A note on elements of the Burnside ring of a finite group

By
Shin Hashimoto and Shin-ichiro Kakutani
(Communicated by Prof. H. Toda, July 17, 1980)

1. Introduction

In [2], T. tom Dieck defined the Burnside ring $A(G)$ of a compact Lie group G using a certain equivalence relation on the set of closed smooth G-manifolds (see §2). In this paper, when G is a finite group, we prove the following:

Theorem. Let G be a finite group. For an arbitrary element $\alpha \in A(G)$, there exists a connected closed smooth G-manifold X such that

$$
\alpha=[X] \text { in } A(G) .
$$

Throughout this paper G will be a finite group.
The authors express their hearty thanks to Professor G. Nishida, Dr. A. Kono and Mr. M. Nagata for their invaluable suggestions.

2. The Burnside ring

In this section we recall some basic facts about the Burnside ring which are due to tom Dieck [2].

On the set of closed smooth G-manifolds consider the equivalence relation: $X \sim Y$ if and only if for all subgroups H of G the Euler-Characteristics $\chi\left(X^{H}\right)$ and $\chi\left(Y^{H}\right)$ are equal. Let $A(G)$ be the set of equivalence classes and let $[X] \in$ $A(G)$ be the class of X. Disjoint union and cartesian product induce addition and multiplication, respectively, on $A(G)$. Then $A(G)$ becomes a commutative ring with identity. We call $A(G)$ the Burnside ring of G.

Let $C(G)$ be the set of conjugacy classes of subgroups of G. Denote by (H) the conjugacy class of H in G.

Proposition 2.1. Additively, $A(G)$ is a free abelian group generated by $\{[G / H] \mid(H) \subseteq C(G)\}$.

Let Y be a closed smooth H-manifold ; then $G \times{ }_{H} Y$ is a closed smooth G manifold. Then the assignment $Y \mapsto G \times{ }_{H} Y$ induces an additive homomorphism

$$
\operatorname{Ind}_{H}^{G}: A(H) \longrightarrow A(G) .
$$

We remark that $\operatorname{Ind}_{H}^{G}([H / H])=[G / H]$.

3. Examples

In this section we introduce some closed smooth G-manifolds and see their classes in $A(G)$.

Example 3.1. If M is a closed smooth G-manifold with trivial G-action, then

$$
[M]=\chi(M)[G / G] \quad \text { in } A(G) .
$$

Example 3.2. Let V be an orthogonal representation space of G. We put $S(V)=\{v \in V \mid\|v\|=1\}, D(V)=\{v \in V \mid\|v\| \leqq 1\}$ and $\Sigma^{v}=D(V) / S(V)$. If U is a unitary representation space of G, then

$$
\left[\Sigma^{U}\right]=2[G / G] \quad \text { in } A(G) .
$$

Example 3.3. Let V be an n-dimensional orthogonal representation space of G and let $\rho_{V}: G \rightarrow O(n)$ be its associated representation. We define a G-action on the ($n-1$)-dimensional real projective space $\boldsymbol{R} P^{n-1}$ by

$$
g \circ[x]=\left[\rho_{V}(g) \cdot x\right] \quad \text { for } g \in G,[x] \in \boldsymbol{R} P^{n-1},
$$

where $[x]$ is a point of $\boldsymbol{R} P^{n-1}$ represented by a non-zero vector x of \boldsymbol{R}^{n}. This action is well-defined and smooth. We denote this smooth G-manifold by $\boldsymbol{R} P(V)$.

Then we have
Proposition 3.4. If U is a unitary representation space of G, then

$$
\left[\boldsymbol{R} P\left(\boldsymbol{R}^{1} \oplus U\right)\right]=[G / G] \quad \text { in } A(G),
$$

where \boldsymbol{R}^{1} denotes the one-dimensional trivial representation space of G.
Proof. To prove Proposition 3.4, it suffices to show that

$$
\chi\left(\boldsymbol{R} P\left(\boldsymbol{R}^{1} \oplus U\right)^{H}\right)=1 \quad \text { for any subgroup } H \text { of } G .
$$

Let S^{1} be the circle group consisting of complex numbers of absolute value 1 . Then we define an S^{1}-action on $\boldsymbol{R} P\left(\boldsymbol{R}^{1} \oplus U\right)$ by

$$
z \circ[t, u]=[t, z \cdot u] \quad \text { for } z \in S^{1},[t, u] \in \boldsymbol{R} P\left(\boldsymbol{R}^{1} \oplus U\right),
$$

where $[t, u]$ is a point of $\boldsymbol{R} P\left(\boldsymbol{R}^{1} \oplus U\right)$ represented by a non-zero vector $(t, u) \in$ $\boldsymbol{R}^{1} \oplus U$. Then $\boldsymbol{R} P\left(\boldsymbol{R}^{1} \oplus U\right)$ becomes an $S^{1} \times G$-manifold. Let $H\left(=\{1\} \times H \subset S^{1} \times G\right)$ be an arbitrary subgroup of G. Then $\boldsymbol{R} P\left(\boldsymbol{R}^{1} \oplus U\right)^{H}$ is an S^{1}-submanifold and

$$
\begin{aligned}
\left(\boldsymbol{R} P\left(\boldsymbol{R}^{1} \oplus U\right)^{H}\right)^{S^{1}} & =\boldsymbol{R} P\left(\boldsymbol{R}^{1} \oplus U\right)^{S^{1} \times I} \\
& =\left(\boldsymbol{R} P\left(\boldsymbol{R}^{1} \oplus U\right)^{S^{1}}\right)^{I} \\
& =\boldsymbol{R} P\left(\boldsymbol{R}^{1}\right)^{H} \\
& =\boldsymbol{R} P\left(\boldsymbol{R}^{1}\right) .
\end{aligned}
$$

It follows from Bredon [1; III. 7.10] that we have

$$
\chi\left(\boldsymbol{R} P\left(\boldsymbol{R}^{1} \oplus U\right)^{H}\right)=\chi\left(\boldsymbol{R} P\left(\boldsymbol{R}^{1}\right)\right)=1 .
$$

This completes the proof.

4. A generalized equivariant connected sum

In this section we introduce the notion of a generalized equivariant connected sum. (Compare Sebastiani [3].)

Let X be a smooth G-manifold with G-invariant Riemannian metric. We denote the isotropy subgroup of G at $x \in X$ by G_{x} and the orbit of x under G by $G(x)$, which is G-diffeomorphic to G / G_{x}. We regard $T_{x} X$, the tangent space of X at x, as an orthogonal representation space of G_{x}.

Definition 4.1. Let H be a subgroup of G and V an orthogonal representation space of H. Then we say that (M, m) satisfies Condition (G, H, V) if and only if
(i) M is a closed smooth G-manifold with G-invariant Riemannian metric and $m \in M$,
(ii) $G_{m}=H$,
(iii) $T_{m} M \cong V$ as orthogonal representation spaces of H.

Suppose that (M_{1}, m_{1}) and (M_{2}, m_{2}) satisfy Condition (G, H, V). Then we give a definition of the generalized equivariant connected sum $M_{1} \#_{V} M_{2}$. By the differentiable slice theorem (see Bredon [1; VI]), there are open G-embeddings

$$
\psi_{i}: G \times{ }_{H} V \longrightarrow M_{i} \quad \text { for } i=1,2
$$

such that $\psi_{i}([e, 0])=m_{i}$. Now we obtain $M_{1} \#_{V} M_{2}$ from the disjoint union

$$
\left(M_{1}-G\left(m_{1}\right)\right) \Perp\left(M_{2}-G\left(m_{2}\right)\right)
$$

by identifying $\psi_{1}([g, t v])$ with $\psi_{2}([g,(1-t) v])$ for $g \in G, v \in S(V), 0<t<1$. It is clear that $M_{1} \#_{V} M_{2}$ is a closed smooth G-manifold. Obviously, $M_{1} \#_{V} M_{2}$ depends on the choice of m_{1}, m_{2}, ψ_{1} and ψ_{2}, but the next proposition indicates that $\left[M_{1} \#_{V} M_{2}\right] \in A(G)$ is independent of the choice of them.

Proposition 4.2. If $\left(M_{1}, m_{1}\right)$ and $\left(M_{2}, m_{2}\right)$ satisfy Condition (G, H, V), then

$$
\left[M_{1} \#_{V} M_{2}\right]=\left[M_{1}\right]+\left[M_{2}\right]-\operatorname{Ind}_{H}^{G}\left(\left[\Sigma^{V}\right]\right) \text { in } A(G) \text {. }
$$

Proof. We shall show that

$$
\chi\left(\left(M_{1} \#_{V} M_{2}\right)^{K}\right)=\chi\left(M_{1}^{K}\right)+\chi\left(M_{2}^{K}\right)-\chi\left(\left(G \times_{H} \Sigma^{V}\right)^{K}\right)
$$

for any subgroup K of G. We identify $M_{i}-G\left(m_{i}\right)$ with its image in $M_{1} \#_{V} M_{2}$. Since $M_{i}-\psi_{i}\left(\left(G \times{ }_{H} D(V)\right)\right.$ is a G-deformation retract of $M_{i}-G\left(m_{i}\right)$, we have

$$
\chi\left(\left(M_{i}-G\left(m_{i}\right)\right)^{K}\right)=\chi\left(M_{i}^{K}\right)+\chi\left(\left(G \times_{H} S(V)\right)^{K}\right)-\chi\left(\left(G \times_{H} D(V)\right)^{K}\right)
$$

for $i=1,2$. Clearly

$$
\chi\left(\left(G \times_{H} \Sigma^{V}\right)^{K}\right)=2 \chi\left(\left(G \times_{H} D(V)\right)^{K}\right)-\chi\left(\left(G \times_{H} S(V)\right)^{K}\right) .
$$

Since $\left(M_{1}-G\left(m_{1}\right)\right) \cap\left(M_{2}-G\left(m_{2}\right)\right)$ is G-homotopy equivalent to $G \times{ }_{H} S(V)$, we have

$$
\begin{aligned}
\chi\left(\left(M_{1} \#_{V} M_{2}\right)^{K}\right) & =\chi\left(\left(M_{1}-G\left(m_{1}\right)\right)^{K}\right)+\chi\left(\left(M_{2}-G\left(m_{2}\right)\right)^{K}\right)-\chi\left(\left(G \times_{H} S(V)\right)^{K}\right) \\
& =\chi\left(M_{1}^{K}\right)+\chi\left(M_{2}^{K}\right)-\chi\left(\left(G \times_{H} \Sigma^{V}\right)^{K}\right) .
\end{aligned}
$$

This completes the proof.
Suppose that (M, m) satisfies Condition (G, H, V) and (N, n) satisfies Condition (H, H, V). Then $\left(G \times{ }_{H} N,[e, n]\right)$ satisfies Condition (G, H, V) and we can construct $M \#_{V}\left(G \times{ }_{H} N\right)$.

Corollary 4.3.

$$
\left[M \#_{V}\left(G \times{ }_{H} N\right)\right]=[M]+\operatorname{Ind}_{H}^{G}\left([N]-\left[\Sigma^{V}\right]\right) \quad \text { in } A(G) .
$$

5. Proof of Theorem

For a non-zero integer k, we put

$$
N(k)=\left\{\begin{array}{lc}
\boldsymbol{C} P_{1}^{2} \# \boldsymbol{C} P_{2}^{2} \# \cdots \# \boldsymbol{C} P_{k}^{2} & \text { if } k>0 \\
\boldsymbol{R} P_{1}^{4} \# \boldsymbol{R} P_{2}^{4} \# \cdots \# \boldsymbol{R} P_{-k}^{4} & \text { if } k<0,
\end{array}\right.
$$

where $\boldsymbol{C} P_{i}^{2}, \boldsymbol{R} P_{i}^{4}(1 \leqq i \leqq|k|)$ are copies of $\boldsymbol{C} P^{2}$, the complex projective space, and $\boldsymbol{R} P^{4}$, and $\#$ means the ordinary connected sum. It is easy to see that

Lemma 5.1. $\chi(N(k))=k+2$.
Proof of Theorem. Let $\alpha \in A(G)$ be an arbitrary element. Then, by Proposition 2.1, there exist $a_{i} \in \boldsymbol{Z}-\{0\}$ and $\left(H_{i}\right) \in C(G)(1 \leqq i \leqq k)$ such that

$$
\alpha=\sum_{i=1}^{k} a_{i}\left[G / H_{i}\right] \quad \text { in } A(G) .
$$

Let U be the complex regular representation space of G. Then there are $x_{i} \in \Sigma^{U}$ ($1 \leqq i \leqq k$) with isotropy group H_{i}. We put $U_{i}=T_{x_{i}} \Sigma^{\Sigma}$. Then U_{i} is a unitary representation space of H_{i}, given by restricting the G-action on U to the $H_{i^{-}}$ action. We put $M=T^{4} \times \Sigma^{U}$ and $m_{i}=\left(t, x_{i}\right) \in M$ for $1 \leqq i \leqq k$, where the G-action
on T^{4}, the 4 -dimensional torus, is trivial and $t \in T^{4}$. Then (M, m_{i}) satisfies Condition $\left(G, H_{i}, \boldsymbol{R}^{4} \oplus U_{i}\right)$.

On the other hand, we consider an H_{i}-manifold $N_{i}=N\left(a_{i}\right) \times \boldsymbol{R} P\left(\boldsymbol{R}^{1} \oplus U_{i}\right)$ and $n_{i}=\left(s_{i},[1,0]\right) \in N_{i}$, where the H_{i}-action on $N\left(a_{i}\right)$ is trivial and $s_{i} \in N\left(a_{i}\right)$. Then (N_{i}, n_{i}) satisfies Condition ($H_{i}, H_{i}, \boldsymbol{R}^{4} \oplus U_{i}$).

Now we can construct

$$
X=M \#_{R^{4} \oplus U_{1}}\left(G \times_{H_{1}} N_{1}\right) \#_{R^{4} \oplus U_{2}} \cdots \#_{R^{4} \oplus U_{k}}\left(G \times_{H_{k}} N_{k}\right) .
$$

Using Proposition 3.4, Corollary 4.3 and Lemma 5.1, we have

$$
\begin{aligned}
{[X] } & =[M]+\sum_{i=1}^{k} \operatorname{Ind}_{H_{i}}^{G}\left(\left[N_{i}\right]-\left[\Sigma^{R^{4} \oplus U_{i}}\right]\right) \\
& =\left[T^{4}\right] \cdot\left[\Sigma^{U}\right]+\sum_{i=1}^{k} \operatorname{lnd}_{H_{i}}^{G}\left(\left[N\left(a_{i}\right)\right] \cdot\left[\boldsymbol{R} P\left(\boldsymbol{R}^{1} \oplus U_{i}\right)\right]-\left[\Sigma^{R^{4} \oplus U_{i}}\right]\right) \\
& =\sum_{i=1}^{k} \operatorname{lnd}_{H_{i}}^{G}\left(a_{i}\left[H_{i} / H_{i}\right]\right) \\
& =\sum_{i=1}^{k} a_{i}\left[G / H_{i}\right] \\
& =\alpha .
\end{aligned}
$$

Moreover it is clear that X is connected. Hence X has our required properties. This completes the proof of Theorem.

Department of Mathematics
Osaka City University
Department of Mathematics
Osaka University

References

[1] G.E. Bredon, Introduction to compact transformation groups, Academic Press, New York, 1972.
[2] T. tom Dieck, The Burnside ring of a compact Lie group. I, Math. Ann., 251 (1975), 235-250.
[3] M. Sebastiani, Sur les actions à deux points fixes de groupes finis sur les sphères, Comment. Math. Helv., 45 (1975), 405-439.

