'1 = + 00, }1_210 o, exists in Jy]; 7, < + 0]
=P,[{=+o0, ll_'lg a, exists in J,].
Accordingly we see
Pa[}i‘% o, exists in J,] = I:Z:I‘,\lk P, [tlirg o, exists in Jy, {,,< + 00, {,,-1=+ 0]

k
E,[P,, [lim ¢, exists in J,, {= +©]; {,< + 0]
mT 00

>

la

1

3
[}

langa[P,,m[C= +0];{u<+0]= IaglkPa[C,,x +00, {poy=+0]=1.

(iii): First we note that if m<k and s, =(1, n,),..., s,=(m, n,,),
Py, soylim X1 =1% 1lim X"=m®, 6, = + 0]
t—> 0 t—®©

2P, [X!#0 forall ¢20]--P, [X7#0 for all #=0]>0.

This implies that for each f* e J, and a € [ with |«|=|B|,

i’a[lim o, =p%, 6,=+00]>0.
t—o©
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Letael and |f°|=m=<|a| A k. Then,
P,[lim o, =p*]=P,[{, < +0, Loy = + 00, lim a,=f%]
=Ea[Pa;,,,[C= + o0, tlil‘:rl o, =p"]; (< +00]
2E [P, [1,<+,0,=+00, ’lilg o, =p%]; (< +00]
=Ea[Ea;m[Pa,,[°'1 =+ 00, l'L[IOIO o, =p%]; 1< +00]; ¢, <+ ]
It is obvious that
P‘,“l[al =+ o0, tlilg o, =] =i)¢,l[01 =+ 00, ,]LTO o, =f*]>0,
Pa;m[‘tl <+4+00]>0 and P,[{,<+0]>0.
Consequently we have P,[ !1_{2 o,=f°]>0.
Lemma 6.5 Let ge%. Then for each f*€eJ,, g(ﬁw)=a}irlr]1wg(a) exsits and
(6.6) g(ot)=ﬂm§h’g(lf‘”)l’az[ll_i}}}o o =p"].

Proof. Let B*elJ,. For every ael, |a|=|f®|, P,[limoa,=*]>0 holds by
t=0
Lemma 6.4. Here we note that {g(a,), P,} is a bounded martingale and P,-
[lim g(a,) exists]=1. This implies that lim g(«) exists for each p*eJ,. Also
t—® a—f=
(6.6) is evident.

Now, we can prove the following.

Theorem 6.6 Assume that k<+ 0. Then we have
(1) yex={vh; he'}?ex} ’
and
(i) Let pe P(X) and set f(a)=_u, f,> for each a€l. Then lim T¥u converges

=00

as t—+ oo if and only if
(6.7) lim f(x) exists for each p* € J,.
a—p=

Proof. Let he s#,,. Then h=h, for some f={l,..., k} by Lemma 6.1. De-
noting ﬁ,,(oc)= I'T hg(i)*s, we have
ieS

ag fo> =Hm E,[hp@)]= 3 (lim fiy(@)P,[lim o, =7*].
[l if yc<g

0 otherwise

Since lim hy(a) = , we obtain

a—y>e

(6.8) g fod =, T Pollima,=y].
yeB ¢
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Suppose that v,, = > (v +v") for some v' and v"e€S. Denote fA(a)={vy,, fo>,

f@=<, fo> and f'(@)=<", f>. Then fl(a)= —(f (0)+f"(2)). Since f’ and
f'eg, Iim& f'(@)=f'(y*) and limw f'@=f"(y*) ex1st for every y® e J,. Moreover
by (6.8) o
1 if ycep
fo)= ~ Hence f'(3*)=f"(y*)=f#(y) hold.
0 otherwise.

Thus we have f'=f"=f. This means v, € Z,,.
Next we shall show the converse.
Let ve % and set f(«)=<v, f,». Then it follows from Lemma 6.5 that

(6.9) fl)= ,;c{fv:,,,k,f(ﬂw)P“[,lﬂ a,=p]

By (6.8) and the Mdbius inversion formula, we get

(6.10) Pa[}irg o, =] =y§ﬁ(—l)“‘"'f’(a)-

Then it follows from (6.9) and (6.10) that

(6.11) fl= > (3 (=DBNFEe)f(a).

B={1,...,k} y=B<={1,..,k}

Set A, = > (= 1)IB\If(B>). Then we have
yepe{1,..., k} v
(6.12) 4,20 foreach yc({l...,k} and ( > A=
ye{l,.., k}
For
L= % (=D 1imgv(dx)nx(,.,,,,
yepe{l,..., k} n—»o0 ief

v(dx) (_l)lﬂ\ﬂl_%x(i,n)

7=ﬂ=(1 k}

=11mSv(dx)]—[x(,,,) I y(l—x(j,n))ZO,

n-+o

and

Z },y:}i{g Sv(dX) z H X(i,n) ].—I (l_x(f'"))=1’

y{c1,..,k} ye(l,...,k} iey Jjefl,...,k}\y

Accordingly we have v= Z A, Vi,- Thus we obtain (i). Next, we shall show
the latter half. Suppose that 11m T#*u exists. Then we can easily see that (6.7) is
valid. Conversely we assume (6 7) Then

lim (T2, £,) = lim E,[Cu, £, )] =lim 3 E,[f(); lim 2, = ]
= % f(B)P,lime,= =],
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Thus T¥u converges as t—co.

Remark. It should be noted that {v,; hes#,, )=, holds for k=+c0.

7. Examples and discussions

Let us consider only the case without mutation.
1°. Let S be a finite set and let us assume that {g;;} is irreducible. Then obviously
{q;;} satisfies the condition of Case I. Hence we have &, ={0,, .}
2°. Let S={1, 2, 3}. Assume that q,3=¢,3=m, q,;;=¢,,=—m and ¢q,,=¢3,
=q3,=¢33=0. (m>0). Then the evolution of gene frequencies is given by
dx () =a(x(1))dB,() + m(x;(t) — x,(1))dt
(7.1) dx (1) = a(xx(1))dB,(1) + m(x3(t) — x,(1))dt
dx;3(t)=a(x3(1))dBs(1)

J¥(d=y) if 0sys1

where a ={ ,
W 0 otherwise

{B{(t)}i=1,2,3 are an independent system of

one-dimensional Brownian motions on (2, #, P). Let {3=inf{t=0; x3(t)=0 or
1}. Then we can see easily that &3 < + o0 P-a.s. and

P[lim x,(¢) =lim x,(¢) =0|x3(¢;)=0] =1, and
(1.2) { ' '

P[lim x,(¢)=lim x,(2) =1]|x3(&3)=1]=1.

Hence &,,={8¢, 0;} and lim T}u=215,+(1—1)5o, where 1=S w(dx)P[x5(&3)
t—=

=1]|x(0)=x].

3°. Let S={1,2,3}. Assume that g3, =¢3,=m, q33=—2m, and ¢q;;=0 for all

other (i, j). Then the evolution of gene frequencies is given by

dx,(t)=a(x(1))dB,(t)
(7.3) dx,(t)=a(x,(1))dB(t)
dx;() = a(x3(1))dB;(t) + m(x () + x,(t) — 2x3(¢))dt
Let &=inf {t=0; x(f)=0o0r 1} (i=1, 2). Then ¢, <+ o, {,<+ 00 P-a.e. and

PIlim x3() =0lx,(£1) = x2(E2) =01 =1,
(7.4)
Pllim xy(0) = 1x,E) =x:¢2) = 11=1,

and the limiting distribution of {x3(f)} under P[-|x,(&;)#x,(£,)] is given by the
following probability density function,

[C,,,(x(l—y))z'"'1 if 05y=i

otherwise,

(7.5) Pu(y)=
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where C,, is the normalizing constant.
Hence &,,={04, 01, V;, V,}, Wwhere v, and v, are defined by

i fy = &0 F(1, 0, )pu(y) dy
(7.6)

G f>= FO ) puly) dy.  forall fec([o 179).

Thus &, ={v,; he s, } holds.

4°. Generally if Q={q;;} is irreducible and if every Q-harmonic function is con-
stant, Q satisfies the condition of Case I or Case II. Let S=Z¢ (d-dimensional
integer lattice space) and let

m if |i—jl=1
qij=( —2dm if i=j
0 otherwise.

Then the corresponding P,=e'? is the d-dimensional simple random walks. If
d=1 or 2, then Case I holds and &,,={d,, 0,}. and if d=3, then Case II holds and
Pex={v; 0L 1)

5°. Let us consider the case that {g;;} is symmetric. Then we can see easily that
if the corresponding P,-Markov chain is transient, then Case II holds, and if it is
positively recurrent, then Case I holds. However even if it is null recurrent there
are examples of Case II. (cf. Liggett [6])

6°. It is possible to construct a strongly continuous Markov semi-group {7;} on
C(X) associated with (1.1) without using stochastic differential equations. We
shall show an outline of such a construction. Let L, be the set of all functions
satisfying that

(i) f=X c,f, where c,eR! and Y [¢,|< + o0,
ael ael

and
(ii) there exists a constant M >0 such that ¢,=0 if |¢| > M.
Then we can see that every fe L, is twice continuously differentiable on X and Af
of (1.5) is well-defined. Also (4, D(4)=L,) is dissipative as an operator on C(X).
Hence it is closable. We denote by (4, D(A)) the closure of (4, D(A)).

Next, let us consider the following equation,

(1.7) (A—Au=f where A>0 and felL,.

For f=a§c¢f,, set u(x)= E{ C“S: Eu[fat(x) exp(-—lt—ug; Iasldsﬂdt. Then it is
easy to see that ueL, and u satisfies the equation (7.7) by the Feymnan-Kac’s
theorem. Thus we see that the range of A-A4 is dense in C(X). Hence by virtue of
the Hille-Yosida’s semi-group theory, there exists a unique strongly continuous
semi-group {T;} such that the infinitesimal generator of {T,} coincides with
(4, D(A)).
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