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§  1 .  Introduction.

In  t h e  study of differentiable dynamical systems, stable manifolds and
unstable manifolds around hyperbolic fixed points or hyperbolic periodic points

play an important role. In  th is paper we shall give explicit global analytic
expressions for unstable manifolds associated to hyperbolic fixed points of

analytic mappings.
T h e  study o f  unstable manifolds o f dynamical systems has its origin in

the study o f  Briot and Bouquet [ 1 ] .  They considered the system o f ordinary

differential equations defined on the plane:

(1)

= X (x, y )dx 

d Y — 17 (x, y)

dt

dt

where analytic functions X  a n d  Y  satisfy X (0 , 0 ) =  Y (0 , 0 ) = 0 . Let

CO

X  (r ,  y ) =  E  f .r.Y
j

and
CO

Y (x, y )  =  E

They proved that i f  two roots 2 1 , 22 o f th e  equation

(a 10 — 2) 0 0 , —  — 1,,,a0 , = 0

are both real and 2,22 < 0  then there are two analytic curves passing the origin
which contain the image of solutions of the equation ( 1 ) .  T h is  theorem is
now generalized to stable manifolds and unstable manifolds associated to hyper-
bolic singular points o f vector fields.

H . P o in caré  [2 ] considered a  mapping o f a  disk into itself, which is D O W

called  Poincaré m a p .  L e t  X  be a sm ooth  vector field on R 3 . Suppose there

is  a  closed orbit o f  X .  Let p  be a  point on this orbit and  let D  be a  two-
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dimensional disk embedded in  R3, p E int D  and D is transversal to the vector
field X .  For each point x E D  near p , le t f  ( x )  denote the first intersection
point of the disk D  and the orbit o f X  starting x .  Then  f  defines a local
diffeomorphism around p  and p  is  a  fixed point of f .  P o in ca ré  studied the
stability of the periodic solution passing p  by studying this mapping f .

Let 2, and 2, b e  the eigenvalues of the differential map d f  at p .  I f
1211 >1 and 12 2 1< 1  then  there are  tw o  invariant curves o f  f  passing the
fixed point p .  H e introduced the system o f coordinates (x, y ) around p  such
that the eigenvectors for eigenvalues I ,  and 22 are tangent to  the x-axis and
the y-axis at the orig in . H e obtained local analytic expression of these in-
variant curves as the graph o f functions y = g (x )  and x = h (y )  respectively.
N ote that the expression of such curves in  term s o f  graphs o f  functions
cannot be global.

J. Hadamard [3] proposed a  n ew  m eth od  to  p rove  the existence and
uniqueness of invariant curves for differentiable functions not necessarily analy-
tic. H is m ethod is now reform ulated and generalized to the method o f graph-
transformations.

Concerning the invariant manifolds in the neighborhood o f  hyperbolic
fixed  point of analytic mapping F: .1?"-- Rn, w e  must cite the w ork  of S.
L a tté s  [4 ]. H e  obtained the condition for invariant manifolds of codimension
one around the fixed point of F  to be expressed locally as the graph of an
analytic function defined on the hyperplane, tangent to the invariant manifold
a t the fixed point, with values in the normal line of the hyperplane.

Looking for invariant manifolds near hyperbolic fixed point is essentially
reduced  to  look ing fo r  analytic conjugacy o f th e  mapping near th e  fixed
point to  a  linear m ap. T h e  relation between local expressions and global ex-
pressions o f these manifolds will be mentioned later.

W e shall begin  w ith  simple cases.

§ 2. Polynomial mapping of the plane.

Consider a mapping F : R 2—>I22,  of the plane into itself defined by poly-
nomials. We suppose that the origin, 0 , is  a fixed point of F, i.e. F (0 ) = 0 .
Let us w rite  F (x, y) =  (A (x, y), B (x. y)) . Let a  and 8  denote the eigen-
values of the Jacobian matrix

 

( 0 ,  0 )  
O A

 (0, 0) )
x ay
B (Ø 0 )0) ° B  (0

'

 0)
Ox 8 y  

d F o =

 

o f F  evaluated at O .  Assume that

(2) lai>1>131.
N ote that w e don 't assum e F  to be a diffeomorphism. W e don't exclude
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the case where g=o, neither.

L e t Wn denote the set of points P E R 2 satisfying the condition: there is
a  sequence of points {P„} such that

F (P„) = P„,, fo r  a l l  n < 0 , P 0 =  P and that

lim  P,= 0.
7 1 - 1 . —  co

W e ca ll TITu th e  unstble se t o f  O .  I f  F  i s  a  diffeomorphism, IV ' is
nothing but the unstable manifold of O .  F o r diffeomorphism F ,  the follow-
in g  argument applies also fo r  F - 1 so  th a t an a ly tic  expressions for stable
manifolds will also be obtained.

A s  0  is  a  fixed po in t o f mapping F ,  th e  differential map, dF o ,  a t  0
defines a  linear map of tangent space T 0 R 2  in to  its e lf.  W e  d e n o te  b y  Eu
the eigenspace o f  dF 0 spanned by the eigenvector fo r eigenvalue a .  Linear
subspace Eu is  invariant under dF o . Define linear isomorphism v: E"-->E"
as the restriction to  E "  o f  dF o . F or vector y  in  E ", w e  h a v e  (v) = ay .

N ow  that a  and 8 are distinct, we can assume, by a linear transformation
o f coordinates i f  necessary,

( a  0
dF

\
,,, =-

0 8 1

aWe shall employ such a  system of coordinates. T h e  vector is  an eigen-
8x

vector o f a .  W e  d e n o te  b y  the coordinate on  E" with basis  0  
Ox

T heorem  1. T h e re  e x is ts  a n  a n a ly t ic  m a p p in g  : Eu > R 2  satis f y ing
th e  conditions:

(i) 0(0) =- 0,
(ii) d i f f e re n t ia l  m ap  at  0, d0 0 : E"---->T0 R 2 ,  i s  an  inc lu sion  m ap ,
(iii) ç5 (EU) =Wu
(iv) F00=00,7,
( v )  T ay lor coe f f ic ien ts  o f  0 c an  b e  c o m p u te d  f ro m  the  coe f f ic ien ts o f

poly nom ials A  (x , y )  a n d  B (x, y) , a n d  a re  g iv e n  b y  th e o re m  2.

T h e  proof w ill be g iven  later.
We prepare some notations to state theorem 2. Let d , and c4 denote the

degree of polynomials A (x, y) and B (x, y )  respective ly . As we have assumed

( a  0 \
dF o  =  

0

polynomials A (x , y ) and B (x, y )  can be expressed as
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(3) A  ( x ,  y ) = a x +  E  a „ x P y q

C ap +q-Z2

(4) B (x, y) =1.33) +  E  bpqX P 31 Q

P.4
- 12

Let us express an  analytic map 0: Eu--4R 2 , 0 (6 ) (f  (e ) , g  (E )) b y  power
series,

00

(5) f  ( e )  =E f a r ,

(6) g(E)
n=1

F or integers n , p , q  satisfying n > 2 , and p+ q > 2 ,  put

0 (n, p, q) = f i i f i,• • • fip g  f i g  .f,• • •g j q„ 12,

w here sum m ation  is done over a ll positive integers j 1, • • •, ip,.ii, • • •, i g
 with

ii + i2 + + ip + j i+ 3 2 + " + J q = f l.

N ote that all suffixes i k and j 1 a r e  less than n.

T h eo rem  2. D ef ine  f o rm al p o w e r  series

f  ( e )  and q (E) i i g n r

as follows.

(i) f

(ii) g ,=0

1 f„— ( E (n , p, q ) )  fo r  n> 2 ,
an — a P.9

(iv ) 1 ( E  b„0  (n , p, q ) )  fo r  n > 2  .
a — 13 P.9

13 11,q 0
d2731-g2

T hese  p o w e r  series conv erge  f or all E. A naly tic  f unctions def ined by  these
p o w e r  s e rie s  s at is f y  t h e  equations.

( y )  f  ( a )  =  A  (f  (E ) g  (e))

(vi) (a$) B (f  (E) (e)).

A s  we noted before, starting from  ( i )  and  ( i i )  o f  theorem 2 ,  ( i i i )  and
( i v )  define the coefficients f n an d  gn inductively.

P ro o f  o f  T h e o re m  2 .  Develop the equations ( v )  a n d  ( v i )  as formal
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power series in  $ and equate th e  coefficients o f  both  sides, then  w e obtan
equations ( i i ) ,  ( i i i )  a n d  ( iv ) .  T h e  coeffiient f ,  may be arbitrary to satisfy
(IT) and  (vi). W e impose f 1 = 1  so  th a t th e  obtained mapping q5: E'— * R 2

satisfy the condition (ii) in  theorem 1. W e n eed  a  lem m a to prove the
global convergence o f f  ( $ )  and g (E). L e t

h„=max(1.fol, 10,1) for n=-- 1, 2, •••

Lem m a 1 .  T h e re  e x is ts  a Po s itiv e  in te g e r n, satis f y in g  the condtion:
(7) fo r  any integer n ,  n >n „ the condition

h i < r i  f o r  a l l  1 < i< n

im p lie s  h , 1 rn+1 .

T h e  proof w ill be g iven  later.

C o ro llary  1. T h e re  is  a Po sitiv e  n u m b er r  satisf y ing

h f l <rn

f o r  a l l  n >1 .

N ow  w e  continue the proof o f theorem  2. T a k e  a  pos itive  number r

in  corollary 1. Then fo r  complex number $ satisfying iel < -
1  

formal power

power series

f (e) f a n d  g ($) = E gn e"

converge absolutely. Hence 0 ($) = (f  ($), g ($ ) )  defines a  holomorphic map
near the origin o f  complex plane C into 0 .  For any complex number $E C,
find a  non-negative integer k  a n d  a  com plex num ber to so that •.---akci) and

th a t  I to  < I .  D e f in e  th e  v a lu e  ($ )  b y  0 ($) (0 ((o)) , w h ere  F  should

be understood to be the polnyomial map C 2 —>C2 extended from  F: .12 2 R 2 .
A s  equations ( v )  and  ( v i )  hold, mapping q5 is uniquely extended to a

holomorphic function defined globally on  C, i.e. f  and g are entire functions.
Restriction of mapping 0  to real line gives the mapping f  and g in theorem 2.

P ro o f  o f  L e m m a 1. L e t  a o  b e  a
lal > 1  th e re  is  a  pos itive  in teger no

inequality

constant satisfying 1<a 0 <la . As
such that fo r  a ll in te g e r  n >n o ,  the

(8 )

holds. S ince lal>1>1431, w e  h ave  Ian —a a n d  lan—gl_ca i f  n no.
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Let

M A ( n ) =  E  I apql ( n
p  _  1 )

1-q 12

and

M B ( n ) =  E
P.4

23 0  .4 Z 0

d za p  -}bZ2

n)
w here ( denotes th e  number o f  combinations. M A ( n )  a n d  M B ( n )  are

polynomials in  n  o f degrees at most cl1 - 1  and cl2 - 1  respectively. Therefore,
there exists an integer n , satisfying

(9) __11,1A (n) a n d  ce;._ M B (n) fo r  all n >n ,.

We claim that we can take this integer as n, in  lemma 1. Now, fix an integer
n ,  n > n , .  Assume that h i < r i  fo r  i = 1, 2, • •-, n. Let

m (n +1, p, q )= max I Ali.' • •f i p g i N i . *  • *g 4 1 .

t ,+ i,+ •••4 4 ,+ h + h -1 -•••+ i,= n + i

Then  w e have

(10) ,a(n+1 ,p , q )S rn+ 1 .

H ence by (8 ) , (9 ) and  (10) ,

1 [ E  la  10(
— — al P q "

1 q)]
Zg-% ,

•

a r ,C  2 1,, I apd n ) , a ( n  +1, q ) ]

dv,°p'-% 2
P + q - 1

M  (n+ 1 )A 
a r i

B y a  similar argument, we obtain

F inally w e have h + 1 r ' ' ,  which completes the proof o f  lemma 1.

P ro o f  o f  c o ro llary  1. F in d  a  pos itive  number r  satisfying h r'
fo r  n =1 ,2 ,  • ••, n,. Applying lemma 1 inductively, we obtain the corollary.

P ro o f  o f  T h e o re m  1. B y the construction of q3 in theorem 2, conditions
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( i ) ,  ( i i ) ,  ( iv ) ,  (v )  in  theorem 1 ho ld . In  th e first place, consider the case
where In  this case mapping f  is  diffeomorphic near the origin. Let
WI". denote the local unstable manifold around the origin . Then  Wro c  is in-
cluded in W u .  If F 1 / 1 7 ', then there is a  negative integer n', such that for
any integer n n', P o  E  Wro c , where P ,  is the sequence of points satisfying (2).
Therefore, we have

CO

=- U Fn (W ) .

Sternberg [5] showed that i f  la 1> 1 > ig i * O ,  there is an analytic local
diffeomorphism R  around the origin satisfying

R.F0R - 1 .

Such a mapping gives an analytic local conjugacy between F  and its  differntial
map dF o. The unstable manifold of the dynamical system defined by linear
mapping dF o :  T 0 R 2 --->T 0 R 2 is nothing but the eigenspace E u .  Mapping 0  con-
structed in  theorem 2 agrees with  in a neighborhood of the origin in Eu.
Hence çb (E u ) includes W ittc , and that 0  gives a local diffeomorphism from  a
neighborhood of the origin in E u o n to  W .  A s  v :  Eu-->Eu is expanding, we
have

0 (E L ) = W ..

In the case where g= 0, we cannot construct the conjugacy map R .  However,
mapping 0  constructed in theorem 2  gives a semi-conjugacy:

M apping çb  restricted to some neighborhood o f  th e  orig in  in  E u  g ives  a
diffeomorphism onto its image, w h ich  w e  m ay  ca ll loca l unstable manifold.
The proof of local unstable manifold theorem applies also fo r  this case.

A s  we have mentioned, our mapping qb agrees with the conjugacy map R - 1

near the orig in . W e extended it to the total subspace E u .  T h e  feature of
mapping q3 t o  b e  a semi-conjugacy becom es clear when we consider the
commutative diagram:

v= dFoi R .
E u   Eu

122  7 R2
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§ 3. Poincares function.

T h e  proof given in  th e  preceeding section is  qu ite  fo rm a l and similar
theorem fo r  complex polynomial mappings E: — >C2  can be proved.

H . P o in c a ré  [6 ] studied th e  fo llow in g  p rob lem . L e t  m  b e  a  r e a l or
complex number with modulus greater than 1, i.e . Im j  > 1 .  T h e  system of

functions o f th e  complex plane C  into complex projective space C P ':

(u) (01(u), 02(u) , • • • , (u ))

is said to admit a theorem of multiplications, if

0, (mu) , 02 (mu) , • • , , ,  (mu)

can be expressed by rational functions of

01(u) , 02(u), • ", (u) •

L e t R 1, R 2 , • • • , R „ be rational functions in  n  variab les . W e denote R= (12 1,
• • • , R ,.). H .  Poincaré calls the equation

(11) (mu) =R  (0 (u))

the fundamental equation. His problem was to find single valued functions

•••, ç6,. satisfying the fundamental equation. L e t  F  ( x )  b e  the polynomial

defined by

F (x) = det (dR o — xi)

H e  proved the following theorem.

T h eo rem  3  (Poincaré) , I f  F  (m ) = 0  a n d  F  (n e ) *0  f o r  an y  in te g e r
t h e n  t h e re  e x i s t s  a  s i n g l e  v alu e d  holomorphic m ap  0: C.--> (GP')

satis f y in g  0 (0)--- 0 an d  f undam en tal equation :

(mu) -= R (0 (u)) .

Our result stated in section 1  can be considered as an application of this

theorem o f Poincaré to  the case of unstable m anifo lds. Now , we proceed to

the case of analytic maps.

§ 4. Unstable manifolds for analytic mappings of the plane.

I n  th is  section, w e  d e a l  w ith  a  rea l ana lytic  m app ing F: R 2 R 2 .
Assume that the origin is a  fixed point of F , i.e . F ( 0 ) = 0 .  L e t  a  and /3
be tw o eigenvalues of differential map at 0, dF o : T 0 R 2

— >T 0 R 2 . Assume that

a > 1 > 8 . Define E "  as for polynomial maps of the plane.
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Theorem  4 .  I f  la l> 1 >181, then  there  ex ists  an analy tic  m apping q3
Eu—>R2 satis f y in g  the f o llow ing  conditions.

(i) 0 (0 )= 0 ,

(ii) c100 : Eu--->T0 R 2 i s  an inclusion map.

(iii) 0(Eu) =W u

(iv) Fo0=00v,

(y ) T a y lo r co e ffic ie n ts  a t  the origin can be com puted f rom  those o f
F  and procedure  to  com pu te  them  is  g iv e  by  theorem  5.

In  order to formulate theorem 5, we choose a convenient system of coordinates
as in section 2. By applying a linear transformation of coordinates if  necessary,
we can write mapping F: .1?2 -- R 2 near the origin in terms of power series:

F (x, y) = (A  (x, y) , B(x, y))

w ith

A(x, y) = ax + E a„xP y Q
PZ 0 .4 ib g, p -1-4Z 2

B (x,y ) =  8y  + E b„xPyg
P.4

P k 0 .4ZO, p4- Q 2

These power series converge near the origin, and can be analytically prolonged
to the total space l e .  Define 0(n, p, q) as in section 2.

Theorem  5 .  D ef ine f orm al pow er series

f  ( )  ----- f  n et' a n d  g (E) = Ec° g n en
n..1n  •  . 1

by

f 1 =1

g,=0

(iii) f n _  1   [ E a  p e o  ( n , p , q ) ]

a n
 — IQ ° , p -1-qZ2

(11.7 )  g„—  .
1 [ E b „g o (n, p, q )]

an - 19 k ( 1 / Vp . , P-1-q 2

T h en  f  and  g  converge  n e a r th e  o rig in  and  c an  b e  p ro lo n g e d  to
analy tic  m aps o f th e  re a l  line. A n d  th a t  0($ ) =  (f ($ ), g ($ ) )  def ines an
analy tic  m ap  0: R—›.12 2 sat is f y in g  the f undam ental equation:

(y ) F .0 = 0 .7 7 .
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Pro o f  o f T heorem  5 .  First, we prove the convergence near the origin
o f formal power series. W e em ploy the method of majorants, which was used
by Poincaré [6] in  proving the convergence of Poincaré's function for the
case where F  is a  rational map.

L e t r  be positive number such that A (x, y) and B (x , y )  can be extended
to holomorphic functions on the ball Ix 12 -1-13/12 < r  in C 2 . Note that the right
hand sides o f  (iii) a n d  ( iv )  don't contain coefficients a „  or b „  with p
I f  w e regard 0 ( n , p , q )  as polynomials of f  f1,, 2, • • gi,gi, g2, • • • , the coefficents
o f these polynomials are positive . Let a, be a constant satisfying 1 < a

1 <  la I.
Then we can find a positive integer n ,  such that fo r  all integer n>72 1,  the
inequality

1601— lal. cer

holds. L e t a ,  be a constant satisfying 1<cr 0 a 1 and  the inequalities

la"— a I —a0

and

fo r  1<n<n 0. We see that inequalities

(12) la' — a I — a ,  a n d  la"— 81. 0i—a,

hold fo r  a ll n>1.
Let u s consider another analytic map B '  R 2 _ 4  ""2 , B ' (x , y ) -= (A ' (x, y),

B' (x , y ) )  whose Maclaurin expansion is given by

A' (x , y) = a ox + E A „ X P Y q

B' (x, y)* = ao y + E B„xP yq
2) 0 ,q 2 0 : gp-1-q 2

Construct a  system o f formal power series:
y (e) ( f  (e) g  (E) )

f  ($ )  = E  f'ne' , g ' ( $ )  =  g'ne'

by the following procedure:

(  )  
f ;

(ii') g ;. = 1

[ E A p 0 0 ,  ( n ,  q ) ]
—

( iv ')  g'n —
[ E B 0 ø '  (n, p

a 70 — a, P +g

(iii')
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where 0' (n, p, q) are defined fo r  ( f )  and ( g )  similarly as 0 (n, p, q) are de-

fined for ( f , )  a n d  (gn ). I f  formal power series f ' (e )  and g ' (e ) converge

near the origin, fundamental equation o f analytic mappings

(95' (e)) 95  (ctoE)

holds. Analytic mapping B ' is not hyperbolic at the origin, so that mapping
q5' does not give the parameterization o f  unstable sets. However, if

(13) IapqI Apq a n d  lb „ I< B „

hold fo r  all p_o, p+q___2, by comparing the procedure (i), (ii), (iii),
( iv )  in  theorem 5 and the procedure ( i ' ) ,  ( i i ' ) ,  ( i i i ' ) ,  ( i v ' )  above, and by
using inequalities (12) and  (13), we see

a n d  igt,1<g'„

fo r  a ll n > 1 .  Hence i f  we find an analytic map F ' such that O' has positive
radius of convergence, the convergence near the origin of formal power series

follows.
For positive number p, 0 < p < r , let

M (p )  =  m ax [m ax ( A (x, y) (x, 31) — 3311)ivisp
where x  and y range in the complex plane and A (x, y )  and B (x, y )  are re-
garded as the extended holomorphic functions. Holomorphic functions A (x, y)

— ax  and  B(x, y )  — 13y vanish at th e origin with their first derivatives, we
have

M  (p ) — > 0 a s  p — > 0

and M  0 a s  p O .

Consider the rational function defined by

M (p )  +
R (x, y )  — P2

1 x +  
0

A l l  the coefficients of this rational function expanded to a  p o w e r  series at
the origin are  p os itive . T h e  coe ffic ien t o f xPyq is not less than la „i nor
Ibpq I fo r pCs, and p+ q __2. Rational function R (x, y )  is  a majorant
o f analytic functions A (x, y ) — ax and B(x, y )  —  8 y . Take p sufficiently small
so that

ao> 2M (p)
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holds. Define a rational mapping B ': C P 1 xC13 1
— >CP 1 xC P 1 by

F' (x, y) = (A ' (x, y), B' (x, y)),

ao(x + 50 2A' (x, y) a ox +
2p —2(x +

B' (x, y) = a oy +  a o ( x  + Y) 2

2p —2(x + Y) •

Since a° >   M ( P )  

2p
we see that rational functions A ' (x, y) —ax and B ' (x ,

to'
—8y are majorants of rational function R (x, y) . Therefore, they are also
majorants of analytic functions A (x, y) —  a x  and B (x, y) —8y.

L e t  u s  fin d  th e  fundamental function o f  Poincaré çb': E°-4/2 °46' (E)
=  ( f  (Œ), g ' (E)) . L e t  S(E) = f ' (e ) - I-  g' (E) . T h e  fundamental equation

F' (0' (E)) = 93' (a 0 e )  is written as

f  (ao$) = ceof  ($) ao (S ($) ) 2

2P — 2S (e)

g ' (a0e) =a0
 g' ($) ao (S ($)) 2

2p — 2S (e)

From these equations, we obtain

S (aoe) —  a oS (e) 

1 —  S  ( e )  

Rewrite this equation in the form:

S (ao$) _ aoS ($)
ao — 1 + —

1
S (a0e) a 0 -1+ 2-S(E)

A s  we are looking for analytic solutions, the function S (E) must
ao —  1 + 1— S ($)

be a  linear function o f  E. F r o m  the conditions for f '  ( e )  and g' (E), w e

see that S(0) -= 0 and dS  (0) —  d f'  (0) + dg'  (0) = f  + g;. = 2. H en ce
ded E dE

d S(E) 2
de 1ao — 1 + ($) ao —1

so that

S (E) _   2 $  
1ao — + —S (e) ao — 1
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that is,

S (E) —  2p (a,— 1)6  
(ao —1) —2

Looking that A p0 = B p ,  for a ll p>o, p+q_2, the procedure to copute
f ' ,  and q", are identical so that f '  (6) = g' (E). H ence w e ob ta in ,

f  , ( f )  g , (e) 0  (a,— 1) 
p (ao —1) — 2E

which certainly converge if E l <P 
( a o  — 1 )

. A s we noted before, f '  (E) and
2

g' (E) are majorants of f  (Ç ) and g (E) . S o  f  (E ) and g (E) are absolutely

convergent if <  P (ao —1) 
2

The domain o f definition o f f  (e ) and g (E) can be extended by using the
fundamental equation:

F (0  (e )) =  (cee)

since ja l> 1 .  The proof o f theorem 5 is completed.

The proof o f theorem 4 is sim ilar to that of theorem  1 and is omitted.

R em ark . In  theorem 4 and 5 we dealt with real analytic maps and the
obtained fundamental functions are rea l ana lytic . I f  we assume that mapping
F is entire, that is, F  can be prolonged holomorphically to  total complex space
C2, the obtained fundanental function 0 is also entire.

§ 5. Linearization near hyperbolic fixed point.

Let us generalize our results to higher dimensional unstable manifolds.
By using the method of majorant, we can treat the cases of polynomial maps
and analytic maps.

H . Poincaré [6] studied a  class of transcendental functions as a generali-
zation o f abelian functions. Let F :  C—>Cn be a rational function o f complex
n-space. Assume that the origin is a fixed point of F .  L e t  d F , denote the
differential map at th e orig in . Let D (A) det(dF o — Al)

Theorem 6  (Poincaré) . If  D (A ) 0 an d  D  (Am) * 0  f o r  m --= 2, 3,
th e n  th e re  is  a  holomorphic m ap  n e ar th e  o rig in  0: C-->C" satis f y in g  the
f undam ental equation

(AE) = F (0 (E)) •

L .  Leau [7] gave the analytic expression for stable manifolds and un-
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stable manifolds in the case where all absolute values of eigenvalues of dF0

are greater than 1 or are all smaller than 1, that is , th e  fixed point of B
is either a source or a sink.

H e obtained the condition for eigenvalues

c a •  •  • •  •

for a ll i i > 0 , i 2>0, •••, j=1, •••, n  in order that the dif-
feomorphism can be transformed near the fixed point into a linear isomorphism
by an analytic transformation of coordinates.

The condition concerning the eigenvalues for the diffeomorphism to be
transformed into a  linear isomorphism by a C'-transformation o f  coordinates
is given by S tern berg  [5 ]. See P .  H artm an  [8 ] fo r the relation between
his work and the theorem of Hartman.

T h e  theorem of Grobm an and Hartman deals with th e  linearization
around a  hyperbolic singular point of the system of ordinary differential equa-
tions. The theorem o f Hartman deals with the local and topological trans-
formation of a diffeomorphism into linear isomorphism around a  hyperbolic
fixed po in t. W e cite the theorem o f Hartman and of Sternberg.

T h eorem  7  (H a r t m a n ) .  L e t A , B be non-singular co n stan t m atrices ,
w h e re  A  i s  a  k x k  m a trix ,  B  a n  (n— k)x (n— k) m atrix ,  an d

iiA ii< 1 , 11B - 1 11< 1  •

L et (x , y )  G  R", x G R k ,  y  G 1?" - k, denote a p o in t  in  I n  L e t Y : Rn—*Rk an d
Z: R"—>R1"  be C 2 m ap p in g s  d e f in e d  n e ar th e  o rig in . S u p p o s e  t h a t  Y(0)
= 0 , Z (0 ) = 0 , d Y 0 --=0 a n d  dZ 0 = 0 .  D ef ine  T: 1?"-->R" by

T (x , y) = (A  (x) Y (x , y) , B (y) Z  (x , y )) .

L e t  L: 1?"—>R" b e  th e  lin e ar m ap

L  ( A  0  )

0 B •

T h e n  th e re  e x is ts  a  continuous, one-to-one m ap , R , o f  a  ne ighborhood  o f
th e  o rig in  o n to  a  neighborhood o f  t h e  o rig in  s u c h  th a t  R  tran s f o rm s  T
in to  th e  lin e ar m ap

=RoToR L .

For the proof see Hartman [8].

T h eo rem  8  ( S t e rn b e rg ) .  L e t  r > 0  b e  a n  in te g e r [or r =  oc]. T h e n
th e re  e x is ts  a n  in te g e r N = N ( r ) > 2  [o r N =  o o ] w ith  th e  f o llo w in g  p ro -
perties.

I f  L  i s  a  re al, c o n stan t, n o n -s in g u lar n x n  m a t rix  w i t h  eigenvalues
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a i , • • • , an  su c h  th at

(4 2  •  •  •  •  •  cef,. cz5

f o r  j= 1 , • • • , n  a n d  f o r  a l l  s e t s  o f  n o n -n e g ativ e  in te g e rs  i,, •••,i„ w ith
2 < i 1 + i 2 + •••+ i„< N  an d  i f ,  in  th e  map

T (x) = Lx + A  (x)

A (x )  i s  o f  c lass  C " f o r  x  w ith  s m all Ilx11 satisf y ing  A (0 ) =  0 , dA 0 =0,
th e n  th e re  e x is ts  a lo c al homeomorPhism R o f  class Cr around the origin
such that

R (0 ) =0 , dR o = I  an d  that

R .T .R - ' =L .

For the proof we refer to S te rn b erg  [5 ]. Both o f  their results transform
diffeomorphisms near a  hyperbolic fixed point into linear isomorphism by local
homeomorphisms. They don't deal with transformations by global homeomor-
phisms, i.e. homeomorphism onto the total linear space R " .  It is clear tat
i f  there is a homoclinic point near the hyperbolic fixed point, then there is
no such global transformation. As they were interested in local topologcal
properties near the hyperbolic fixed point which are invariant under the
transformations by homeomorphisms or by Cr-diffeomorphisms, they didn't pay
attentions to global properties o f unstable manifolds which depend deeply on
the global dynamics of the diffeomorphisms and analysis o f which cannot be
done except for analytic diffeomorphisms.

From the viewpoint o f bifurcations o f dynamical systems, it is important
to study the global topological configuration of stable manifolds and unstable
manifolds.

The analytic expression of unstable manifolds which we are going to give
for higher dimensional case, is an analytic mapping 0: E " — R" of the eigen
space of the differential map at the hyperbolic fixed point, spanned by egen-
vectors for eigenvalues with modulus greater than 1. This mapping agrees
near the origin with the restriction to E "  of the inverse map .12- 1 of diffeo-
morphism R given by Sternberg, which he proved to be C r  or C .  I t  i s
necessary to prove the analyticity o f 0  in  order to obtain global topologcal
properties o f unstable manifolds.

In articles by the author [17], [18], [19], we employ our results to study
the dynamical structure of mappings of a  p lane into itself defined by poly-
nomials. The behavior of homoclinic points is  related  to  the behavior near
the infinity o f transcendental functions. In some cases it is proved that there
exist no invariant regular circles connecting hyperbolic periodic points.
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§ 6. Higher dimensional unstable manifolds.

Let us prepare some notations. We denote a point in Rn b y  x =  (x 1 , x 2 . •••,
x n ) L e t  a= ez, •••, En ) b e  a m ulti-index w ith  n  non-negative integers,
61> 0 , s 2 > 0 , • • • , e „ > 0 . We denote

I  = + + • • • +
and

X e  =  X : 1 • • • ' • • .e„.

L et 6 (k , l )  be the set of m ulti-indexes e=  (a l, a 2 9  "  a n )  such that k< ls1< /.
We denote

( j )  -= (0, 0, • • 0, 1, 0, • • •, 0)

fo r  multi-index of length 1.
Let f :  R"-->R" be a real analytic map defined globally on R". W e  assume

that the  origin, 0 ,  is  a  fixed point of f ,  i.e., f  ( 0 )  = 0 ,  and that the Jacobian
matrix d f o  a t  0  is  diagonalizable.

L et a t , a,, •••, a n  denote the e igen va lu es  of d f o . W e  assume 0  is hyper
b o lic , i.e.,

(14)

Let
"  a k )  •
also

(15)

l a 1 i> 1 f o r  i =- 1, 2, •••, k ,

1  lad <1 f o r  i = k + 1 , •••, n

0=  (0„ •••,(3 ,) be multi-index with 6 i > 0  for i =1, •••, k. Let a =  (a , ,
W e denote 161 = 61 +62+ ••• +6, and am • c4' • •-• • alk. W e assume

for any multi-index w i t h  161> 2  and i-=1, •••, k.
L et E u  denote th e  subspace of tangent space T o .R71 spanned by the eigen

vectors for e ig en v a lu es  a„ •••, a , .  Space Eu is invariant under the differential
map d f o : T O R" -->To R n .  L et 77: Eu—>Eu be the  differential map d f o  restricted
on E u, i.e.,

77 (E) = cifo  (E) f o r  E  E u .

W e  ca ll a point P  in  R n  an  unstable point of 0  i f  th e re  is  a  sequence of
points P i  E R u, i=  0, — 1, — 2, •••, such that P i = f ( P i _ ,) for i=  0 , —1, —2, ••-,
P = P 0 an d  that P i  ten d s to  the origin a s  i  tends to C O .  W e den ote  the
set o f unstable points of 0  b y  W U . W e  ca ll W "  th e  unstable set of 0 .  If
f  is a  diffeornorphism, then IV" is nothing but the unstable manifold of 0 .

Theorem 9. L e t f :  R " - be  a  real analy tic m ap def ined globally
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on R n, w ith  f  ( 0 )  O .  A ssum e th a t  t h e  Jac o b ian  m a trix  d f o  a t  0  is
d iagonalisable  and  th a t  th e  eigenv alues  a , ••• a n  s a t i s f y  cond itions (14)

a n d  ( 1 5 ) .  T h e n  th e re  is  a  real analy tic  m aP 0: Eu— *R " def ined globally
on E "  satis f y ing  the f ollow ing conditions:

i) 0 ( 0 )  = 0

ii) d0 0 : T o Eu =E"--->T o R n i s  the inclusion m ap,
iii) 0 (EU) =W u,
iv) f  = 0077,

NO T ay lor coef f icients o f  0  are  g iv en  by  theorem  10.

In  order to give the formula for Taylor coefficients, we introduce several
notations. As w e have assumed that d f o  i s  diagonalisable w ith  eigenvalues

ce,,•••, a n , we can find a  system of coordinates x = (x „••• ,..r n )  of l e  such that

ai  0  )
d f o = (

0  an

Let d = (dl, • •• cl„) be a multi-index with d i > 0  for 1=1 , 2, •••, n. Let Id i =
+ • • • + d „ .  For x =  (x i , • • x „ )  we denote

xd =4' • xg= • • • • • x .

Let f  ( x )  = ( f  ( x )  ,  f  2 (x) , • • • , f  „,(x)) and

f 1 ( x )  =c e ix i+ E  f  i.dx d f o r  i =1, •••, n.
!diz2

As for multi-indexes of length 1 , we denote

6(i) = (0, •••, 0, 1, 0, • • •, 0) and

d ( i)  = (0, • • •, 0, 1, 0, • • •, 0) .

Let f  c d ( i ) =-  C e i fo r i=1 , •••, n  and f 0 for i* j .

The space E ' is spanned by vectors  8   , i - 1, •••, k.
0x ,
0.th e  coordinate on E t` with basis , j  —1, •••, k.

Ox i

E "  and l e  by this coordinate system. For ç  = ($1
6 = •••, ak)  w e denote

We have df o= (f  C d ( f ) )

Denote by Ç= (E 1 , •••, El)

We identify linear space

•••, Ek) and multi-index

61' • el' • •  elk .

Let 0: E " R "  be a  real analytic map with 0 ( 0 )  = O. L e t  93(E) = (Si (E),
4(E), •••, ($ ) )  and

sbi (E) E
III
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L e t O 1 for i = 1 ,  • • • , k  and let Oi .a w  =0 for i=  1, •••, n and j=1 , • •  ,  k  with
j=/=j. L e t A (p, q) denote the set of multi-indexes 6 = (6 1 ,••• ,6 k )  with p_.<161
<q . F o r 0i , a positive integer p and a multi-index r, w e put

6) = E $i,r • $8,r, . $ i,rp•

r,+•••+r, -- - d

N ote that if p>2, 0(0,,p,a) contains no 0 i,2 ^  satisfying iri>_161. W e have

8E 1(p , , o)
((bi (E) ) =  E P,

For multi-indexes 6= (61 , • , so and d =  (d,, • • • , d„), let

(0 , ô , d) = E (Û e(0,, d i ,  ri)).

N ote  that r (0,6,d) contains no 0i,r with iri _15i if ld l 2. W e  have

( 0 ( ) ) 4 =  E 03,6, cl) •

L e t  l(p,q) denote the set of multi-indexes d  = (d1 , • • • (1, )
 satisfying plc11:_<_.q.

Using the notations defined above, we obtain the expressions

(0(E)) = E E L. 8 r  (0. a, 61)1.aez(1,..) de t(1 ,181 )

Theorem  1 0 . T he T ay lor coef f icients o f  m ap p in g  0  i n  theorem
9 are  com puted  as  f o llow s:

i) f o r m u lti- in d e x  6  w ith  161=1,

f o r i  =1 ,  • • • ,k ,

0  f o r  i =1, • • • , n, j = 1 ,  • • • , k ,  w i t h  i * j ,

ii) f o r m u l t i - in d e x  6  w ith 161 2 , de f ine in d u c t iv e ly  b y  the
f o rm u la:

08,3 1
— E  f i,d r  0 , ,  d ) )  .

d e l ( 2 ,  III)

T h e  m ap p in g  0  c an  b e  e x te n d e d  to  an  an aly t ic  m ap  on E L .

P ro o f  o f  th e o re m  1 0 .
If condition (15) is satisfied, starting from i) in  theorem 10, we can

compute Oca by applying formula ii) in theorem 10 inductively. So we obtain
¢1(') a s  a  system o f  form al pow er series. B y  th e  definition o f  0 8 , 8 ,  the
fundamental equation (v ($ )) = f  ( $ ( E ) )  is satisfied formally.

W e em ploy th e  m ethod  o f m ajoran t in  order to  p rove the convergece of
near the orig in . 'fake a  real number a > 1  such that
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ice — a i l >a 131 —a

multi-index 6 and i= 1 , • • • , n. Note that I' (0, 6, d ) are polynomials in

(16)

for any
0 , 's  with coefficients a ll positive.

For a positive real number r ,  let

M  (r ) =  m a x  m a x  ( f i  (x) — ) 1
IxiI r J = 1 ,. . . ,n

where x  range over a  neighborhood of the origin in n-dimensional complex
space CI' and f i  a r e  regarded as extended to a  neighborhood of the origin
in C .  T h e n  w e  have

lim  M  (r )  = 0 a n d M  (r) 
lim — 0.

r

Take r  sufficiently small so that a>
n M ( r )

 h o ld s .  Let

a(x1+ x2+ ••• +x,O z 
F,(x) -=- ax, +

nr — n (xi+ x2+ • • • + xn ) .

Function

we have

(17)

F, (x) — ax, i s  a  m a jo ra n t o f f 1 (x) — a i x i , i.e., i f  we write

F, (x) = ax i +  E F,, d x 0 ,
Idlz2

dxl ' • • •
 1 9 X n

Let z1= 0 1 ,  4 2 1 be multi-index. Notations 141, 4 ( i ) ,  s o  are defined
similarly as for 6 and $. Let  0 :  T o re — >Rn be the formal power series 0 (1.7)

=- (01(3) , • , ( 3 ) )  derived from the fundamental equation

(18) 0 (a E) =- F (0 (2.-7))

by assigning

(19) Ot, d(f) 
= 1

for i, j=1, •••, n ,  and by applying the formula

(20 ) 0" — 
1  

(  E  F (0, 4 , d)) .
a'

4 ,

' —  a det(2,IAI)

For each 6= (6 1, •••, à ,), le t  d (6) ( 8 1 ,  •  •  •  ,  O k ,  0, • ••, 0). W e  have

I04,81 0 i, JO )

for a ll i  and d  with c/1_2.
Define F : Rn Rn by F (x) = (F (x) , • • • , F (x)) . Let IF (OE, • • •. eo de-

.note the coordinate o f T o Rn associated with basis
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inductively. So i f  w e  fin d  0  satisfying (18 ) and (19 ) w ith  positive radius
o f convergence then q3 also converges near the origin. The domain o f defini-
tion can be extended to the total space E u by virtue of fundamental equation

(7? (6)) = f (0(e)) ,
since is  an expanding linear automorphism.

The convergence of 0  near the origin  is verified as  fo l lo w s . W e  caim
that

r  (a —1) (e l+  • + E . )  0.,(1.74) —
r (a —1) — n (e i + • • • + e n )

for (E„ •••, En ) Note that formal power series is uniquely determined by
(19 ) and (20), hence by (19 ) a n d  (1 8 ). F o r  each i =1, • • • ,n  and j=1, •••,
n ,  w e  have

00
' ( 0 )  = 1  .

8$,

Let + ••• + e n  and S(E) =  (E) + • • • + n  (E ) n0  i (E ) • Then,

r a (a — 1)2 ' 
 and ø ( a 3 )  —
r ( a - 1) —nE r ( a - 1 )

On the other hand, w e  have

F (0 (5 ') ) = a ø ( E )  4 .  a (S  (E)) 2

nr — nS (E)

a r S  ( E )   _   r  a (a -1) —  (a E ) ,
n ( r — S ( E ) )  r ( a - 1 ) — n a .E

so that

0 (a ll ) =  F  (0 (3)) ,

which completes the proof of therorem 10.

Taking in considerations that the image of a neighborhood of the orign 0
in E u is mapped onto a local unstable manifold of 0  in R ", th eorem  9  is
easily verified.

Remarks.

I f  f  is a real analytic map defined on an open set U  in  l e  containing
the origin and if the image f  (U )  is included in  U , theorems 9 and 10 hold.

I f  w e replace f  by  a holomorphic map f :  C " — >C" defined globally on
CI', sim ilar results hold. In  this case the obtained map q3 is entire on EU.

I f  f  is a holomorphic map defined on an open se t U  in  C " containing
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the origin and if the im age f  ( U )  is included in U .  0  is again entire on Eu.
I f  f  is  a  complex analytic map o f a  complex manifold into i t s e l f  w ith

a  hyperbolic fixed point, sim ilar result holds. T h e  obtained map 0  is entire
on Eu.

§  7 . One dimensional case.

In  this section we exam ine the dynamics o f  o n e  dimensional dynamical
system defined by an analytic function f: R — > R . We can apply our theorem
9  and theorem 10  to th is c a s e . W e  assume that f: R— >R is  the restriction
to  the real axis R  o f an  entire function F :  C—C, i.e. f  can be extended to
a  holomorphic function F  defined globally on  C . A ssu m e that f  (0 ) = 0 and
d f

 (0) = a  w ith  I a > 1 .  Then there exisists an entire function 0: C—>C with
dx
d0 (0) =1, 0 (a$) = F (0 ($)) and 0(R) R .  Some portion of this function has
de
been known fo r th e  lon g tim e. W e fin d  th e  firs t research on this function
in  th e note  o f N . A bel [ 9 ] .  Schroder [10] studied this function. Functional
equation:

( f  ( x ) )  = aq3 (x)

is now called the SchrOder's equation. T h e  study o f Schroder' equation was
succeeded by G. K O n igs [12 ], [13 ] and F a to u  [1 6 ] .  Note that the function
0  considered in  SchrOder's equation is the inverse function o f  our function
obtained in  theorems 9  and 10.

W e give som e cases where the Poincaré's function can be expressed by

elementary functions. L e t  f (x) =3x — 4x 8. A s  f  (0 ) = 0  a n d  
d f

 (0) =3,
dx

fundamental equation is,

0 (3 e) = 3 0 (e) —4(ç(E)) 3
.

This is noth ing bu t th e form u la  for trigonom etric function . W e see 0(e)
=sin Therefore, if x,= sin $0 ,  the orbit x,, = f" (x 0 )  is given by x„= sin (311E0 ) .

Next, consider the function f (x) = ax (1— x) , whose dynamics was studi-
ed  by  R . M a y  [1 7 ]  as a  model fo r  population dynamics with discrete time.
I f  a= 4 then it is known that the dynamics o f  f  restricted to the unit inter-
v a l / is topologically conjugate to th e  linear unimodal transformation g (x)
=1-12x —11, which is conjugate to the baker's transformation.

Mapping f (x) = 4x (1—  x) h as tw o  fixed  points x = 0  and x = 1. At
4

3x = -
3

,  the eigenvalue d f  ( — —2. T h e  fundamental equation is given by
4 d x  4

)

0 (2$) =40 (ç") (1— 0 ($)) .

T h e  entire function is given by
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0 (e )  _ 1 + 1 c o s  ( r 4 
2 2 \ 3 Nra -/  •

It is  rare ly  the case that the obtained entire function 0 is a periodic function.
F o r example i f  parameter a  in  May's model decreases from  4, th e  entire
function will be that deformed from the trigonometric function in  th e  space
o f entire functions. T h e  behavior near the infinity o f  a n  entire function is
quite complicated.

In  the case of a =-- 4, we can introduce an invariant measure o f  f  on
(E u ) as fo l lo w s . For positive number r, define a  measure p r =g,($)dOE on

E u  by function gr (e):

1 
($) 2(r +logr)IC I

gr (C)= 0

For measurable set U  in  R , let

(1e1 =1)

(1<lE j r )

(r<le1).

/.4 (U ) =,11, (0 - 1 (U )).

Then //,'. defines a  measure on  R .  I f  there exists the limit

Ti =--- lim p
r—,co

and if the limit is absolutely continuous with Lebesgue measure, it will define
an absolutely continuous invariant measure o f  f .  In  th e  ca s e  where a  4,
it surely defines a n  absolutely continuous invariant m easure. T h e  measure
obtained here agrees with the measure obtained from th e  familiar invariant
measure o f baker's transformation via the conjugacy to our dynamical system.
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