J. Math. Kyoto Univ. JMKYAZ)
21-4 (1981)

Hyperbolic systems with coeflicients
analytic in space variables

By

Enrico JANNELLI

(Communicated by Prof. S. Mizohata, August 5, 1980)

§ 1. Introduction.

The purpose of this paper is the study of linear hyperbolic systems whose
coefficients are real analytic in the space variables but, if case, not regular
(in a sense that we’ll specify later) in the time variable.

We’ll be concerned with two types of linear hyperbolic systems: symi-
metric hyperbolic systems and regularly hyperbolic systems.

Symmetric hyperbolic systems
Let us consider the following Cauchy problem:

(@, U= 30 A (2, ) Usy + B(x, DU +F (z,8) on R*x (0, T),
1.1 !
U(z,0)=¢(z) on R",

where A¢(x,2). Ax(x, t), B(x.t) are real NX N matrices.
We assume the following hypotheses of hyperbolicity:

1.2) 1) Ai(x,2), Ai(x, ), -, A(x, t) are symmetric real NxX N matrices;
i) <Az, )7, 7>=hlr|* VreR”", ,>0:

i) 3WCAN @, DT, YSAD 7] vreRY,
where A@) L' ([0,T]).

We prove the following results:
I) (see th. 3.7 below)

Suppose that the coefficients of (1.1) verify the following assumptions
of regularity (see §2):

1.3) Ao(z, ) eL=([0,T], 4),
A,(z,t) e L' ([0, T], A), h=1, -, n
B(x,t)eL'([0,T], 4),

b

where A is the space of the real analytic functions defined on R
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Then, for Vg A, VFe L' ([0, T], A) the problem (1.1) has one and
only one solution U H"'([0, T], A).
(see th. 3.8 below)
Let us consider the sequence of problems
Az, ) U = ;‘hA',Q (2, ) U, + B (z,t)U"+F*(z,t) on R"x (0,T),
U'(z,0)=¢(x) on R",
where Aj. Ay, B satisfy (1.2) uniformly with respect to v. Suppose

that {A3}, is bounded in L=([0,T],A) and that {A%},. {B’}, are
bounded in L' ([0, T], A); Moreover, as y— + oo

Av(z, £) > Ay (x. t)  strongly in  Li . (R"x [0, T1]),

A (x, 8) > Ap(x. )  weakly in e (R*X [0, T]),

B (x,t) >B(x,t) weakly in e (R*X [0, T]),

@’—¢ in A, F’—F in L'([0,T], A).

Then A,. A, B satisfy (1.2), (1.3) and {U’} —-U in H*'([0, T], A),

where U is the solution of the limit problem

Aoz, U, = ihAh (2, ) U,y +B(z, ) U+F (2,£) on R"x (0, T),

U(z,0) =¢(x) on R".

Regularly hyperbolic systems (following S. Mizohata)
Let us consider the following Cauchy problem:

Ui=3%An(z,)U,, +B(z, ) U+F(z,2) on R*x (0, T),

U(z,0)=¢(z) on R",

where A,(x,%). B(x,t) are real N X N matrices.

We assume the following hypotheses of hyperbolicity:
1) Au(x,)eCR"X[0,T]),
i) Define A(z.1;8) =z]”7h Ap(z. )€, where

2= (& -, & e R\ {0}.

(1.5)  Then, for V6 R"\ {0}, vz R", vt [0, T'] the matrix A(x,¢;$)

198

has N real and distinct eigenvalues A, (x, ¢; &), -, An(x, ¢; §) ; more-
over, inf |A;(x.#;8) —A(x, ;8 1=0>0.
z,t;[€]=1
g

Under these hypotheses, we prove the following results:

(see th. 4.4 below)
Suppose that the coefficients of (1. 4) verify the following assumptions
of regularity (see §2):
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D) WALz, BT, TY<Alr|* VreRY, 4>0.
1.6
( ) ll) Ah(l‘, t),B(.l', t) EL‘([O; T]’A)°

Then, for Yo A, VF L' ([0, T], A) the problem (1.4) has one and
only one solution U H"'([0,T], A).

IV) (see th. 4.5 below)
Let us consider the sequence of problems

U= WA, (z, ) Us, + B (z, ) U+ F* (2, )  on R*x (0, T),
1
U'(x,0) =¢"(x) on R",

where A, B’ satisfy (1.5) uniformly with respect to v. Suppose that
{A%},. {B'}, are bounded in L'([0,T].A). Moreover. as y—>+ o0

A (x, £) > A, (z. t) uniformly on the compact subsets of R"X[0,T],
B’ (x,t) >B(x,t) weakly in L, (R*"X[0,T]), ¢ (x)—d(x) in A,
F'(z,t) >F(x,t) in L'([0,T], A). Then A, B satisfy (1.5), (1.6)
and {U’},—»U in H"'([0,T], A).

Incidentally we observe that I and III, combined with the theorem of Cauchy-
Kowalewska, furnish a new proof of the following theorem, due to S.

Mizohata (see [7]):

The Cauchy problem for linear symmetric hyperbolic systems or linear
regularly hyperbolic systems with coefficients and data real analytic in
x and t has a unique global solution real analytic in x and t. '

We remark that we make no assumptions of regularity in ¢ (say Lipschitz
condition) for the coefficients of our systems (we recall that, in the sym-
metric case, A,(x,?) is usually assumed to be Lipschitz continuous in £ in
order to obtain energy estimates in L? norm for the solution U of (1.1);
for the same reason, A,(x.?) are usually assumed to be Lipschitz continuous
in ¢ in the non-symmetric case; see [8]).

Moreover, we remark that we establish no energy estimates (in the sense
of L:norm) for the solution U of (1.1) or (1.4); therefore, we make no
use of the theory of pseudo-differential operators.

This work extends to the case of hyperbolic systems previous results
concerning hyperbolic equations of second order (see [1], [2]).

Many of the techniques here employed have been developed by F.
Colombini and S. Spagnolo in [2]; anyway, for the sake of clearness, we've
written in detail the proofs of our lemmas and theorems, without referring to
[2].

For systems with coefficients depending only on ¢, we refer to [5].
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§ 2. Notations.

We shall use the following topological vector spaces on C:

K Holomorphic functions on C".

K Analytic functionals on C".

H (U) Holomorphic functions on the open set UC C".

K’ (U) Analytic functionals on the open set Uc C"

H (D) Germs of holomorphic functions on DC C".

H’ (D) Topological dual space of 4 (D).

A (D) Real analytic functions on DC R".

A’ (D) Real analytic functionals on DC R™.
For the topology and the principal properties of these spaces, see [6].

Let X be a locally convex complete space. We shall denote by L'([O0,
T1], X) the space of the functions u: [0, T]—X such that there exists a
sequence {u,(z)} of finitely valued functions such that, for y— -+ oo,

{u, ()} »u(t) a.e. in [0, T]

and that, for any continuous seminorm p on X,
r

j P (6) —u(@®))dt — 0.
0

T
Therefore there exists limj u,(t)dt; we define
v 0

fu &y de=1im Lruu(t) d .

This definition is independent of the particular choice of {u,}. L'([0,T], X)
T

is a locally convex space with continuous seminorms %: u—> jp(u () dt,
0

where p are the continuous seminorms of X.

For a more exhaustive treatment of this subject, see [3], [4].

Any element = L'([0,T], X) defines a X-valued distribution on the
interval [0, T'], so that it admits a distribution derivative z’ € 9’ ([0, T'], X).
If «’ is defined by some ve L'([0, T], X), then we say that # belongs to
H*"*([0,T], X). The following inclusions hold: H**([0, T'], X) cC([0, T'],
X)ycL'([0,T],X).

When X=A(£2), £ being an open subset of R", the following characteriza-
tion of L!'([0, 7], X) holds:

Let w(x,t) be a complex function defined for x&8 and ¢t< [0, T],
analytic in x and measurable in z.

Let us define u: [0, T]—>A(R) by u(f) (x)=v(x,t). Then, ucL’
([0, T],X) if and only if VK compact subset in £ there exist a positive
constant L, and a positive function A, (¢2) € L'([0, T]) such that

|Div(z,t) | <A, ()LY'j! vxeK,te[0,T], jeN".
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Analogously, we’ll say that u L= ([0, T], X) if and only if VK compact
subset in 2 there exist some positive constants L, and A, such that

|Div(z,t)|<ALY'j! vzekK, te[0,T], jeN".
Therefore, hypothesis (1.3) is equivalent to the following statement:

For VK compact subset of R" there exist some positive constants Ly, Ay
and some positive functions A, (£), ' (¢) €L'([0, T]) such that

@1 | DA (x, ) | <A4LY'5!,
|DiAL (z, ) | <4 () LY,
|DiB(z,t) |<I (@) LY'j!,
vzek, t[0,T], jeN".
while hypothesis (1.6)—ii) is equivalent to the following statement:

For VK compact subset of R™ there exist a positive constant L, and
some positive functions A, (2), Iy (¢) € L' ([0, T']) such that

2.2) |DiAw(z, ) | <A, () LY'j!,
|DIB(x,t) |<I. (&) LY'j!,
vzek, t[0,T], jeN".
The theorem of Owvciannikov (see [2], [9]).

Let £ be an open bounded subset of R" and D, be the rectangle of C*
{z€ &, lyl<oi}.

Let us consider the problem

Ui=3"%As (2, ) Usy+ Bz, ) U +F (z, 1),
2. 3) { T

Uz, 0)=¢(z),
where A,(z,t), B(z,¢) are holomorphic in 2 on D, and measurable in £ on
[0, T']; moreover, assume that |A,(z,2) |, |B(z, ¢) |<A(#) €L'([0,T]).
Let D, be another rectangle of C" such that D,c D, Then, for
vee i (D), VFeL' ([0, T], % (D,)) the problem (2.1) has a unique solu-
tion U H"' ([0, T], 9 (D,)) provided that T is sufficiently small to verify

T ~
2.2 j A () dt<C (n) - dist (Ds, CDy)
0
where C(n) is a constant depending only on .
Moreover, for Vo 4’ (D,), VFe L' ([0, T'], 9’ (D,)) the problem (2.1)
has a unique solution U H"!'([0, T'], K’ (D,)), provided that (2.2) holds.

The theorem of Paley-Wiener (see [6])
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Let ww be an analytic functional on C* and

@) =C(w(z).e 7> (z=x+iy, E=E+17).

the Fourier-Laplace transform of .

Then @ ({) is an entire function on C" with exponential growth for
[€]— + oo.

Moreover, w is carried by the rectangle of €' D= {|z|<r, |y|<o} if
and only if

2.3 | (£) [<Cee®r@HIFTram 0

Finally a family of analytic functionals {w,} is bounded in 4’ (D) if and
only if the Fourier-Laplace transforms @,(&) verify (2. 3) uniformly with re-
spect to Y.

§ 3. The symmetric case.

Solutions as real analytic functionals

Let us consider the Cauchy problem (1.1) on R"X [0, T"]. Assume that
the coefficients verify (1.2) and the following hypothesis of regularity:

There exist some positive constnts A, L and some positive functions
A@. '@ el ([0, T]) such that

|DIA,(x, t) |[<ALY' ! vie N,

IDIA, (x. t) I<A () L1 vje N,

IDIB(x, t) |<TI () LVj! vie N

Under these hypotheses we’ll prove the following

Theorem 3. 1.

For any ¢ A’ (R"), FeL'([0,T], A’ (R")) the problem (1.1) has a
(unique) solution U H"'([0, T], A’ (R")).

More precisely, if K, is a compact set of R" such that g€ A’ (K,),
FeL'([0,T]. A’ (Ky)), then UesH"'([0,T], A’(K)) Vvte[0,T]., were

K= {zeR": dist(z, K,) g% YA (s)ds}.
0

We need some technical lemmas.

Lemma 3. 2.

Let f: [0, T]>R"*, g: [0, T]—>R* be measurable positive functions,
feL([0, T]), geL=([0,T]).
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We define  as (e) = ASCL[IOPT] Lf(t) dt. Then

m(4)<e

3.1 ﬁrf(t)g(t)dtSIIgllusb(IIglll/IIgllw)-

Proof. We briefly sketch the proof of this simple lemma.
T

It is sufficient to prove that jf(t)g(z) dt<p(lgl) if |gll.=1.
0

a) By approximation of f with simple functions one observes that ¢y is a con-
tinuous concave function. In particular, if 0<<A<{1, A (¢) <P (A2). t< [0, T].
This proves the lemma if ¢ (¢) =4

b) Let g(t) = if A%z, be a simple function. Using the conclusion of point a)
1
for F;=f-%z, we prove that there exist E,CE; m (Ei) =2m (E;) such
that xzf FHdr< 'L F(£)dt. Therefore
E; E;

[(roowar= [ roa<eGrom @y =oaol.

Now, for a general ¢ (¢), one proves the lemma by approximation with simple
functions g, (¢) —»¢g(¢) in L'([0, T]).

In the following lemma we’ll use these notations:

V’:ﬂ; ag-:—i(i,"',—a—), Where
ot 0¢, o€,

e, L=¢6+in, §,7€R".

Lemma 3. 3.
Consider the Cauchy problem

2SOV =i$hcha" (t)V+iZt},,C"{j§ 24() 0LV}
3.2) +25,4,@0V+FE& ), 0<e<T),
V(0 =V(®,

where the measurable functions a’(t), a"(t). p}(¢). q;(t) are valued in the
space of real NX N matrices and verify the following conditions:
i) a'(2), a"(t) are symmetric N X N matrices,
i) 34=2,>0: Alr|"’=(a’' @)1, 1>=A|r|* YreR”,
(8.3) | ii) 34@) €L ([0, TD: L@ D7, <A@ 7l vr <R,
iv) 3A=0,P (), Q@) L' ([0, T]):
l SO ISPOAY: 10,0 |SQW A" vieN™.
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Suppose V° () €K, f(& )L ([0, T], 90,

Vel flf(c, t) |dt<<Me"'*! 0<p<1/4A.

Then there exists an increasing function t(p) such that (3.2) has a
solution Ve H"'([0,7(0) ], H) satisfying the following estimate for any
>0, (e<e(0)):

3.9 V(& ) |=C (&, A)4Me" exp {I: (2¢)"8A4pC (A, 4) J;t@df

Ko

20080 4 (14244 oyrsa0C G, )| Lqd,

T—-¢&
where  0(a’, ) = supj 1@ (t+5) —a*(F) |dt
0<s<e 0

() = sup jA(t)dt and  o=min(1, iq).
AC[0,T] A

m(d)<é

Proof. We define B(z,0) =p+ (2¢)"8A0C (A, A) JLP—(T)-dr—I- f‘f‘;—f)dr
0 U 0 0

and (o) =% sup{t<T': B(¢,p) <20}.

Moreover, we take as V, the solution of the problem
@@OVi=i " OVita@OVi+ £ G0, 0<e<a(0),
Vi€, 0 =V"().

By induction we can define V., as the solution of the problem

A (OVipa=1i ;;.C"a" OViern+a@Vin
+1 2508 2 @0V + 3 a, ()0,
1 F#0 J+0
Vi, 0)=0.

Our aim is to prove that i,, V', converges in C([0,7(0)], 9[) to some
1

solution V of (3.2). In order to prove this fact, we need some auxiliary
functions.
For any fixed ¢>0, let p.(¢) denote a Lipschitz-continuous function on

£=0 such that o, (£) =0 for #£=>¢ and j”’pe (O dt=1, 0<p.<2/e, |ol1<4/¢
0

Let us define
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T—-¢&
be(t) = ﬁ 2t +5) 0e(s)ds, co() =a’(®) —bs(2),
do(8) =3hee (@) (a®) () a" (¢). Clearly, VyeRY,
1

@5 [reasstowe, [la@d<ow@,e),

(120 1as< 2y (225 22),

where we used lemma 3. 2.
We can now prove by induction the following estimates (for any %, any
t<<t(p) and e<E(0)):

(3.6)  |Vi(C,1)|<C (A, )AM (%) *exp {[p + (26)"840C (ho, 4)
J;‘P(f) dr+ j‘ |d. (f)ldr]lq_l_ j A7) A aely)

I |5, (r)l dr+ j [ +(23)"8A()C(lo, A)]

L@ dr} .
Lo
By substitution of (3.5) in (3.6) we get the convergence in C([0, t(0)],
JH) of the series ik Vi (&, £) near some function V (&, £) which satisfies (3. 4)
1
and is a solution of (3.2); thus we have only to prove (3.6).

At first, we observe that V,({,¢) is a solution of an ordinary system
of the type

3.7) AWV =i 2 &t (&) V4 an(t) Vg (& )

If we define (as one usually makes) the energy E(#) of V as E(¢)
={a’(®) V, V), we see that E(2), regarded as a function of ¢, is not derivable;
thus it’s not possible to get usual estimates on it.

Therefore we are forced to consider a new form of energy for V; more
precisely, we define

Ec () =<be OV, V)

where b, (¢£) is the matrix defined above.
By construction, b.(#) is Lipschitz-continuous; thus we can derive E. (%)
with respect to ¢ Clearly

E.(6) =<B. @OV, V>+2Rela’ () V', V> —2Relc () V', V>
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=B OV, V>+23% ReGiCa OV, VY +2Re(as (O, V>

+2Redg, V> — 2;",. Re(iCc. () (a®) () " () V, V>

—2Re{ee(8) (@) T (D a0V, V) —2Relee(8) (a) 7' ()9, V)

<[BOL 517 40 4 5ic) 401
I Ao

oo 25+ 30+ By

Dividing by 2(E.(2))"? and using Gronwall’s lemma we get
(B0 <[ B0+ 1577 (14 24) o1 €, 0y ae -0,
0 0

where

s00= [ M2 9400 e A 120

In conclusion, we obtain the following estimate on V':
t
(3.8 [V )ISC@A NIV 0+ £ e %g (€, 1) ldr] e’

Let us now return to our problem. We must prove, by induction, (3.6).
Take £=1. By definition V, solves (3.7) where ¢(& &) =F(& ¢). Usng
(3.8) we easily see that (3.6) is true if k=1.

Assume (3.6) true for V,, V,, --- Vi, By definition V,,, solves (3.7)

where g(§,2) =£:({, t) =1 IZh Ch{jg'?? (t) 01V} +)§) q; () 04V .
We must estimate |f.|; we use (3.6) to estimate V,(§,t) and con-
sequently, in virtue of the Cauchy formula, 0V, (& t); moreover, we take

into account the assumptions (3.3) on the coefficients p;(#) and g; ().
After some calculations, we obtain

e01 £ (€, )| SC (o, H4M (3) exp {0+ (201840
-C (ho, 4) f %dr] 1C] + 'fo’ (2¢)"8 Ap
C o, 02} .[_P_(‘_)lc|+%]e"
Hto Ho Lo
slaEe o+ [ 19Dlan)]” Gixx .

But CHI(jyX +++ X 7,) <2"'C for 0<<C<1/2; by the definition of 7 (p)
J#0
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T
and using the fact that limj lﬁzflﬁ)—ldz'=0 we obtain CEA(B(L‘, 0)
0 0

8—0

+ jtt‘éfiudr> <2A0<1/2 for <z (o).
0 0
Thus (3.9) gives (for t<<r(0) and €< (p))

eSO £, (¢, 1) |§2—2¥6”"C(lo, A) (2e) "SAD%IG +
+ g(_tl] exp { (2e)"8ApC (4, 4)
Mo

. f(%l(l+%>dr}.

t
Taking into account the inequality 6Ja(s)e”IO“"""dsge"ﬁ"(”d' with
0

0=C(lo, A) (26)"84p and a(®) = LD 1|+ 2@ e finally obtain
Lo o

@10 [ lf 0 ldr szzifepmexp {(2e> "8 40C (A, A)
. IL<P(T)|C| +Q(7)>d1}_
0N Mo Ho

By substitution of (3.10) in (3.8) we have (3.6) in the case £+1;
this concludes the proof of the lemma.

Proof of theorem 3. 1.

We’ll obtain the proof of this theorem in some steps.
1) Let us define the domains 2,={zeC": |y|<1/A} and B,={zeC":
lz|<p}.

Assume, for the moment, that g€ %’ (B,), Fe L'([0, T], 4’ (B,), where
0<<1/4A.

There exists a time 7,(p) >0 such that, by Ovciannikov’s theorem (see
§2), the problem (1.1) has a solution U H"'([0, 7, (0) ], K’ (2.)).

Now, we write (1.1) under the form

A, (0, ) U, = ;",,A,. ©,HU,, +B@)U+ jhch (z,0)U.,
+D(x, ) U+G(x,t) on R"X(0,T),
U(x,0)=¢(x) on R",

where the coefficients satisfy the following conditions:

a) Cp(0,8) =D, t) =0,
by GeL'([0,T], 4’ (B,
¢) There exist K=K (n, A, A), A=A, 2, A), AL, such that, if we set
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P@)=KA(t) and Q) =K' (t) + A (£)), we have
SWIDIC, (z. £) I<P(2) A1 vje N
1

IDiD (z, t) |<<Q () A'j! VjEN"
Now we effect the Fourier transform with respect to x:

V(& ) =<Ul(x, 1), e *“™); V() =<8 (x), e ™),
&8 =<G(x, 0), e’y (EC, {=E6+iy, & 1ER"

t

By Paley-Wiener theorem |V°(&) |, ‘f | f (&, ©) |de<Me*"*! for any p<p, where
0

M=M/(p).

Moreover, by the analiticity of C,(x,t), D(x.#) we can write C,(x, £)
= ;015? B x?; D(x,t) = ,% g;(8)x?, where ;Tn 25 () <P (2) AVY; gz () |
<Q() AV vje N,

Finally, if we define a°() = A,(0,2), a*(¢) = A,(0,7), ¢ (t) =B () we
see that a’(#), a"(#), p5(¢), q;(¢) satisfy the hypotheses (3. 3) of lemma 3. 3.

Using the conclusions of this lemma and taking into account the unique-
ness of the solution, we obtain that V (&, ¢) verifies (3.4) for any pe (P,

0
1/4A] and for any e<g. But lim ¢<‘%A€)> =0; therefore, by Paley-Wiener

-0

theorem, we get that U(#) is an holomorphic functional carried by the domain

D, = {zEC": |x|§5<1+c J;t %dr) + £z$d7 s

91=8 (14 | Eac)}, 0=e=n@,

where ¢=C (4, A) (2¢)"8A, 1,(p) =min (z(p), 7, (D)).

More precisely {U(s)} is bounded in %’ (D, for 0<s<<t with 0<¢
<7,(@). On the other hand we know by Ovciannikov’s theorem that U
belongs to C([0,7,(0)], Y’ (£4)), so that (using the fact that in 9’ (D,)
any bounded subset is relatively compact) we can conclude that U C ([0, ¢],
H' (D), 0<t<7: (D).

By the problem (1.1) we finally derive that U belongs to H"'([O0, ¢],
Y’ (D,)) ; moreover, the mapping which maps (¢, F) in the solution U is
a continuous mapping for any ¢<7,(p) (it follows immediately from (3.4)).
2) Let us define B(x%, p) = {z€C": |z—z"|<p}. By translations one easily
extends the conclusions of point 1) to the following situation:

oI’ (B(x’p)) FeL'([0,T], 4 (B("p))), where p<{1/4A, "€ R".

More precisely, one obtains a solution UeH"'([0,¢], ' (D..)),
0<t<1,(p), where
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D,.= {zeC": w2t <p(1+c j’ E%dr) + f _——AEQ dr,
. 0 0 0

|v|<p <1+cj P(r)dz'>

3) Now we want to extend these results to a more general situation, say
eed’' (DY), FEH"'([0,T], 4’ (D)), where Df={zC*: xK, |y|<p},
0<p<1/4A and K is a compact subset of R".

We recall the following property of holomorphic functionals (see [6]):

If T is an holomorphic functional carried by Dg, then, for any fixed
6>0, if By, -, ByC R" are closed balls of radii ¢ such that KC B,U ---U B,
there exist T4, **+, Ty, holomorphic functionals such that 73, is carried by

3, and T=T,,+-+Ty,

So there exist @4, >, ®xe> Fug v, Fwe such that ¢=¢ 4 -+ dwe;

F=Fi;++Fne ¢..€H (D3), F;,€L' ([0, T], K" (D5)). Now, if 7is

sufficiently small to verify (0°+ 0%) 1/2<i, we can apply the results of point

2) to ¢;,, and Fy,,. We’ll obtain solutions U; ,(¢) on the interval 0<<z<l7,(p).
But, by Ovciannikov’s theorem, the problem (1.1) has one and only one solu-
tion U(¢) on 0<¢<1,(p); therefore U=U, ,+ -+ Uy,

Taking ¢ arbitrary small we achieve the following conclusion:

The solution U(#) of (1.1) for 0<<#<{7,(p) is an holomorphic functional
carried by the domain D§®,

where Q@) = p 1 +c j P () dr)

K= {xem; dist (z, K) <c r P ge 4 f‘ i‘ﬁldr},
0 U LI

c=C (A, 1) (2¢)"8A.

4) We can now complete the proof of the theorem. Let us firstly observe
that, if o is sufficiently small, 7,(0) =7(0). Now take 0, so small that

T
72(00) =7 (00); Ovexp {cj Ma?r} <L,
o e 4A
Let N be an integer such that T/N<t(o,) and set #=jT/N, j=0,
1, N.
Let g€ 4’ (Dg), FEL' ([0, T1.4" (Dg)).
In virtue of point 3), (1.1) has a solution U H"'([0, ¢,], ¥’ (Dg)),

where 0,=0, 1+CJv P(f)d‘c‘><p exp{ j P(T)d}<41A K1={x€R":dlst

(z, o))SJ‘ Mdr+p,—po}. But p,<—, so we can apply the results
LI 4A

of point 3) to the interval [¢,,¢,], obtaining a solution U H"!([t,t,],
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4 (D)), where p,= pl(1+cf’%df)gpo exp{c f TP /ifur} <71171,
1 0 0 0

T * A7)
K, = lze R dist(z, K) < Tdr+p,—p,} so that
Ly

0

K,C {.2: e R": dist (z, Ko) < ﬁ @dr + 00 <exp (f L “P(o) dr) - 1)} :

0

Therefore, iterating this process, we obtain the following result:
For any g€ 9" (D%,), F€ L' ([0, T], %’ (D%,)) the problem (1.1) has one and
only one solution U belonging to H"'([0, ¢], 4’ (D)), 0<¢<T, where

0 (£) = poexp {io fP(r)dz'}
Qz-—{xER" dist (x, K0)<j A(r)d7+p exp I P(t)dr }

Now, if g€ A’ (K,), FEL'([0,T], A’ (K,)), then, Ve>0, g4’ (Dk,),
FeL'([0,T], 4’ (D%,)); therefore U(#) is carried by the intersection of
the domains

{z eC: dist(z, Ko) < f %'f)dr +e(exp (c j %dr) - 1) ,

y1<e exp ( j P(%r)}

ie. U(#) is a real analytic functional carried by
t

K.= {xeR": dist (z, Ko) 5% j A(r)dr}.
0 0

Moreover, U H"'([0, T], A’ (R")) and the mapping which maps (¢, F)
in the solution U is a continuous mapping. This concludes the proof of the
theorem.

Theorem 3. 4.
Let us consider a family of problems

Ai(x, ) U;= Z,.A” (z,)U%,+ B (x, ) U+ F*(x,t) on R"x (0,T),
U'(z,0)=¢"(x) on R".

Let us suppose that the coefficients of this problems verify the hypotheses
of theorem 3.1 uniformly with respect to v. Moreover, we suppose that
VvxER" the family {t—A%(x,t)}, is relatively compact in L'([0,T]).
Then, if {#}, is bounded in A’ (K,) and {F’}, is bounded in L'([0, T],
A’ (Ky)), the solutions U’ are bounded in H"'([0, t], A’ (K,)) vte[0, T].
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Proof.

The proof follows immediately from (3.4): we must only remark that
w((a%)’, €) =0 uniformly with respect to ¥ when e—0, the family {t—A};(z’ £)},
being relatively compact in L'([0, T]) when z° is a fixed point of R™.

Solutions as real analytic functions

We shall now consider problem (1.1) in the case in which ¢ and F
are no longer functionals, but measurable functions, real analytic with respect
to . We shall state a theorem of existence and uniqueness of solution and
a theorem of convergence by means of a duality argument, using previous
results in the space of real analytic functionals.

Lemma 3. 5.
Let us consider the problem

Ui=304,(2,0) A7 @, O U, + B(@, YU+ F (2, 1)
(3.11) on R*x (0,7,
U(x,0)=¢(x) on R"
Suppose that A,(x.t), Ay(x, t) and B(x. t) satisfy the hvpotheses of theoem
3.1.
Then, for any p= A’ (K,), FeL'([0,T], A’ (Ky)) the problem (3.11)
has a unique solution U belonging to H"' ([0, t], A’ (L)) vt€ [0, T], where

L= {xER": dist (, K) 5% th ) ds} .
0 (1]

Moreover, if the coefficients of the problems

U,=30A0(x, ) AT (2, ) U, + B’ (x, ) U+ F* (, t)
1
(3.12) on R*x (0, 7)),
U’(x,0)=¢"(x) on R,
satisfy the hypotheses of theorem 3.1 uniformly with respect to v, {¢’}, is

bounded in A’ (K,) and {F’}, is bounded in L'([0, T], A’ (Ky)), then the
solutions U’ are bounded in H"'([0,t]. A’ (L)) vt [0, T].

Proof.
This lemma is an immediate consequence of theorems 3.1 and 3.4; in
fact, (3.11) is equivalent to

Ay(z, ) U, = ihAo (z,8) An(z, ) A7 (z, ) U,
+ Ay(z, ) B(z, ) U+ As(z, ) F(z,£) on R*x 0, T),
U(x,0)=¢(x) on R"

i.e. a problem of the type considered in theorem 3.1; analogous reasonment
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for the sequence of problems (3.12).

We’ll now prove some a priori estimates on the solutions of (1.1) as

real analytic functions.

Lemma 3. 6.
Let us consider a family of problems depending on some parameter y.

Ai(z, U= 0 A5 (2, ) Us, + B (2, O U+ F*(z, 2)
1
(3.13) on R*x (0,T),
U (x,0) =¢"(x) on R",

where the coefficients A}, A%, B’ verify (1.2) and (2.1) wuniformly with
respect toy. Moreover, we’ll suppose that for Vx< R™, the family of ma-
trices {t—>A}(x, t)}, is relatively compact in L'([0,T]).

Assume that {$’}, is bounded in A(R™ and {F'}, is bounded in H"'
([0, T, A(RY).

Then, given for any vy a solution U” of (3.13) belonging to H"'([O,
T], A(R™), the family {U’}, is bounded in H"'([0,T], A(R")).

Proof.
Let us consider the dual problem of (3.13) on the interval [0, T7]
oriented in the inverse sense, i.e. the problem

V=S4 A% (x, 8) A (z, ) Ve + C* (x, HV + G (z, £)
1
3.19) on R*x (0,7),
V& (x, T)=0 on R",
where GeL'([0,T], A’(Kp)), K; being a compact subset of R", and
C'(z. £) = SW[ A% (., £) A (2, 1) 1., —' B (2. £) A4 (2, ).
1

For any #€ [0, T] the solution V% of (3.14) belongs to H"'([O0, ¢],
A’ (K))), where

T
K= {xeR": dist (z, K ) g% j A(s)ds}.
0 t

We can then confine ourselves in £, where £ is an open set of R",
relatively compact, such that KC&; all hypotheses of theorem 3.1 are ful-
filled in 2, so that lemma 3.5 gives the existence, for any vy and for any
GeL'([0,T],A’) of a solution V%. Moreover, {V%}, is bounded in
H*"'([0, T], A”), uniformly when G runs in a bounded subset of L'([0, T],
A').

Clearly (3.13) is equivalent to
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U= SWAY (x, £) Ab (2, ) U, + A7 (2, £) B* (2, £) U”
(3.15) -;- Ay (x,t)F*(x,t) on R*"x (0,T),
U'(x,0)=¢"(x) on R",
Now we multiply equation (3.15) by V%’ and equation (3.14) by U’

(in the pairing between the analytic functionals and the analytic functions)
and integrate on [0, T'] with respect to z. We easily obtain

~, Ve Oy= [Ar©F©, Ve
+ f(G @), U (@) >de.

r
Therefore j (G (8), U’ (¢) ddt remains bounded with respect to v, uniformly
0

when G runs in a bounded set of L'([0,T], A’). This implies that {U’},
is bounded in L= ([0, T'], A); by the equation (3.15), we obtain that {U"},
is bounded in H"!'([0,T], A).

Theorem 3. 7.

Let us consider problem (1.1) and assume that the coefficients verify
1.2) and (1.3).

Then, if pc A, Fe L' ([0, T] ,A) the problem (1.1) has a (unique) solu-
tion U H"' ([0, T], A).

Proof.

The uniqueness of the solution is an immediate consequence of lemma
3. 6: indeed, if U is a solution of (1.1) with ¢(x) =0, F(x,t)=0, we can
apply lemma 3.6 to the sequence U'=yU, v=1, 2, 3 -+, obtaining that {U"},
is bounded, i.e. that U(x, ) =0.

Now we’ll prove the existence of a solution U. Let us firstly observe
that is not restrictive to assume the following hypotheses:
Coefficients Aq(x, t), Ay(x,t), B(x, t) verify (2.1) with Ly, A4,

(3.16) { o .
Ay () and I, (¢) independent of the compact K.

Indeed, let us define
.Qi(s)={(x,t) eR*x [0, T]: t=s, |x|<i—%j'/1(r)dr},
0 0

I'i'= U $£:(s). Then clearly,

0<s<T
R = i[_]lszt(O), R*X[0,T] = f_]lri.

If we have found for any 7 a solution U; of our problem on the conoid
I'; and U, H"' ([0, t], A(2;(2))) for any ¢, then, in virtue of the uniqueness
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of the solutions, U; must coincide with U; on I'; for i==j. In conclusion the
functions {U,} will define a solution U on R*X [0, T], U H"'([0, T], A).

Now the coefficients restricted to £2; X [0, T'] verify (1.2) and (2.1) with
Ly. Ay, Ax(t) and Iy () independent of K. Therefore we shall assume for
the rest of the proof that (3.16) holds. '

In order to solve our problem, let us construct a sequence {¢’}, of entire
functions and a sequence {F’}, in L'([0,T], ) such that, as y— 4 oo,
#—¢ in A; F'-F in L'([0,T], A).

Let us consider (1.1) with data ¢’ and F”.

The coefficients can be extended (as functions of the x-variables) for any
t<[0,T] to holomorphic matrices on the open strip of C"

Dipa={z€C": |y|<1/24}, z=x+1iy, z.yER".
Moreover (2.1) and (3.16) imply

SUlAu(z ) |<e, A (&) for any 2EDya, te[0, T1.
1

for some constant ¢, depending only on .

We can then apply the theorem of Ovciannikov (see §2), obtaining a
solution E]”(z 1), holomorphic in 2z in the strip D,,, for 0<¢<<t, provided
that jw&d < T cn

o Ao 44’

In particular, U’e H"'([0,t]. A). By lemma 3.6, {U’}, is bounded in
H"'([0, ], A) for any &[0, 7].

Now the embedding of H"'([0,¢], A) in C([O0, ¢], A) is compact, so that
{U’}, is relatively compact in C([0, £]. A). On the other hand, U’ are solu-
tions of (1.1); therefore {U’}, is relatively compact in H"'([O0, ¢], A), for
any ¢: 0<:<r.

By this compactness argument, we can find a subsequence of {U"}, con-
verging in H"'([0, 7], A) to some U e H"'([0,7], A), and it’s immediately
seen that U is a solution of (1.1) on R"X [0, 7].

Iterating this reasonment, i.e. dividing [0, T"] into a sequence of subinter-
vals [#;. ¢;41] such that

j‘“A(s)d<c,L
4A

we obtain a solution U H"'([0,T], A).

Theorem 3. 8.
Let us consider the sequence of problems

Az, ) U= ZhA”(x DU, + B (z, ) U+ F (x,t)
on R*x (0,7T),
U'(x,0)=¢"(x) on R",
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where A%, A%, B’ satisfy (1.2), (2.1) uniformly with respect to v. Sup-
pose that, as y— + oo,

Ab(x, t) > A (x, t)  strongly in e (R*X [0, T17]),
Av(x, t) > Ay (x, t) weakly in e (R"X [0, T17),
B (x,t) > B(x, t) weakly in  Li,(R"X[0,T1]),
P'—¢ in A; FP—-F in H"' ([0, T], A).

Then A, An B satisfy (1.2), (2.1) and {U”},»U in H"'([0,T], A),
where U is the solution of the limit problem

Aoz, U= S0 As (2, ) Usy + Bz, DU+ F (z,)
(3.17) on R*x (0, T),
U(x,0) =¢(x) on R™.

Proof.

It’s immediately seen that A, A,, B satisfy (1.2) and (2.1). Now,
taking into account the equicontinuity, from R" to L'([0, T']), of the maps
x—> A} (x, t), we obtain that, for any z& R", the family of functions {t—A}
(z, t)}, is relatively compact in L'([0, T1]).

We can therefore apply lemma 3.6, by which we get that {U’}, is
bounded in H"'([0, T'], A). Reasoning as in theorem 3. 7, we see that {U"},
is relatively compact in H"'([0, T'], A) ; therefore, we can find a subsequence
of {U’}, converging near some ijH“([O, T], A).

Clearly U is a solution of (3.17); by uniqueness, U=U; hence the
theorem is proved.

§ 4. The non-symmetric case.

Now we want to extend the results of §3 to the class of non-symmetric
regularly hyperbolic systems.

We’ll prove theorem of existence and uniqueness of solution in the space
of real analytic functions and a theorem of convergence of solutions for a
sequence of problems; these theorems are analogous to the ones we gave in
the first section, although the proofs slightly differ from the previous ones.

We remark that these results of existence of solutions are obtained without

applying the theory of pseudo-differential operators.

Solutions as real analytic functionals

Let us consider the Cauchy problem (1.4) on R*"X [0, T']. Assume that
the coefficients satisfy (1.5) and the following hypothesis of regularity:
There exist some positive constants A, L and some positive functions

A(t), I'(®) €L*([0, T]) such that
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Z.n(An (z, )71, 7>=A|r|* Vz,t:VreR”,

|DIA,(z,8) |<A(@)L"'j! VvjeN",
|DiB(z, &) |<I' (@) L"'j!l VjeN".

Under these hypotheses we’ll prove the following

Theorem 4. 1.

For any ¢ A’(R"), FeL'([0,T], A’(R")) the problem (1.4) has
a (unique) solution U H"'([0,T], A’ (R™)).

More precisely, if K, is a compact set of R" such that €A’ (Ky),
FelL'([0,T], A'(Ky)), then UeH"' ([0, T], A’ (K,)) Vvite[0,T], were
K,={xe R": dist (x, K;) < At}.

Lemma 4. 2,
Consider the Cauchy problem

V=i ";,,c»an OV +i ihc"{ @0V}
4.1) +35a, @OV + £, 0, 0<e<T,
V(0 =V,

where the measurable functions a"(t), p%(¢), q;(¢) are valued in the space
of real NX N matrices and satisfy the following conditions:

D @' ®eC0,T]), 2ua" 7. =1l vreR,

i) For vE€R™\{0}, v¢€ [0, T] the matriz a (&, t) =3 £%a"(2)
1

has N real and distinct eigenvalues u,(t,€), -, ux(t, &) ;
moreover inf |u(t, &)—u (2.8 1=0>0,
e 1)
1

(4.2) 1
s
i) 340, P(2), Q@) €L([0,T]):

30 1250 ISP AV, |g(0)|SQ) AV, ViEN™

N

Suppose V'O €51, (& HELNO.TLID, VL [17& 0
<Me"'*!, 0<p<1/4A.

Then there exists an increasing function t(0) such that (4.1) has a
solution Ve H"'(0,t(0), ¥) satisfying the following estimate for any
e>0 (ext(0):

4.3) |V 0| <4Me"% exp {[(Ze)"SaAp _{:P (©)dr + _Z_Aa%o (a, s)] 14

+Aal?7|t+%w(a, &) + [a+ (2¢)"8aAp] ﬁ‘Q(r)d:}.
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where « is a positive constant depending on a"(t) and 0 and w(a,e) is
a continuous function depending on a"(t) such that lim w(a, ) =0.
e—0

Proof.

Before we begin the proof of this lemma, under many points of view
quite similar to the proof of lemma 3. 3, we recall some well-known properties
of the matrix a (¢, &) (see [8]).

As a consequence of (4.2)—ii), there exists a non-singular measurable
matrix 7n(¢,§) (made up by normalized eigenvectors of a(z,£)) such that

i) n(¢,§) is homogeneous of degree 0 with respect to §,

i) |2 8IZ51/2, In7' (@8 ISa/2 Ve, VE, a1,

i) n(8a(t,é) =dt,&n(t,§), where d(¢,§) is a diagonal matrix

whose non-zero elements are #,(¢,€), -+, uxy(¢, €).
By hypothesis (4.2) —i), n(¢,§) is continuous with respect to ¢; therefore,
if p.(¢) is the Lipschitz-continuous function defined in the proof of lemma 3. 3
and if, for any €>0, we define

be (2, 8) = j 5. 8 0e () ds, co(t.8) =n(t, &) —be(t,)

we see that b.(¢,§) is a non-singular matrix, Lipschitz-continuous with respect
to ¢, such that

16 (2, 6) I=1/2, [677(2, §) |I=a

for ¢ sufficiently small, Clearly we have

. 4 f'm(t, &) |dt<w(a, ¢), |eet, &) |<1,
[N <209,

T—¢
where w(a,€) = sup J ln(t+s, &) —n(e &) |dt.
1€]=1 0
<s<e

We remark that lim w(a, €) =0, uniformly when the matrices a"(¢#) run

§-0

in a relatively compact subset of L'([0, T]) and satisfy (4.2)—i), ii) with
fixed constants A4 and 0.
Now, just as we did in the proof of lemma 3.3, we define B(¢,0) =p

t
+ (2)"8aAp j P () de+ Aat and (o) = % sup{e<T: B(t, 0) <20}.

Moreover, we define V,; as the solution of the problem

{ Vi=i D OVit aOVi+ £E 1), 0<e<r (o),
Vi, 0 =V(0).

By induction we can define V,,, as the solution of the problem
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Vigr =1 ;n Ca" O Vim+a @) Vi
2 CH{ R 2T O0V) + 2O,
Vi (§,0)=0.

We’ll prove by induction the following estimates (for any 4, any < t(p)
and e<E(0)):

4.5  |V.(C 0 |<daM <%>kexp {[p+ (2¢)"8aAp ﬁ ‘P(o)dr
+%Aa2 L'm(r, &) ldt] [T

+ j 152 (, &) |dr + [a+ (2¢) "8 Ao] L ‘0 (r)dc}.

By substitution of (4.4) in these estimates, we get the convergence in
C([0,7(0))], 9) of the series i‘L V. (&. ¢) near some function V (&, £) which
1

satisfies (4.3) and is a solution of (4.1); therefore, just as in lemma 3.3,
we have only to prove (4.5).

At first, we observe that V,({,¢) is a solution of an ordinary system
of the type

V=i z SOV +a, () Vg (. t), 0<t<r(p).

If we define W, (&, t) =b:(¢, &) V(& t). we see immediately that W, solves

the following problem (where we set W/ = g We, b! =aﬁb5:
t t

Wi=bb;'W  +id (¢, )W +id (¢, &) c.b7' W . —ic.ab; W,
— b, (in 7'a" () b7 W .+ b.qib7' W+ b.g .
1

Defining E.(£.&) =W, (2. &) |. we easily get (setting E.= —g—tEs) :

A, (¢, &)|(C] +24aln]

E! <t>s{za1b: GRIEE

+2a0Q (1) }Ee@ +219(C, &) | [E. ()],

Dividing by 2[F¢(£)]"* and using Gronwall’s lemma we obtain |W, (&, ¢) |
<[IW.( 0) |+ fle-sm g (&, D) |de]e®, where
0

S (&) = daln|t + L’[lbz 8] +%Aa2|c,<r, 11¢l +aQ<r>]dr.
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In conclusion we get the following estimate on V:
t
VEHISIVE ) |+ [ lg 9ldees.
0

From now on, the proof of this lemma and the proof of theorem 4.1
are similar to the ones we gave in § 3; therefore, we’ll not repeat them, We
must only observe that the estimate on the growth of the carrier of U(2)
prescribed by theorem 4.1 is not an immediate consequence of lemma 4.2
In fact, starting from lemma 4. 2 and reasoning just as we did in the symmetric
case, we would obtain the following result:

For any g A’ (K,), Fe L' ([0, T], A’ (K,)) problem (1.4) has a unique
solution Ue H"' ([0, ¢], A’ (4,)),0<t<T, where 4,= {re R": dist (x, K,)
<aAdt}.

Because of the presence of «, this estimate is not sufficiently careful for our
purposes; therefore, we’ll briefly show how to obviate this difficulty.

By means of the Fourier transform with respect to x, using a modified
(and simplified) version of lemma 4.2, one easily obtains that problem 1.4
has a solution Ue H"!([O0, ¢], i’ (I')), 0<t<t, where t is sufficiently small
as prescribed by the theorem of Ovciannikov (see § 2) and I',= {z&C": dist
(z, Ky) <At}

On the other hand we know that Ue H"'([0, T], A’ (R")); therefore
(see [6]) we obtain that

suppU@) CI'NR"=K,, 0=¢<r.
Iterating this reasonment, we prove that
supp U(#) c K, for any t<[0, T].
As a consequence of lemma 4.2, just as in the symmetric case, we have

the following

Theorem 4. 3.
Let us consider a family of problems

U;=$,, A4 (z, ) Us, +B*(z, ) U*+F*(z,t) on R*x (0, T),
U’ (x, 0) =¢"(x) on R*,

Let us suppose that the coefficients of this problems satisfy the hypotheses
of theorem 4.1 uniformly with respect toy. Moreover, we suppose that for
VxER" the families (t— A} (x.t)}, are relatively compact in C([0, T]),
h=1, - n.

Then, if {¢’}, is bounded in A’ (R™) and {F'}, is bounded in L'([0,
T], A’ (R"), the solutions U’ are bounded in H"'([0,t], A’ (K)), VtE
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[0, T] (see th. 4.1).

Solutions as real analytic functions

We shall now consider problem (1.4) in the case in which ¢ and F are
measurable functions, real analytic with respect to .

We shall state a theorem of existence and uniqueness of solutions and a
theorem of convergence by means of a duality argument, using, just as we did
in the symmetric case, previous results in the space of real analytic functionals.

We only remark that the dual problem of problem (1.4) is

Vi=3%4s(z,) V4 +Clz, )V +G(z,2) on R*x (0, T),
1
V(x, T)=0 on R",

(4.6)

where C(x, t) = é,, [Ay(x. )], —‘B(x, t); clearly (4.6) is again a regularly
1
hyperbolic system.

Starting from theorems 4.1 and 4.3 and reasoning just as we did in the
symmetric case, we obtain the following theorems:

Theorem 4. 4.

Let us consider problem (1.4) and assume that the coefficients verify
1.5) and (1.6).

Then, if A, FeL'([0,T], A) the problem (1.4) has a (unique)
solution U H"' ([0, T], A).

Theorem 4. 5.
Let us consider the sequence of problems

Ur=3" Ai(z, ) Us, + B (z, ) U+ F*(z,) on R*x (0,T),
1
U'(x,0)=¢"(x) on R*,

where A%, B satisfy (1.5), (1.6)—i) and (2.2) uniformly with respect
to v. Suppose that, as y— + oo,

A (x, t) > A (x, t) uniformly on the compact subsets of R"X [0, T],
B (x,t) >B(x,t) weakly in L},.(R*"X[0,T]), ¢#—>¢ in A; FP-F in
H"' ([0, T], 4).

Then A, B satisfy (1.5), (1.6) and {U*},—U in H"'([0,T], A),
where U is the solution of the limit problem

U,=3% An(z, ) U, +B(z, ) U+ F(x,£) on R*x (0, T),
1
U(x,0)=¢(x) on R".
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