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Introduction

The main reason for this paper is the study of a situation where the
normalization of a noetherian scheme can be reached by a finite number of
monoidal transformations. This gives an answer to a question raised in [4].
The first remark is that in general a blowing up is not finite, while it is so
if the center is a divisor, along which the scheme is normally flat (Lemma
1.2.). We restrict our attention to the hypersurface case and for technical
reasons we require permissibility instead of normal flatness. This allows to
give an easy description for the local equations of the hypersurface itself and
of its strict transform (when the permissible center is blown up). Of course
even if the center is assumed to be permissible, this condition is in general
no more satisfied after the first blow up. The main result of the first
section is Theorem 1.6., which essentially gives suitable relations between
certain numerical characters of the hypersurface and the permissible center.
Its Corollary 1.7. describes a good situation, in which one keeps blowing
up without loosing the permissiblity of the centers and in this way one
eventually gets the normalization. This is explicitly described in the first
part of the second section, precisely by Lemma 2.1. and Proposition 2. 3.

Another feature of this situation is the following. It is well-known that for
curves on smooth surfaces there is a strong connection between the concepts
of conductor and adjoint curves (see for instance [1] and [5]). Of course
this is no more possible when the dimension increases. Nevertheless, when
the normalization is achieved by a finite sequence of monoidal transformations
with permissible centers, then it is possible to give an explicit description of
the conductor ideal in terms of suitable adjoint divisors (Proposition 2.5.).

All rings are supposed to be noetherian, commuttative and with identity.

§1. Main Theorem

Let us recall some basic definitions and results. We denote by (X, Oy)
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a locally noetherian scheme, by (Y, @) a closed subscheme which is defined
by an ideal J and we say that X is normally flat along Y if for every
(closed) point x€Y the graded ring Gpoy,,(J,) is a free Oymodule.
If X is normally flat along Y and Y is smooth we say that X is permissible
along Y. Then it is clear what we mean when we say that a ring is
normally flat (permissible) along an ideal.

Lemma 1.1. Let (R,0) be a regular local ring, P a prime ideal,
fEP a non-zero element. Let (A, m)=R/(f), M/ (), p=B/(f) and
assume that R/P=A/p is a regular ring. Then the following conditions
are equivalent:

1) G4(p) is a free A/p-module;
2) e(A)=e(Ap). (“e(-)” means “multiplicity of (--+)”):
3) fep’—MWMH. where s=e(A).

Proof. See [9], p. 192 or [10], p. 13. Henceforth let (R,IN, %) be
a local, regular, excellent, n-dimensional ring, which contains an algebraically
closed field 2. We denote by 9§ an height 2 prime ideal of R and by f a
non-zero prime element which is contained in . We put A=R/(f), m
=M/ (f). b=PB/(f). We assume that R/PB=A/)p is regular, hence we may
write M= (xy, ***, Tnoy, L) and P = (x,-1, x,). Finally we denote by ¢:
X,—Spec(R) the blow up of Spec(R) along P and by ¢: X,—Spec(A) the
induced blow up Spec(A) along .

Lemma 1.2, If A is normally flat along p, then & is finite, hence
d_/_,‘ﬁne.

Proof. 1If we put £(p) =dim (G4 (p) ®+A4/m), the dimension of the fiber
of ¢ over the closed point is £(p) —1. Since G4(p) is free, £(p) =ht(p)
=1 (see for instance [10], p. 24)and we are done.

As a consequence of Lemma 1.2. we get that X,=Spec(4,), where
(A, my. +--,m,) is a semilocal ring and r<e(A).

Lemma 1.3. If A is permissible along p, then
S=fs(@noi, Zn) +ﬁZ L PR PR A T o oA
nite

where fi(x..,, x,) is a form of degree s in k[zx,_., x.], &;,..,ER, i+
+i,=2s+1 and i,_,+1,2s.

Proof. According to Lemma 1.1., feP'—M'*". Since £ R we may
write f=f; (2,1, x,) modulo MP’. The conclusion follows easily.
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Henceforth we assume that A is permissible along p.

3

If we denote by “—" the quotient modulo z= (z;, **+, x,-,), we get
Gaun W/ F)) =G D) /(f)*=k[T,_.,,T,]/O where O=]] &f* and 0, are
t l=1

linear forms: clearly s=3] 4.
1=1

Corollary 1.4. The integer t and the t-uple p= (u,. -+, ;) do not
depend on the choice of the generators x,_,,x, of B and on the choice
of x=(xy, ***, Tnoy) such that (z,P) =

Proof. Let (x}_;. x3) =P. 2" = (x1. . 2h..5) and assume that (z’, P) =M.
Let us denote by “~” the quotient modulo z’. Then (xy,-:-.x,) and (xf,"*, x,)
are two minimal systems of generators of 9){. Hence the operation of switch-
ing from one system to the other one induces a linear base change on I /W;
so it induces an automorphism of Gz (M) and an isomorphism between Gz (M)

and GE(*jﬁ). After Lemma 1. 3. it is clear that this isomorphism intercanges
® and @',

Now let us consider the restriction Spec(R,;) —=Spec(R) of the monoidal
transformation X;—Spec(R) to the open set {r,50}. The equations are:

=X, s Tpor=Xpone ooy =X, 00X 1,=X,.
The total transformation of f is
Sr=X0(fe (Xaoy, 1) + 20 s, X1t X Xt ™")
and the strict transform f; can be written
fi=g X X))+ X, hER,,

where g(X,, -+, X,-1) =i (X,-1,1) modulo (X, . X,_,). We note that (x,,
v, ) Ri= (X, -+, Xa_1. X,) hence the maximal ideals of R,/ (f,) correspond
to the irreducible factors of f,(X,-;,1). Up to a suitable change of para-
meters, which does not change ¢ and # (see Corollary 1. 4.), we may assume
that the coefficient of X%_; in f,(X,_\,1) does not vanish. This means that
the blow up @: X,—Spec(A) can be fully described by the ring homomor-
phism R/ (f) —>R,/(f1). Another consequence of Lemma 1. 3. is the follow-
ing

Corollary 1.5. The integer t coincides with the number of maximal
ideals of A, and pi, --+. M, are the multiplicities of the irreducible factors
of f;(Xarn D).

Proof. According to Lemma 1. 3. the initial form of f modulo x coincides
with the initial form of f, (x,-,, x,) modulo x. With the assumption we made
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before, the irreducible factors of f;(x,-,, x,) are in one to one correspondence
with the irreducible factors of f;(X,-;,1), which are in one to one corres-
pondence with the maximal ideals of A,

Let us now consider the prime ideals %B,, -+, P, of R, which are “infinitely
near to P in the first neighbourhood” ie. the prime ideals which form the
the primary decomposition of v (X,,f;)). For every maximal ideal m; of A,
let us denote by P the ideals of {3, -+, L, such that py;=P,,;/ () is con-
tained in m;.

We fix the following notations:

e;=e((A)y,);: vi=e((ADm); ey=e((AD m,/Pis),

where “e(-+-)” means “multiplicity of (-+)”.

Theorem 1.6. The following relations hold:
1) e;=y; for every i and j:
2)  Deyey=u; for every i:
3) »j,.g,ai Sfor every i.

Proof. 1) is obvious. The first step of the proof of 2) and 3) is to
show that we may assume A to be complete. Without going too much into
the details we observe that all the required properties of A pass to A= (A,m)".
Moreover the operation of completing and blowing up commute (see for instance
[8], III, 2) and if we denote by Af the completion of A, with respect to
the maximal ideal m;, then p,-jfﬁ is a radical ideal since R is excellent
(see [7], p. 279). We write pyAi= NPy and, with the obvious meaning of

a
the symbols we get ¢;=>_¢, while e;=é¥ is clear. Therefore we may
a
assume R to be complete hence R=k[[x,:-,x,]] (see [11], II, p. 307).

As we did in Lemma 1. 3. we may write f as a serie with coefficients in

k, that is

f= fl (x'ﬂ—l, xn) + Z }\il...t”xil"'xf‘" N

with 2+ +i, =541, i+ 4,25, 4.0, €k

As a consequence the strict transform f; can be written in the follow-
ing way: fi=9(X,, -+, Xoo1) + Xoh, where ¢ (X, -+, X)) €R[[ X, -+, Xoaoi]]s
hek[[X,, -, X,]]. Moreover if {3, -+, B,} is the set of prime ideals inﬁnitely

near to f and g= H gas, ¢4 irreducible factors then PB,= (X, 99, a=1, -+, 0.
Now we observe that, if f,(X,-.1) = H (Xop-1—ay)#t and IN; denotes the

maximal ideal of R, which is obtained by hftmg to R1 the maximal ideal m;
Of Ab then w}i_ (Xb ° ’Xn—Z’ Xn—l ai; n)) - ’ °t t'

3 ’

Let us denote by “—” the quotient modulo X,. Since f;=g0---g;» we
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have e, (R,/ (f)) =7, hence equ(Al) <r, For every_i and j we have e;<ry
therefore ; €8 ; rjey.  Putting  egy (97) = e((R) g,/ (9)), we get:
ey=e((R)mi/ (95 Xn)) = €, (gs), hence ; Ty€y = ; Tyeqn, (97) =g, (@). If we
put X= (X, ---, X,_,) and remind Corollary 1.5. we have

em, (9) geﬁmi/é’ (9/X) = eQmi/,_y (i (X1, 1)) =4,
Therefore Y eyey=> 16y = o, (@) <, i=1, -+, ¢, and 2) is proved.
7 7

As to 3) we observe that it is sufficient to show that y;<ey, (¢) and this
is achieved by using the following relations: ”‘=e((A1)m,> gem(}?,/ﬁ))
=eg, (g). The proof is now complete.

Let now state two corollaries whose proof, after Theorem 1.6., is straight-
forward.

Corollary 1.7. Assume that 4;<2,i=1, ---,t. Then for every maxi-
mal ideal m; of A; there are at most two prime ideals which are in-
Jfinitely near to p and contained in w,;. If there are two prime ideals
Pi> Pie then ey =e,=1. If there is only one prime ideal p,,, then, eiter e;=1
or (A)m, is permissible along P.,.

Corollary 1.8. Assume there exist a maximal ideal wm; of A, and a
prime ideal p;Cm; such that ey=y;,. Then:
a) Py is the only prime ideal which is infinitely near to p and conained
in mg
b) (A m: is permissible along Y.
In particular if there exists a prime ideal p,;Cm; such that e;=s, then:
a’) A, is local;
b") There is only one prime ideal infinitely near to p and A, is per-
missible along it.

We conclude this section by exhibiting some examples.

Example 1. Consider f=3y'4+z2°, L= (y,2). We have =1, y#,=3,
Si=Y*+XZ% hence A, is local, M= (X, Y, Z) and there is only one prime
ideal B,;= (Y, Z) infinitely near to PB. Moreover v, =3, e;;=2, ;=1 and A,
is not permissible along p,; This supports the assumption #;<<2 in Corollary
1.7.

Example 2. Take f=y"—3*2'2°+2°, P=(y,2). We have t=1, 4,=5,
f=Y?(Y*—X"*) +Z* hence A, is local, I, = (X, Y, Z) and there are two prime
ideals P, = (Y, Z2), Pro= (Y*—X* Z) infinitely near to P. We have y, =4,
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en=2, ¢,=1, ¢,=1, g, =3.
While in the first example e;,5,,<v;, in the second one y,< ey &+ €185

§ 2. Applications to strictly permissible triples

Let us consider a smooth, n-dimensional, locally noetherian excellent scheme
X, defined over an algebraically closed field .. Let V be a subscheme of
pure codimension 2, S a prime divisor of X containing V. Let us assume
that the following conditions hold.
(C) V is the singular locus of S in codimension one.
(C,) S is permissible along V (hence V is a disjoint union of irreducible
smooth components).
(Cy) There exists a finite sequence of monoidal transformations

X, Hx o oxBxB8x=x,

whose centers are subschemes V; of pure codimension 2 in X; and such that
on the corresponding sequence of proper transforms

(] 0y 0o
S, =8> —>5-55-5=5

one has
a) S; is permissible along V., i=0, -, n—1;
b) S, is normal.

Lemma 2.1. With the above assumptions, the composite morphism
0: S,—S is the normalization of S.

Proof. The morphism ¢ is finite by Lemma 1.2. and birational. The
conclusion follows easily by Zariski Main Theorem.

Definition 2.2. A triple (X.S,V) which satisfies the above described
conditions is called strictly permissible.

Proposition 2. 3. Suppose that a triple (X,S.V) satisfies (C)) and
(Cy). Then it is strictly permissible in the following cases:
1) dim X=2;
2) For every closed point x€V the local equation f, of S satisfies the
condition 11;<2 of Corollary 1.7.

Proof. 1) is a classical result (see for instance [12], Th. 4, p. 492).
2) The existence of the sequence of monoidal transformations satisfying a) and
b) of (C;) is due to Corollary 1.7. The fact that the sequence is finite is
again classical and can be seen in a similar way to [12], Th.4’, where it is



Normalization via monoidal transformations 641

shown that we can reduce ourselves to the case of curves by a suitable

extension of the ground field.

Let us now recall that if A is an integral domain, A its integral closure,
then 74=Annz(A/A) is called the conductor of A.

Lemma 2.4. Let A be a local, Gorestein, integral domain, p a prime
ideal of height 1 and suppose A is normally flat along p. Let Spec(A,)
—Spec(A) be the blow up (affine after Lemma 1.2.) of A along p and
denote by 7, and 1., the conductor ideals of A and A,. If s=e(Ay) and
Ayp. is regular for every prime ideal Y’ of height 1 which is different
from p. then

Ta= PS_ITA, .

Proof. For simplicity we write B instead of A, Since A is a 1-
dimensional Gorestein ring, we have

Tap= (pAp)“‘er (Bp means B,_p)

by using a result of Matlis (see [6], 13.8). It follows that the equality
rqup‘"‘)‘Bq holds for every height 1 prime ideal q of A. On the other
hand 7,=A: A, so it can be thought as a divisorial A-lattice (see [2],
p. 11). The ring A is Gorestein, hence, by [2], Cor. 4.2., p. 18, we get
7a=N (T4 q qEZ(A) where Z(A) denotes the set of height 1 prime ideals

q
of A. Therefore 74= NP "' (7z)q. Moreover, since p"'B is a principal ideal
q

generated by an element, which we denote by p, we get:
Ta=N @)=, (N (T8)q), 9EZ(A).
q q

Since the height 1 prime ideals of B4 are the prime idealls £ of B such
that Q°=gq, the following relation holds, again by using [2], Cor. 4. 2.:

(re) q= Q (78) o Qe Z(B), Qc=q.
But Spec(B) —»Spec(A) is surjective, hence
D (rs) q= Q (TB)Q:rBa G€Z(A), QLeZ(B).

In conclusion 7,=p (N (75) q) =2T5=p""'5.
q

Let us consider again a strictly permissible triple (X, S, V) and denote
by 74, the sheaf on X which is obtained by lifting to X the conductor sheaf
of S.
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Proposition 2.5. Let (X, S, V) be a strictly permissible triple, H an
effective divisor on X. Then the following conditions are equivalent.
1) If s, is the multiplicity of S along the irreducible component V, of
V, then:
a) the multiplicity of H along V, is greater than or equal to s,—1;
b) the multiplicity of H'*'=¢;*(H?) — (s;—1) E;., along V; is greater than
or equal to s;.,—1 where “—" means “Zariski closure”, V,, E;., are the
(irreducible) centers and the exceptional divisors of the monoidal trans-
Sformation ¢;. s; is the multiplicity of S; along V,, i=0, -, n—1 (s, is the
multiplicity of S along the irreducible component of V which is the center
of the first blow up, H'=H).
2) There exists an inclusion of sheaves Ox(—H) Cry,. equivalently H
is adjoint to S in the sense of Gorestein (see [3]).

Proof. Taking in account (C,), it is possible to assume V irreducible.
For every closed point x€V, let R=0y,,, P the ideal defining Vin R, H,,
f> the local equations of H and S, A=R/(f2), p=LB/(fz), h. the image of
H, in A. Let us consider the sequences of inclusions (of local rings):

g{qucgalc...ngic...ngn, Jlo:ACJZIC---CJl,-C"-CJln,

corresponding to the sequences of monoidal transformations in (C;) and the
ideals Ji1=J: R, =0, -, n—1, =0, which are obviously principal.
More precisely, putting J;.1=2Z:R;y1, we get H,/Zp '.--Z3*"' as the local
equation of H**' in Ry, 1=0,--,7#—1. Now we put Lj=p, L;;,=1LA;,, and
let z; be the image of Z; in A;. By assumption we have

kz/zzo—l...zzl_lel‘:f;i—l N i=0’ ey n—1.

On the other hand, by Lemma 2. 4., we get
n—1
TaAn= (il:IoI:‘_l) Aa,

hence h,€74 and H, € (74,9 > In conclusion 1) implies 2) ,while the converse
can be proved in the same way.

Remark. If we consider the proper transforms instead of H?, we do
not get the same equivalence, as it was recently pointed out in [5] (see

Ex. 5. 7).
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