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Introduction

The study o n  th e  e x is te n c e  o f  analytic mappings of a R iem ann surface
into another generally involves much difficulty. Obstruction lies, above all, in
the non-planer character o f  th e  im a g e  su r fa c e . T h e  purpose o f  th e  present
paper is to investigate analytic mappings of what we call a Riemann surface of
finite type into a  torus. Namely, the  domain surface R N  i s  a  closed Riemann
surface w ith  a  finite number (=N )  of points (punctures) removed. The image
surface, on the other hand, is  a  closed surface T  of genus o n e . In  such a case,
we can make use of the finite complex plane w hich  is t h e  universal covering
surface of T.

After preparing some fundamental facts, we shall first prove a  theorem
(Theorem 1) which gives a  necessary and sufficient condition for the existence
o f  a n  analytic mapping f  of R N  into T  with two prescribed properties ; one is
purely topological and the other is purely analytic. T h e  topological condition
imposed o n  f  is  the assignment of the homomorphism between the  first homo-
logy groups which is to be induced by f ,  and the analytic condition i s  th e  pre-
assignment o f  th e  behavior o f  f  near th e  punctures (which are  the isolated
singular points of f ) .  Theorem 1 is proved by means o f  real normalization of
periods o f  Abelian differentials, while we shall later make use of complex nor-
malization to prove a  corresponding theorem (Theorem 5). These two results,
Theorems 1  and 5 , are thus the same in  essence. Each of them has, however,
an advantage over the other in applications. Compare Theorem 6 with Theorem
7.

Historically, such a  problem was first considerd for closed surfaces (N---0).
T he  ex istence  and  the  determination o f  explicit form of the mapping f  were
mainly studied. See K razer [8], th e  last chapter. W e shall also recall som e
relevant known facts : F o r  an y  homomorphism between th e  first homology
groups o f  a  closed surface of positive genus and a torus, there always exists a
continuous mapping which induces the homomorphism (H. H opf [7]). An analy tic
mapping, however, does not necessarily exist (G erstenhaber [4]). O n  th e  con-
trary , if  th e  domain surf ace has N  punctures, N - 1, then every homomorphism
between the homology groups is induced by an analytic mapping o f  R N  into T .  In
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other w ords, for noncom pact surfaces, homomorphisms arising from analytic
mappings a r e  subject to no  restric tions. T h is can be easily seen if  we use the
well-known theorem due to Behnke an d  S te in  (see Kusunoki-Sainouchi [11] ; cf.
also [1 0 ] ) . We a re  thus particularly interested i n  t h e  behavior o f  a n  analytic
mapping f  which induces the given homomorphism between th e  homology groups.
See Theorem 9. By a  theorem of O htsuka ([13]) f  assum es ev ery  v a lu e  in  T
whithout exception (in any neighborhood o f punctures to which f  cannot be ex-
tended holomorphically).

We shall also prove that the analytic singularity of f  is (uniquely) determined
in  a  canonical manner by th e  induced homormorphism o f  t h e  homology groups.
See sec tion  11 . We shall prove furthermore that, for a  fixed homomorphism, the
singularity can be chosen so a s  to be a meromorphic function o n  th e  B e rs  fiber
space over the Teichm iiller space (Theorem 10).

Beside these, we shall discuss some other related topics such as the unique-
ness (Theorem 4), relations of our results to  t h e  classical theory (Theorems 2,
11, 11' etc.), the existence of analytic mappings with a  simpler topological pro-
perty (Theorems 6  a n d  7 )  a n d  so forth. It can be easily seen that there is a
close connection between Theorems 6 , 7  a n d  th e  classical Abel's theorem  (cf.
[9], [15]). When t h e  domain surface is also o f genus one, Theorem 2  reduces
to a  theorem which is stated in  H elfenste in  [6 ]. See Theorem 2'.

Through t h e  paper C  (resp . R )  denotes t h e  complex (resp. real) number
system . W e shall also u se  the  letter Z  (resp. Q) to denote the set of all integers
(resp. rational numbers).

I. P re lim inaries

1. L et R o b e  a  closed Riemann surface of genus g 1 .  W e fix a  canonical
homology basis {A,, B .,}1= 1 ( [ 1 5 ] ) .  Namely,

A 1 x.E3J =6 1
1 )

 j = 1 ,  2 ,  • - •  ,  g .
il i x 4 ; = B 0 x/3 1 = 0

F urtherm ore w e m ay assum e th a t  A,, B -  a n a ly t ic  J o rd a n  cu rv es  and
i * j; A ,n B , consists o f  a  s in g le  p o in t . L e t  p i ,  P2)

• • • , P N  b e  N  d is tin c t p o in ts  o f  R o . W e shall allow N  to be z e r o .  T hen the
su rface  RN=Ro —  {pi, P2, • • • pN} i s  a  R ie m a n n  su rfa c e  o f  fin ite ty p e  (g , N).
Without loss o f generality, we may assume that p k  does not l ie  o n  A ,  and B .
Take param etric disks U k  abou t p k  so sm all that UknUi=-0 (k*1) a n d  U k n A ;

=U k r)B .,=- 0 (k=1, 2, •• • N ; j=1, 2 , • •• , g). If w e s e t  D k =— au k , it is easily seen
th at {A,, B,; Dk} ik=11 22 , g N - 1  forms a  canonical homology basis o f R N .  I f  R N  is

1) The intersection number r x a  of two 1-cycles 7,5 is defined to be +1 i f  th e  c y c le  ô
crosses r  fro m  its  r igh t to  le ft. T h is  definition agrees to those in  DO], [15] etc..
Note that the definition in  [1] has the opposite sign and that m y form er paper [14]
adopts the definition o f [1].
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view ed a s  a n  abstract o p e n  surface, t h e  ideal boundary o f R N  is denoted by
aRN. C le a r ly , aRN consists o f  N  components f , ••• , r ,  corresponding to the
points p „  • • •  ,

Denote by Hi (RN ) th e  one-dimensional homology group o f  R N  with integral
coefficients, N O. W e  d e n o te  b y  Hi(RN, aRN) t h e  one-dimensional homology
group o f R N  modulo dividing cy c les  (cf. [1]). T h e  group Hi(RN, aR N ) is  iso -
morphic to II 1 (R0 )  and is generated by th e  equivalence classes of A1 , B,, j=1, 2 ,
••• , g .  O n the  other h a n d , Hi (RN )  is  the  free  abe lian  group generated by the
homology classes of A1 , .131 a n d  D k ,  j=1, 2, ••• , g ; k=1, 2, ••• , N-1.

L e t  zk b e  a  fixed local variable which maps U k  onto th e  u n it d isk  lzk I <1
and zk(Pk)=0, k=1, 2, ••• , N .  W e shall call a  differential yo o n  R N  a n  Abelian
differential if  ( i)  y a  i s  meromorphic o n  R N , (ii) the  polar singularities of yo are
finite in  number. Since R N  is  o f finite type, ço can be expanded in  a  L a u re n t
series o f powers o f  zk a b o u t Pk:

(k)
ÇD(zo=[  re z d d z k

n = 1  z i n=0

k=1, 2 , • ,  N .  Every Abelian differential on Ro can be naturally identified with
a n  Abelian differential o n  R N .  However, not every Abelian differential o n  RN
necessarily rises from a n  Abelian differential o n  Ro . Although every Abelian
differential o n  R N  is  an a ly tic  o n  Ro e x c e p t  f o r  a  finite number o f  isolated
singularities, it may have essential singularities at some points of f h 2, PA •
I f  ço is  a n  Abelian differential on R N , th e  residue o f go a t r k is defined by

Res yo.-=
1 

. yo=a1k ) .k 4771 D k

It is known that th e  residue o f  yo a t r k is determined uniquely regardless of the
choice of a local variable about p h .

A n Abelian differential yo o n  R N  is  c a lled  o f th e  firs t k ind  if  y a  can be
identified with a n  Abelian differential o n  R, which is o f th e  first kind (in the
classical s e n s e ) .  [O n  th e  contrary, t h e  differentials o f  th e  s e c o n d  a n d  third
kinds may be allowed to have non-polar (essential) singularities at the points of
Ip i, p 2 , •••  P N I •  Namely, yo is called of the second kind if y o  h a s  no non-zero
residues on R N  (including th e  residue at r k , k=1, 2, ••• , N); otherwise yo is called
of the th ird kind.] Note that w e have defined th e  class o f  t h e  differentials of
th e  first kind independently of the  ex istence  o f the  se t 11) p2,P N I  •

P ro p o s it io n  1 . Let go, 0 be Abelian differentials on RN.
(i) I f  go is of the first kind, we have (Riemann's inequality)

L7.f.B 1

° = i G A A  S5—L A A J O > °  '

provided that go 0.
(ii) If go is of the first or second kind, then
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27ri• E Res 00" .= -- ( L i ço.ÇB i O j B i SpL i i 0 ) ,

being a single-valued integral of w on the planar surface 1?;,=R N — (g) (A J UB J ).

Corollary. Suppose that an Abelian differential w of the first kind satisfies

A 7 ' w =tiC i, C i eC, s i , t i e R , j= 1 , 2, ••• , g .

Then

2 .  Let çot, •-• y o ': be  the normal differentials of the f irs t k in d  w ith  respect
to  the homology basis {A i , B i }l=1 . T h a t is,

0 = k , i, j=1, 2, •-• , g .Ai

W e set

, i, j=1, 2, ••• , g .

Then, as is  w e ll k n o w n , Z = - (rii)1,J=1,2,..., i s  a  g X g  sym m etric  m atrix  w ith
complex entries and furtherm ore Im Z=(Im is  positive defin ite . See
e. g., [15], Vol. II, p. 114.

g — times g—times

Set Cg = C * x  ••• x C*, C*=C—{0}, and C g = C x  ••• xC.
W e shall first prove the following

Proposition 2 .  Let a g-row vector '•' Cg)ECg be fixed. Then for any
a k , /3k C * which are not real multiples of CI,. k=1, 2, ••• , g ,  there a re  Abelian
differentials of the first kind 08(Ak, ak) and 0a(Bk, 43k) such that

Li g5s(Ak, ak)1C.i, (L08(Ak, ak) - 1- akaik)/Ci,

i i i
O3(Bk, P k )

—
 P k

5
jk )/ C i

B •

0 6 (1 3 1 e, P  k )/ C i
1

are all real numbers, j=1, 2, ••• , g. Each differential W I (Ak, a k ) is
uniquely by 3  and ak. Similarly ,(B,,, p k )  is uniquely determined by

determined
3  and P k.

P ro o f. For each k=1, 2, ••, g, consider the system  of linear equations

X i j
—

 X  g+ jC j=  —akaik

(1) j=1, 2, •••, g.
g _E X iC il ' i j

—
X g + k

= - 6
1,

3
5k

i=1

2) T he  sum of residues here includes th e  residue of 00 a t  F k ,  k =1, 2, ,  N .  (We can
obviously define Res 00 etc. despite th e  fact that 00 is  not an  Abelian differential on

r k
R N .  C f. [1 4 ]) .
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Since th e  determinant o f  th e  matrix

Ciri;

i T i J  , — iô j t. j= 1 , 2, ••• , g

is 2i(-1)g1C,••• C,I 2 det (Im Z) =0, system (1) h a s  a unique solution x i=ak i,
x g + i = a 'k i ,  j=1, 2, ••• , g .  Clearly la k g ; zg ) is a lso  a solution of
(1). H ence  by  un iqueness a k i  a n d  a;,;  a r e  a ll rea l num bers. W e can  easily
verify  tha t th e  holomorphic differential

06(A k, ak)=-akiCiçot+ ••• -Fa k g Cg w'

satisfies the  following period conditions :

çb,(Ak, a k ) . - - a k , C jAi
(2) 1=1, 2, ••• , g .

LaS ( A  a  ) — a'k  C.—a 5.i r a k —  j j  k  j k

A  similar reasoning yields that the  system  o f  equations

E
i=1

(1')

E
i=1

h a s  a unique real solution x j =P k i, x g + i = 13'1,» j = 1 ,  2 , ••• , g (for each fixed
k=1, 2, ••• , g ) .  Setting

Ob(B k, PO
=

( P k + P k b i k ) ç o ?
i=1

w e obtain a  holomorphic differential NB k, p k )  which satisfies

A i
0 5 (B k , P k ) — P k k + P k a jk

(2') 1=1, 2, , g .

\ 513.703(Bk, 45k)=YkiC;

T hus w e have proved the proposition.

A s a sim ple corollary of Proposition 2 w e have

Proposition 3 .  L et 8=(C i , ••• , C„) C , be a fix ed  g-row  vecto r and a= (a 1 , ••-,
a g ), b = ( 13,, ••• , 13g) a n y  tw o  g - r o w  v e c t o r s .  T h e n  t h e r e  a r e  2 g  real numbers
x i , ••• , x 1 ; Y i, ••• , y ,  such that
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A p = a ; - - Fx iC i, .f B 7 = P rF y iC i ,  j= 1 ,  2, ••• , g

hold f o r  som e A blian  dif ferential go o f th e  f i rs t  k in d .  (Of course, y  may be
identically zero.)

We can also prove

Proposition 4. Let 3, a, b  be as in Proposition 2. Then
(i) 06(A h, ah), 03 (B h , Ph), k= 1 , 2 , ••• , g are linearly  independent over reals, and
(ii) every A belian dif ferential of the f irst k ind (on R N )  can be written as a linear

combination o f çb6(A h , ah) and q53(Bh, Ph) w ith real coefficients.

Pro o f . T o  sh o w  th e  linear independence, let ci , •-• , c g ; c , ••• , c'g  b e  r e a l
numbers such that

a i) - F  E 130=0.

Then, computing the A ,-p e rio d  of the differential on the left hand side, we have

z z
ti= 1 i= 1

for certain real numbers a „  and 13,, (see equation (2 ')) , or

C, (c ia iii-cV 3 i;)+ P ic ;= 0
i= 1

Because i3 ,/C , is a  non-real number, it follows that c ; = 0 .  By a similar argument
we know that c5 = 0 .  Thus we have proved (i).

In  order to  p rove ( i i ) ,  le t  y  be any Abelian differential of the first kind.
S in c e  cr,IC , a n d  13 , / C ,  a r e  non-real num bers, there a r e  4 g  real numbers
x ,, y ,, x ,' , y ; ( j= 1 , 2, ••• , g ) such that

A i
So= fiCi+ x JP'

B i
Ço= Y Jai •

It is easy to verify that the A i - and B,-periods of the Abelian differential

ço+ E a i)— x iy ,(B i, pi )]

are both real multiples of j= -1 , 2 , •-• , g .  Hence by Corollary to Proposition 1,
we conclude that

ço= Exig%(B , 191)— y a i)] . q. e. d.

It is clear that for fixed 3 -= (C i, •"  C g ) w e can  take a =(a i ,  ••• , a g ) ,  b = ( p , ,

• • •  ,  lag )  a s  a 1 = 135 -=27ri/,, j=1 , 2, ,  g. In  th is  c a se  w e shall w rite sim ply
MIA  0(B h) instead of g5,(Ah, ah), o ( B k ,  Ph) and call them th e  3-basis for the
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class of Abelian differentials of the first kind.
j= 1 , 2 , • • •  , g , we shall omit the index a, too.

with 3=(1, 1, ••• , 1). W e note that /3(Ak) -=
holom orph ic  differentials on R o such that

When 3 is chosen so that Ci = 1 ,
Thus q5(A k )  stands for 0,(A k ,  27-ci)
1 1  

2 i 2 i0(Ak), 93(Bk)- 0 (Bk) are7r 7r

Re .f.73(71= ri x  ,
r,

where 7-, 7,  represent any two of the cycles A,, •-• , A g ; B 1 , ••• , B g . Namely,
q3(A,), ••• , g-5(A g ); q3(.131 ), ••• , çh(13,) are  th e  elementary differentials of the first
kind in the classical sense (cf. [9]).

Let 0,(A k ), 0 ,(B k )  be the integrals of 06(A/A Ø,(B,), k = 1 ,  2 ,  • • •  ,  g :

0,(Ak) ( P )= T N A k ), 0 , (Bk)(P ) =TÇWBk),

So as to make these integrals single-valued, we consider them on  the planar

surface R = R 0 -  6 (A ./U E . ) only.

N ow recall that the local parameter z,, about the point p k o n  R o is fixed
for each k= 1, 2 , ••• , N .  We set

1  f   d'4),(A ; ) 
Pk)=

Pk)= 11,-! [61c;z(y,B')1],,=0

j = 1 , 2 , •••  , g ; k = 1 , 2 , • • •  N ;

v=0 , 1, 2, ••• .
( 3 )

Then the integrals 0 ,(A i )  and 0,(B„) are expanded in Taylor series :

(zP(A;)(z,)= E  a 1,(3 , p,,)4
v=o

(4) 10A(13,)(zk)= i0 b,,(3, Pk)z .k

j= 1 , 2 , •  ••  , g , k=1, 2, ••• , N .

Notice that the numbers a i ,,, b, o a re  not determined uniquely.
In accordance with the aforementioned convention, we write a„(Pk), b,..(Pk)

for a ( 3 ,  Pk), b (3 , Pk) when 3=(1, 1, ••• , 1).

II. Existence theorems

3. Let T  be a  closed Riemann surface o f genus one (torus). W e  f ix  a
canonical homology basis {C o, C ,}  of T .  Let dE o be the normal differential of
the first kind with respect to the homology basis {Co, CI}

.f
o

dE o = 1 , dEo=z- ,c
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w here 7 is  a  com plex num ber w ith  positive  im aginary  part. W ithou t lo ss of
g e n e ra lity , w e  m a y  assum e th a t w =E o (q), qeT /=T — C o U C , m aps the  cut sur-
face  T ' onto a  rectilinear parallerogram on  the  w-plane. W e  m a y  a lso  assume
t h a t  th e  im a g e  o f  T ' under th e  mapping w=-E 0(q) is exactly  th e  parallerogram
w ith  vertices a t 0, 1, 1+7, 7 i n  th is  o rd e r  ( s e e  S iege l [15 ], V ol. I, pp. 48-55).
Denote by

.11={zECIz=m+nr, ni, nEZ }

th e  period m o d u le . A s is w ell know n, T  is  id en tif ied  w ith  C / H .  The inverse
m apping o f  w =E o (q )  defines t h e  n a tu ra l projection m apping w hich w e shall
denote by p .  In  order to  m ake clear th e  dependence o f  T  upon r, we sometimes
w rite  T =T (1 , r) .  I t  sh o u ld  b e  n o te d  th a t w h e n  w e  w rite  T =T (1, r )  w e  have
fixed a  canonical homology basis on  T.

W e  a lso  n o te  t h a t  th e  p ro jec tio n  m apping  p  depends on  the  choice of a
canonical homology basis {C„ C 1} o f  T .  A s is w ell know n, for a  single  to rus T
there  a re  infinitely many distinct p 's  w h ich  a re  th e  p ro je c tio n  m apping C— T .
In  m a n y  cases, how ever, w e m ay fix  a  canonical homology basis {C o, C11 o f  T
once and fo r  all. T h u s  p  in  th e  sequel m eans, i f  n o t m en tio n ed  fu rth e r, the
projection mapping which is associated with this fixed canonical homology basis.

L e t  T =- T(1, -r) be  a  torus w ith  th e  canonical hom ology basis {C„ C } a n d
dE o  the  norm al holomorphic differential. A n y  g r o u p  homomorphism : 111(RN)

can be explicitly written as

27([4a=morCoi+m,i[Cii

(5)
j=1,

77(EBA)=noiCoid-n,liCii
2, ••• , g

72(CD ki)=Iko[C0]±lkirCil k=1, 2, ••• , N - 1 ,

for some integers n ,, 1=1 , 2, ••• , g ;  k=1, 2, ••• , N - 1 ; i=0, 1. Here
[X ] denotes the  homology class determined by the cycle X  (on RN o r  T).

W ith every 72: H l (R N ) - 4 -1l (T )  we can associate a unique linear mapping

L 9 : 111(R N) - ›  H

defined by L,2 [X ]= 9 ( c A ,D dE 0 , [ X] E H I(R N ). 3 ) I f  72 is  g iven  by  (5), w e have

L,[A,]=m,o+miir j=1, 2, ••• , 
g

(6) L ,[B .,1=n,o+n,ir
k=-1, 2, ••• , N - 1 .

L ,2 [ D k] = 1 k 0+ 1k ir

W e shall call L ,2 th e  linear mapping associated with
If f  is  a  continuous mapping o f  R N  in to  T , th e n  i t  is  w e ll  k n o w n  th a t  f

induces a  homomorphism o f  I i i (R N ) in to  H i (T ) .  T h e  induced homomorphism

3) More precisely, le t Y  b e  a  c y c le  o n  T  su c h  th a t  [17 ]  =  ([X ] ) .  Then w e define

L 0 [X 1= f dEo, which is determ ined uniquely regardless of the choice of a cycle Y.
Y
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w ill b e  d e n o te d  b y  f * . C onversely , every  hom om orphism  :1 -1,(R 0)—■111(T ) is
always induced by a  continuous mapping of R o  in to  T  (H o p f [7 ]) . In particular,
f o r  each homomorphism Hi(RN, aR N )—, 1-1,(T ) the re  is  a  continuous mapping
f :  R N — g' such that f * =- 7). On the other hand, w e know  that no t every  hom o-
morphism between Hi(Ro) and 111 (T )  is induced  by  a n  analy tic m apping of Ro
in to  T  (Gerstenhaber [4] ; see also Proposition 5  below).

W e shall investigate conditions f o r  th e  ex is ten ce  o f  an  analytic mapping
f :  N>_0, which induces a  given hom om orphism  betw een th e  homology
groups a n d  h a s  a  prescribed  behav ior near a R N . I n  o rd e r  to  d e s c r ib e  the
boundary  behav ior, it is  su ffic ien t to  consider th e  follow ing ty p e  o f  analytic
singularities (cf. Ahlfors-Sario [1], p. 299, for exam ple). B y an analytic singularity
S  w hich is g iven at aR N  w e  m e a n  a collection of N  functions ..5 1 , ••• S N  such
that
( i ) each S0 i s  a  m ulti-valued analytic function o n  a  punctured neighborhood

of p o ,

( i i )  dSk/dzk --= s,(P0)/4 ± 1 , uniformly convergent on r 0 - iz 0 l -2r 0 fo r  e v e ry
v=0

small r 0 > O, and

E s o(p 0 ) = O .
0=1

W e shall w rite  as
S = {SkIf=1

and denote by S (R N )  the totality  of all analytic singularities at aR N . We simply
say  tha t an analytic mapping f :  R N —, T  h a s  th e  singu la rity  S=- {S k }iv=i E S (R N )
if

d(p-l.f )— dS k

can be extended holomorphically to the point p o fo r every  le= 1 , 2 , ••• , N " .  If
th is  is  the case, w e sha ll w rite  as i ( f ) = S .

For every g-row  vector 8=(C i, « , w e know  that

(7-1) g -="i (S) —  R e  'ETP  k ) S  v ( P  k )
k =1  v =0

is  convergent for each S ES (R N )  and j=1, 2, ••• , g , since

N 1 dS k 
E E ap,(3, Pk)s,(Pk)= E 02,(A-Xzk) k
k =1  v =0 k 2z i iiz k i=rkd z k

with small r 0 >O.
Similarly

N
(7-2) 0,(S)-= — R e  E  E b 1 ,X, P  k )S v (P  k )

k =1  v =0

is  convergent fo r every  S E ( R N )  and j=1, 2, ••• , g.
W e also set

(8) R 0(S )-=-27ris0(P0), k =1, 2, ••• , N .

4) d(p - 1 . . f ) =f * ( d E 0 ) , the pull-back o f dE 0 b y  the mapping f .
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T hen a ,  Q ; and k  give linear m appings of (R N ) in to  R  and  C  respectively.
If  3= - (1 , 1 , •••  , 1) w e shall w rite , a s  w as noticed earlier, 2 j (S) and Q (S ) instead
o f  gl(S ) and Q(S).

4 .  In  th is  section w e shall prove the  following

Theorem 1. Let RN =Ro —  {Pk} i  be a Riemann surface of finite type, N O ,"
and T=T(1, 7 )  be a torus. Then fo r  any group homomorphism 77: Hl (RN)—H l (T )
and any analytic singularity S (RN), the two assertions below are equivalent to
each other.

( I )  There exists an analytic mapping f: R N —>T such that
(i) f * =77, and
(ii) i(f )= S .

(II) ( i )  Rk(S)=L„[Dk], k=1, 2, •-• , N, and
(ii) there exists a holomorphic differential yo on R o such that

.f A  yo=L 7,[11,]+.2',(S)
j j = 1 ,  2 ,  • • •  ,  g.

L7=LJB AH -Q 1 (S)

Proof. (II) : Suppose that there  is an analytic mapping f: RN—q ' which
induces 77. Then

0=d(to-'. f)

is  a n  Abelian differential on  R N  (not on  Ro , in  general, for it m ay have essential
singularities at som e o f p 1 , • • •  , P N ! ) .  I f  )2 is given by equation (5), w e have

dE 0 =m, 0 +m 11 z = L , [4 11f (Apd  P - 1 - 1 77 (EA p
1= 1 , « ,  g ,

0=1.d p - 1 =
Bi CEp 7)(CBJD

and

dE o = l k o -El k i z- -= 4 [D k ], k=1 , •-• , N .,fbkf  ( D k ) 7  ([D1])

Because f  has th e  singularity S, w e have first

-Rk(S)=- •.çp k 0 = L 121 D k 1 ,  k = 1 , 2 , ••• , N .

N ext, due to  Proposition 3 , w e can  f in d  a n  A belian differential ço o f  t h e  first
kind which satisfies

5) I f  N  0 , conditions (I), ( ii)  and (II), ( i )  becom e vacuous (and  (I I ),  ( ii)  is simplified).
Cf. Theorem  2.
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for som e real &„ j, j=1, 2, ••• , g.
Applying Proposition 1, w e have

Res 0(fl1 )(0-0
k=1 r k

= [.f A v çb(A.0.fB , (0-0—.f),, g5(A.OL(0-0]

Ca.;„(n,0- 7),) — (a 'f, - 27ri6;,)(m,0 — ) ]

= [(cri,(n,0 - 72,)— a(m ,0 — e.)]+27ri(m10 — e;),

or

Re Res (P(A.;)(0-0=mio—e;= .f  (0 - 0k =1 r kA ;

.f A i w .

O n the o ther hand, w e  have fo r  a  sm all positive num ber rk

dS k  Res 0(A ,)(0-0= . 0(./1;)(zk) dZ k
k=1 r  kk = 1  2 7C1 1z kl=rk dZ k

N  co
= E E cl,f,( Pk )M Pk),k=1 v=0

since th e  mapping f  h as th e  singularity S. It follows that

ço=1 ,,[A ,]± .T .,(S ), j=1, 2, • •• ,g .

Similar reasoning yields

,rB i ya=LB ,]-FQ,(S), j=1, 2, ••• ,g .

T hus w e have proved (0*(11).
W e sh a ll n o w  p ro v e  th e  c o n v e rse . A ssu m e  t h a t  a n  analytic singularity

S=- ISkI i. (RN) satisfies (II). I n  t h e  first place w e construct a  holomorphic
differential 0 1 on  R N  s u c h  t h a t  0' — dS  h a s  a  holomorphic ex tension  to  each
point of p 1 , p 2 , ••• , pN .  T h is  is achieved by using the classical Dirichlet principle.
( F o r  th e  d e ta il, se e , e .g ., [1], [10], [15] e tc . .)  If  we norm alize th e  periods of

O' so that 0 1 a n d  .ç O ' a re  a ll rea l, then  0 ' is uniquely determined ( c f .  Pro-

position 4 and Corollary to Proposition 1). An application of Proposition 1 implies

27r R e  E Res (P(A ,)dS:=27 R e  E Res 0(.11 .0 0 /

k =1 r kk = 1  r k

=IM 4 9 5 (A i)L 0 /  — L , , q 5 ( A  Av0')
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=27r , 0 ' ,A;

and hance

a); (S)--d. ç b '= 0  , j= 1 , 2 , • ••  , g .JAj

Similarly we have

Q ,( S ) + L O '= 0  ,  j= 1 ,  2 ,  • ,  g .

By our assim ption , there exists an Abelian differential ço o f  th e  first kind
whose periods satisfy

Li ço, L o [A ; ]+ 2 ; ( S ) ,  L i ya=1., [B 1]+Q ;(S ), j=1, 2, ••• , g .

If  we set
0 -0 1 410,

we have

j=1, 2, ••• , g .

Next, for each k  we have

cp=f f d S k = R  k (S ) ,
Dk . Dk

and hence

k=1, 2 , •••, N .o h

Now we set f = p . (  0 ) .  Then it is almost clear that f  defines a  single-

valued analytic mapping o f  R N  into T  such that f,,, , y) and a ( f ) = S .  This
completes the proof of Theorem 1.

Rem ark. Since 22 is a  homomorphism of I l i (R N )  into 111(T ), the sum

72(CD11+ + UN])
is  zero in H i (T ), and hence

L ,[D k ]=0
k=1

O n the other hand, we have

gt,(S )=0 ,k=1

for S  is an analytic singularity given at a R N .  Thus the condition .2 k(S)=-L,2 [D k ]
for k =1, 2, ••• , N - 1  implies RN (S)=-L v [D N ]. Therefore condition (II) (i) in the
above theorem can be replaced by an apparently weaker condition
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(V) k(S)=-L,[Dk] , k =1, 2, , N - 1 .

5 .  The foregoing theorem has an important corollary which is derived from
W eierstrass (see K ra z e r 's  monograph [ 8 ] ,  in particular, pp. 469-471). Namely,
setting N = 0  in  Theorem 1, we have

Theorem 2. For a closed Riemann surface R o o f  Positiv e genus g ,  a  torus
T  and  a  homomorphism 72: H1(R 0)—, 111( T ) ,  the f ollow ing tw o statem ents are
equivalent:

(I) There ex ists an analy tic m apping f: R o — g' such that f*=77.
(II) T here is an A belian differential ço of the f irst k ind on R o such that

L p = L A f ]

If  th is  is  the case, d( to- 1 0f)=ço.

j=1, 2, ••• , g .

If condition (I) in Theorem 2  is satisfied (with a n  72* 0 ) , then R o and  hence
RN, is realized a s  a  finitely many sheeted covering surface over T .  The
mapping f  in  such a case is given by a  so-called rational transformation if we
represent R , and T  as irreducible algebraic curves. F o r  this reason we shall
say that R N  is  rationally  realizable over T  if there exists a non-constant analytic
mapping f : R N — g which is a restriction of an analytic mapping f0 : R o—+T onto
RN.

In terms of rational realizability we can give a version of a  classical result
which was first proved by Poincaré (cf. [8 ])  and later improved by Haupt and
W irtinger (Haupt [5]).

Proposition 5. A Riemann surface R N  of  type (g, N ), g>1, N - 0, is ration-
ally  realiz able ov er a  to ru s  i f  and  on ly  i f  th e  period m atrix  of the Abelian
differentials of the f irst k ind w ith respect to some (appropriately chosen) canonical
homology basis o f R o is

' 1 0 0 v ± 1 / 0 0O •  •  •0
0 1  ..... 0 ±1/11

1 . 0

• •

,0  ... 0 1

where 1m z-'>0 and v  is a positive integer ( #1).

For the proof of this proposition, see K razer [8], esp. p. 474, and Haupt [5] ;
cf. also Gerstenhaber [4].

Remark. If the  torus over which Ro is realized is T(1, 7), r' is of the form
(m+nr)/p, where m , n and t t  are  integers such that j is a multiple of v.
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6. In this section w e shall mention some other immediate consequences of
Theorem 1.

Theorem 3 .  Let RN be a Riemann surface of type (g, N ) and T =T (1 , r)  a
torus, g 1, N :( ) .  Let there be given a group homomorphism  77 : 111(R N) - '111(T).

Let the linear mapping L,1 associated with 72 is described in

L,,[11,1=m 1 0 +m 11 7
j =4 , 2, ••• , g ,

(6)1  L , 7 [B i1=n,o+n,i7
k=1, 2, ••• , N - 1 .

Li2 [DO-=lko-Flkir

I f  S E S (R N )  satisfies

E ,1=1

then there is no analytic mapping f :  RN - ' T such that f * -=-77 and c ( f )=S .

P ro o f. If, contrary to the assertion, there exists such an analytic mapping
f  as in the theorem, then the numbers

L ,L 4 i1  + 2 1 (S)=(/1 1 0 + 2 1 (S ))+m 1 i 7
j=-1, 2, ••• , g

LJB.,1-FQ1(S)=- (n10+Q1(S))+n11r

are, by Theorem 1, the moduli o f periodicity o f some holomorphic differential
on R o  along A 1, B ., respectively. By what is known as the Riemann's inequality
(Proposition 1), w e have

Tm( I n i0 d - i ( S ) - k m 1 1 r ) ( n 5 0 + Q 1 ( S ) - F n 1 1 r ) 0  .
j=1

Hence

Im 7 . E  [ (m i 0n11—rn1 1n i 0)+ ( 2 1 (S )n 1 1—Q 1 (S )m ,1 )] 0
J-1

which leads to a contradiction, since Im r>0. q.e.d.

C o ro lla ry . Let a homomorhism 7): H i (R.v )—, H ,(T ) and an S ES (R N ) satisfy
any one of the following conditions:

(I) Ci x  r)([4,1)=C i x 77([B,])=--0
3=1, 2, ••• , g .

{Co x yi([. 6,])}  2 1 (S )<0< {Cox 7)([141 ] ) } ' Q1(S)

(II) C0 X ii([A
1 1) and C0xi1(LB,1) are all positive, and

2,(S )<C1x 7i([2411) 
j=1, 2, ••• , g .

Q ,(S)> C i x .71([1 ,1)

Then there is no analytic mapping of RN into T  which induces yi and has the
singularity S.
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R em ark . In Theorem 3  and its Corollary, we have apparently used only the
property of the induced hom om orphism  of Hi(RN, aRN ) into 111(T ) .  But th is is
no t th e case ; indeed, the condition concerning dividing cycles are included in

(S ) and Q (S ).

7. Let f1 , f o  be tw o analytic  m app ings o f R N (N O )  in to  T  such that
(f7)*=(f2)*=.7) and both of f1, A have the same singularity S (RN) ° . Then

Oi=d(0 - 1 . f i ) ,  02=d(p -1 °A)

are two Abelian differentials on R v  and they have the same singularity at aRN .
Therefore

00- 0 1 - 0 2

is  an Abelian differential of the  first k ind . B y o u r  hypothesis that (f7/*=-(f2)*
=72, w e have

j=1. 2 , ••• , g ,

and hence
LOo4 , ,

(0i---02)=L,113,]-4[B ,]=0

0 0 =-0

This means that d(to - 1 °P = d ( P - 1 *.f2) on RN.
Accordingly, we may conclude that

fi— =f2 On RN

provided f1(P0)=f2(P0) for some point P O R N . W e  have obtained

Theorem 4. An analytic mapping f  of a R iem ann surface R N  of f inite type
(g, N ), in to  a  to ru s  T  is ,  i f  it ex ists, uniquely  determ ined by  the
follow ing three k inds o f data:

(i) the induced group hom om orphism  f * ,
(ii) the singularity  a ( f )  of f ,  and
(iii) the image point f (p o)  under f  of a f ixed reference point p , on R o .

For any homomorphism 72: 11,(RN)—>H1(T )  w e denote by i2 A  the restriction
of 72 onto the subgroup of I i i (RN) generated by [A 11, ••• , [A g ]. W e set

A(2) , If : R N— Tlf is analytic, ( M A - - - 7 7 A ,  and a(f )=S I

(77, .

S )S a4 (7 ), S ).

6) W hen N = 0 , th is  condition becomes vacuous.

and

Clearly
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T h e  proof o f Theorem 4 actually show s a  stronger result. Namely we have

Proposition 6. L e t  )2: Hi (R N )-.1 -1. 1 (T ), S (R N ), and (Po, 40)GR N X T be
given. Then there is at most a single element f  in A(7), S) such that f(P0)=90.

We note th a t  :(.77, S)•=0 fo r a  la rg e  number of pairs (77, S ) .  T his is exactly
the  content of Theorem 1. However, a s  we shall see later (Theorems 8 and 9 ;
c f .  also Theorem 1  i n  [14]) ,  f o r  a n y  )7 we can find a n  SES(R N ) fo r  which

S )= 0 . It is also easy to construct a n  example which sh o w s that (77, S)
is , in  general, a  proper subclass of B'A ()7, S).

F o r th e  completeness we shall also include the  following

Proposition 7. Let there be given a group homomorphism 7): 11 1 (R N )--.H1 (T)
and an analytic singularity S  at aR N , N 0 . Then, e ith e r  A (1), S) is empty or
it contains uncountably many distinct elements. I f  S )  is not empty, every
f  i n  ',1(7), S) is decomposed into a form

f = rf o ,

where z  denotes a fixed-point free conformal automorphism o f T  and f e is a fixed
element o f ,t ' A (.77. S).

8. T h e  su r fa c e  R N  a s  a n  o p e n  R ie m a n n  su rfa c e  has a  very small ideal
boundary. Therefore th e  complex normalization o f Abelian differentials is also
available fo r  th e  present problem. (In this connection, see Kusunoki [9], [10]
cf. also [M].)

Recall that 0 ,  ••• , got a re  th e  normalized differentials o f th e  first kind with
respect to the  homology basis fA i , /3,1

çat =3 i  , i, j=1, 2, ••• , g .Ai

The matrix withwith ri i =S' B i 4  is uniquely determined. L e t  V I be

integrals o f 4  on R V —RN— ( A iU B i )  and suppose that

0 0

(9) OI(zk)= E  a:,t(P k)ek about P k , k =1, 2, ••• N .
v=0

T h en , a s  in  th e  real case (cf. equations (7-1) and (7-2)),

N  co
(10) g l(S )=-2 7 ri E  E  a.t(Ph)s,(Pk)

k = 1  0  = 0

is well defined for every S= ISkIj':=1 S(RN), dSk /dzk =  E  5,(Pk)/4 1.v=i)
We a re  now ready to prove

Theorem 5. Let R N  be a Riemann surface of type (g, N), g 1 ,  N . 0, and
T =T (1, r )  a  torus. L e t  S e ( R N )  and ri be a homomorphism of H i (R N )  into
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1-11 ( T ) .  Then the statements below are equivalent to one another.
(1*) T here ex ists an analy tic m apping f: R N --q' such that

(i) f,,<=72, and

(ii) o-(f)=S

(1P ) (i) k(S)= >7 [D  k ] , k =1, 2, , N ,  and

(11) (ii) 2 .1̀ (S) , j = 1 ,  2, , g .

First we note that condition (1P) is equivalent to

(II**) There ex ists an A belian differential yo of the f irst k ind such that

(12) Af L A J1 ,  L i ço= 4 [B , ]+ .4 ( S ) ,  1=1, ••• , g .

Since the equivalence of (I* ) and (II**) can be shown by word-for-word modi-
fication of the proof of Theorem 1, we accomplish the  proof of Theorem 5.

Another way to prove Theorem 5 is to show the following

Proposition 8 .  A mong the functionals Q; and 4  the following identities
hold:

(13) g1=Qi— Ti j i , j= 1 , 2 , ••• , g .

Pro o f . We recall equations (1 ) a n d  (1'). Since, in  t h e  present context,
(1= ••• =C g = 1  and cr1 =  • • •  = a g = i3 i = ••• = 13,-=27ri, we have

, g

E a k i Tm v i i -= - 27-c5k ;

(14)

We also have

(15)

—2r Re r k  j
t 1

 j3 Tm

J95(A )= i  a p v t

, j=1, 2, ••• , g .

Sb(B.)= i (Pi1-F2rti5.0)0'

For the sake of simplicity we use the matrix notation.
Set

j ,  k=1, 2, ••• , g .

21=(a i1 ) ,  0 = ( 13“), i, j=1, 2, ••• , g .

Divide 5 :  into its real and imaginary parts :

,



and
$ 4 ,= [ 1, $ * ,+ i l 3 * n7

Re R I] ' Im.

0 ,1

L 4 ,i. dg
Re R I $4,,,={1m:2t

608 Masakazu Shiba

w h e r e  ' , (Re TV  and Z"-=-(Im ro ), j ,  j=1, 2, ••• g .  Then equations (14) take the
form

(16) 9a".=-272g , V3 91"--=-27Z' ,

2g  b e in g  the  gX g id en tity  m a trix . In particular, 91 is non-singular.
W e also set

Then, by noting (15), we can easily

1 (17)
2

9,q3* ,, 71  T s 1 3 * 1 1 + 4 3 * ,7
7 27r

Combination o f th e  first equations o f  (16) and (17) yields

13*"=2791 - '13, —Z13.

Substituting this into the second equation o f (17), we obtain

10-= T( Z13)413*'=-Z13+13* /

It follow s that
$* -.=13*' +i$*"= (C1—Z13)— iZ"$-=-D —Z$

q. e. d.

If  th e  A i -periods o f  an  Abelian differential y9 o f th e  first k ind  a re  known to
b e  L jA i 1+2 1(S), th en  w e  have

99= {L,CAL1+ (s)} 0
i= 1

yo satisfies (II), (ii) in  Theorem  1 if  and  anly if

LJBA+Q ;(S )=--I L 7 2 [ A 1 ] + 2 ) i ( S ) }  T i j

or

(18) Q(S)— 2 i (S)r o = LJA i ar i i —L v [B J ] .

Equation (18), together w ith  (13), now proves Theorem  5.

9 .  W e shall say  that a  continuous mapping f: R N —>T is  o f  null type (relative
to  ({A,, ./33}f=,, {Co, C1})), if

(19) l l  [(f(A ; ) x C,) 2 + (f(B ; ) X C,) 2 ]=0 , j--=-1, 2, ••• , g .v=0,1

This condition m eans tha t fo r each j=1, 2, , g  w e need only one o f  Co o r  CI

to  express the image classes [ f (A )1  
a n d

 [ f ( B ) 1  ( c f .  [141).
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T h e  following proposition is  a n  easy consequence o f Theorem 2.

Proposition 9 .  A Riemann surface of  f inite ty pe cannot be rationally  real-
izable over a torus by means of any analytic mapping of null type.

Now we shall prove

Theorem 6 .  Let RN be a Riemann surface of type (g , N ) and  T =T (1 , r)  be
•a torus, Let a non-degenerate analytic singularity  S  at aR, be given

C., S E S (R N ), dS 0). T hen the following two conditions are equivalent :
(I) T here ex ists an analy tic m apping f: R N — g' such that

(i) f  is o f  null type, and
(ii) a( f )=S ,

(II) T here is a g-row  vector 8-----(c„ ••• , C g ) E c g , C3 = 1  or r, such that

(20) 2.}(S).— V i(S )=0  mod Z , j=1, 2, • • • , g ,
and

(21) k(S)-= 0 mod H , k = 1, 2, •  ,  N - 1 .

Pro o f . W e shall only give a  proof o f (I) (II), fo r the  converse  is similarly
p ro v ed . Let f :  R N — g' b e  a n  analytic m apping o f  n u ll ty p e  which has the
•singularity S .  Then there exists a  g-row vector 3-= (C „•, Cg), 1 .,= 1  o r  7, such
that

L , L f .[B

fo r  some integers m) , ; j=1, 2, •••, g.
If  we take I-basis fçbT(A2), OT(B,)}f=i fo r  th e  class o f Abelian differentials of

th e  first kind and  form th e  corresponding linear mappings .4'j, (27
;  ( c f .  equations

(7-1) and  (7-2)), then th e  same argum en t as in  the  proof o f  Theorem 1  implies
(II). q.e.d.

Remarks. (1 )  A  m ore general theorem which replaces R N  b y  a n  arbitrary
open Riemann surface can be found in  [14].

(2) It is not d ifficult to  give a  sim ilar theorem f o r  a n  analytic mapping
f  which satisfies, in addition to (19),

H ( f (D k )x C ,)= 0 , k = 1 , • ,  N .v=0,1

W e m ay a s  well consider another speciality o f  topological properties (of
analytic mappings). A  continuous mapping f :  R N — g' will be called, fo r  la ck  of
a n  appropriate name, A -null type, if

[f (A ,)]=0

fo r each 1=1, 2, ,  g .  A s  a  counterpart o f Theorem 6, w e have by Theorem 5

Theorem 7. Let RN, T  and S  be as above. Then there is an analytic mapping
f :  R N — g' o f A -null type which has the singularity  S , if and only  i f
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(20*) .4 (S ) ._. 0 mod H ,j = 1 ,  2 , • • • ,g ,

(21) gtk(S).-=-0 mod H ,k = 1 ,  2 , ••• , N -1 .

It should be noted that Theorems 6  a n d  7  have  v ery  close form  to the
classical theorem of Abel (cf. [9 ] ,  [ 1 4 ]  etc.).

I I I .  Analytic mappings which induce the prescribed homomorphism

1 0 .  Contrary to the compact case (N=0)— see Theorem 2 and Proposition 5—
we can prove the following

Theorem 87 ) . Assume Let R N  be a Riemann surface of type (g, N)
an d  T  a  torus. T h e n  f o r  any  g iv en  hom om orph ism Hi (R N ) Hi ( T )  there
always exists an analytic mapping f  of R N  into T  such that f * =72.

P ro o f . Let T  be represented as T=T(1, z )  and 72 be described in  equations
(5). It suffices to show the existence of N sequences is,(POI 7=0, k=1, 2, ••• , N,
of complex numbers such that

lim sup -■/ s,(Pk)I

27r iSO(P k)
=-

> 2 [ D  k]
N

(22) 27ri E  E  ci.1 (Pk)s(Pk)= L n [B i] —  E  L [ A ] v ,  j -1 ,  2, ••• , g .
k =1 v =0 i=1

Once such sequences can be found, it is then clear by Theorem 5  that there is
an analytic mapping f :  RN - 'T which induces 72 and has the singularity S defined by

S= {Sk}

where dSk/dzk= E k =1, 2 , ••• , N.

We are now to show that system o f equations (2 2 )  alw ays has a  solution.
First of all, we note that the  first term of each sequence f5v(POIr=0 is uniquely
determined :

so(Pk)=— Ln[Dk]/27ci, k = 1 , 2 , •••  , N .
We set

  

S(Pk) - 0 , v = 1 ,  2 ,  • • •  ,  ;  k = 2 ,  3 ,  •  ,  N .

and furthermore, for simplicity, we set

C i =  2

1

7riL [ A ] r 1 5 +  E 40( P k)L,[ - D k]}

s„=s,(Pi)

1= 1 , 2 , ••• , g ,

2, •••

   

7) Similar statement for a more general open Riemann surface is valid as w e l l .  In fact,
the pure-existence part of these theorem s is a simple consequence of Behnke-Stein
theorem (cf. [14]).
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Now we have to solve th e  following system o f  linear equations with an
infinite number of unknowns s .

00

(22') E j=1, 2, ••• , g ,

with additional condition

(22") lim sup ',/ I s ,  =0 .

S in ce  a  is  the v-th Taylor coefficient of the holomorphic function 01-(z1)  on the
unit disk U, = { I 2', I <1} , we know

00

E  I a1 2 <c)c) •

In fact, we may assume that 0 .t(z 1 )  belongs to the class 112 (U 1 ) , the Hardy class
[of index tw o]. H ence, fo r each j= 1 , 2 , • • ,  g ,  th e  sequence (4 , ,  a ,  • - )  is
considered a s  a n  element o f  th e  complex H ilbert space /2 = {(tX_, I t,E  C,
E7.1I t, 1 2 < co } .  What is more, it is obvious that these g  vectors a re  linearly
independent in 12 . Therefore by using the method due to E. Schmidt, we know
the existence of an 12 -solution (s1 , s 2 , •••). Namely, there always exists a sequence
fs,}7 1 which satisfies

CO

(23) E j=1, 2, •-• , g,=1

and

(23') E  I s,12 <oe •

The 12 -condition (23') is, however, much weaker than our demand. We have
to  show the existence of such a  sequence as satisfies even (2 2 ") . To this end,
we note that the number of equations in (22') is only finite. It follows that we
can actually find a solution (s1 , s 2 , •••) o f (22 ')  such that s ,-= 0  fo r a l l  v.>_vo ,
being a  sufficiently large positive in teger. This completes the proof of Theorem 8.

Incidentally, we have shown that there are infinitely many distinct mappings
f ' s  which induce th e  g iven  ri : Iii(R N )-->Hi(T ), fo r there a re  infinitely many
distinct ways of choosing s ,  for large v's.

1 1 .  We could follow the Schmidt's procedure to obtain an estimate for the
number vo . But we prefer to make use of a function-theoretic property of the
coefficients a, in system (2 2 ') . To do this we shall first prove the following

Proposition 1 0 .  L et al, be  the v -th  T ay lor coef f icient of  0 .1` at  the  po in t pi

(w ith respect to  the local param eter z 2 ), 1 =0 , 1, 2, ••• ; j=1, 2, ••• , g. T hen, f or
every  n 2 g - 1  rank (4)5-1, 2, g 

=
g•

Pro o f . Suppose that, contrary to the conclusion, there is an integer —1
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fo r which rank is strictly less than g.

numbers t 1 ,  t2 , ••• , t g  such that

(i) It, I +1 t2I+ ••• ±It g l > 0  ,  and

(ii) t1 a t + t 2 at+ •• •  +t g a 0 ,  v = 1 ,  2, ••• , n .

If  we set

Then we can find g  complex

d(P*=t1d0t+t2dV 2`+ •••

OP* is a n  Abelian differential o f  t h e  first k ind . S ince Ef= i t z  > 0 , we know
d O * 0 .  Therefore, t h e  degree o f  th e  divisor (dO*) is exactly 2 g - 2 .  O n the
other hand, the first n  derivatives o f th e  integral 0 *  (with respect to z 1 )  vanish
at the point 1)1 , fo r  by property (ii) we have

F  (1'0*
v!-(tiat+  ••• t g a ) = 0  ,  v = 1 ,  2 ,  • ,  n .L

Hence deg (do*) n 2 g - 1 .  This contradiction proves the proposition.

Now we a re  ready to prove

Theorem 9. L e t  RN=Ro — {P1, P2, •-• PN }  be  a R iem ann surf ace of  ty pe
(g, N )  an d  T  a  torus, N 1 ,  g 1 .  T h e n , f o r an y  homomorphism 72: 111(RA
—4-12 ( T ) ,  there is an  analy tic m apping f: R N —>T such that

(i)
(ii) at  an arbitrarily  chosen one of  N  points 1)1 , P 2 ,  • • •  PN, d( 10 - 1 . f )  h as  a

pole of  order not exceeding 2g, and
(ii') at each of  the other N - 1  points, d(p - '- f )  has at w orst a simple pole.
In  p artic u lar, if  th e  p o in t chosen in  ( i i )  i s  a  non-W eirestrass point, the

number 2g  in  (ii) can be replaced by g+1.

Pro o f . Because rank ( 4 y ) 2  g  =g  by th e  preceding proposition, there is

at least one minor o f order g  which is different from zero. L e t  det (4„ 1) *0 ,
where i, 1=1, 2, • • • , g  and  1 <2.12 < < 2g —1.

Choose s„=0 if  v*O , v, (in particular, s„=0 f o r  a ll v 2g). T hen  s, 4 2 , •

4 g  a r e  uniquely determined.
W e h a v e  gotten a solution of (22') such that at most th e  first 2 g - 1  terms

a re  different from z e ro . T h is  means that f  can be taken so a s  to  satisfy  (i),
(ii) and ( ii ')  in  th e  theorem.

F o r th e  last p a rt o f  th e  theorem, it is sufficient to note that i f  p ,  is  n o t a
W eierstrass point, then

det g  *0  (se e ,e .g ., [1 ], p . 330; [ 1 0 ] ,
 p .  148).

q, e. d.

R em ark . T h e  mapping f  in  Theorem 9  assum es, in  each neighborhood of
the point pi , every value on T  infinitely often, since p - 'o f  has a pole at p,. In
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this connection see Theorem 1  in  Ohtsuka [13].

Since the  to ta l number of W eierstrass po in ts  on  a  closed Riemann surface
of genus g 1 is at most (g-1)g(g+1), w e have  the  following

C o ro llary . I f  N >(g -1 )g (g +1 ), then there always exists an analytic mapping
f : R N - , 7 ' su c h  th at  (0 f  induces the prescribed hom om orphism  betw een their
homology groups and ( i i )  the singularity  of  d(p - lc f ) a t  p i  is  a t  m o s t  a sim ple
pole except f o r a  s in g le  Pk w here  d(p - '0 f )  h as  a pole o f  order not exceeding
g+1.

We have shown t h e  following : Setting so(P2)=so(P3)-= ••• =4(PN)=0,
we can associate precisely g + N  complex numbers with every homomorphism

77 : Ii i (RN)-41 1 (T ), whatever the point p, may be (i.e., regardless whether p, is a
W eierstrass po in t o r not). These g +N  complex numbers a r e  canonically  deter-
mined by 77. Namely, if the  W eierstrass gap sequence at p , is given by

(1 = )  v i < v 2 < • • •  < v g

we can set s =-4(P1)=0 for v * O , v.,. S in c e  vi, 1)2, ••• , I ) , a re  g a p  values a t  p i,

there are  g  holomorphic differentials 01, 02, ••• , çbg on R o such that 0, has a zero
at p, whose order is exactly 1.),- 1 .  Such differentials 0 1 , 0 2 , ••• , Og  s p a n  the
class o f Abelian differentials o f th e  first k ind. It fo llow s that det (4 ) i ,  j =i, g

# 13. Thus s u,, s„2 , •, s„g  a r e  uniquely determined. (T h e  remaining N  numbers
so (p k ), k =1, 2, ••• , N , a r e  a lw ays u n iq u e .)  These g +N  complex numbers serve
a s  th e  c o e f f ic ie n ts  o f  th e  singularity o f  a n  analytic mapping f :  RN - - q '  with
f*=72.

1 2 .  Let and RN —RO-- {P,, P2, • • • y p N }  . We set R ° =Ro— 11) 2 , P 37  • 7  P N I  -
D enote by U  t h e  upper half p la n e  {zE C I Im z> 0 }  a n d  b y  L  th e  lower half
p la n e . T h e  surface R °  can be represented a s  U IG  b y  a  Fuchsian group G
w ithout ellip tic elem ents. A fter Bers (cf. [2 ] ,  [3 ] ) ,  we define th e  Teichmaller
space o f R ° a s  follows.

First we set

B 2 (L , G)={
0(z ) is  holomorphic in  L, s u p  I 3/10(41 <00, and2=x+i y eL
0(r(z))7'2(z)=-95(z) fo r every TE  G.

For each 0E B ,(L , G), consider th e  ordinary differential equation of the  second
order

277" (z)± 0(z)v(z)-=0 , zE L .

L e t 77 ,(z), , ( z )  be two linearly independent solutions normalized by the condition
721(— i) =-77;.( - 0 = 1 , v i( — i) =7/2( - 0•=0, and set

Wo(z)=72,(z) /77,(z).

T h e  Teichmiiller space T(G) o f  G  is defined as
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T(G)= {0E G)1 Wo is univalent on L  and W 0 (L ) is a Jordan domain} .

We finally set

D(0)=0— W gs(L) , OE T(G) .

The space F(G)= {(0, z)I0GT(G), zED(95)}  is called the  Bers fiber space over
th e  Teichm aller space T (G ); it is known to be a  bounded domain (and even a
domain of holomorphy) in  the  complex 3 g - 3 + N  space B z (L, G)ec ([3]). As
usual, we shall write T(R°) for T(G) and F(R°) for F(G ). We denote by RO the
Riemann surface corresponding to çbE T (R °). Namely, RO is a Riem ann surface
of type (g , N -1) which has the same marking as R ° . Note that the point ¢ = 0
represents the surface R°— R 0 — {P2, ••• PN}.

A s before, let yot, ••• ,  4  be the  normalized Abelian differentials of the
f irs t k in d . O n  an y  R o  there a re  differentials o f  th e  same nature which we
denote by çot(çb), ç a ( ) ,  ••• , 9:(q5). The corresponding B y-periods a re  denoted by

Due to Ahlf ors, Bers, and Rauch, we know that v ,(0 )  are holomorphic functions
on T(R ° ). What is more, Bers showed (see [3 ]) th a t D(95) i s  th e  (holomorphic)
universal covering surface of the surface  R 0 ; D(0)1G 0  is  conformally equivalent
to  R o, where Go= { re PSL(2, C)I there is a  r G such that W0 .7= .117 0}. We
denote by 7r the projection D(çb)—>RO, 0 T (R °). For every  z D (0), we denote
by Ro.z the surface R0 — { r(z )} . Then R o ' is a  surface of type (g, N).

Now, using the variable zG D(0) as the  uniform izing parameter of we
s e t  94(0)=1) (0, z)dz, j=1, 2, ••• , g. T h e  functions f .,(0, z )  are holomorphic on
F(R°) (Bers [ 2 ] ) .  In particular, the Wronskian

W(çb, z)=
f1(0 , z), f(95, z),
f2(95, z), f(0, z),

z)
f (g

- 1 )(0, z )

          

f g(95, z), fig(sb, z), ....... f (I-1)(95, z )

a.is a holomorphic function on F(R°). Here f  (1)) (0, z )= f  (0, z ), v =0, 1, • • • , g - 1 ;
az '

17
) (0, z )-=f1

1) (0, z).
Let R ' (resp. T ')  denote a  generic Riemann surface o f  ty p e  (g, N - 1 )  (resp.

(1, 0)) with the same marking as R° (resp. T). 8 ) Then any group homomorphism
:1-1,(RN )—.H,(T) obviously defines a  homomorphism of H 1 (R 1) into 1-11 (T'), which

we still denote by y).
Now we shall consider the case N = 1  and then we haves )

Theorem 1 0 .  L et R ° be a fixed closed R iem ann surface of  positive g e n u s  g
an d  T  be  a  f ix e d  to ru s . L e t  R 1 =R°.—{1,1 } ( w ith  pi  k ept f ixed) and  r; : 111(R 1)
—>111 (T ) be a given homomorphism.
8) H ere it is assum ed tacitly that {24,, B  j } , = i ,  2 , - .  g  has been modified so as to determine

a marking of Ro.
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Then we can find g functions

Sl, S2, S g

defined on F(R °)x U which satisfy the following conditions:
( I )  si, s2, ••• , 5, are meromorphic functions o f 0ET(R °), zE D(0) and rE  U;

furthermore, they are holomorPhic except fo r  those (0, z , r) such that Tc(z)
i s  a Weierstrass point on the surface Ro, r  being any point in U.

( II) I f  s1(0, z, 7), s2(0, z, 7), ••• , s,(çb, z , r) assume fin ite  values", then fo r
sufficiently small r>

S,(C; 0, z, r)==— s,(0, z , r) 
V(C-

I C-2. 1 <r

defines an element S(C; 0, z, v)= {S 1 ( ; 0 , z , r)}  of S(Ro.z).
(III) For any OE T(R°), zE D(0) and vE U  such that s(Ø, z , r), j=1, 2, • ••, g,

are finite there exists an analytic mapping

f(0 , z, 7): RO z — > T(1, r)

such that (f (0, z , r)) *=-12 and a(f (0, z , r))=S (C; 0, z , r).

In  o ther w ords, t h e  singu larity  o f  analy tic  m apping  o f  R ,  in to  T  which
induces th e  prescribed hom om orphism  betw een their hom ology groups can be
chosen so a s  to depend meromorphically on  the  moduli o f  R , an d  T .  (Note that
F(R°) is biholomorphically isomorphic to T(R i ).)

W e om it the p roof. W e on ly  note th a t the functionals 4(S), SE S(Ro'') can
b e  c o m p u te d  b y  m e a n s  of the  g lobal uniform izer z (  D(0)) o f R° (cf. equation
(10)). T he  functions s l , s z , ••• , s ,  can be explicitly given by

s,(0, z, z - )=IV ,(0, z , r)/W (Ø, z ), j=1, 2, ••• , g ,
where

W; (0 , z , r)= d e t (c(4(0, z , g

z , r)=
=

i f ow 1)(95,

, 2
j
7: i  (L,,[B,„]— v= j .

I V .  Some additional remarks

1 3 .  W e shall now  point out some re la tio n s o f o u r  r e s u lt s  to  t h e  classical
th e o ry . In  th is  connection, see also Theorem  2 and Proposition 5.

F irst w e  reca ll tha t in  th e  definitions o f  th e  linear mappings 2 ,,  C , a n d  4
( j=1, 2, •-• , g ) a  canonical homology basis o f Ro is  f ix e d . The notation  a( f )=S
is , on  the  other hand, m akes sense only w hen w e have fixed a  canonical homo-
lo g y  b a s is  o f  T  (hence  a  p ro je c tio n  m apping p :  C— •T). W e shall henceforth
use the notation cia o. ci )(f  =S  if  th e  reference to th e  basis {C o, i s  n e c e s s a r y .

•
v# j

9 )  This is the case if the point n (z )  is not a Weierstrass point of the surface Rs6 (c f.
(I) ; see also Bers [2 ]).
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In order to see the effect produced by the exchange o f  canonical homology
basis of R o , we rewrite equations (7-1), (7-2) and (10) as follows

(7-1') 2,(S)=Re 01 . 0(il f )dS=— Re Res 0(A i )dS ,
L7C1 d ' k = 1  r k

(7-2')
1

kN=1 r k
Q,(S)=Re 

2 7 r 1
 .Ç

d
O(B

'
)dS =— R e E  Res 0(B i )dS ,

(10') 2 .1"(S)=.1 0 . NS= —27ri Res dS ,

where d=D 1+D 2+ ••• + D N .  (Of course, Res CP(A 13; )dS , Res 0( ; )dS  etc. should

be understood in the sense of footnote 2), p. 594.)

We shall now prove the following

Proposition 11. Let two canonical homology bases IA »  B i l l ,  and
o f R o be related by

(24-1) = (pijAi+116B0)

1=1, 2, ••• , g .

1;i1, f=i

(24-2)

—
L et R i , Qi , (resp.g. i , Q i , g l)  b e  the linear mappings which are associated with
the basis (resP. { A i , B i }l=1). T h e n  w e  have the following identities:

2 i =  E

( v i p T i + v c i )  j= 1 , 2 , • , g .i=1

g)45=  E

Here (ff1i) =1,2,..., g  denotes a g x g  com plex  m atrix  which is uniquely  determ ined
by (24-1) and (24-2).

Pro o f . Let 3 o =(1, 1, , 1 ) a n d  le t  0(A ; )=-d 1(A ; ), 95(B ; )--=d0(.13; ) (resp_

0(A 1)=d0(..2i ; ), çb(L'.)-=d0(r3;)) be the ao-basis for the class of Abelian differentials
of the first kind corresponding to the basis {.A.5 , f=1 (resP• {Ai. 131} f=1). (See
section 2.) Then it is easy to verify that

(26-1) 95(71;)-= Ciii,15(Ai)+[160(Di)1

(26-2) 95(14.;)=  A EviAb(Ai)-H, i;O(Bi)]

j=1, 2, ••• , g .
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Indeed, we have first

tti/p),:k) = a ik
j ,  k=1, 2, ••• , g ,

(Piittt'k — pi;pik )=i=1 i=1

since {A 1 , B .;}ff=1 an d  {Ai , are both canonical. Now we see that

[ttosb(A 04 - 1/.695(Bi)i)==- f- DiAb(Ai)d-vi'iO(Bi)i) 0.B k i=1

and that

1 11 i i 0 ( A ti»  i t t i ;O ( B ( i  [ 1) ii95 (A i )±  i ;9 5 ( B  ti)1 )= . — 2 1 ria jk
A k t i= i

modulo real numbers ( j ,  k=1, 2, ••• , g ) .  Hence by Proposition 2 we have (26-1)
and (26-2).

Take an S (R N ). Then for every j= 1 ,  2 ,  « ,  g  we have

t h (S )= R e  2
1-
7 r i  c i 0(71 i )dS )

1  
= [p o  Re (

L r i
 0 ( A i )dS)-1-11.Z. Re (  

2 7 i

 0 ( B  . ) d S ) ]
d d

= i=1

Similarly we have

i ( S ) =  i [ v i . g i (S)d-v i ;Q i ( S ) ],  S (R N ), j=1, 2, •-• , g .

Let 01', Ot, ••• , Vg'  be the normal integrals o f th e  first k ind on  R o  w ith

respect to the basis {A i , B i }l=1 and Z-=(z-o ) i ,; , , , , r i i= L id 0 t ,  as before. If

••• , denote the normal integrals of the first kind with respect to the
basis {2i si, :6 ; }f=1, then there a re  uniquely determined g 2 complex numbers x i ;

(i, j=1 , 2, ••• , g) for which

KoOt , j=1 , 2 , ••• , g .

It follows immediately that for every S E S (R N )

j=1, 2, •-• , g .

q.e.d.

Remark. Computing the A i -  and B  periods of d , w e  s e e  th a t  the matrix
,  satisfies

wag , z>n=cag , ,
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where
g

P i i

vt'; t , g

j=1. 2, g af

a n d  t a  stands for the transpose of SI. It is  a lso  w e ll-k n o w n  th a t the m atrices
SI and 9it a re  both non-singular (cf. [15], Vol. II).

Proposition 1 2 .  <1> L e t S E ( R N )  and 2 »  Q i , g3'.;  be the linear mappings
which correspond to  the sanie canonical homology basis o f R o . Then

(27) g'i(S )-=Q;(S )=--0 , j=1, 2, ••, g

if and only i f

(27*) g l(S )=0  , j=1, 2, ••• , g .

<2> The property  that an  S E S (R N )  satisfies condition (27) does not depend
on the choice of a canonical homology basis o f Ro.

<2*> The sam e is true of condition (27*).

Pro o f . A ssertions <2>, <2*> a r e  s im p le  consequences o f  t h e  preceding
proposition . For the  proof o f  <1> w e only  need  to  recall Propositien 8, equation
(13). Using th e  m atrix  notation, w e  see  tha t (13) is equivalent to

gai(S )

C i (S )

c2;(s)
(13') rg 2,(S)

R D :(s )

g l(S )

g ( S )

(Here, of course, denotes th e  period m atrix  w ith respect to  th e  basis which is
now considered and  the  bar stands fo r  th e  complex conjugation.)
Since th e  2g x2g matrix

3g - 1

is obviously non-singular, we know <1> is  valid. q.e.d.

N ow  w e have

Definition. A n  analytic singularity S  is  ca lled  trivial if  i t  is  o f the  first or
second kind (i.e., g. 0 (S )=0 , k=1, 2, ••• , N )  and (27) is satisfied f o r  some (hence
for every) canonical homology basis o f R o . W e  sh a ll d e n o te  b y  o (R N )  the class
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of triv ia l analytic singularities at aRN .

Due to  Proposition 12, w e m ay  a s  w e ll d e f in e  0 (R N )  to  b e  th e  class

IS G S (R N )
23 1`(S)=0 , j=1, 2, ••• , g I

0 (S) 0 , k=1, 2, •••, N -1 1

w ith  an  arbitrarily fixed canonical homology basis o f  Ro.

1 4 .  In  th is  section w e  assume N 1 .  W e  have already know n (Theorem  6)
th a t if S O(RN) then there  a lw ays exists a n  analytic  m apping o f  R N  in to  T
s u c h  th a t  ( i )  a ( f ) =S  and (ii) f  is  o f null ty p e . T h e  following theroem gives a
counterpart to  this fact.

Theorem 1 1 .  Let R o b e  a closed Riemann surface of positive genus g and T
a to ru s . Let { A ,, B 5 }1=1 ( re s P . ICO3 CA.) be an arbitrarily fixed canonical homology
basis of R o  ( r e s p .  T ) .  Let R N  be  a Riemann surface obtained by  deleting N
distinct points f ro m  R o , .1\r 1. T hen f o r  ev ery  S E S o (R N ) the following two
statements are equivalent:

(I) R o adm its an analytic mapping onto T.
(II) There exists an analy tic m apping f: R N - - q ' such that

(i) c 0 , 1 ( f ) — S, and
(ii) f  is  "not" of null ty pe relative to ({A5, 135.}7=1, {Co, C1}).

Pro o f . A ssu m e  (I) . L e t r  be  th e  C1-period o f  t h e  holomorphic differential

dE 0 such  that dE 0 = 1 .  Then by Theorem  2 there exists an Abelian differential
co

çi) 0 o f th e  first k ind (on R o )  such that

A i Yo=mio+In fir

go=niod - niirsi

for appropriate integers mi k , n i ,, (j=1, 2, ••• , g ; k = 0 ,  1). S in ce  S  i s  a  tr iv ia l
analytic singularity, gz. ) (S )=Q ; (S )=0 , j=1 , 2, -• , g, and at k (S )=0 , k=1, 2, ••• , N-1,
where Q5 a r e  th e  linear m appings corresponding  to  t h e  b a s is  {A 5 ,  135}.f.-1.
T hus w e have

A i
40=71150+m517+25(S)

B i
Sa=n 50-1- n J i r+Q ,(S )

j= 1 ,  2,

Using Theorem  1, w e m ay conclude that there is a n  analytic mapping f :
such  tha t a ( f ) = S .  Moreover, th e  induced homomorphism /**: H l (R N ) - H l (T ) is
given by
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f*Elli1)=Tni0[C0] +m i0[C 1] 
j=1, 2, • • • , g ,

i*ŒB JJ)=71,0[Co]+nii[Ci]

a n d  hence f  is  n o t  o f  n u ll ty p e  re la t iv e  to  (O p  B,If=-1, {Co, CI}). Indeed ,

fJ (71/0- En30)(m;1+n;1)>O, s in ce  vi O. T h u s w e  h a v e  proved the im plication

(I) (II).
Suppose, conversely, that there is an  analytic mapping f :  R N —>T which has

th e  following properties :
i) a(f )=S ,

(ii) f  is not o f null type relative to (IA ) , B,U=1, {Co, C1}).
Then by Theorem 1 we can find an  Abelian differential g) o f th e  first k ind  (on
R N )  such that

(28) fLgo=L f .[A ,1+2 .,(S)=L f .[A ,]

1 .ç B 7 =L  f .[B ) ]+0 .,(S)=L f lB ,1

j=1, 2, • • • , g ,

where L f .  is  th e  linear m apping [of H l (R N ) in to  th e  m o d u le  11 -•={ z=m +nz - 1
m , T L EZ } ] asso c ia ted  w ith  t h e  induced hom om orphism  f * : 11,(RN)--4-1,(T).
Because f  is not o f null type, w e can find 4 g  in tegers m, k , n ,k  (j=1 , 2, ••• , g ;
k =0, 1) such that

L f1.11;1=mio - Emils-

(28-1) j=1, 2, ••• , g ,
L f .[B ; ]=n

(28-2) E  (injo+ nj o )(mj 1 + nj i ) > 0 ,

Condition (28-2) implies that ço O. T ak in g  acco u n t o f  this fact, we conclude
from equations (28), (28-1) th at there  is  a n  analytic mapping o f R o onto T  (cf.
Theorem 2). q . e . d .

Remarks. (1) If S  degenerates (i.e., if  dS-. 0), then Theorem 11 still remains
true (cf. P ro p o sitio n  9  an d  footnote 10)).

(2) The im plication (II) (I) can be proved under weaker conditions

(29-1) g",(S) Q,(S) -  0 mod Z , j = 1, 2, • • • , g ,

(29-2) Rk(S)=0 , k=1, 2, ••• ,  N - 1 .

It follows from Proposition 11 that (29-1) does not depend on  the  special choice
o f  a  canonical homology basis of R,.

(3) T h e  preceding theorem shows that there is a Riemann surface RN which
admits two analytic mappings f „ f 2 w ith  the  following properties : ( i )  f ,  f2  are
mappings o f R N  into th e  same torus ; (ii) they h a v e  th e  same singularity ;  and
(iii) f ,  is  o f null type, while f 2 i s  not.
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Now l e t  a  non-degenerate" )  S e ( R N ) b e  g iv e n . L e t  {Ai , f=1 (resp.
{Co , C1})  be a  canonical homology basis o f  R o (resp. T ) .  Then we shall say, in
relation to "rational realizability", that the Riemann surface RN is S-transcendent-
ally realizable over T relative to (IA »  -13,1 f=i, {Co, C1}), if  we can find a n  analytic
mapping f :  R N ---q ' such that

(i) a(c o,c,)(f)=S , and
(ii) f  is not o f null type relative to ({A,, B,}1=1, 1CO3 CID.

If  this is the case, f  is a n  analytic mapping o f R N  into T  which can never be
extended (holomorphically) t o  t h e  whole o f  R o . W e s a y ,  fo r  s h o r t ,  that
(R N ,  {A,, f = 1 )  is  S-transcendentally realizable over (T , {Co, C1}).

Suppose now that S is t r iv ia l .  Then Theorem 11 asserts that (RN, {A,, /3,} f=i)
is S-transcendentally realizable over (T, C11) if  an d  only i f  R N  is rationally
realizable over T .  We have hence

Proposition 1 3 .  L e t  R N , T  b e  as  before an d  S  a  non-degenerate trivial
analy tic singularity  at aR N :sE o(R N ), d S 0 .  L et {CO3 C 1 }  be a  (fixed) canonical
homology basis o f  T .  Then f o r  any  tw o canonical hom ology  bases {A»  B,} f= 1 ,
{A ) , -13}f=-1 o f  R o statem ents (I), (II) below are equivalent :

(I) (R N ,  {A,, B } 1)  is  S-transcendentally realizable over (T , {CO3 CI}).
(II) (R N ,  {A »  B 1} 1)  is  S-transcendentally realizable over (T , {CO3 C1}).

This proposition yields t h e  following conclusion : So  lo n g  a s  we restrict
ourselves to th e  tr iv ia l singularities, it is o f  less im portance to  re fe r to  the
canonical homology basis o f  R o . O n the  other hand, we cannot dispense with
the  canonical homology basis o f  T, for we do need a  n o rm a l integral o n  T  to
describe t h e  (analytic) behavior o f th e  mappings near aRN. It is therefore con-
venient to use , as in  the  Teichmaller theory, th e  n o tio n  o f  m ark ed tori. Then
Theorem 11 becomes

Theorem 1 1 ' .  L et R N  be a R iem ann surface of finite type, T a marked torus,
an d  SE S 0 (R N ), dS 0. T hen R N  i s  S-transcendententally realizable over T  if
and only  i f  it is rationally  realizable over T.

L et R N  be rationally realizable over a  (marked) torus T .  Then by Theorem
8  (see also th e  e n d  o f  s e c t io n  10) there exist infinitely m any distinct non-
degenerate S O(R N )  such that R N  is S-transcendentally realizable over T .  The
same is true, even if  we restrict th e  realization mappings to those which induce
th e  same homomorphism a s  th e  rational realization mapping does.

1 5 .  We shall now mention some consequences o f  t h e  preceding theorems.
Combining Theorem 11' with a  result of M artens [12], we have

1 0 )  Many of the results of th is  section w ill  b e  t ru e  o f  th e  degenerate singularity So
(w hich  obviously belongs to  th e  class o ( R N ) ) .  See, fo r  instance, the preceding
Rem ark ( 1 ) .  By Theorem 11 ' w hich w e shall prove later it w ill be very reasonable
to  agree to  the following convention :  T o  say  that R N  i s  S o-transcendentally realiz-
ab le  o v e r a  (m arked ) to ru s T  is no th ing o ther than  saying that R N  is rationally
realizable over T . (The sam e is true of the case N = 0 , for So(Ro) =
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Proposition 14. I f  there is a non-degenerate S E , ( R N )  such that R N  is  S -
transcendentally realizable over a  marked torus, then any normalized period
matrix o f R o is singular (in the sense o f Scorza).

Actually, using theorems of Poincaré  and H aupt-W irtinger (se e  Proposition
5; c f .  also [8]), w e can determ ine th e  precise form  o f  th e  period matrix.

Proposition 15. Let S E S o (R N ), Ar_. 1. Then R N  is S-transcendentally  reali-
zable over a  marked torus if and only if the period matrix o f R o w ith respect
to "some" canonical homology basis is

1  0  0  •  •  0  7 ' l/m  0  • 0
0 1 0 .  •  0 1 / i n
0 0 1 .   •  0  0

0  •  •  •  1  0 •
0  •  -  . 0 1 0

where mE Z — {0, H-1} and r'EC , Im  r' >O.

16. L et R N , T  be  a s  before, .1■7_1. Let yi : Hi(RN, aRN)— H,(T) b e  a homo-
m orph ism . C learly there is a  natural injection

Hi(RN, hri(RN) •

A ls o  w e  c a n  f in d  a homomorphism Iii(R N )--,Iii(T ) s u c h  t h a t  72/0i=v,
22'([D0])=0, k =1, 2, ••• , N - 1 .  Hence th e  results so f a r  obtained can be trans-
la ted  to  the  case  o f H,(RN, aRN) in  a n  obvious m anner. For instance , Theorem
9 becomes

Theorem 9'. Let R N , T  be as in Theorem 9. Then f o r  any homomorphism
aRN)—>11,(T) we can find an analytic mapping f: R N —>T such that

(i) f * =-y2, and
(ii) f  can be extended holom orphically  to the whole R o except for a  single

point p „  where d (p 1 1 )  has a pole of order not exceeding 2g.
I f  p ,  is a non-Weierstrass point, 2g  can be replaced by g + 1 .  The point p o

may be arbitrarily chosen.

W e  o m it  th e  details. N o te  that C orollary  to  T heorem  9  a s  well a s  other
theorems can be similarly rephrased.

17. C o n sid e r  n o w  a  particu lar c a s e  w h e re  R o i s  a l s o  o f  genus one :
R 0 -=T ' =T (1, r'), Im  r'>0.

L et Q* be the set of non-zero rational numbers and set

GL+(2, Q)==.{ GL(2, Q)I det @>0}

Q)1{221 2EQ*}
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2 2 being the 2x2 identity matrix. An element o f .6' operates on  the upper
half plane U as

az-±p
Oz-.= 6 3 =

1 a  /3
î r + 5  ' [r 3 1.

Then Theorem 2 reduces to

reU .

Theorem 2 '  (Helfenstein [6]). T h e re  is  a n  analy tic m apping o f  a  torus
, T(1, r ') into another torus T =- T(1, z-) if  and  only  i f  r'=® r f o r some 03eg.
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