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Introduction

Let X be a smooth projective variety with the ample canonical invertible
sheaf Ky defined over C. Then, the Kuranishi family 7: X—S of the de-
formations of 77'(s,) =X (5,E€S) is canonically polarized and universal, and
hence Aut(X) induces an action on the family 7: X —S preserving s,. Take
cEAut(X), set S°= {the fixed points of ¢ in S} and denote by n%: X°
—S? the restriction of the family 7: X¥—S to S’S. Then ¢ induces an
action on the variation H’= (H%,V’, F’, Q°) of polarized Hodge structures of
weight # arising from the restricted family z°: X¥°—S° In particular, the
local system H%=H%QC (resp. each Hodge filter (F°)*) decomposes HY
=€;)H§ (resp. (F‘)‘=GA-)(F‘)§) into the eigen subsheaves under the action

of ¢ and we have
H{®Ose= (F);D (F)}D-- D (F);D{0}

for each eigen value 4 (see Theorem 1.4). In this manner, each automorphism
of X imposes a restriction on the variation of Hodge structures. We state this
fact in the section 1.

In the sections 2 and 3, we study, as an example, the surfaces with
py=ci=1 and K ample. We calculate all the automorphisms of these srfaces
and determine explicitly the induced action of each automorphism on the vari-
ation H’= (H%,P’, F°,Q°) of polarized Hodge structures of weight 2 arising
from the restricted family #°: X°—>S° (see Theorem 2.14) (The calculation
is carried out in the section 3). After constructing the fine moduli #: ¥
—M of marked surfaces and period map @: ]\7—>D, we rephrase mainly
interesting part of the above result into the language of period map @ and
we get that some automorphisms of the surfaces X give an effect on the
period map @ to have positive dimensional fibres through the points corres-
sponding to X (see Theorem 2.29).

After having prepared this paper, the author notices the paper of K. N. Chakiris [10].



646 Sampei Usui

The author thanks Professor A. Fujiki and Professor K. Ueno for useful
suggestions.

Notation and convention.

Every variety, in this paper, is defined over the field C of complex
numbers.
For complex analytic manifold X,

2% =the sheaf of holomovrphic 1-forms on X,
=42,

Ky=det 2% and

Ty=the dual sheaf of 2%.

§ 1. General theory

Let X be a d-dimensional smooth projective variety and let m: X—S
be the Kuranishi family of the deformations of e&: XX, =77"(s,) (s,€.S).
We denote by Aut(¥,S,m, s,) the automorphisms of the family 7: ¥—S
preserving the point s,E.S, and let

e*: Aut (X, S, 7, s) > Aut (X)

be the homomorphism sending c€Aut(X, S, 7, s)) to & ' (0lx,) ce € Aut (X).
We assume, for simplicity, the following two conditions throughout this
section:

(1.1) The canonical invertible sheaf Ky of X is ample.

(1.2) The parameter space S is smooth.

Lemma 1. 3.
1.3.1) The family w: X—S is canonically polarized.
1.3.2) Aut(X) is a finite group.
(1.3.3) e*: Aut(Z, S, 7w, so) »Aut(X) is an isomorphism.

Proof. Since we consider the family 7: X—S in the sense of germ at
s, and since ampleness is an open condition, (1.3.1) follows from (1.1).

X is canonically polarized and hence Aut(X) is an algebraic group.
By the vanishing theorem of Kodaira-Nakano, H°(X, Ty) =0, since Ty=~2%"
®K3z' and (1.1). Therefore we have (1.3.2).

H(X, Tx)=0 implies that the Kuranishi family z: X’—.S has the universal
property (cf. [9]). (1.3.3) is an immediate consequence of this universality.

Q.E.D.
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Let H= (H,,V, F,Q) be the variation of polarized Hodge structures of
weight 7 over S arising from the canonically polarized family 7: X—S
(cf. [2], [4]). We recall here briefly the notation Hy, V, F and Q. Denote
by we H"(S, R°t,Z) the cohomology class of the relative canonical invertible
sheaf Kg,5. Define

P, Q=Ker (R"H*Qﬂ»R”""“n'*Q) and
P, Z=P7*QNIn(R"1, Z—R"7,.Q).
Then, we denote
by Hj,=the local system P"m,Z,
by F =the Gauss-Manin connection on H,=H,R0Os,
by F=the Hodge filtration of H, and

by (Q=the locally constant bilinear form on H, defined by

Q@M = (=D [ eArAOH*

for & 7€eP"(X,, C) =H,(s) (s€S), where X,=7"'(s) and o(s) e H"' (X))
induced from .

Now we consider the effect of an automorphism of X on the variation
of polarized Hodge structure H. Aut(X) acts on the family 7: X—S via
(1.3.3). Take 0= Aut(X) and denote by S° the fixed points of ¢ in S.
Note that S is a submanifold of S because ¢ is of finite order. Let

72.6: %o‘_)So‘

be the restriction of the family 7: X —Sto over S’ and let H*=(H%,V°, F’, Q%)
be the variation of polarized Hodge structure arising from the restricted family
7°: X°—>S°. We see, by functoriality, that

H?=the restriction of H to S°.

Since ¢ induces the action on H’, in particular, the Hodge filtration

He = (F)'D (F°)'D:D (F9)"D {0}
is compatible with the action of ¢ on H% =H%XOs. Let
H‘6=@H§ (resp. (F’)'=('AB(F’)§)

be the decomposition of the local system H%=H%QC (resp. the locally

free sheaf (F’)%) into the eigen subsystems H: (resp. subsheaves (F9)}) -

under the action of ¢, where A denotes the corresponding eigen value.
Summarizing up the above, we can formulate the effect of an automrphism

¢ of X on the variation of polarized Hodge structures H as follows:

Theorem 1. 4. With the above notion, we have
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H{®O0ss= (F);D (F)iD D (F);D{0}

Sfor each eigen value A.

Remark 1.5. Recall that the identification Ts=R'n,Tx;s is com-
patible with the induced actions of ¢. Let

Ts®0 8§06 = G?Tx

be the decomposition into the subsheaves under the action of 0. Then
we have

Ts«f =T, .

that is, Tss can be considered as the subsheaf of R'7yTxe,s6 consisting of
the O-invariant sections.

§ 2. Example; surfaces with p;=c}=1 and K ample.

(a) F. Catanese showed in [1] that every canonical model of a minimal
surface X with p,=c}=1 can be represented as a weighted complete intersec-
tion of type (6,6) in P(1,2,2,3,3) (for the notion of weighted complete
intersection see [7]). Note that if we assume furthermore the canonical in-
vertible sheaf Ky to be ample, X has no rational curves with self-intersection
number —2 and hence X is isomorphic to its canonical model.

Let R=C[xy, ¥;, ¥2» =5, 24] be the weighted polynomial ring with deg x,
=1, degy,=degy,=2 and deg 2;=deg 2,=3. The defining equations of a
smooth weighted complete intersection of type (6,6) in P(1,2,2,3,3) can
be normalized as follows (cf. [1]):

f=25+ Pz + [ ,

2.1
@b g=2i+0V22,+ 99,

where f and g are linear and f® and g are cubic forms in z}, v, and
y,, i.e., by using the notation y,=zxi,

2
fO=5f e [O=_ 3 iy e,

I<i<i=k<?
1 = 3y
9P =3¢y, g9 = D Q¥ iVk -
i=0 <I<I<k<?2

These coefficients form a Zariski open set U in 26-dimensional affine space,
that is,

the corresponding surface is a smooth
U=1 uc A weighted complete intersection of type
6,6) in P(1,2,2,3,3)
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For u,u’ €U, denote by f and ¢ (resp. f' and g') the normalized forms
as (2.1) corresponding to # (resp. #’) and by I, (resp. I,.) the homogeneous
ideal of R generated by f and ¢ (resp. f' and ¢’), and set X,=Proj(R/1,)
(resp. X, =Proj(R/1,.)). Since Kx,=0x, (1) (resp. Ky,=~0x, (1)), we have

® H (X, K$)=R/I, (resp. ® H'(X.,K§})=R/I.).

m=>0 m=0
Hence, an isomorphism ¢: X,—X,. induces the automorphism as graded ring
6: R—>R with ¢I,, =1, (we use the same letter ¢ for simplicity of notation).
More explicitly, ¢ can be represented by a non-degenerate matrix

1
do | dn du '
2.2) | dw | du da or
d,
d,
1
do| dn dn
(2.3) | dow| du  dn
ds
d,

with the action

Gxozxo )
O'yi=d¢ox:‘;+duy1 +dpy, (i= 1, 2) ’
O-zi=dizi (i=3a 4) s

in case (2.2), and

0%y =Xy ,

Oyi=dyri+duy,+duy, (¢=1,2),
023=d,2,,

0z,=dz;,

in case (2.3)%.

* ¢ can be represented in this manner by choosing a suitable pair of isomorphisms Kx,~0Ox, (1)
and Kx, =~0x,-(1). :



650 Sampei Usui

Denote by G the group consisting of these matrices 0. Then, the induced
action of G on U is

f=0f'/d;. g=o09'/d}
in case (2.2) and.
g=0f'/dy, f=o0g'/d}

in case (2.3). Note that the quotient space U/G is the coarse moduli space
of the surfaces with p,=c}=1 and K ample (cf. [11]).

Set n’: X’—>U the smooth family of the weighted complete intersections
of type (6,6) in P(1,2,2,3,3) parametrized by U. The induced action of G

on X’ is evident.

(b) Let X be a smooth weighted complete intersection of type (6, 6)
in P=P(1,2,2,3,3). Denote by ¢ a basis of H°(X, K;) and by C the
divisor of the zeros of ¢, i.e. the canonical divisor of X. By using the
well-known exact sequences

(2. 4) 0—>Tx—>TP®Ox“—)NX/p_’O s
(2.5) 0-0y—> @ Ox(e) >TpROx—0
<i<4

(where ¢,=1, ¢,=¢,=2 and ¢;=¢,=3) and
(2. 6) 0—>Nex—> 25 ®0c—2—0 ,

we can calculate easily the following data on cohomology groups:

2.7 HY(X.Ty) =H*(X.Ty) =0, dim H' (X, Tx) =18.
(2. 8) H(X, 2%) =0, dim H'(X. 2) =19.
(2. 9) HY (X, Tp®0x =0, dim H'(X, TpQKy) =1.

(2.10) dim H*(C, 2YR0,) <2.

Let w be the fundamental (1, 1)-form on X corresponding to the canonical
polarization of X and let

H' (X, Ty®Ky) SH* (X, Ky)

be the map defined as the contraction with . Tensoring Ky to the exact
sequence (2.4) and taking the cohomology sequence, we have

H*(X, Ny p®Ky) S>H (X, TaQKn) —H' (X, TQK»)

Lemma 2. 11.

HY(X. Ny p®Ky) SH (X, TaQKn) SH* (X, Ky)



o))
)]
-

Variation of Hodge structures

is exact.

Proof. weH'(X, £5) comes from some d€H'(X,2,K0x) and we

have a canonical factorization

H' (X, TxQKy) —H*(X,Ky).

! e
H' (X, Tp®K )

Since o is surjective and dim H? (X, Ky) =dim H' (X, Tp®Ky) =1 from (2.9),
we get our assertion. Q.E.D.

(¢) Let X be a surface with p,=ci=1 and Ky ample. By (2.7), we
see that the Kuranishi family 7: X—S of the deformations of &: X5X
=7""(s) (5ES) is a universal family with the smooth parameter space S
of dimension 18. Let F = (S. FH,.V, F. Q) be the variation of polarized Hodge
structures of weight 2 arising from the family 7: 2 —S.

Note that in case of weight 2, by virtue of the polarization Q, the Hodge
filtration F can be uniquely determined by its second filter F? ie. F'=H,
and F'= (F*+ with respect to the bilinear form Q. Note also that rank F°
=dim P*(X, C) =20, rank F'=dim P*°(X) +dim P*'(X) =19 and rank F?
=dim P*°(X) =1. Hence, in order to get the explicit form of the result (1. 4)
for our present example, it is enough to perform the following program:

(2.12) Choose a representative from each equivalence class of
{a

{X, X’ surface with p,=ci=1 and K ample,

3X: a surface with p,=ci=1 and Ky ample, }/
st 0 Aut(X)

st e Aut(X), 0’ €Aut(X’) and 0’ =tofor ",

(2.13) For each representative ¢ in (2.12) and for each surface

X with c€ Aut(X), determine explicitly the decompositions of the sheaves

% (FO)? and TsQOgse into their eigen subsheaves under the induced

action of 0. (Here we use the notation H%, (F°)* and TsQROse in the
same sense as in the section 1.)

We will carry out the above procedure in the next section. Consequently,
we obtain:

Theorem 2.14. Any automorphism o0+id of a complete, smooth
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surface with p,=ci=1 and K ample is equivalent, in the sense of (2.12),
to some 0; in the table below and such a 0; is uniquely determined by
0. The induced actions of 0 on TsQOs, HY and (F°)* are as follows:

O.NO‘¢

induced action of ¢ on TsXCOss, (F)?
and H° respectively

g=(@1,1,1,1, - 1)

(s, =I5) (—1)
(=1, 1)

0y= (1’ 1, _19 _la Z)

Ly, — 1, i1y, —21)) (—7)
(—ils, 21y, Iy, — I,)

O3= (1$ 1’ 1’ _1’ _1)

(T, —Is) (D)
(Ilz, - Is)

0= (1’ —'la —19 i’ i)

(Ie, ’_‘Ie, iI‘, —iIz) (—1)
(—1Is I, —il,, 1)

Os= (1, _1, —la i’ _i)

(Lo, —Io, ils, —il5) (1)
(IBa _II, iIl, _ill)

66': (1, _i! i’ 89 6_1)

Uy, =1, i1y, —ily, el , e7'1,, —el,, —e7 ') (1)
(14, —I4, iIz, '—ilz, 812, 8_112, —812, '—6_112)

O07= (1, _i9 i’ g, _s_l)

(Iz, _‘14, iIs, —i.[:;, 812, S_II,, —SI,, —‘8_1[2) (—1)
.(""14, 14, _‘iIz, iIz, _‘812, ‘—3_1.[2, 612, €~lIz)

g=(1,1,0,1,1)

(19’ wI'l, szz) (w)
(01, 0?1y, I,)

Oy= (1) 1, , 17 _1)

(I, oIy, —1I,, —ol,, 0'l;,) (—o)
(— oI, — o', oI, o*I;, — 1))

610= (1, 1, (D, —1, —1)

(15, wI5, _I‘, "—(DIz, a)zlg) (U))
((1)15, w215, _‘C()I4, —_ w2I4, Iz)

on=1,0,0,1,1)

e, 01, 0I5) (00%)
(0’1, oIy, Ig)

Oyp= (1’ 0, 0, 1’ - 1)

(I, 014, 01s, —001,, I) (—0?)
(_a)zlg, —0)13, _14, Ig, (,l)e.[l, a)I,)

0-13: (19 a)r _wa _.'1’ Z)

Iy, — 0*I, —Is, 01, 0l;, —0l,, iol,, —inl,, i1,)
(—io®)

(— i, ioly, i, —iol,, —il,, il I,
—I,, o', ol,)

6“= (1, w, 0, — 1, —‘1)

Iy, 0L, oI, —0I, —1I5) (0%
(0)215, 6015, Iz, — Id, - wZIZ, - wIZ)
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Oi5= (1’ , w2, 11 1)

Ls, 01, 0*Ig) (1)
(I, 0I5, ©*I5)

0= (1’ o, wz’ 17 _1)

(15, —Il, U)Is, a)ZI.';, '_'wll; '—wzll) (_1)
(= Iy, I, —ol,, —o’l,, ol,, 0’I})

On= (1’ o, w2, - 17 - 1)

(14, —Iz, wl,;, (1)214, _“(,012, '—wzlz) (1)
Ls, — I, 0I5, 'Ly, — 015 —0'ly)

O = (]'s 1’ _1’ (1’ 1))

Uy, =I) (=D
(=1, Iy)

Oy = (19 17 _1, (]') _1))

(Is, —‘Ie, iIa, _ila) (1)
(I, —1Is, i1y, —1il))

64’= (ly i’ '_'i7 (1’ i))

s, = 1Is, i1, —ily, ey, —e™ 'y, 7, —elp) (—1)
("iIh iI;, Ig, '_"Ig, 8_1.[2, 812, ——612, —e_l.lz)

Oy = (19 _ly w2’ (11 1))

Iy, 'L, —Is, — 0Ly, 0l,, —0l;) (—o?
("—‘wzlﬁ, _'(1)15, (02]‘, U)I{, _‘Il, Il)

Oy = (1’ _ly w2’ (1, _1))

Iy, 0I5, — Iy, — 'y, i1, —io*l,, —il,, i0'l,,
ol;,, —ol,) (o)

(01, 0I5, — 01, —ol,, i0'l, —iol, —iv'l,,
il I,, —I,)

where we use the notation:

0~0; is the equivalence relation in (2.12).

i=+—1. w=exp(27i/3)

(1, dl, dz, ds, d4) =

(1, d;, dz, (ds, d4)) =

(=1, . 7).

and c=exp(21i/8).

4,
d, eG and

ds
d,

d,
dz eG.

ds

d.

(T o+ 2. 1,,) indicates that the rank of l-eigen subsheaves is m,
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Remark 2.15. There are several relations among ;s in the table
in Theorem (2.14), e.g. 01=0i=0:=02=0s, 0= 00,0, etc. In particular,
only the following are of prime order:

0-1’ 63, Ja, 0‘11y 0-15 and Og-.

Corollary 2.16. For any surface X with p,=ci=1 and Ky ample,
Aut(X) »Aut (P*(X. C))

is injective.
Proof. This is an immediate consequence of Theorem 2.14. Q.E.D.

(d) In this subsection, we will rephrase some of the result in Theorem
2.14. We continue to use the notation X, w: X—S, H= (S, H,,V,F,Q).
7% X°—>8? and H°= (S° H%.V’, F’. Q% in the same sense as in the subsec-
tion (c).

Let
(2.17) ¢: S—»D

be the period map associating to the variation of polarized Hodge structres
H. Recall that (2.17) is constructed in the following way: Fixing a C=>-
trivialization of the family 7: X—S, we get the isomorphisms «,: P?*(X,, C)
—P*(X,C) (s&S) preserving the polarization Q. Then the map

b: S>P®= {lines in P*(X, C) through the origin}
defined by
b (s) =the line o, (P**(X,)) in P*(X, C)
is holomorphic and factorizes
S — P19
N
D

cD
where
D={¢€P"|Q(£,6) =0} and
D={¢eD|Q(£.5) >0}.
This map S—D is the period map (2.17).

Lemma 2.18. The fibre of the period map ¢ through s,is at most
2-dimensional.
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Proof. By the result of Griffiths ([3]), the differential d@(s,) of the
period map ¢ at s, can be identified with the map

H'(X, Ty) »Hom (P**(X), P*' (X))
induced from the pairring
Tx®KX—)gfr.

On the other hand, we get the exact sequence

H(X, 9 »H* (X, &s®00) ~H' (X, T) S H' (X, 2%)

where we use the notation ¢ and C in the subsection (b). Since H'(X, £%)
=0 (2.8), we have

Ker dp (s)) = Ker (H' (X, Ty) S H! (X, 2%))
~H(X, 22R0,).

Hence, we get the assertion from (2.10) Q.E.D.

Proposition 2.19. We use the notation in Theorem 2.14. If there
exists c€Aut(X) with 0~0, or 03 (resp. 0~~0s), then the fibre of the
period map ¢ in (2.17) through s, is of dimension =1 (resp. =2).

Proof. Since D is a smooth quadratic hypersurface in P® and D is

an open subset of D in the classical topology, we see that T, is a locally
free sheaf of rank 18. On the other hand, the pullback of the horizontal
tangent bundle 7% is Hom (F? F!/F? which is also of rank 18. Therefore

we have
(2. 20) ¢*Tp=Hom (F? F'/F?.

Note that, via the action on P*(X, C), Aut(X) has the induced action
on D and the period map ¢ in (2.17) becomes Aut(X)-equivalent. Denote
by D’ the submanifold of D consisting of the fixed points of ¢ in D. Then,
we have the commutative diagram

s%p
(2.21) U U

(4
% pe

From (2.20) and the functoriality of variation of Hodge structures, we get

(@) * (Tr&Q0ps) =¢* (Tp) RO g0
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~Hom (F?, F'/F*) ®Oss
~Hom ((F°)%, ("F)'/(F)?),

Where the identification in every step is compatible with the action of 4.

By using the fact that the Hodge bundle (F%)°/ (F°)' can be identified
with the complex conjugate of (F’)® and that ¢ induces a real operator on
H¢Y, we can derive the induced action of ¢ on Hom ((F)% (F°) '/ (F°)?% from
the table in Theorem 2.14. Because of the same reason in Remark 1.5,
T pe can be naturally identified with the eigen subsheaf of TR ps with eigen
value 1 under the action of ¢. Thus, we get

rank Tgo rank T pe
0~0, 15 14
(2.22)
0~0s 12 10
O.No.s 9 8
The assertion follows from (2.22) and (2.18). Q.E.D.

Fix a smooth, complete surface X with p,=c?=1 and K; ample and denote
by L the Euclidian lattice consisting of the Z-valued primitive cohomology
group P*(X, Z) plus the Hodge-Riemann bilinear form Q on P*(X,Z). Re-
call that rank P*(X, Z) =20 and the signature of Q is (2,18).

We use the notation in (a). Set

U={(u a)|lucU. aclsom(P*(X,,Z).L)}.

Where &€ Isom (P?(X,, Z), L) means an isomorphism as Euclidian lattices, i.e.
an isomorphism of the Z-modules compatible with the bilinear forms. By
using the fundamental group 7, (U) of U, we can define the topology on
U so that the first projection

(2.23) v: U-U

becomes an étale covering. Let

be the base extension of the family z’: X’—U by the morphism (2.23).
Then G has the induced actions on U and &’, which make % a G-equivariant
map.

By a marked surface we understand a couple (X’, &) consisting of a
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smooth, complete surface X’ with p,=c}=1 and an ample Ky and of an
isomorphism «a: P*(X’, Z)=L as Euclidian lattices. By a family of marked
surfaces we mean a smooth, proper holomorphic map f: Y—Z of analytic
spaces Y and Z with the property that every fibre of f is a marked surface,
and we call the universal family among these families of marked surfaces
the fine moduli of marked surfaces.

Proposition 2.24. The quotient spaces M=U/Gand ¥ =?'/G have
the structures of complex analytic manifold, and the family
7 X=%/G-M=U/G

is the fine moduli of the marked surfaces with dim M =18.

Before proving the above proportion, we should prepare a lemma.

Lemma 2.25. Let Y; (:=1,2) be topological spaces and let f: Y,
—Y, be a continuous map. Let G be a topological group and we consider
the situation that G acts both on Y, (i=1,2) and, with these actions,
f becomes a G-equivariant map. Then, if the action of G on Y, is proper,
so is the action of G on Y,

Proof. Consider the commutative diagram

v
GxY, —> Y,xY,

(2. 26) idx f FXf

(2
GXxY, — Y, XY, ,

where ¥;(9, ¥:) = (9y:,3:) for g&G and y;€Y; (:=1,2). We must show
that ¥'(K) is compact whenever K is a compact subset of Y;xY,, We
may assume without loss of generality that K= K” X K’ for compact subsets
K’ and K” of Y.

Restricting the diagram (2.26), we get

W‘/
GxK'——l—> Y, xK’
z‘dxf’l Fxf
v,

GXxf(K") —— Y. xf(K’) .

Since ¥, is a proper map, so is ¥}. idX f’ being also a proper map, we
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see that the composite map ¥j0 (idX f’) is proper and consequently the map
¥{ is proper. In particular, ¥7'(K) =%{"'(K”XK’) is compact. Q.E.D.

Proof of Proposition 2.24. Let
Y. GXU->UXU

be the morphism defined by ¥ (g, ) = (gu, «) for G and u<U. Since ¥ is
a morphism in the category of schemes, we can use the valuative criterion
for showing the properness of the morphism ¥. Let A be a discrete valuation
ring and let K be its quotient field. Set V=Spec(A) and V’=Spec(K)
and denote by 7 (resp. s) the generic poit (resp. closed point) of V. Given
a commutative diagram

’

V' ——= GxXU

(2.27) ’1 v
8

V——— UxU

We must show existence and uniqueness of the morphism y: V-G X U which
is compatible with the diagram (2.27).

Set (0,, #,) =" (1) and

=K%V ———> X’

7[’ (i=1, 2)’

4

Ty

v priof U

where pr; means the i-th projection of UX U. Then, ¢, induces the isomorphism
X, =17 () >X,.,=n{"'(n) as canonically polarized surfaces. Hence, by the
theorem of Matsusaka-Mumford ([6]), there exists uniquely the isomorphism
0: ¥{—X; over V which is the extension of ¢, Considering this ¢ as a
V-valued point of G, we get the desired morphism y: V—->GXU.

Combining the above result and Lemma 2.25, we see that the action of
G on U and ¥’ are proper, and hence the quotient spaces M=(7/G and
F=%'/G exist in the category of analytic spaces ([5]). According to
Corollary 2.16, the actions of G on U and ¥’ have no fixed points. There-
fore, M and ¥ are manifolds. The last part of the assertion is obvious
from our construction. Q.E.D.

Let D be the classifying space, used in (2.17), with respect to the fixed
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X. By using the fine moduli #: F—->M obtained in Proposition 2.24, we
can define the global period map

(2. 28) 0: M—D

by @ () = (the line ax(P**(Xz)) in LQC) for meM, where % '(#)
= (Xa, ) - .

For meM with # ' () = (Xa, am) . set

Aut (X,) = {the c.zut.omorphzsms of the surfaces X,»,«,}
(omitting the datum )

Using the notation in Theorem 2. 14, define

M,={meM| there exists c€Aut(Xs) with c~¢;} for each ¢;in the
table in Theorem 2. 14.

After Remark 2.15, we are interested, in particular, in the automorphisms
0; of prime order, that is,

01, O3, Os, Oy, 015 and Gy .
Note that ¢, has the conjugate
0-1,2= (13 15 1’ _1a 1)'

We denote ¢, by ¢,,;, when we want to distinguish this from its conjugate
0.,.. Using these conjugates, we have the relation

03 = 01,1012,

Let 3: U—M be the projection (cf. Proposition 2.24) and let v: U—U
be the covering (2.23). Set

M1.1=§(V_I(Fixu(d1.j))) (=12,

where Fixy(0,;) is the set of the fixed points of 0¢,; in U. It is easy to
see that M; and M ,; have the structures of analytic subspace of M, and,
in particular, M and ML, (=1, 2) are submanifolds.

Theorem 2.29. With the above notation, we have:

(2.29.1) dim M,,=15 (j=1,2) and dim M,=12. M,=M,,u M.,
and M,,; (j=1,2) intersect transversally with M,.nM,,=M, For every
point meM, (resp. meM,), the fibre of the period map O in (2.28)
through m is of dimension =1 (resp. =2).

(2.29,2) dim My=9. For every point W € M, the fibre of @ through
i is of dimension >1.

Proof. Take Ai€ M and w3 (), and set u=y(#). Note, first, that
v: (U, #)— (U, u) is isomorphic in the sense of germs and (M, #) can be
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considered as the parameter space of the Kuranishi family of the deformation
of X5. Hence, by Theorem 2.14, we get that

dimM1_1=15 (j=1’2)1
dim Ms =12 and
dim Mg =9,
M1=M1.1U Mu is an immediate consequence of their definition.

Since Fixy(0y,,) (resp. Fixy(0,.,), Fixy(05)) is G-stable with the equations
fP=0 (resp. g¥=0, fP=¢gP=0) and p: U—M is smooth, the assertion
of M,, and M,, intersecting transversally with M, ,N M,,zzf\Za follows from
the corresponding fact about Fixy(0.,;) (j=1,2) and Fix,(0,)

The statement about the dimension of the fibre of the period map @ is
an interpretation of Proposition 2. 19. Q.E.D.

Note 2. 30. By using the method in the forthcoming paper ([8]),
we can further observe that

2 if and only if meM, and

dimﬁ0"2(¢(ﬁi))={ : LT
1 lf?%EMIUMa_MS-

§ 3. Calculation

In this section, we solve the problems (2.12) and (2.13). We employ
the notation of the previous section.

(a) As we mentioned in the section 2, (a), U and G have the following
properties:

(8.1) For any surface X with p,=ci=1 and Ky ample, there exists
uc U, such that X is isomorphic to the weighted complete intersection
X, corresponding to u.

(3.2) Let u, ' €U. Then, any isomorphism between X, and X,.,
if exists, is induced from some element of G.

3.3) For uclU,

Aut(X,) ={ceGlou=u}.

By these (3.1), (3.2) and (3.3), the problem (2.12) is divided into
the following two elementary questions:

(8.4) Divide G into the conjugate classes with respect to the action
of G on G itself as inner automorphism, and choose a representative from
each conjugate class.

(3.5) Select those elements of G, from among the representatives
obtained in (3.4), by which some point of U is fixed.

As for (3.4), after elementary calculation in linear algebra, we get:
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Lemma 3.6. Any element of G can be normalized by the inner auto-
morphism into one of the following matrices, which is uniquely determined
up to the interchanges of d, and d, and of dy and d,:

1 1
dl dl
(3.6.1) d, (3.6.2) d,
d,
d‘ d‘
1 1
d] dl
(3.6.3) 1 4, (3.6.4) 1 4,
d,
d4 dl
1 1
(3.6.5) d, (3.6.6) d,
d,
d, d,
1 1
1 1
(3.6.7) | duw 1 (3.6.8) | d, 1
d;
d, d,
1 1
dlo dlo 1
(3.6.9) 1 (3.6.10) 11
d,
d, d,
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As an answer of the question (3.5), we get the following:

Proposition 3.7. Those 22 matrices 0/ s appeared in the table in
Theorem 2.14 form a complete system of representatives of the equivalence
classes in (2.12), and any two of these 0;s are not equivalent to each
other.

Proof. The proof consists of several steps.

Step 1. Since Aut(X,) is a finite group for every u€ U by (2.7), we
know that, among the canonical forms in Lemma 3. 6, only the forms (3. 6.1)
and (3.6.2) can occur as automorphisms of X, for some = U and, a priori,
we also know that every d; of these matrices must be a root unity.

Step 2. Take ueU and let f and g be normalized forms (2.1) of
defining equations of X,. If fi;; =01 =0 or fa =g =0, X, would have points
which lie on the singular locus of Proj(R). Hence, we have that

S or @iy is not zero  and

3.8

fggz or (o2 is not zero.

If fi=fui=S =0, X, would have the singular points with x,=7y,==2;
=0. Similar reasonning shows that

f1, fin or fu is not zero,
So, f122 or fa is not zero,

01, §u1 OF Gy 1s not zero  and

3.9
0z, 0122 OF (g 1s not zero,

If fo=Foor=SFoee= Fooo=Gooo=0, X, would have the singular points with
yi=3=23=2,=0. Therefore, we see that

(3.10) Fo, Soorr Soozs Sfowo O Gooo is not zero.

By using the symmetry among the coefficients of f and ¢ caused by the
actions of the matrices

0= 1 and p,= 1

it is enough to consider the following possibilities:
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(3.11.1) Sru1f 2:0:92f 070.
(3.11.2) S11f 220192 00 70.
(3.11. 3) S111f 229192 0.
(3.11. 4) S11f 220192G00070.
(3.11.5) S111f 2201912070.
(3.11.6) S 1S 2229192270.
3.11.7) S fonGuiGree fo7F0.
(3.11.8) Surf 119122 f 0 #0.
(3.11.9) S11f 221119122 f 00270.
(3.11.10) S111f 22201119122 F 00070.
(3.11.11) S 111 2091119122000 70
(3.11.12) S11f 220111922 f 0 70.
(3.11.13) S 1S 22201119222 f 00 F0.
(3.11. 14) S 111 f 22201119220 f 000 FO0.
(3.11.15) S 1S 222011201270,
(3.11.16) S 111022 f 20, 70.
3.11.17) S 1119222 f 201270.
(3.11.18) S 119220 1220112 f 0F0.
(3.11.19) S 1119222 f 1220112 f 001 F0.
(3. 11. 20) FinnGoee 120112 F 00 70.
(3.11.21) S1119202.f 1229112 0007O0.

Step 3. Let 0= (,d,, d,,ds,d,) be a matrix of the form (3.6.1).
The condition 0u =u means explicitly the following relations: We use the nota-
tion dy=1.
fidd= fid; (0<i<2),
findidide= fipd; O0<i<j<k=<2),
9idids=9:d; (0<i<2) and
G9indidide=00d; (0<i<j<<k=<2).

3.12)

Now we can proceed case by case.
Case (3.11.1). From (3.12), we have the relations

df=dg=d§, dlds:dzda:df and d4=d§.

Hence o= (1,7, 7% 7, 7°), where ¥"=1. Suppose r=~£1, then we get ¢ =0
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=01 =02=0 from (3.12). But this implies that X, contains those points
Zo=23=2,=0 which are singular points of Proj(R). Therefore, in this case,
only 6=(1,1,1,1,1) occurs.

Case (3.11.2). From (3.12), we have
dg:dg-——dg, dldszdzdazdf and d] =d§.

Hence 6= (1, 7", 7', 7% 1), where 7¥=1. Suppose y*s~1, then we get ¢, = g2
(122= g2 =0 from (3.12). This is impossible as in case (3.11.1). Therefore,
in this case, we would have ¢6=(1,1,1,1,1) or (1,1,1,1, —1).

We omit here such kind of routine argument for other cases (3.11.1)
(3<i<<21). As a result, in case of diagonal matrices, we would obtain

01, =+, O

in the table in Theorem (2.14).

Step 4. We deal, in this step, with a matrix 6= (1,d,, d,, (1,d,)) of
the form (3.6.2). Note that, in case ¢ is an isotropy of some point « of
U,o0°=Q, d;, di, d,d,) must be also an isotropy of the same point z. There-
fore, after the result in Step 3, we may only consider the cases

ot=¢g; (=0,3,4.8,10,11,14,15,17).
where 0,=(1,1,1,1,1).

Case ¢*=0, Considering the conjugates by g,, we have three possibilities:

c=@1,1,1, 1,1)), 1,1, -1, 1,1)) or (1, -1, -1, (1,1)). In case ¢
=(1,1,1, @, D) or A, =1, =1, (1,1)), we get £ (0, y,, 3) = £9“ (0, 31, 3),
but this implies that X, contains singular points of Proj(R). Therefore, in
this case, only ¢,,= (1,1, —1, (1,1)) would occur.

Case 0*=¢,. By the same argument as above, we would have ¢, = (1, 1,
_is (1’ i) ) .

Case 6*=0,. We have four possibilities:

O‘=(1v 1? w2,~ (1, 1)), (1’ 1& _(02’ (1& 1))’
a, —-1,0% 1,1)) or @A, -1, —o? (1,1)).

In case 0= (1,1,0% (1,1)) or 1, =1, —w? (1,1)), we have F®(0,y,, y,)
= +9® (0, y,, ¥.) , which is impossible as before. In case 6= (1,1, —0? (1,1)),
f and g must be

{ f= z§+flzlxoyl +foz41‘g+ fmy:{+fzzzyg"l'fonx%yf'l‘fomxayl+foooxg ,

g =2+ frzszoy: + fozsxg“‘ fllly:l‘ _fzzzyg +foux§yf +foolx4oy1 + foooxg s

and hence

f—0=(2s—2) (&s+ 2+ frxy+ foxd) +2fy;, which shows that X, has
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the singular points with

y— 2 =2+ 2,4+ fixoyi + foxi =y, =0.
Therefore, in this case, only ds.= (1, —1, 0?, (1,1)) would occur.
Case 0*=0,. By the similar reasonning as above, we would get 0
=1, —1,0% 1, —1)).
In a similar way as in the above cases, we can prove that there are no
isotropies ¢ of some u€ U in case ¢*=¢; (1=11, 14, 15, 17).

Step 5. Finally, we claim that every ¢; obtained in Step 3 and Step 4
really occurs. It is easy to prove, by Jacobian criterion, that, for general choice
of the coefficients, the following equations define smooth weighted complete
intersections of type (6,6) in P(1,2,2,3,3):

f= zg‘f‘fmy? +f222yg+fooox3 ,

GI3 ] g s+ st + Goust+ Guna ,
(3. 14) f= zg-l-fulyj‘l'fmyﬂf‘i‘fonzfayz )
g =25+ 0112Y1Y2 + J222Y2 + Jour oY1 -
(3.15) f= zi‘*‘fllly?+f122y1y§+foool»"g ,
= 2{+ 0o=sXo + J112Y 1Yz + P i .
3. 16) f= z§ + i+ favi+ fonl"jf:y:f + fonZoy: + foooxr? )
g=2i— finyi+ fa ¥+ fouZoyi — FonZoy1 + foooZs -
(3.17) Sf= z§+ {“myf + f:uzyfyz + f:fzylyg'f'fzzz'yg +f001~2.33y1 + foozxf.)yz )
9=2i— 1 fiu¥i+ i f1ey1¥:— i fraoy1Yi+ 1 fani + i fonZo¥1 — L fonZi Vs .

Giving an order by inclusion to the set consisting of the fixed points loci
in U of ¢s the minimal members are those corresponding to

0y, O, O3, Oy Oz, Oy and [T
The point of U corresponding to (3.13) (resp. (3.14), (3.15), (3.16),

(8.17)) is fixed by 6, and 0); (resp. G, 0, and G, G, Oy).

Remark 3.18. As we have already used in step 5 of the proof of
Proposition (3.7), we can get easily the defining equations of the fixed
points loci in U of 6/'s in the table in Theorem 2.14, which are all linear.

(b) let g; be one of the matrices in the table in Theorem 2. 14 and let
ue U be a point with guu=u. Set X=X,.

Proposition 3. 19. Each ¢, induces on TsQROs: the action indicated in
the table in Theorem (2.14).
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Proof. Note first that, in order to determine the induced action of ¢;
on the locally free sheaf Ts@Ogw:, it is enough to investigate the induced
action of ¢; on its fibre (Ts®O¢:) (so) =H' (X, Ty) at s,

Since the morphisms in the exact sequence (2.4) are equivariant with
respect to the induced actions of Aut(X), so is the morphisms in the exact
sequence

(3. 20) 0—-H' (X, Tp&QOx) > H' (X, Ny,p) > H'(X, Tx) -0,

where we use (2.7) and (2.9). Hence we can reduce the study of the
induced action of ¢;,€Aut(X) on H'(X, Ty to that on H*(X, Tp®0O% and
H*(X,Ny,p) .

Denote by res H°(X, TpX0Ox) (resp. res H'(X, Ny,p)) the image of
H'(X, Tp®0Ox) (resp. H°(X. Ny,p)) by the restriction map to the open subset
of X defined by x,=-0.

Now the proof of Proposition 3.19 will be accomplished in a sequece of

lemmas.

Lemma 3.21. We can choose as a C-linear basis of res H(X, TpX0Oy)
the following:

0 a is a monomial in R of}

2
{(“/ ) Gy D) degree 2, i=1,2

U {(a/xs) 0 ‘a is a monomial in R of}
Y8 (2:/x%) | degree 3, i=3,4 )

Proof. Let q: A—P be the principal G,-bundle over P=P(1, 2, 2, 3, 3).
Recall that the exact sequence (2.5) is derived from the exact sequence

0T 4p—>T 4—q*T p—0

by taking its direct image, taking G,-invariant subsheaves and finally restricting
to X, that is,

(3.22) 0— (@51 4/p) *RO x> (94T 0) " RO x> T pROx—0.
Taking the cohomology sequence of (3.22), we have
H'(X, (0:T.0Q02) —H' (X, Tp®0x) —0.

Note that the morphism ¢ above sends

0=l +a? 42,0 42,0 40, 0 cH(X, (¢uTD)"R0)
0x, 0y, 0y, 0z, 0z,

with a;€ (R/I)., (0<i<4), to the induced operator t(0) € H* (X, Tp&QOx)
from Op to Oy, that is,
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res 7 (0) = 20(%/ ) ————— 3y i/ ) as;s 0 (2¢/x0) ——— a(t/ o)
a;  2y.a, 0 a; _ 3za, 0
= <:? xz >a<y 7 sszs«< x: >a<z¢/xz>

In particular,

6\ _ oy /20
(3. 23) res z‘(xo 5;—) = ls;s2 ( 2yt/xo) P (yi/xo) 35% ( 3zi/xo) 6( t/ 3)

It is evident that we can take

01U 0 |a is a monomial in R of |
3. 24 { 24Ut 0 .
( ) *o 0, a@yi degree 2, i=1,2 J
U {ai a is a monomial in R of}
0z;|degree 3, i=3,4

as a Clinear basis of H°(X, (¢*T,) X0 . Combining (3.24), (3.23) and
the fact dim Ker r=1, we get the assertion. Q.E.D.

Lemma 3.25. We can take as a C-linear basis of res H(X, Ny,p)
the following:

a is a monomial in R of degree}
6 except z: and =%

{(aray 0

0 (f/xo)
Uaran -0

la is a monomzal in R of degree}
Y and 2%

0 (g/x

Proof. Under the well-known isomorphisms
H"(X, Ny;p) =H"(X, 0x(6))®=(R/D§
(a,b) € (R/I)@ corresponds to the element y& H'(X, Ny,p) with
res7= (a/x}) ——— 0 + (b/x})) ————
0 (f/ ) 0 (g/ D
We can exclude 2} (=3, 4) by using the relations of the ideal 1. Q.E.D.

Lemma 3.26. Let T (resp. N) be the C-linear subspace of
res H' (X, TpQ0Ox) (resp. res H' (X, Ny,p)) spanned by

{(yi/ 5% _1i=0,1,2; j=1,2}

) (y,/xo) F =

a0 i=3,4}

0 (zt/ )
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(resp. {Gamye/ad) i=0,1,2}

U 0
{(asz D ra

{ (2s20y 1/ 75) -

_0
0 (f/x)
la is a monomial in vy, }
(z—O 1,2) of degree 6

a(g/ 3o/ | 1.2

a is a monomial in vy, })
(#=0,1,2) of degree 5

Udcaraty

0 (g/ xo)

where we use the notation y,=x: Then, the sequence
0—»T—>N-res H (X, Ty) —0

induced from (3.20) is exact.

Proof. Recall that the morphism
: res HY (X, TpQ0Oy) —res H* (X, Ny,p)

sends

2, (e t/xo)a( D + 25 (a/x °)6‘(¢/ )

in res H'(X, Tp&®0x) to
{ISZ (a;)xt) 23 L% a(f/xo) + Y (ayx ) a(f/xo)} 0

0 (yi/ad)  odi 8 (/2 ) 0 (f/Y)
8 (g/) 8(g/x%) | 0
{3, e SO0 2 v g
in res H°(X. Nyp), and hence we have, in particular,
1 (/a2 o) =2 (ma/ad) + (g0 z0a/ ) 50—
.27 a<~3/ 2 a(f/ ) a(g/ D’
= D 0 Z4a/xy
w5t ) =0 a2l D5

where « stands for a monomial in R of degree 3. By the relations of the
ideal I, we see, furthermore, that

p (/a5 2 ) = =2 (U Omamt S /) 5o
+ (g(l)zsxﬂ/xg)—'——s ’
(3.28) 0(9/x3)
(1)
1(@/h) ) = O Ol o
-2 ( (g(l)zgl'o + g(s)) /xg) Wa/xs)— .
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By (3.27) and (3.28), we can eliminate the members

0 a is a monomial in x,, ¥, ¥ }
z (i} - ’ ’
{( 3a/xo)ﬁ(j“/xﬁ) and z, of degree 3
U { . o 0 a is a monomial in x, ¥i, Y2 }
(zia/z0) 0(9/x%) |and =z of degree 3
of the basis of res H°(X, Ny,p) given in Lemma 3.25 and we obtain the
assertion, Q.E.D.

Continuation of Proof of Proposition 3.19. By using the bases of
res H*(X, Tp@®0Ox) and res H° (X, Ny,p) given in Lemma 3.21 and Lemma
3. 25 respectively, we can determine the induced action of ¢; on res H' (X, Ty)
and hence, by the identity theorem, on H'(X,Ty). Lemma 3. 26 contributes
to save trouble in calculation. We add here a remark that, in case of ¢;
(:=0",3",4’,8,10’), we have to change the bases in Lemma 3. 26 into more
suitable ones, that is, the bases consisting of eigen vectors. The actual calcu-
lation is a routine task and we omit it. Q.E.D.

Proposition 3.29. The induced action of each ¢, on (F°)* is as in
the table in Theorem 2.14.

Proof. As in the proof of Proposition 3.19, it is enough to study the
induced action of ¢; on the fibre (F%)*(s,) =H°(X, Ky) of the invertible sheaf
(F%)? at s, Let ¢ be the global section of Ky corresponding to z,ER,
under the isomorphisms

H(X, Ky =H"(X, 0x(1)) = (R/]),=R, .

Then, by the Poincaré residue formula, we have

(3.30)  resy= (/e (GLLELL) a (/) N o/ 5D,

where by res we mean the restriction to the open subset of X defined by

(] 6
2,70 and the Jacobian —aﬁ%ﬂl—x—“")—#O. Since res ¢ forms a basis of
0 (s/ x5, 24/ x5)
res H°(X, Kx), we can calculate, by (3.30), the induced action of ¢; on
res H'(X, Ky), which determines that on H°(X, Ky) by the identity theorem.

Q.E.D.

Proposition 3. 31. Each o; induces on HY the action stated in the
table in Theorem 2.14.

Proof. As before, it is enough to investigate the induced action of ¢;
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on the fibre H% (s,) =P*(X, C). By using the Hodge decomposition
PY(X, C) =P (X)BP"" (X)PP"*(X) with P**(X)=P>°(X) and the
fact that ¢; induces a real operator on P?(X, C), we have already known, by
Proposition 3. 29, the induced action on P*(X) and P**(X).
The remaining thing is to determine the induced action of ¢; on P"*(X).
Tensoring Ky to the exact sequence (2.4) and taking its cohomology
sequence, we have the exact sequence

(3. 32) 0->H°(X, TpQKy) >H* (X, Ny,pQKy) =P (X) -0

by (2.8) and Lemma 2.11. Note that the morphisms in the exact sequence
(3.32) are all equivariant with respect to the induced actions of Aut(X),
and hence the problem is reduced to two parts, that is, determination of the
induced actions on H'(X, TpQKy) and H°(X, Ny, pQKy).

Since, in the rest part of the proof, the arguments are parallel to those
in the proof of Proposition 3.19, we will only state the consequence of each
step. By res we mean here the restriction to the open subset of X defined

by 250 and the Jooobion JTIE AR o

Lemma 3.33. We can take as a C-linear basis of res H* (X, TpQKy)
the following:
{(yz/x§)0|i=1 2}

Y {Ger a(yi/ EloZz e

Vi esa 5w

a is a monomial in R of}
\degree 3, i=1,2

a is a monomial in R of}
degree 4, 1=3,4 ’

where

o =(QULRID N5y ) N (o/a) - and

0 (2s/x8, 24/ x5)
— 0 /
0=-— <1s; 20/ 5y 0 (y,/xh) +3s;s (=/z) 0 (z¢/ x5 o)>®¢ '

Lemma 3. 34. We can take as a C-linear basis of res H°(X, Ny,p&Q Kyx)
the following:

a is a monomial in R of degree}
7 except iz, and 2ix,

{are 5 0)®¢'

s 5 m @

where we use the notation ¢’ in Lemma 3. 33.

a is a monomial in R of degree}
7 except zizy and 2ix,
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Lemma 3.35. Let T’ (resp. N') be the C-linear subspace of
res H (X, Tp@Ky) (resp. res H' (X, Ny,p&®Ky)) spanned by

{(vi/x5)0] i=1,2}

{< /x °)a<y,/ o)®¢

U { CXNED)

a is a monomial in R of}
degree 3, i=1,2

0@y i=3,4]

0(z t/ )

(resp. {(z‘a/xo)a(f/ ) X9y’

Vel g @Y

VU @are 5@

VUiasz .,)a(g/ 5

Then, (3.32) induces the exact sequence

a is a monomial in x, y,}
and vy, of degree 4

a is a monomial in x,, yl}
and vy, of degree 7

a is a monomial in x, yl}
and v, of degree 4

a is a monomial in Zo, ¥ })
and y, of degree 7 '

0—>T’'—>N’—res P*'(X) —0.

Continuation of Proof of Proposition 3.31. By using the above lemmas,
we can calculate, as in the proof of Proposition 3.19, the induced action of

0; on P (X). Q.E.D.
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