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§ 1. Introduction.

In the study of differentiable dynamical systems, stable manifolds and
unstable manifolds around hyperbolic fixed points or hyperbolic periodic points
play an important role. In this paper we shall give explicit global analytic
expressions for unstable manifolds associated to hyperbolic fixed points of
analytic mappings.

The study of unstable manifolds of dynamical systems has its origin in
the study of Briot and Bouquet [1]. They considered the system of ordinary
differential equations defined on the plane:

%=X(x, »)
) p
;,-j-=Y<x, ¥)

where analytic functions X and Y satisfy X (0,0) =Y (0,0) =0. Let
X(x,y) = i ayxrty’
i, J=1

and

Y(y) = 33 bux'y.
They proved that if two roots 4,, 4, of the equation
(@aiw—2 (bo—4) — by =0

are both real and 4,4,<<0 then there are two analytic curves passing the origin
which contain the image of solutions of the equation (1). This theorem is
now generalized to stable manifolds and unstable manifolds associated to hyper-
bolic singular points of vector fields.

H. Poincaré [2] considered a mapping of a disk into itself, which is now
called Poincaré map. Let X be a smooth vector field on R®. Suppose there
is a closed orbit of X. Let p be a point on this orbit and let D be a two-
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dimensional disk embedded in R®, pint D and D is transversal to the vector
field X. For each point x& D near p, let f(x) denote the first intersection
point of the disk D and the orbit of X starting x. Then f defines a local
diffeomorphism around p and p is a fixed point of f. Poincaré studied the
stability of the periodic solution passing p by studying this mapping f.

Let 4, and 4, be the eigenvalues of the differential map df at p. If
|2;/>1 and |2|<1 then there are two invariant curves of f passing the
fixed point p. He introduced the system of coordinates (x,y) around p such
that the eigenvectors for eigenvalues A, and A, are tangent to the x-axis and
the y-axis at the origin. He obtained local analytic expression of these in-
variant curves as the graph of functions y=g(x) and x=hA(y) respectively.
Note that the expression of such curves in terms of graphs of functions
cannot be global.

J. Hadamard [3] proposed a new method to prove the existence and
uniqueness of invariant curves for differentiable functions not necessarily analy-
tic. His method is now reformulated and generalized to the method of graph-
transformations.

Concerning the invariant manifolds in the neighborhood of hyperbolic
fixed point of analytic mapping F: R"—>R", we must cite the work of S.
Lattes [4]. He obtained the condition for invariant manifolds of codimension
one around the fixed point of F to be expressed locally as the graph of an
analytic function defined on the hyperplane, tangent to the invariant manifold
at the fixed point, with values in the normal line of the hyperplane.

Looking for invariant manifolds near hyperbolic fixed point is essentially
reduced to looking for analytic conjugacy of the mapping near the fixed
point to a linear map. The relation between local expressions and global ex-
pressions of these manifolds will be mentioned later.

We shall begin with simple cases.

§ 2. Polynomial mapping of the plane.

Consider a mapping F: R*>R? of the plane into itself defined by poly-
nomials. We suppose that the origin, O, is a fixed point of F, i.e. F(O) =0O.
Let us write F(x,y) = (A(x,y),B(x.y)). Let a and A denote the eigen-
values of the Jacobian matrix

0A 0A
Z22(0,0) =—==(0,0
e (0, 0) By 0,0
oB
0x
of F evaluated at O. Assume that

) lal>1>181.

Note that we don’t assume F to be a diffeomorphism. We don’t exclude

dFo =
©,0 2B(0,0)
0y
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the case where =0, neither.
Let W* denote the set of points P& R® satisfying the condition: there is
a sequence of points {P,} _.cngo such that

F(P,) =P,., for all n<0, P,=P and that
lim P,=0.

os—oo

We call W* the unstble set of O. If F is a diffeomorphism, W* is
nothing but the unstable manifold of O. For diffeomorphism F, the follow-
ing argument applies also for F~' so that analytic expressions for stable
manifolds will also be obtained.

As O is a fixed point of mapping F, the differential map, dF,, at O
defines a linear map of tangent space T ,R® into itself. We denote by E*
the eigenspace of dF, spanned by the eigenvector for eigenvalue a. Linear
subspace E* is invariant under dF,. Define linear isomorphism 7%: E*—E"
as the restriction to E* of dF,. For vector v in E* we have 7(v) =av.

Now that o and # are distinct, we can assume, by a linear transformation
of coordinates if necessary,

a 0
dFo= .
0 B
We shall employ such a system of coordinates. The vector g— is an eigen-
x
vector of &. We denote by & the coordinate on E* with basis i
x

Theorem 1. There exists an analytic mapping ¢: E*—>R*® satisfying
the conditions:
(i) ¢(@) =0,
(ii) differential map at 0, dd,: E*—>ToR?, is an inclusion map,
(i) @EY) =W,
Gv) Fop=gor,
(v) Taylor coefficients of ¢ can be computed from the coefficients of
polynomials A(x,y) and B(x,y), and are given by theorem 2.

The proof will be given later.

We prepare some notations to state theorem 2. Let d, and d, denote the
degree of polynomials A (x,y) and B(x,y) respectively. As we have assumed

polynomials A (x,y) and B(x,y) can be expressed as
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3) A(x,y) =azx+ D apex’y?
?,q
P&,
4 B(z,y) =By+ 2 bpx’y*

P,q
£&3 5%
Let us express an analytic map ¢: E*—>R? ¢(&) = (f(£),9(6)) by power

series,

(5) AGED W
®) &) =3 0.6

For integers n, p, g satisfying n=>2, p=>0, ¢==0 and p+g=>2, put

O(n, p,q9 = ; 2 ft,fi,"'ft,,gj,gj,"'gjq ,

IS PR P TR P
where summation is done over all positive integers i,, -+, 7,,;, *=*,j, with
i1+i2+"'+ip+j1+j2+"'+jq=7z-
Note that all suffixes 7, and j, are less than 7.
Theorem 2. Define formal power series .

SO =8 and g@) =§1gne"

as follows.

(i) fi=1
(i) ¢.=0
(i) fa= -1 (X apd(n,p,9) for n=2,
a—a pE%:gO
d;2p+q922
V) o= 1 D b0, p,9) for nZ2.
a'—B piia20
d: 2P +q22

These power series converge for all §. Analytic functions defined by these
power series satisfy the equations.

(v) Ff@d) =AU E).96)
(vi) g(ad) =B(f(©).9(6).

As we noted before, starting from (i) and (ii) of theorem 2, (iii) and
(iv) define the coefficients f, and g, inductively.

Proof of Theorem 2. Develop the equations (v) and (vi) as formal



Unstable manifolds 767

power series in & and equate the coefficients of both sides, then we obtan
equations (ii), (iii) and (iv). The coeffiient f; may be arbitrary to satisfy
(v) and (vi). We impose f,=1 so that the obtained mapping ¢: E*—>R®
satisfy the condition (ii) in theorem 1. We need a lemma to prove the
global convergence of f(§) and ¢g(§). Let

hy=max (If.], lg.) for n=1,2 -

Lemma 1. There exists a positive integer n, satisfying the condtion:
(7) for any integer n, n=n,, the condition

LWrt for all 1<i<n

implies hp r"*.
The proof will be given later.

Corollary 1. There is a positive number r satisfying
h<r"

Sor all n=1.

Now we continue the proof of theorem 2. Take a positive number r

in corollary 1. Then for complex number § satisfying [$I<l, formal power
-

power series

oo

FO=5L8 and 9@ =F 0.8

n=1

converge absolutely. Hence ¢($) = (f(£),9(§)) defines a holomorphic map
near the origin of complex plane Cinto C®. For any complex number ¢ C,
find a non-negative integer k£ and a complex number w so that &=qa*w and

that |a)|<—1—. Define the value ¢ (&) by ¢(£) =F*(¢(w)), where F should
”

be understood to be the polnyomial map C*—>C? extended from F: R*—R*

As equations (v) and (vi) hold, mapping ¢ is uniquely extended to a

holomorphic function defined globally on C, ie. f and g are entire functions.
Restriction of mapping ¢ to real line gives the mapping f and ¢ in theorem 2.

Proof of Lemma 1. Let «, be a constant satisfying 1<a,<|al. As
|a|>1 there is a positive integer 12, such that for all integer n>n, the
inequality

®) la™| — la| =ai
holds. Since |a|>1>|B|, we have |@"—a|=a} and |a"—B|=a} if n=n,.



768 Shigehiro Ushiki
Let

-1
M,y(n) = 2 |a,,.,!<;+q_1>
7,
and
_ n—1
Mam = 5 1enl(370 1),
£555%
where <;> denotes the number of combinations. M,(n) and Mpz(n) are

polynomials in # of degrees at most d;—1 and d,—1 respectively. Therefore,
there exists an integer n, satisfying

) as=My(n) and ag=Mp(n) for all n>n,.

We claim that we can take this integer as 7, in lemma 1. Now, fix an integer
n, n=>n,. Assume that A, <7' for i=1,2,---,n. Let

ﬂ(n+la P, Q) max lfl,fi,"'f‘,gj,gh"'gqu-

N f:
sty

,+t,+ +t,+j,+l,+ “tJg=n+1

Then we have
10) un+1,p,q) <",
Hence by (8), (9) and (10),

|fn+1|__|—,,+l—‘|‘[ Z [@pe0(n+1, 5,9)]
d’:§p'+q
1 ' n
S—ml 2 lesd (
p+a
2°.+R22
gMA(n+1) FRHI

an+l

_)H@+1,5,)]

By a similar argument, we obtain
|0,.+1l§7‘"“.

Finally we have /,,,<7"*!, which completes the proof of lemma 1.

Proof of corollary 1. Find a positive number 7 satisfying h,<r"
for n=1,2, ---,n,. Applying lemma 1 inductively, we obtain the corollary.

Proof of Theorem 1. By the construction of ¢ in theorem 2, conditions
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(i), (i), (v), (v) in theorem 1 hold. In the first place, consider the case
where 85<0. In this case mapping f is diffeomorphic near the origin. Let
WE. denote the local unstable manifold around the origin. Then W}, is in-
cluded in W* If PeW?¥, then there is a negative integer n’, such that for
any integer n<n’, P, W}., where P, is the sequence of points satisfying (2).
Therefore, we have

WH=U F"(Who).

Sternberg [5] showed that if |a|>1>>|F|5~0, there is an analytic local
diffeomorphism R around the origin satisfying

dFy=RoFoR™,

Such a mapping gives an analytic local conjugacy between F and its differntial
map dF, The unstable manifold of the dynamical system defined by linear
mapping dF,: ToR*—>T,R? is nothing but the eigenspace E* Mapping ¢ con-
structed in theorem 2 agrees with R™! in a neighborhood of the origin in E®*,
Hence ¢ (E*) includes Wi, and that ¢ gives a local diffeomorphism from a
neighborhood of the origin in E* onto Wi. As %: E*—E" is expanding, we
have

o(EY) =W,
In the case where §=0, we cannot construct the conjugacy map R. However,
mapping ¢ constructed in theorem 2 gives a semi-conjugacy:

Eu_ly_)Eu

le o
R?i>R2 .

Mapping ¢ restricted to some neighborhood of the origin in E* gives a
diffeomorphism onto its image, which we may call local unstable manifold.
The proof of local unstable manifold theorem applies also for this case.

As we have mentioned, our mapping ¢ agrees with the conjugacy map R™*
near the origin. We extended it to the total subspace E¥ The feature of
mapping ¢ to be a semi-conjugacy becomes clear when we consider the
commutative diagram:

1=dFo|z.
EY ——————> E¢
le |
R2

—_— » R?
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§ 3. Poincaré’s function.

The proof given in the preceeding section is quite formal and similar
theorem for complex polynomial mappings E: C*—C? can be proved.

H. Poincaré [6] studied the following problem. Let m be a real or
complex number with modulus greater than 1, i.e. |m|>1. The system of
functions of the complex plane C into complex projective space CP':

B () = (B (), bo (1), s P ()

is said to admit a theorem of multiplications, if

¢1 (mu) > ¢2 (mu) > "y ¢n (7nu)

can be expressed by rational functions of

¢1 (u'))¢2 (u): HRY ¢n(u)'

Let R,, R,, -, R, be rational functions in z variables. We denote R= (R,
-, R,). H. Poincaré calls the equation

an ¢ (mu) =R (¢ (w))

the fundamental equation. His problem was to find single valued functions
@, +++, @, satisfying the fundamental equation. Let F(x) be the polynomial
defined by

F(z) =det (dRy—xI)
He proved the following theorem.
Theorem 3 (Poincaré), If F(m) =0 and F(m*) =0 for any integer

k>2, then there exists a single valued holomorphic map ¢: C— (CP)"
satisfying ¢(0) =0 and fundamental equation:

d(mu) =R(Pp@w)).

Our result stated in section 1 can be considered as an application of this
theorem of Poincaré to the case of unstable manifolds. Now, we proceed to
the case of analytic maps.

§ 4. Unstable manifolds for analytic mappings of the plane.

In this section, we deal with a real analytic mapping F: R*— R
Assume that the origin is a fixed point of F, i.e. F(O) =0. Let « and f8
be two eigenvalues of differential map at O, dF,: ToR*—>T,R*. Assume that
la|>1>18|. Define E* as for polynomial maps of the plane.
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Theorem 4. If |a|>1>|8|, then there exists an analytic mapping ¢
E*>R? satisfying the following conditions.

(i)
(i)
(iti)
(@v)
(v)

$(0) =0,

ddy: E*—>ToR? is an inclusion map.
¢(EY) =W*,

Fogp=gor,

Taylor coefficients at the origin can be computed from those of
F and procedure to compute them is give by theorem 5.

In order to formulate theorem 5, we choose a convenient system of coordinates
as in section 2. By applying a linear transformation of coordinates if necessary,
we can write mapping F: R*—>R? near the origin in terms of power series:

with

F(z,y) = (A(z,y), B(x,y))

A(z,y) =azx+ 2 Apex®y*
20,020 p a2
B(x,y)=PBy+ 2 bpex®y?

2.9
P20,420, p+q22

These power series converge near the origin, and can be analytically prolonged
to the total space R® Define O(n,p,q) as in section 2.

Theorem 5. Define formal power series

FO= £ and ¢ =30

by
(i) fi=1
(ii) g,=0
(i) fa=———[ X2 an0(#n,2,9)]
a —a ,q

?
29,920, p+422

(v) ¢g.= 1 [ 2 b0 (2, p,9)]

a*—f

7,9
P20,420, p+422

Then f and ¢ converge near the origin and can be prolonged to
analytic maps of the real line. And that ¢ (&) = (f(£),9(8)) defines an
analytic map ¢: R—R*® satisfying the fundamental equation:

(v)

Fog=gon.
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Proof of Theorem 5. First, we prove the convergence near the origin
of formal power series. We employ the method of majorants, which was used
by Poincaré [6] in proving the convergence of Poincaré&’s function for the
case where F is a rational map.

Let r be positive number such that A(x,y) and B(x,y) can be extended
to holomorphic functions on the ball |x|*+ |y|*<# in C2%. Note that the right
hand sides of (iii) and (iv) don’t contain coefficients a,, or &,, with p+g=<1.
If we regard @(n,p,q) as polynomials of fi,f3 ***, 01,01, @ *+*, the coefficents
of these polynomials are positive. Let a; be a constant satisfying 1<a,<|a/.
Then we can find a positive integer 7, such that for all integer n=#,, the
inequality

la”| — || =at

holds. Let «, be a constant satisfying 1<a,<a, and the inequalities
la" —al=zaf —

and
la"—Bl=at —a

for 1<n<m,, We see that inequalities

12) lo"—a|zai—a, and |a"—pl=zai—a,

hold for all n=1.
Let us consider another analytic map B’: R*—>R? B’ (z,y) = (A’ (x,y),
B’ (x,y)) whose Maclaurin expansion is given by

A’ (x,y) =apx+ P ApxPyt

2,4
p290,420, p+a20

B’ (z, y)=a.y + ) B, x?y.

2,9
p20,920, p+922

Construct a system of formal power series:

¥ O = ©.0 @),
FO=S£8 ¢® =208

by the following procedure:

(') fi=1
Gi') gl =1
(i) fi=—2 [ X A0 (n 5,9)]

g — Ol P=0,420, p+a2

(v) di=—2 [ X Byl (n 5]
af — QY P20,920, p+a22
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where @' (n,p,q) are defined for (f7) and (g7) similarly as @ (n, p, q) are de-
fined for (f,) and (g,). If formal power series f’(§) and g’ (§) converge
near the origin, fundamental equation of analytic mappings

B’ (¢ (§)) =¢" ()

holds. Analytic mapping B’ is not hyperbolic at the origin, so that mapping
¢’ does not give the parameterization of unstable sets. However, if

(13) lape <A, and |bpal$qu

hold for all p=0, ¢=0, p+g=2, by comparing the procedure (i), (i), (ii),
(iv) in theorem 5 and the procedure (@i’), (ii"), (iii’), (iv’) above, and by
using inequalities (12) and (13), we see

|fn|§f:z and Ignlgg;

for all n=>1. Hence if we find an analytic map F’ such that ¢’ has positive
radius of convergence, the convergence near the origin of formal power series
@ follows.

For positive number p, 0<lp<r, let

M(p) = max [max(|A(z,y) —azxl|, |B(z,y) —8y))]
|z|Se, lylSe

where x and y range in the complex plane and A (x,y) and B(x,y) are re-
garded as the extended holomorphic functions. Holomorphic functions A (x, y)
—ax and B(x,y) —By vanish at the origin with their first derivatives, we
have

M@) - 0 as p —> 0

M@) _, o
0

and as p = 0.

Consider the rational function defined by

M (o) (z+9)?

2

R(z,p)=———
(z, ¥) L zto

0

All the coefficients of this rational function expanded to a power series at
the origin are positive. The coefficient of z’y? is not less than |a,,| nor
|6yl for p=0, ¢g=0 and p+¢=2. Rational function R(x,y) is a majorant
of analytic functions A (x,y) —ax and B(x,y) —fBy. Take p sufficiently small
so that

2M (p)
0

>
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holds. Define a rational mapping B’: CP!X CP'->CP'XCP! by

F'(z,y)= (A’ (z,9), B (z,)),

2
A’ (x, —opr+—PEEY)_ ,
(z, 3) = 20-2(z+y)
2
B’ (z,y) =« +_Golz+y)’
(z, y) =y %020zt 3)

2

Since %> M(p) we see that rational functions A’ (x,y) —ax and B’ (z,y)
0

—pBy are majorants of rational function R(x,y). Therefore, they are also
majorants of analytic functions A (x,y) —ax and B(x,y) —fBy.

Let us find the fundamental function of Poincaré ¢’: E*—R:%¢’ (&)
=((f"©.,9®). Let S& =F( +g'(§). The fundamental equation
F’ (¢’ (§)) =¢’ (o) is written as

’ Y a(S()):
[ (af) =af (e)+———_20—25($)

’ — ’ A (S(£))?
9" (aé) =09’ (§) +20——2S($—)

From these equations, we obtain

S(Gﬁof) — aoS(E)

G)
0
Rewrite this equation in the form:
S () _ aS(®)

t—1+=S(ew) o1+
0 0
As we are looking for analytic solutions, the function #—— must
ao—l‘f‘;S(f)
be a linear function of §. From the conditions for f’(§) and ¢’ (£), we

see that S(0) =0 and -ff-li:'—(O) ~ar 0) +gd7%—,(0) = f1+gi=2. Hence

de
4 SE® __ 2
% —1+L1s08) %1
P) -
so that
S  _ 2

ao—1+%S($) -1
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that is,

20(ay—1)¢

SO = -1 28

Looking that A,,=B,, for all p=0, ¢=0, p+g=2, the procedure to copute
f4 and g, are identical so that f’(§) =g’(£). Hence we obtain,

’ —a’ — 0(“0—1)5
Fr@® =0 @)= o

which certainly converge if l$|<&°2—ﬂ. As we noted before, £’ (§) and

g’ (&) are majorants of f(£) and ¢(&). So f(§) and g(§) are absolutely
convergent if ISI<LCK°2?—D—
The domain of definition of f(£) and g(§) can be extended by using the

fundamental equation:

F(¢($) =¢ab)

since |a|>1. The proof of theorem 5 is completed.
The proof of theorem 4 is similar to that of theorem 1 and is omitted.

Remark. In theorem 4 and 5 we dealt with real analytic maps and the
obtained fundamental functions are real analytic. If we assume that mapping
F is entire, that is, F' can be prolonged holomorphically to total complex space
C?, the obtained fundanental function ¢ is also entire.

§ 5. Linearization near hyperbolic fixed point.

Let us generalize our results to higher dimensional unstable manifolds.
By using the method of majorant, we can treat the cases of polynomial maps
and analytic maps.

H. Poincaré [6] studied a class of transcendental functions as a generali-
zation of abelian functions. Iet F: C"—C" be a rational function of complex
n-space. Assume that the origin is a fixed point of F. Let dF, denote the
differential map at the origin. Let D () =det(dF,—AI)

Theorem 6 (Poincaré). If D) =0 and D(A™) 0 for m=2,3, ---,
then there is a holomorphic map near the origin ¢: C—C™ satisfying the
fundamental equation

¢ (A6) =F($(£)).

L. Leau [7] gave the analytic expression for stable manifolds and un-



776 Shigehiro Ushiki

stable manifolds in the case where all absolute values of eigenvalues of dF,
are greater than 1 or are all smaller than 1, that is, the fixed point of B
is either a source or a sink.

He obtained the condition for eigenvalues a;, -*+, &y

a:: -aé* Ceee .afln:’&aj

for all 4,220, #,2=0, -+, 4,220, 4,4+ -+ +,2=22, j=1, ---, n in order that the dif-
feomorphism can be transformed near the fixed point into a linear isomorphism
by an analytic transformation of coordinates.

The condition concerning the eigenvalues for the diffeomorphism to be
transformed into a linear isomorphism by a C’-transformation of coordinates
is given by Sternberg [5]. See P. Hartman [8] for the relation between
his work and the theorem of Hartman.

The theorem of Grobman and Hartman deals with the linearization
around a hyperbolic singular point of the system of ordinary differential equa-
tions. The theorem of Hartman deals with the local and topological trans-
formation of a diffeomorphism into linear isomorphism around a hyperbolic
fixed point. We cite the theorem of Hartman and of Sternberg.

Theorem 7 (Hartman). Let A, B be non-singular constant matrices,
where A is a kXk matriz, B an (n—k) X (n—£k) matriz, and

1AI<1, [B7[<1.

Let (x,y) €R", x=R*, ye R*™*, denote a point in R*. Let Y: R"—>R" and
Z: R*—>R"* be C* mappings defined near the origin. Suppose that Y (0)
=0, Z(0) =0, dY,=0 and dZ,=0. Define T: R"—>R" by

T(x,y) =A@ +Y(x,y), By) +Z(z,y))-
Let L: R*—>R" be the linear map

A 0
L=< )
0 B
Then there exists a continuous, one-to-one map, R, of a neighborhood of

the origin onto a neighborhood of the origin such that R transforms T
into the linear map

RoToR'=1L.
For the proof see Hartman [8].

Theorem 8 (Sternberg). Let r>0 be an integer [or r=o0]. Then
there exists an integer N=N @) =2 [or N=oo] with the following pro-
perties.

If L is a real, constant, non-singular nXn matrix with eigenvalues
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ay, **, Oy such that
a{l .agz Ceren f."%aj

for j=1,---,n and for all sets of non-negative integers i, *++,i, with
2<i 4 i+ - +14,<N and if, in the map

T(x) =Lx+ A(x)

A(x) is of class C¥ for x with small |z| satisfying A(0) =0, dA,=0,
then there exists a local homeomorphism R of class C™ around the origin
such that

R(0) =0, dR,=1 and that
RoToR™'=1L.

For the proof we refer to Sternberg [5]. Both of their results transform
diffeomorphisms near a hyperbolic fixed point into linear isomorphism by local
homeomorphisms. They don’t deal with transformations by global homeomor-
phisms, i.e. homeomorphism onto the total linear space R" It is clear tat
if there is a homoclinic point near the hyperbolic fixed point, then there is
no such global transformation. As they were interested in local topologcal
properties near the hyperbolic fixed point which are invariant under the
transformations by homeomorphisms or by C’-diffeomorphisms, they didn’t pay
attentions to global properties of unstable manifolds which depend deeply on
the global dynamics of the diffeomorphisms and analysis of which cannot be
done except for analytic diffeomorphisms.

From the viewpoint of bifurcations of dynamical systems, it is important
to study the global topological configuration of stable manifolds and unstable
manifolds.

The analytic expression of unstable manifolds which we are going to give
for higher dimensional case, is an analytic mapping ¢: E*—R" of the eigen-
space of the differential map at the hyperbolic fixed point, spanned by egen-
vectors for eigenvalues with modulus greater than 1. This mapping agrees
near the origin with the restriction to E* of the inverse map R™' of diffeo-
morphism R given by Sternberg, which he proved to be C" or C~. It is
necessary to prove the analyticity of ¢ in order to obtain global topologcal
properties of unstable manifolds.

In articles by the author [17], [18], [19], we employ our results to study
the dynamical structure of mappings of a plane into itself defined by poly-
nomials. The behavior of homoclinic points is related to the behavior near
the infinity of transcendental functions. In some cases it is proved that there
exist no invariant regular circles connecting hyperbolic periodic points.
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§ 6. Higher dimensional unstable manifolds.

Let us prepare some notations. We denote a point in R* by = (x,, 25, ***,
Z,) - Let e= (g, &, *+,&,) be a multi-iindex with 7 non-negative integers,
6,20, &=0, -+, e,20. We denote

el =&+ et e,
and
x€=x{‘~x§'““ ..t:‘n

Let 6(k,7) be the set of multi-indexes &€= (g, &, ***, &) such that 2<|e|<L
We denote '

¢(y) =1(,0,--,0,1,0,--,0)
1]
for multi-index of length 1.
Let f: R">R" be a real analytic map defined globally on R*. We assume
that the origin, O, is a fixed point of f, i.e., f (O) =0, and that the Jacobian
matrix df, at O is diagonalizable.

Let a4, a,, -+, a, denote the eigenvalues of df,. We assume O is hyper
bolic, i.e.,

lag|>1  for i=1,2,. k,

(14) .
|| <1 for i=k+1,---,n.

Let 0= (0, --. 0%x) be multi-index with §,=0 for i=1, .-, k. Let a= (a,,
c, ). We denote || =040+ +0 and ?=al-al-----af. We assume

also
(15) Fa;

for any multi-index ¢ with |§|=2 and i=1, ---, k.

Let E* denote the subspace of tangent space 7,R" spanned by the eigen
vectors for eigenvalues «, -+, @x. Space E* is invariant under the differential
map dfp: ToR"—>T,R". Let 7: E*—>E" be the differential map df, restricted

on E*, i.e.,
7(§) =dfo(§) for $€E™

We call a point P in R" an unstable point of O if there is a sequence of
points P,e R", i=0, —1, —2, -+, such that P;= f (P;-,) for i=0, —1, —2, ---,
P=P, and that P, tends to the origin as / tends to —oo. We denote the
set of unstable points of O by W* We call W* the unstable set of O. If
f is a diffeomorphism, then W" is nothing but the unstable manifold of O.

Theorem 9. Let f: R'—>R" be a real analytic map defined globally
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on R*, with f(0)=0. Assume that the Jacobian matriz dfo at O is
diagonalisable and that the eigenvalues , -, &, satisfy conditions (14)
and (15). Then there is a real analytic map ¢: E*—>R" defined globally
on E* satisfying the following conditions:

i) #(0)=0
i) dpo: ToE*=E*>ToR" is the inclusion map,
iil) @(EY) =W"
iv)  fog=don,
v) Taylor coefficients of ¢ are given by theorem 10.

In order to give the formula for Taylor coefficients, we introduce several
notations. As we have assumgd that df, is diagonalisable with eigenvalues
Q,, s n, we can find a system of coordinates x = (xy, -**, ,) of R" such that

a, O
dfo=( )
0 a,

Let d=(d,, -, d,) be a multi-index with d,>0 for i=1,2, ---,n. Let |d|=d,
++.-4+d,. For x=(x,, -+, x,) we denote

xd:'xi‘l.xg!.....xin'
Let f(x) = (f1(2), f2(2), =+, fa(2)) and
ft(x) =X+ 2 f;,,,,x" for =1, ., n

14122

As for multi-indexes of length 1, we denote

6(1') = (O) '“90915 Oa"", 0) and

i

. d(i) = (0’ '"»Oy 1,03 ttty O).
i

Let fiaw =0y for i=1, -, n and fiq» =0 for i%j. We have dfo= (fraw)
0 ,i=1, -, k. Denote by &= (&, -+, &)

o

The space E* is spanned by vectors

the coordinate on E* with basis —Q—, i=1, ---; k. We identify linear space
Ty

E* and R* by this coordinate system. For &= (¢, -, &) and multi-iindex
0= (0y, **-, 0x) we denote

6":5’;:.62:....5"’!_

Let ¢: E*>R" be a real analytic map with ¢(0) =0. Let ¢(§) = (4:(%),
$:(§), -+, $a(§)) and

¢i (5) = Z ¢i,d$a-
18121



780 Shigehiro Ushiki

Let ¢s0y=1 for i=1, -, k and let ¢, 45, =0 for i=1, -, n and j=1, ---, £ with
i5j. Let A2(p,q) denote the set of multi-indexes 0= (0}, -, 0;) with p=<<|0]
<gq. For ¢, a positive integer p and a multi-index 7, we put

0(¢h P, 6) =r EZI(I %) ¢¢:T|.¢"h“‘“¢‘r7'p .
r:'-i:.-'-'-?r,ﬂ'

Note that if p=>2, 6(¢;, »,0) contains no ¢,,,; satisfying |7|=]0]. We have
@)= 3 £0(du,2,0).
3€(p, )

For multi-indexes 6= (0,, ---, 0y) and d= (d,, -+, d,), let
Ir¢,d,d)= 2 (IT 68, di,10)).

T a €L 18 =1
Ti+o+ra==0

Note that I'(4, 0, d) contains no @, with |7|=>10] if |d|=>2. We have
BEN=_ 3 £€r(¢,d,4d.
3€X((dT, )

Let I(p, q) denote the set of multi-indexes d= (d,, -:*, d,) satisfying p<|d|<gq.
Using the notations defined above, we obtain the expressions

F@@) = 5 & 3 fud (@,0.d)).

aei(T, 181

Theorem 10. The Taylor coefficients ¢,5 of mapping ¢ in theorem
9 are computed as follows:

i) for multi-index 0 with |0]=1,
brsy=1 Sfor i=1,-- k,
Brap=0 for i=1, -, n, j=1, - k, with isj,

il) for multi-index 0 with |0|=2, define ¢,y inductively by the
Sformula:

bus=—t (D fuu ($,0,d)).

a’—a; eei@ion

The mapping ¢ can be extended to an analytic map on E*

Proof of theorem 10.

If condition (15) is satisfied, starting from i) in theorem 10, we can
compute ¢;, by applying formula ii) in theorem 10 inductively. So we obtain
#(§) as a system of formal power series. By the definition of ¢, the
fundamental equation ¢ (7(£)) = f(¢(§)) is satisfied formally.

We employ the method of majorant in order to prove the convergece of
¢ near the origin. Take a real number «>1 such that
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(16) o — ;| =a"® —a

for any multi-index ¢ and =1, ---,n. Note that I" (¢, 0, d) are polynomials in
@:..’s with coefficients all positive.
For a positive real number 7, let

M(r) = milisﬁ{jfga}fnﬂff (x) —ayxs)) }

where z range over a neighborhood of the origin in 7-dimensional complex
space C" and f; are regarded as extended to a neighborhood of the origin
in C*. Then we have

lim M()=0 and 1m0,

70 70 r

Take r sufficiently small so that a>7—l1M holds. Let
r

a(x1+xg+ ee +xn)2
nr—n(Ti+ 2o+ +2a)

F(z)=ax;+

Function F;(x) —ax; is a majorant of f.(x) —aux,;, i.e., if we write
F,(x) =ax;+ Y] Fi.x"
=
we have

an |fial<Fia

for all 7 and d with |d|=2.
Define F: R*—>R"by F(x) = (Fy(x), -, F,(x)). Let BE=(§, -+, §,) de-
0 0

note the coordinate of 7T, R" associated with basis ——, ,a—
ot Ln
Let 4= (4,, 4,, -+, 4,) be multi-index. Notations |4|, 4(2), 5 are defined
similarly as for ¢ and & Let @: ToR"—R" be the formal power series @ (&)

=(0,(8), -+, 0,(5)) derived from the fundamental equation
(18) O (aE) =F(0(&))

by assigning

19) D4 =1

for 7,7=1, :--, n, and by applying the formula

(20 0,,=— L (S F,.(0,4,d)).

al'—a “eci@ian
For each 6= (4, -+, 0x), let 4(0) = (0y, -+, 0%, 0, -+-,0). We have
|¢i.d|§mi.d(0)
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inductively. So if we find @ satisfying (18) and (19) with positive radius
of convergence then ¢ also converges near the origin. The domain of defini-
tion can be extended to the total space E* by virtue of fundamental equation

e (&) =),

since 7 is an expanding linear automorphism.
The convergence of @ near the origin is verified as follows., We caim
that

m‘(E)= r(a—l)(51+"°+$n)
r(a=1)—n(é+-+§.)

for 2= (§, -, ) Note that formal power series is uniquely determined by
(19) and (20), hence by (19) and (18). For each i=1, -, 7 and j=1, ---,

n, we have

a0,
990y =1.
05;( )
Let 3=&++&, and S(8) =0,(5) + - +0,(5) =n0,(5). Then,
r(a—1)2 ra(a—1)2

0.(&) =

and 0,(a8) =

r(a—1)—n2 r(a—1)—nal '

On the other hand, we have

oy g o a(SE)
Fi(0(8)) =a0,() + 2O
__arS(E) _ ra(a—-1)2 —0,(aB)

n(r—S(8)) r(a—1)—nal
so that
D(aZ) =F(0(5)),

which completes the proof of therorem 10.

Taking in considerations that the image of a neighborhood of the orign O
in E* is mapped onto a local unstable manifold of O in R" theorem 9 is
easily verified.

Remarks.

If f is a real analytic map defined on an open set U in R" containing
the origin and if the image f (U) is included in U, theorems 9 and 10 hold.

If we replace f by a holomorphic map f: C"—>C" defined globally on
C", similar results hold. In this case the obtained map ¢ is entire on E*

If f is a holomorphic map defined on an open set U in C" containing
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the origin and if the image f (U) is included in U, ¢ is again entire on E*.
If f is a complex analytic map of a complex manifold into itself with
a hyperbolic fixed point, similar result holds. The obtained map ¢ is entire

on E*.

§ 7. One dimensional case.

In this section we examine the dynamics of one dimensional dynamical
system defined by an analytic function f: R—>R. We can apply our theorem
9 and theorem 10 to this case. We assume that f: R—R is the restriction
to the real axis R of an entire function F: C—C, i.e. f can be extended to
a holomorphic function F defined globally on C. Assume that £ (0) =0 and

%‘i(O) =q with |@|>1. Then there exisists an entire function ¢: C—C with
z

Z—?(O) =1, g(a€) =F (¢(&)) and ¢ (R) CR. Some portion of this function has

been known for the longtime. We find the first research on this function
in the note of N. Abel [9].  Schréder [10] studied this function. Functional
equation:

¢(f (2)) =a(z)

is now called the Schréder’s equation. The study of Schréder’ equation was
succeeded by G. Konigs [12], [13] and Fatou [16]. Note that the function
¢ considered in Schréder’s equation is the inverse function of our function
obtained in theorems 9 and 10.

We give some cases where the Poincaré’s function can be expressed by

elementary functions. Let f(x)=3xr—42’ As f(0)=0 and %(0) =3,
x
fundamental equation is,

$(36) =38(5) —4(8(5)°.

This is nothing but the formula. for trigonometric function. We see ¢ (&)
=sin &. Therefore, if 2, =sin &, the orbit x, = f" (x,) is given by x, =sin (3"&,).
Next, consider the function f (x) =ax(1—x), whose dynamics was studi-
ed by R. May [17] as a model for population dynamics with discrete time.
If a=4 then it is known that the dynamics of f restricted to the unit inter-
val I is topologically conjugate to the linear unimodal transformation ¢ (x)
=1—|2x~—1|, which is conjugate to the baker’s transformation.

Mapping f (x) =4x(1 —x) has two fixed points x=0 and x=§—. At
af

JL‘=—§—, the eigenvalue —<i> = —2. The fundamental equation is given by
4 dx\4

$(26) =4¢6(5) A—¢(£).

The entire function is given by
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1,1 T 4
#(8) = +cos (T 7?e).

It is rarely the case that the obtained entire function ¢ is a periodic function.
For example if parameter @ in May’s model decreases from 4, the entire
function will be that deformed from the trigonometric function in the space
of entire functions. The behavior near the infinity of an entire function is
quite complicated.

In the case of a=4, we can introduce an invariant measure of f on
¢ (E"Y) as follows. For positive number 7, define a measure y,=g,(§)d¢ on
E* by function ¢,(&):

_ 1
g-(§) __——Z(r+logr) (€11
1
NG T <
g-(6) 2(r+logr) || I<l¢l=n)
g.(§) =0 (<<|§D).

For measurable set U in R, let

e (U) =p (71(U)).
Then 4 defines a measure on R. If there exists the limit

Z=lim u
e
and if the limit is absolutely continuous with Lebesgue measure, it will define
an absolutely continuous invariant measure of f. In the case where a=4,
it surely defines an absolutely continuous invariant measure. The measure
obtained here agrees with the measure obtained from the familiar invariant
measure of baker’s transformation via the conjugacy to our dynamical system.
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