Spitzer's Markov chains with measurable potentials

By

Мипеті МІУАМОТО

(Received Nov. 18, 1980)

1. Introduction and summary of results.

Spitzer [10] has introduced Markov chains, whose space of "time parameters" is an infinite tree T, and whose state space is a set $\{-1, +1\}$. He investigates Gibbs distributions on T that are Markov chains of such construction. Several works [1], [4] and [8] are made on Gibbs distributions on trees.

In the present paper, we generalize Spitzer's results to the case when the state space is a compact set. If the state space consists of two points as in the case of Spitzer, all Markov chains are reversible. So, in that case, the "time parameter" space T need not be equipped with a direction. But, since Markov chains may not be reversible in our case, we must introduce a direction into T. Thus, we consider Markov chains whose space of "time parameters" is an infinite directed tree T, and whose state space is a compact measure space (X, \mathcal{B}, μ) .

Let F(x, y) be a measurable function on $X \times X$, of which we do not assume the boundedness nor the symmetry F(x, y) = F(y, x). A Markov chain on T, whose transition density we denote by p(x, y), is a Gibbs distribution on T with the potential F, if and only if

$$p(x, y) = \lambda(s, n)u(x)^{-1}u(y)^{s}v(y)^{n-1}e^{-F(x, y)}$$

where u and v are positive solutions of integral equations of the Hammerstein type

$$\begin{cases} u(x) = \lambda(s, n) \int_{X} e^{-F(x, y)} u(y)^{s} v(y)^{n-1} \mu(dy), \\ v(x) = \lambda(s, n) \int_{X} e^{-F(y, x)} u(y)^{s-1} v(y)^{n} \mu(dy). \end{cases}$$

Numbers s, n and $\lambda(s,n)$ will be defined in the following sections. Let $\mathcal{M}(F)$ be the set of Markov chains that are, at the same time, Gibbs distributions with the potential F. Under summability conditions on F, all or no chain in $\mathcal{M}(F)$ is reversible. Roughly speaking, all chains in $\mathcal{M}(F)$ are reversible if and only if F is nearly symmetric. In a symmetric case, the transition density p(x,y) has the form;

$$p(x, y) = \lambda(s, n)u(x)^{-1}u(y)^{n+s-1}e^{-F(x, y)}$$

where u is a positive solution of the integral equation;

$$u(x) = \lambda(s, n) \int_{X} e^{-F(x, y)} u(y)^{s+n-1} \mu(dy)$$
.

Existence of positive solutions of the integral equations is proved by applying the theory of cones in a Banach space.

Dobrushin and Shlosman [3] proved that all Gibbs distributions in Z^2 whose state space is the circle S^1 , are invariant under rotation of the circle, if the potential is of finite range, of C^2 -class and rotation-invariant. We present an example of chains in $\mathcal{M}(F)$ that are not rotation-invariant although the potential F is rotation-invariant and of C^∞ -class.

Next, we consider a potential βF , where $\beta > 0$ is the reciprocal temparature. We prove uniqueness of $\mathcal{M}(\beta F)$ for sufficiently small β . We present an example in which the number of chains in $\mathcal{M}(\beta F)$ is exactly calculated for sufficiently large β .

2. Potentials and Gibbs distributions.

Let X be a compact metric space. Let \mathcal{B} be the topological Borel field of X and let μ be a measure on (X, \mathcal{B}) . Let T be the infinite directed tree, in which s branches emanate from every vertex and n branches flow into every vertex. Two vertices $a \neq b$ in T are neighbours if they are connected by a branch, which we denote by a-b or b-a. If a branch connecting a and b emanates from a, which is equivalent to that the branch flows into b, we write $a \rightarrow b$ or $b \leftarrow a$. We remark s, $n \geq 1$. For a subset V of T, let ∂V be the set of vertices in V^c that are neighbours of vertices in V. Let $\mathcal{Q} = X^T$. For $\omega \in \mathcal{Q}$ and $a \in T$, let $x_a(\omega) = \omega_a$. For $V \subset T$, let $x_V(\omega)$ be the restriction $\omega|_V$ of ω on V, and let \mathcal{B}_V be the σ -algebra of Ω generated by x_V . $\mathcal{B}_{\mathcal{Q}}$ is the σ -algebra generated by the cylinder sets.

A potential is a pair $\mathcal{G}=(F_1,\,F_2)$ of real-valued measurable functions F_1 and F_2 , where F_1 and F_2 are defined on X and on $X\times X$, respectively. For a finite subset V of T and for $\mathbf{x}\in\Omega$, put

$$\begin{split} H_{V}(\mathbf{x}) &= H_{V}^{\mathcal{T}}(\mathbf{x}) = \sum_{a \in V} F_{1}(x_{a}) + \sum_{\substack{a,b \in V \\ a \to b}} F_{2}(x_{a}, x_{b}) \\ &+ \sum_{\substack{a \in V \\ a \to b}} F_{2}(x_{a}, x_{b}) + \sum_{\substack{a,b \in V \\ a \to b}} F_{2}(x_{b}, x_{a}) \,. \end{split}$$

The family $\{H_v\}_v$ is called Hamiltonian.

Definition. Two potentials $\mathcal{G}=(F_1, F_2)$ and $\mathcal{G}'=(F_1', F_2')$ are said to be *equivalent*, which we denote by $\mathcal{G}\cong\mathcal{G}'$, if $H_{\mathfrak{F}}^{\mathfrak{F}}(x)-H_{\mathfrak{F}}^{\mathfrak{F}'}(x)$ does not depend on x_V for every finite subset V. We remark that it may depend on $x_{\partial V}$.

Lemma 1. Let $\mathfrak{F}=(F_1, F_2)$ be a potential and put

$$F'_{2}(x, y) = F_{2}(x, y) + \frac{1}{n+s} \{F_{1}(x) + F_{1}(y)\}.$$

then $\mathfrak{F}\cong(0, F_2)$. If F_2 is symmetric, F_2' is also symmetric.

Proof. Put
$$F_{2}''(x, y) = \frac{1}{n+s} \{F_{1}(x) + F_{1}(y)\}$$
. We have
$$\sum_{\substack{a,b \in V \\ a \to b}} F_{2}''(x_{a}, x_{b}) + \sum_{\substack{a \in V, b \in \partial V \\ a \to b}} F_{2}''(x_{a}, x_{b}) + \sum_{\substack{a \in V, b \in \partial V \\ a \to b}} F_{2}''(x_{b}, x_{a})$$
$$= \sum_{a \in V} F_{1}(x_{a}) + \frac{1}{n+s} \sum_{b \in \partial V} \#\{a \in V ; a-b\} F_{1}(x_{b}).$$

Therefore, $H_V^{(0,F_2)}(\mathbf{x}) - H_V^{\mathcal{G}}(\mathbf{x}) = \frac{1}{n+s} \sum_{b \in \partial V} \#\{a \in V ; a-b\} F_1(x_b)$, which implies $\mathcal{G} \cong (0, F_2')$.

In the following we always assume $F_1=0$. We identify a potential (0, F) with the function F.

Definition. 1) A potential F is said to be symmetrizable if there exists a symmetric potential \hat{F} with $F \cong \hat{F}$. We call \hat{F} a symmetrization of F.

2) A potential F is said to be uniformly symmetrizable if there exists a symmetrization \hat{F} of F such that

$$\sup_{x,y} |F(x,y) - \hat{F}(x,y)| < +\infty.$$

We call \hat{F} a uniform symmetrization of F.

Lemma 2. 1) A potential F is symmetrizable if and only if there exists a measurable function f such that

$$F(x, y) - F(y, x) = f(x) - f(y)$$
.

2) A potential F is uniformly symmetrizable if and only if there exists a bounded measurable function f which satisfies the above equality.

Proof. Assume
$$F(x, y) - F(y, x) = f(x) - f(y)$$
. We have
$$F(x, y) = \frac{1}{2} \{ F(x, y) + F(y, x) \} + \frac{1}{2} \{ F(x, y) - F(y, x) \}$$
$$= \frac{1}{2} \{ F(x, y) + F(y, x) \} + \frac{1}{2} \{ f(x) - f(y) \}.$$

Put
$$\hat{F}(x, y) = \frac{1}{2} \{ F(x, y) + F(y, x) \} + \frac{s - n}{2(n + s)} \{ f(x) + f(y) \}$$
. Since
$$\sum_{\substack{a,b \in V \\ a \to b}} \{ f(x_a) - f(x_b) \} + \sum_{\substack{a \in V,b \in \partial V \\ a \to b}} \{ f(x_a) - f(x_b) \} + \sum_{\substack{a \in V,b \in \partial V \\ a \to b}} \{ f(x_b) - f(x_a) \}$$
$$= (s - n) \sum_{a \in V} f(x_a) + \sum_{b \in \partial V} [\# \{ a \in V \; ; \; a \leftarrow b \} - \# \{ a \in V \; ; \; a \to b \} \;] f(x_b) \; ,$$

and since

$$\sum_{\substack{a,b \in V \\ a \to b}} \left\{ f(x_a) + f(x_b) \right\} + \sum_{\substack{a \in V, b \in \partial V \\ a \to b}} \left\{ f(x_a) + f(x_b) \right\} + \sum_{\substack{a \in V, b \in \partial V \\ a \to b}} \left\{ f(x_b) + f(x_a) \right\}$$

$$=(s+n)\sum_{a\in V} f(x_a) + \sum_{b\in aV} \#\{a\in V; a-b\}f(x_b),$$

we have

$$H_V^F(\mathbf{x}) - H_V^{\widehat{F}}(\mathbf{x})$$

$$= \frac{1}{2} \sum_{b \in \mathcal{N}} \left[\# \{ a \in V \; ; \; a \leftarrow b \} - \# \{ a \in V \; ; \; a \rightarrow b \} - \frac{s-n}{s+n} \; \# \{ a \in V \; ; \; a-b \} \; \right] \! f(x_b) \; \text{,}$$

which implies $F \cong \hat{F}$. If f is bounded, from an equality

$$F(x, y) - \hat{F}(x, y) = \frac{1}{n+s} \{ nf(x) - sf(y) \},$$

it follows $\sup_{x,y} |F(x,y) - \hat{F}(x,y)| < \infty$.

Conversely, assume $F \cong \hat{F}$, where \hat{F} is symmetric. Let $a_i \to a$ $(1 \le i \le n)$ and $a'_j \leftarrow a$ $(1 \le j \le s)$. By the equivalence of potentials, the difference $H^F_{(a)}(x) - H^{\hat{F}}_{(a)}(x)$ does not depend on x_a , which we denote by $A(x_{a_1}, x_{a_2}, \cdots, x_{a_n}, x_{a'_1}, x_{a'_2}, \cdots, x_{a'_s})$. Fixing any $x_0 \in X$, we take arbitrary x and y from X. Put $x_a = y$, $x_{a_1} = x$, $x_{a_i} = x_0$ $(2 \le i \le n)$ and $x_{a'_i} = x_0$ $(1 \le j \le s)$. Put $A(x) = A(x, x_0, \cdots, x_0)$. We have

$$\begin{split} & \Delta(x) = \Delta(x, x_0, \cdots, x_0) \\ & = H^F_{(a)}(\mathbf{x}) - H^{\hat{F}}_{(a)}(\mathbf{x}) \\ & = \sum_{i=1}^n \left\{ F(x_{a_i}, x_a) - \hat{F}(x_{a_i}, x_a) \right\} + \sum_{j=1}^s \left\{ F(x_a, x_{a'_j}) - \hat{F}(x_a, x_{a'_j}) \right\} \\ & = \left\{ F(x, y) - \hat{F}(x, y) \right\} + (n-1) \left\{ F(x_0, y) - \hat{F}(x_0, y) \right\} + s \left\{ F(y, x_0) - \hat{F}(y, x_0) \right\} \,. \end{split}$$

Consequently,

$$F(x, y) = \hat{F}(x, y) - (n-1) \{ F(x_0, y) - \hat{F}(x_0, y) \} - s \{ F(y, x_0) - \hat{F}(y, x_0) \} + \Delta(x).$$

Exchanging x and y, we have

$$F(y, x) = \hat{F}(x, y) - (n-1) \{F(x_0, x) - \hat{F}(x_0, x)\} - s \{F(x, x_0) - \hat{F}(x, x_0)\} + \Delta(y)$$

from which follows an equality

$$F(x, y) - F(y, x) = f(x) - f(y)$$

where $f(x) = \Delta(x) + (n-1) \{F(x_0, x) - \hat{F}(x_0, x)\} + s \{F(x, x_0) - \hat{F}(x, x_0)\}.$

If $\sup_{x,y} |F(x, y) - \hat{F}(x, y)| < +\infty$, then $\mathbf{\Delta}(x)$ is bounded, therefore f is also bounded.

For a finite subset V of T, put $\mu_V(dx_V) = \prod_{a \in V} \mu(dx_a)$.

Definition. A potential F is said to be admissible if for any finite subset V of T

$$\Xi(V, x_{\partial V}) \equiv \int_{\mathbf{r}^V} e^{-H_V^F(\mathbf{r})} \mu_V(dx_V) < +\infty$$
 a.e. $(\mu_{\partial V})$.

Lemma 3. A potential F is admissible, if

$$(A,1) \qquad \qquad \iint e^{-(n+s)F(x,y)} \mu(dx) \mu(dy) < +\infty,$$

or if

(A, 2)
$$\sup_{x} \left\{ \int e^{-F(x, y)} \mu(dy), \int e^{-F(y, x)} \mu(dy) \right\} < +\infty.$$

Proof. Admissibility under (A, 1) is a direct consequence of 1) in the following Lemma 3'. Under (A, 2) we have $\int e^{-H_V^F(x)} \mu_{V \cup \partial V}(dx_{V \cup \partial V}) < +\infty$ by 2) in Lemma 3', if we put $F_{a,b} = F$ for $a - b \in V \cup \partial V$ with $\{a,b\} \subset \partial V$, and if we put $F_{a,b} = 0$ for $a - b \in \partial V$.

Lemma 3'. Let be given a family $\{F_{a,b}; a \rightarrow b \in T\}$ of functions $F_{a,b} = F_{a,b}$ (x, y). For a finite subset V of T, put

$$\begin{split} \widetilde{H}_{V}(\mathbf{x}) &= \sum_{\substack{a.b \in V \\ a \to b}} F_{a.b}(x_a, x_b) + \sum_{\substack{a \in V, b \in \partial V \\ a \to b}} F_{a.b}(x_a, x_b) + \sum_{\substack{a \in V, b \in \partial V \\ a \to b}} F_{b.a}(x_b, x_a), \\ \widetilde{H}_{V}(\mathbf{x}) &= \sum_{\substack{a.b \in V \\ a \to b}} F_{a.b}(x_a, x_b). \end{split}$$

1) If for each $a \rightarrow b \in T$,

$$(A,1)' \qquad \qquad \iint e^{-(n+s)F_{a,b}(x,y)} \mu(dx) \mu(dy) < +\infty,$$

then it holds $\int e^{-H_V(x)} \mu_V(dx_V) < +\infty$ a.e. $(\mu_{\partial V})$.

2) If for each $a \rightarrow b \in T$,

$$(A,2)' \qquad \sup_{x} \left\{ \int e^{-F_{a,b}(x,y)} \mu(dy), \int e^{-F_{a,b}(y,x)} \mu(dy) \right\} < +\infty,$$

then it holds $\int e^{-\tilde{H}_V(x)} \mu_V(dx_V) < +\infty$.

Proof is carried out by induction in #V.

1) Let V be a set consisting of a single vertex a. Let $a_i \rightarrow a$ $(1 \le i \le n)$ and $a'_i \leftarrow a$ $(1 \le j \le s)$. We have

$$\begin{split} \widetilde{H}_{(a)}(x) &= \sum_{i=1}^{n} F_{a_{i}.a}(x_{a_{i}}, x_{a}) + \sum_{j=1}^{s} F_{a_{i}a'_{j}}(x_{a}, x_{a'_{j}}), \\ \int e^{-\widetilde{H}_{(a)}(x)} \mu(dx_{a}) &= \int_{i=1}^{n} e^{-F_{a_{i}.a}(x_{a_{i}}, x_{a})} \prod_{j=1}^{s} e^{-F_{a_{i}.a'_{j}}(x_{a}.x_{a'_{j}})} \mu(dx_{a}) \\ &\leq \left\{ \prod_{i=1}^{n} \int e^{-(n+s)F_{a_{i}.a}(x_{a_{i}}.x_{a})} \mu(dx_{a}) \prod_{j=1}^{s} \int e^{-(n+s)F_{a_{i}.a'_{j}}(x_{a}.x_{a'_{j}})} \mu(dx_{a}) \right\}^{1/(n+s)} \\ &< +\infty \quad \text{a. e. } (\mu_{\widehat{\theta}(a)}). \end{split}$$

We assume that the statement is true if $\sharp V \leq k$. Let $\sharp V = k+1$. Fix any $a_0 \in V$

and let $V_0 = V \setminus \{a_0\}$. Put

$$\begin{split} F'_{a,\,a_0}(x) &= -\frac{1}{n+s} \log \int e^{-(n+s)F_{a,\,a_0}(x,\,z)} \mu(dz) \,, \qquad \text{if} \quad a \to a_0 \,, \\ F'_{a_0,\,a}(x) &= -\frac{1}{n+s} \log \int e^{-(n+s)F_{a_0,\,a}(z,\,x)} \mu(dz) \,, \qquad \text{if} \quad a \leftarrow a_0 \,, \\ F'_{a,\,b}(x,\,y) &= F_{a,\,b}(x,\,y) \,, \qquad \text{if otherwise.} \end{split}$$

It is clear that $\iint e^{-(n+s)F'_{a,b}(x,y)}\mu(dx)\mu(dy) < +\infty$. We have

$$\begin{split} \widetilde{H}_{V}(\mathbf{x}) &= \sum_{\substack{a \in V_{0} \cup \partial V \\ a \to a_{0}}} F_{a, a_{0}}(x_{a}, x_{a_{0}}) + \sum_{\substack{a \in V_{0} \cup \partial V \\ a \to a_{0}}} F_{a_{0}, a}(x_{a_{0}}, x_{a}) \\ &+ \sum_{\substack{a, b \in V_{0} \\ a \to b}} F'_{a, b}(x_{a}, x_{b}) + \sum_{\substack{a \in V_{0} \cup b \in \partial V_{0} \setminus \{a_{0}\} \\ a \to b}} F'_{a, b}(x_{a}, x_{b}) \\ &+ \sum_{\substack{a \in V_{0}, b \in \partial V_{0} \setminus \{a_{0}\} \\ a \to b}} F'_{b, a}(x_{b}, x_{a}). \end{split}$$

Denote the sum of the first two terms and the sum of the last three terms by $\widetilde{H}_1(\mathbf{x})$ and by $\widetilde{H}_2(\mathbf{x})$, respectively. Remark that $\#\{a \in V_0 \cup \partial V \; ; \; a-a_0\} = n+s$. We have by Hölder's inequality

On the other hand,

$$\begin{split} &\widetilde{H}_{\mathbf{2}}(\mathbf{x}) + \sum_{\substack{a \in V_0 \cup \partial V \\ a \to a_0}} F'_{a, a_0}(x_a) + \sum_{\substack{a \in V_0 \cup \partial V \\ a \to a_0}} F'_{a_0, a}(x_a) \\ = &\widetilde{H}'_{V_0}(\mathbf{x}) + \sum_{\substack{a \in \partial V \\ a \to a_0}} F'_{a, a_0}(x_a) + \sum_{\substack{a \in \partial V \\ a \to a_0}} F'_{a_0, a}(x_a) \,, \end{split}$$

where $\widetilde{H}'_{V_0}(x)$ is the Hamiltonian determined by $\{F'_{a,b}\}$, i.e.,

$$\widetilde{H}'_{V_0}(\mathbf{x}) = \sum_{\substack{a.b \in V_0 \\ a \to b}} F'_{a,b}(x_a, x_b) + \sum_{\substack{a \in V_0, b \in \partial V_0 \\ a \to b}} F'_{a,b}(x_a, x_b) + \sum_{\substack{a \in V_0, b \in \partial V_0 \\ a \to b}} F_{b,a}(x_b, x_a).$$

Therefore, we have

$$\begin{split} & \int e^{-\tilde{H}_{V}(\mathbf{x})} \mu_{V}(dx_{V}) \!\!=\! \int \!\! e^{-\tilde{H}_{2}(\mathbf{x})} \mu_{V_{0}}(dx_{V_{0}}) \!\! \int \!\! e^{-\tilde{H}_{1}(\mathbf{x})} \mu(dx_{a_{0}}) \\ \leq & \exp \{ - \sum_{\substack{a \in \partial V \\ a \to a_{0}}} \!\! F_{a,a_{0}}'(x_{a}) \!\! - \!\! \sum_{\substack{a \in \partial V \\ a \leftarrow a_{0}}} \!\! F_{a_{0},a}'(x_{a}) \!\! \} \int \!\! e^{-\tilde{H}_{V_{0}}'(\mathbf{x})} \mu_{V_{0}}(dx_{V_{0}}) \,. \end{split}$$

The last integral is finite a.e. $(\mu_{\partial V_0})$ by the assumption of induction.

2) If $\sharp V=1$, $\tilde{H}_{V}(\mathbf{x})=0$. Consequently, $\int e^{-\tilde{H}_{V}(\mathbf{x})}\mu_{V}(dx_{V})<\infty$ is trivial. We assume that the statement is true if $\sharp V \leq k$. Let $\sharp V=k+1$. It is easy to see that there exists $a_{0} \in V$ such that $\sharp (V \cap \partial a_{0})=0$ or 1. Put $V_{0}=V \setminus \{a_{0}\}$. If $\sharp (V \cap \partial a_{0})=0$, $\tilde{H}_{V}(\mathbf{x})=\tilde{H}_{V_{0}}(\mathbf{x})$. Therefore, by the assumption of induction.

$$\begin{split} \int & e^{-\tilde{H}_{V}(x)} \mu_{V}(dx_{V}) = \int \int & e^{-\tilde{H}_{V_{0}}(x)} \mu_{V_{0}}(dx_{V_{0}}) \mu(dx_{a_{0}}) \\ &= \mu(X) \int & e^{-\tilde{H}_{V_{0}}(x)} \mu_{V_{0}}(dx_{V_{0}}) < + \infty \end{split}$$

If $V \cap \partial a_0 = \{b\}$ and if, for example, $a_0 \rightarrow b$, then

$$\tilde{H}_{V}(\mathbf{x}) = \tilde{H}_{V_0}(\mathbf{x}) + F_{a_0,b}(x_{a_0}, x_b)$$
.

Therefore.

$$\begin{split} \int & e^{-\tilde{H}_V(x)} \mu_V(dx_V) \!\!=\! \! \int \!\! \int \!\! e^{-\tilde{H}_{V_0}(x) - F_{a_0, \, b(x_{a_0}, \, x_b)}} \mu(dx_{a_0}) \mu_{V_0}(dx_{V_0}) \\ \leq & \sup_x \int \!\! e^{-F_{a_0, \, b(x_{a_0}, \, x)}} \mu(dx_{a_0}) \!\! \int \!\! e^{-\tilde{H}_{V_0}(x)} \mu_{V_0}(dx_{V_0}) \!\! < + \infty \; . \end{split}$$

In the following we consider only admissible potentials without mentioning. Put

$$q_{V,x_{\partial V}}^{F}(x_{V}) = \Xi(V, x_{\partial V})^{-1} e^{-H_{V}^{F}(x)}$$

which is a probability density on (X^V, μ_V) . We call $q_{V, x_{\partial V}}^F$ conditional Gibbs density. We remark that $q_{V, x_{\partial V}}^F = q_{V, x_{\partial V}}^F$ for all finite subset V and for a.a. $(\mu_{\partial V})$ $x_{\partial V}$, if and only if $F \cong F'$.

Definition ([2], [7]). A probability measure P on $(\Omega, \mathcal{B}_{\Omega})$ is called *Gibbs distribution with a potential* F, if for each finite subset V of T, conditional probability distribution $P(|\mathcal{B}_{V^c})$ relative to \mathcal{B}_{V^c} is absolutely continuous with respect to μ_V and

$$\frac{dP(\mid \mathcal{B}_{Vc})}{d\mu_{V}} = q_{V, x_{\partial V}}^{F} \quad \text{a. e. } (P).$$

Let $\mathcal{G}(F)$ be the set of Gibbs distributions with the potential F.

3. Markov chains on the directed tree T.

Let p(x, y) be a positive transition density on (X, \mathcal{B}, μ) and let h(x) be the invariant probability density of p(x, y). Put

$$\hat{p}(x, y) = h(y)p(y, x)h(x)^{-1}$$
,

which is called reversed transition density of p.

Let V be a connected finite subset of T. Let us introduce a second direction \mapsto in V. Fix any $a_0 \in V$. If a-b and there exists a chain $a_0-a_1-\cdots-a_k-a-b$, we write $a\mapsto b$ or $b \leftarrow a$. In particular, $a_0\mapsto a$ if a_0-a . We remark that if $a-b\in V$, either $a\mapsto b$ or $a\leftarrow b$. Put

$$\begin{split} p_V(x_V) &= h(x_{a_0}) \prod_{\substack{a,b \in V \\ a \to b}} p(x_a, x_b) \prod_{\substack{a,b \in V \\ a \to b}} \hat{p}(x_a, x_b) \,, \\ P_V\left\{\omega \in \Omega \; ; \; x_V(\omega) \in E\right\} = \int_E p_V(x_V) \mu_V(dx_V) \qquad \text{for} \quad E \in \mathcal{B}_V \,. \end{split}$$

It is easy to see that p_V does not depend on the choice of the centre a_0 and that $\{P_V\}$ is a consistent cylinder measure. By Kolmogorov's extension theorem, $\{P_V\}$ extends to a measure p on $(\Omega, \mathcal{B}_{\Omega})$. We identify the measure p with its transition density p(x, y).

Definition. A measure p constructed above is called *Spitzer's Markov chain* with a potential F if $p \in \mathcal{G}(F)$. Denote by $\mathcal{M}(F)$ the set of Spitzer's Markov chains with the potential F.

Theorem 1. A transition density p=p(x, y) belongs to $\mathcal{M}(F)$, if and only if p(x, y) has the expression;

$$p(x, y) = \lambda(s, n)u(x)^{-1}u(y)^{s}v(y)^{n-1}e^{-F(x, y)}$$

where $\lambda(s, n)$ is the Perron-Frobenius eigenvalue of the kernel $e^{-F(x, y)}$ if s=n=1, and $\lambda(s, n)=1$ if otherwise, and u and v are positive measurable functions satisfying

$$(*) \begin{cases} u(x) = \lambda(s, n) \int_{X} e^{-F(x, y)} u(y)^{s} v(y)^{n-1} \mu(dy), \\ v(x) = \lambda(s, n) \int_{X} e^{-F(y, x)} u(y)^{s-1} v(y)^{n} \mu(dy), \\ \int_{X} u(x)^{s} v(x)^{n} \mu(dx) < +\infty. \end{cases}$$

The invariant probability density h(x) has the form;

$$h(x) = c u(x)^s v(x)^n$$
.

where c is a normalizing constant.

Proof. 1°. Assume $p(x, y) \in \mathcal{M}(F)$. Let $a_i \to a$ $(1 \le i \le n)$ and $a'_j \leftarrow a$ $(1 \le j \le s)$ as before. Choose a as the centre of $\{a, a_1, a_2, \dots, a_n, a'_1, a'_2, \dots, a'_s\}$ in the definition of the direction \mapsto . We have

$$\begin{split} q_{a.x_{\partial a}}(x) &= \mathcal{Z}(a, x_{\partial a})^{-1} \exp\left\{-\sum_{i=1}^{n} F(x_{a_i}, x) - \sum_{j=1}^{s} F(x, x_{a'_j})\right\} \\ &= Z(x_{\partial a})^{-1} h(x) \prod_{i=1}^{n} \hat{p}(x, x_{a_i}) \prod_{j=1}^{s} p(x, x_{a'_j}) \,, \end{split}$$

where $Z(x_{\hat{\sigma}a}) = \int h(x) \prod_{i=1}^{n} \hat{p}(x, x_{a_i}) \prod_{j=1}^{s} p(x, x_{a'_j}) \mu(dx)$. Put $U(x, y) = p(x, y) e^{F(x, y)}$. Then,

$$Z(x_{\partial a})^{-1}h(x)\prod_{i=1}^{n}\hat{p}(x, x_{a_i})\prod_{j=1}^{s}p(x, x_{a'_j})$$

$$\begin{split} &= Z(x_{\partial a})^{-1} \prod_{i=1}^n h(x_{a_i}) h(x)^{1-n} \prod_{i=1}^n U(x_{a_i}, x) \prod_{j=1}^s U(x, x_{a_j'}) \\ &\times \exp\left\{-\sum_{i=1}^n F(x_{a_i}, x) - \sum_{i=1}^s F(x, x_{a_j'})\right\}. \end{split}$$

Consequently, $W \equiv h(x)^{1-n} \prod_{i=1}^n U(x_{a_i}, x) \prod_{j=1}^s U(x, x_{a_j'})$ does not depend on x.

Fix x_0 in X and take arbitrary y from X. Let $x_{a_i} = x_0$ $(1 \le i \le n)$ and let $x_{a_i'} = x_0$ or y $(1 \le j \le s)$. Put $y = \#\{j : x_{a_i'} = y\}$. We have

$$W = h(x)^{1-n}U(x_0, x)^n U(x, y)^{\nu}U(x, x_0)^{s-\nu}$$

$$= h(x)^{1-n}U(x_0, x)^n U(x, x_0)^s \left\{ \frac{U(x, y)}{U(x, x_0)} \right\}^{\nu}.$$

Letting $\nu=0$, we see that $h(x)^{1-n}U(x_0,x)^nU(x,x_0)^s$ does not depend on x. Next, letting $\nu=1$, we see that $\frac{U(x,y)}{U(x,x_0)}$ does not depend on x, which we denote by V(y). Putting $U(x)=U(x,x_0)$, we have U(x,y)=U(x)V(y). Therefore, $p(x,y)=U(x)V(y)e^{-F(x,y)}$ and $c_1\equiv h(x)^{1-n}U(x)^sV(x)^n$ does not depend on x.

$$u(x) = \begin{cases} U(x)^{-1}, & \text{if } s = 1, \\ c!^{(s-1)}U(x)^{-1} & \text{if } s > 2. \end{cases}$$

From $c_1 = U(x)^s V(x)$, it follows that

Case n=1. Put

$$V(x) = c_1 U(x)^{-s} = \begin{cases} c_1 u(x), & \text{if } s = 1, \\ c_1^{-1/(s-1)} u(x)^s, & \text{if } s \ge 2. \end{cases}$$

We have

$$p(x, y) = U(x)V(y)e^{-F(x, y)}$$

$$= \begin{cases} c_1 u(x)^{-1} u(y)e^{-F(x, y)}, & \text{if } s = 1, \\ u(x)^{-1} u(y)^s e^{-F(x, y)}, & \text{if } s \ge 2. \end{cases}$$

The equality $\int p(x, y)\mu(dy)=1$ implies that

$$u(x) = \begin{cases} c_1 \int e^{-F(x, y)} u(y) \mu(dy), & \text{if } s = 1, \\ \int e^{-F(x, y)} u(y)^s \mu(dy), & \text{if } s \ge 2. \end{cases}$$

Since u(x)>0, c_1 is the Perron-Frobenius eigenvalue $\lambda(1, 1)$ of the kernel $e^{-F(x, y)}$. Thus we have

$$p(x, y) = \lambda(s, 1)u(x)^{-1}u(y)^{s}e^{-F(x, y)},$$

$$u(x) = \lambda(s, 1) \Big\{ e^{-F(x, y)}u(y)^{s}\mu(dy).$$

Put $v(x)=u(x)^{-s}h(x)$. The equality $h(x)=\int h(y)\,p(y,x)\,\mu(dy)$ implies $v(x)=\lambda(s,1)\int e^{-F(y,x)}u(y)^{s-1}v(y)\mu(dy)$. From $\int h\,d\mu=1$, it follows $\int u^svd\mu=1$. Thus, the proof is completed in case n=1.

Case $n \ge 2$. Put $u(x) = U(x)^{-1}$ and $v(x) = \{U(x)^s V(x)\}^{1/(n-1)}$, i.e.,

$$U(x)=u(x)^{-1}$$
, $V(x)=u(x)^{s}v(x)^{n-1}$.

Consequently, $p(x, y) = u(x)^{-1}u(y)^{s}v(y)^{n-1}e^{-F(x,y)}$. The equality $\int p(x, y)\mu(dy) = 1$ means

$$u(x) = \int e^{-F(x, y)} u(y)^{s} v(y)^{n-1} \mu(dy).$$

On the other hand,

$$c_1 = h(x)^{1-n} U(x)^s V(x)^n$$

= $\{h(x)^{-1} u(x)^s v(x)^n\}^{n-1},$

which means $h(x)=c_2u(x)^sv(x)^n$ with a constant c_2 . The equality $\int hd\mu=1$ implies $\int u^sv^nd\mu<+\infty$. From $h(x)=\int h(y)p(y,x)\mu(dy)$, it follows that

$$v(x) = \int e^{-F(y,x)} u(y)^{s-1} v(y)^n \mu(dy).$$

The proof is completed in case $n \ge 2$.

2°. Assume conversely that positive functions u and v satisfy (*). Put

$$p(x, y) = \lambda(s, n)u(x)^{-1}u(y)^{s}v(y)^{n-1}e^{-F(x, y)},$$

$$h(x) = cu(x)^{s}v(x)^{n} \quad \text{with} \quad c = \left(\int u^{s}v^{n}d\mu\right)^{-1}.$$

The reversed transition density $\hat{p}(x, y) = h(y)p(y, x)h(x)^{-1}$ is equal to

$$\hat{p}(x, y) = \lambda(s, n)v(x)^{-1}v(y)^n u(y)^{s-1}e^{-F(y, x)}$$
.

Let V be a connected finite subset of T and fix $a_0 \in V$ as the centre of $V \cup \partial V$ in the definition of the direction \mapsto . We have

$$p_{V \cup \partial V}(x_{V \cup \partial V}) = h(x_{a_0}) \prod_{\substack{a,b \in V \cup \partial V \\ a \to b}} p(x_a, x_b) \prod_{\substack{a,b \in V \cup \partial V \\ a \to b}} \hat{p}(x_a, x_b)$$

 $= c\lambda(s, n)^{*(a-b\in V\cup\partial V)} \hat{\mathcal{Z}}(V, x_{V\cup\partial V})^{-1} \exp\left\{-\sum_{\substack{a,b\in V\cup\partial V\\a\to b}} F(x_a, x_b)\right\},\,$

where we put

$$\begin{split} \hat{\mathcal{Z}}(V, \ x_{V \cup \partial V})^{-1} &= u(x_{a_0})^s v(x_{a_0})^n \prod_{\substack{a,b \in V \cup \partial V \\ a \to b}} \{u(x_a)^{-1} u(x_b)^s v(x_b)^{n-1}\} \\ &\times \prod_{\substack{a,b \in V \cup \partial V \\ a \to b}} \{v(x_a)^{-1} v(x_b)^n u(x_b)^{s-1}\} \;. \end{split}$$

As usual, let $a_i \rightarrow a_0 \ (1 \le i \le n)$ and $a'_j \leftarrow a_0 \ (1 \le j \le s)$. Remark that $\partial a_0 =$

$$\{a_1, \dots, a_n, a'_1, \dots a'_s\} \subset V \cup \partial V$$
. We have

$$\begin{split} \hat{\mathcal{Z}}(V, \ x_{V \cup \partial V})^{-1} &= u(x_{a_0})^s v(x_{a_0})^n \prod_{j=1}^s \left\{ u(x_{a_0})^{-1} u(x_{a_j'})^s v(x_{a_j'})^{n-1} \right\} \\ &\times \prod_{i=1}^n \left\{ v(x_{a_0})^{-1} v(x_{a_i})^n u(x_{a_i})^{s-1} \right\} \prod_{\substack{a,b \in V \cup \partial V, \ a \neq a_0 \\ a \to b}} \left\{ u(x_a)^{-1} u(x_b)^s v(x_b)^{n-1} \right\} \\ &\times \prod_{\substack{a,b \in V \cup \partial V, \ a \neq a_0 \\ a \to b}} \left\{ v(x_a)^{-1} v(x_b)^n u(x_b)^{s-1} \right\} \\ &= \prod_{j=1}^s \left\{ u(x_{a_j'})^s v(x_{a_j'})^{n-1} \right\} \prod_{i=1}^n \left\{ v(x_{a_i})^n u(x_{a_i})^{s-1} \right\} \\ &\times \prod_{\substack{a,b \in V \cup \partial V, \ a \neq a_0 \\ a \to b}} \left\{ u(x_a)^{-1} u(x_b)^s v(x_b)^{n-1} \right\} \prod_{\substack{a,b \in V \cup \partial V, \ a \neq a_0 \\ a \to b}} \left\{ v(x_a)^{-1} v(x_b)^n u(x_b)^{s-1} \right\} \,. \end{split}$$

Therefore, $\hat{\mathcal{Z}}(V, x_{V \cup \partial V})^{-1}$ does not depend on x_{a_0} . Since $\hat{\mathcal{Z}}(V, x_{V \cup \partial V})^{-1}$ does not depend on the choice of the centre $a_0 \in V$ of the direction \mapsto , it does not depend on x_V . Thus, we have $p_{V \cup \partial V}(x_{V \cup \partial V}) = \hat{\mathcal{Z}}(V, x_{\partial V})^{-1} \exp\{-\sum_{\substack{a,b \in V \cup \partial V \\ a \to b}} F(x_a x_b)\}$, where $\hat{\mathcal{Z}}(V, x_{\partial V})$ depends only on $x_{\partial V}$. It is easy to see that the extension of the cylinder measure $\{p_{V \cup \partial V}\}$ belongs to $\mathcal{Q}(F)$. The proof of Theorem 1 is completed.

We remark that the expression of p(x, y) in Theorem 1 is not unique. If u and v satisfy (*), then also $\hat{u}=c^{n-1}u$ and $\hat{v}=c^{-(s-1)}v$ satisfy (*) and determine the same p(x, y) as u and v. In order to make the expression unique, we need summability of u^sv^{n-1} and $u^{s-1}v^n$, which does not follow from $\int u^sv^nd\,\mu<+\infty$.

Lemma 4. Put $X(x, M) = \{y \in X; F(x, y) \leq M\}$ and $X^*(x, M) = \{y \in X; F(y, x) \leq M\}$. We assume that there exist M and an integer k such that

(A, 3)
$$\begin{cases} \mu^{k} \{(x_{1}, x_{2}, \cdots, x_{k}); \mu(X \setminus \bigcup_{i=1}^{k} X(x_{i}, M)) = 0\} > 0, \\ \mu^{k} \{(x_{1}, x_{2}, \cdots, x_{k}); \mu(X \setminus \bigcup_{i=1}^{k} X^{*}(x_{i}, M)) = 0\} > 0. \end{cases}$$

If u and v satisfy (*) in Theorem 1, it holds that

$$\int u^s v^{n-1} d\mu < +\infty \quad and \quad \int u^{s-1} v^n d\mu < +\infty.$$

Proof. Since
$$u(x) = \int e^{-F(x, y)} u(y)^s v(y)^{n-1} \mu(dy) \ge e^{-M} \int_{X(x, M)} u(y)^s v(y)^{n-1} \mu(dy),$$

$$\int u^s v^{n-1} d\mu \le \sum_{i=1}^k \int_{X(x_i, M)} u^s v^{n-1} d\mu \le e^M \sum_{i=1}^k u(x_i) < +\infty.$$

Theorem 1'. We assume that there exist M and an integer k such that (A, 3) holds. A transition density p=p(x, y) belongs to $\mathcal{M}(F)$, if and only if p(x, y) has the expression:

$$b(x, y) = \lambda(s, n)u(x)^{-1}u(y)^{s}v(y)^{n-1}e^{-F(x, y)}$$

where u and v are positive measurable functions satisfying

$$\begin{cases} u(x) = \lambda(s, n) \int e^{-F(x, y)} u(y)^{s} v(y)^{n-1} \mu(dy), \\ v(x) = \lambda(s, n) \int e^{-F(y, x)} u(y)^{s-1} v(y)^{n} \mu(dy), \\ \int u(x)^{s} v(x)^{n-1} \mu(dx) = \int u(x)^{s-1} v(x)^{n} \mu(dx), \\ \int u(x) \mu(dx) = \int v(x) \mu(dx) = 1, & \text{if } s = n = 1, \\ \int u(x)^{s} v(x)^{n} \mu(dx) < +\infty. \end{cases}$$

The expression is unique.

Proof. By Theorem 1, a transition density $p(x, y) \in \mathcal{M}(F)$ has the following expression with \hat{u} and \hat{v} satisfying (*)

$$p(x, y) = \lambda(s, n) \hat{u}(x)^{-1} \hat{u}(y)^{s} \hat{v}(y)^{n-1} e^{-F(x, y)}$$
.

In case n=s=1, functions $u=\left(\int \hat{u} d\mu\right)^{-1}\hat{u}$ and $v=\left(\int \hat{v} d\mu\right)^{-1}\hat{v}$ satisfy (*)', and in case s+n>2, functions $u=c^{n-1}\hat{u}$ and $v=c^{-(s-1)}\hat{v}$ with $c=\left\{\left(\int \hat{u}^{s-1}\hat{v}^n d\mu\right)\left(\int \hat{u}^s\hat{v}^{n-1} d\mu\right)^{-1}\right\}^{1/(s+n-2)}$ satisfy (*)'. In both cases, u and v determine the same p(x,y) as \hat{u} and \hat{v} .

Next, assume that

$$p(x, y) = \lambda(s, n)u(x)^{-1}u(y)^{s}v(y)^{n-1}e^{-F(x, y)}$$
$$= \lambda(s, n)\tilde{u}(x)^{-1}\tilde{u}(y)^{s}\tilde{v}(y)^{n-1}e^{-F(x, y)},$$

where u,v and \tilde{u},\tilde{v} satisfy (*)'. We have $\tilde{u}(x)u(x)^{-1}=\tilde{u}(y)^su(y)^{-s}\tilde{v}(y)^{n-1}v(y)^{-(n-1)}$, which implies $u(x)=c\tilde{u}(x)$ in case n=1, and implies $u(x)=c\tilde{u}(x)$ and $v(x)=c^{-(s-1)/(n-1)}\tilde{v}(x)$ in case $n\geq 2$. From $\int u d\mu = \int \tilde{u} d\mu = 1$ in case s=n=1, or from $\int u^s v^{n-1} d\mu = \int u^{s-1}v^n d\mu$ and $\int \tilde{u}^s \tilde{v}^{n-1} d\mu = \int \tilde{u}^{s-1}\tilde{v}^n d\mu$ in case s+n>2, it follows that c=1. Therefore the expression is unique.

In the following, we indentify a transition density $p(x, y) \in \mathcal{M}(F)$ with a pair (u, v) of positive solutions of (*)'. The set of pairs of positive solutions of (*)' is denoted also by $\mathcal{M}(F)$.

Theorem 2. The set $\mathcal{M}(F)$ is not empty, either if

(A,4)
$$\int e^{-F(x,y)} \mu(dy) \quad and \quad \int e^{-F(y,x)} \mu(dy) \quad do \ not \ depend \ on \ x,$$
 or if

(A,5)
$$\sup_{x} \left\{ \int e^{-(n+s)F(x,y)} \mu(dy), \int e^{-(n+s)F(y,x)} \mu(dy) \right\} < +\infty$$

and

(A,6)
$$\sup_{x} \left\{ \int e^{(n+s)(n+s-2)F(x,y)} \mu(dy), \int e^{(n+s)(n+s-2)F(y,x)} \mu(dy) \right\} < +\infty.$$

Proof. We assume (A, 4). Put $c_1 = \int e^{-F(x,y)} \mu(dy)$ and $c_2 = \int e^{-F(y,x)} \mu(dy)$. From $\int \int e^{-F(x,y)} \mu(dx) \mu(dy) = c_1 \mu(X) = c_2 \mu(X)$, it follows $c_1 = c_2$. In case s = n = 1, $u(x) = v(x) = \mu(X)^{-1}$ is a positive solution of (*)'. In case s + n > 2, $u(x) = v(x) = c_1^{-1/(n+s-2)}$ is a positive solution of (*)'.

In order to look for positive solutions of (*)' under the assumptions (A,5) and (A,6), we apply theory of cones in a Banach space. In case s=n=1, (*)' is a system of linear equations with positive kernels. Such equations have positive eigenfunctions, if the kernels are square-integrable ([6]), which follows from (A,5), Therefore, it is enough to investigate only a case s+n>2. We first prove existence of positive solutions of (*)' under the assumptions (A,5) and $\sup_{x \in F} F(x,y) < +\infty$ instead of (A,6).

Let L be the set of pairs (u, v) of functions u and v such that

$$||u|| \equiv \int |u(x)|^{n+s} \mu(dx)^{1/(n+s)} < +\infty \text{ and } ||v|| \equiv \left\{ \int |v(x)|^{n+s} \mu(dx) \right\}^{1/(n+s)} < +\infty.$$

If we put $\|(u, v)\| = \|u\| + \|v\|$ for $(u, v) \in L$, $(L, \|\cdot\|)$ becomes a Banach space. Put for $(u, v) \in L$

$$A_1(u, v)(x) = \int e^{-F(x, y)} u(y)^s v(y)^{n-1} \mu(dy),$$

$$A_2(u, v)(x) = \int e^{-F(y, x)} u(y)^{s-1} v(y)^n \mu(dy),$$

$$A(u, v) = (A_1(u, v), A_2(u, v)).$$

Lemma 5. (Theorem 3.2 in Ch. 1 of Krasnosel'skii [5]). Under the assumption (A, 1), A is a completely continuous mapping from L into L.

Put

$$K_1 = \left\{ u(x) = \int e^{-F(x,y)} a(y) \mu(dy); \ a(y) \ge 0, \ \|u\| < +\infty \right\},$$

$$K_2 = \left\{ v(x) = \int e^{-F(y,x)} b(y) \mu(dy); \ b(y) \ge 0, \ \|v\| < +\infty \right\}.$$

Let K be the closure of $K_1 \times K_2$. We remark that K is a cone in L, i.e., K is closed and convex, $tK \subset K$ if $t \ge 0$ and (u, v), $(-u, -v) \in K$ implies (u, v) = 0. It is clear that $A(K) \subset K$.

Lemma 6. We assume (A,5) and $\sup_{x,y} F(x,y) < +\infty$. Then, there exists a positive constant c such that $u(x) \ge c \|u\|$ and $v(x) \ge c \|v\|$ for all $(u,v) \in K$ and for almost all $x \in X$.

Proof. Let $u(x) = \int e^{-F(x, y)} a(y) \mu(dy) \in K_1$. We have

$$u(x) \geqq e^{-\sup_{x,y} F(x,y)} \int a(y) \mu(dy).$$

On the other hand, by Hölder's inequality

$$u(x) {\le} \Bigl(\int \! a \, d\mu \Bigr)^{(n+s-1)/(n+s)} \Bigl\{ \int \! e^{-(n+s)F(x,\,y)} a(y) \mu(dy) \Bigr\}^{1/(n+s)} \,.$$

Therefore,

$$||u||^{n+s} \leq \left(\int a \, d\mu\right)^{n+s-1} \int \int e^{-(n+s)F(x,y)} a(y) \mu(dx) \mu(dy)$$

$$\leq \left(\int a \, d\mu\right)^{n+s} \sup_{y} \int e^{-(n+s)F(x,y)} \mu(dx).$$

Consequently,

$$\begin{split} u(x) & \geqq e^{-\sup_{x,y} F(x,y)} \int \! a \, d \, \mu \\ & \geqq e^{-\sup_{x,y} F(x,y)} \Big\{ \sup_{y} \int \! e^{-(n+s)F(x,y)} \mu(d \, x) \Big\}^{-1/(n+s)} \, \| \, u \, \| \, . \end{split}$$

Thus, there is a constant c>0 such that $u(x) \ge c \|u\|$ and $v(x) \ge c \|v\|$ for $(u,v) \in K_1 \times K_2$. Take any $(u,v) \in K$. There exists a sequence $(u_n,v_n) \in K_1 \times K_2$ such that $\|(u_n,v_n)-(u,v)\|\to 0$, i.e., $\|u_n-u\|$ and $\|v_n-v\|\to 0$. We can find a subsequence $\{n_j\}$ such that $u_{n_j}(x)\to u(x)$ and $v_{n_j}(x)\to v(x)$ for almost all $x\in X$. Since $\|u_{n_j}\|\to \|u\|$ and $\|v_{n_j}\|\to \|v\|$, we have $u(x)\ge c \|u\|$ and $v(x)\ge c \|v\|$.

Lemma 7. (Rothe [9], Krasnosel'skii [5]) Let $A = (A_1, A_2)$ be a completely continuous mapping from a cone $K \subset L$ into itself. Assume $\inf_{\substack{(u,v) \in K \\ \|u\| = \|v\| = 1}} \|A_1(u,v)\| > 0$ and $\inf_{\substack{(u,v) \in K \\ \|u\| = \|v\| = 1}} \|A_2(u,v)\| > 0$. Then there exists $(u_0, v_0) \in K$ such that $\|u_0\| = \|v_0\| = 1$ and

$$(u_0, v_0) = \left(\frac{A_1(u_0, v_0)}{\|A_1(u_0, v_0)\|}, \frac{A_2(u_0, v_0)}{\|A_2(u_0, v_0)\|}\right).$$

Proof. Fix any $(\hat{u}_0, \hat{v}_0) \in K$ with $\hat{u}_0 \neq 0$ and $\hat{v}_0 \neq 0$. Put

$$\hat{A}_1(u, v) = A_1(u, v) + (1 - ||u|| \cdot ||v||) \hat{u}_0,$$

$$\hat{A}_2(u, v) = A_2(u, v) + (1 - ||u|| \cdot ||v||) \hat{v}_0.$$

Let $\hat{K} = \{(u, v) \in K; \|u\| \le 1, \|v\| \le 1\}$, which is bounded, closed and convex. Our assumption implies $\inf_{(u, v) \in \hat{K}} \|\hat{A}_1(u, v)\| > 0$ and $\inf_{(u, v) \in \hat{K}} \|\hat{A}_2(u, v)\| > 0$. Put again

$$B_1(u, v) = \frac{\hat{A}_1(u, v)}{\|\hat{A}_1(u, v)\|}, B_2(u, v) = \frac{\hat{A}_2(u, v)}{\|\hat{A}_2(u, v)\|}.$$

 $B=(B_1, B_2)$ is a completely continuous mapping from \hat{K} into \hat{K} . By Schauder's fixed point theorem, there exists $(u_0, v_0) \in \hat{K}$ such that $(u_0, v_0) = B(u_0, v_0)$, i.e.,

$$u_0 = \frac{\hat{A}_1(u_0, v_0)}{\|\hat{A}_1(u_0, v_0)\|} \text{ and } v_0 = \frac{\hat{A}_2(u_0, v_0)}{\|\hat{A}_2(u_0, v_0)\|}. \text{ Since } \|u_0\| = \|v_0\| = 1, \hat{A}_1(u_0, v_0) = A_1(u_0, v_0)$$
 and $\hat{A}_2(u_0, v_0) = A_2(u_0, v_0)$.

Proof of Theorem 2 under the assumptions (A, 5) and $\sup_{x, y} F(x, y) < +\infty$. By Lemma 6, we see that for $(u, v) \in K$

$$A_1(u, v)(x) \ge c^{s+n-1} ||u||^s ||v||^{n-1} \int e^{-F(x, y)} \mu(dy),$$

$$A_2(u, v)(x) \ge c^{s+n-1} ||u||^{s-1} ||v||^n \int e^{-F(y, x)} \mu(dy).$$

Hence, $\inf_{\substack{(u,v)\in K\\ \|u\|=\|v\|=1\\ \|u\|=\|v\|=1}} \|A_1(u,v)\|>0$ and $\inf_{\substack{(u,v)\in K\\ \|u\|=\|v\|=1\\ \|u\|=\|v\|=1}} \|A_2(u,v)\|>0$. By Lemma 7, there exists $(u_0,v_0)\in K$ with $\|u_0\|=\|v_0\|=1$ satisfying

$$u_0 = ||A_1(u_0, v_0)||^{-1}A_1(u_0, v_0),$$

$$v_0 = ||A_2(u_0, v_0)||^{-1}A_2(u_0, v_0)$$
.

Positivity of u_0 and v_0 follows from $(u_0, v_0) \in K$.

On the other hand, we have

$$\begin{split} \int & u_0^s \, v_0^n d \, \mu = \int & u_0(x)^{s-1} v_0(x)^n u_0(x) \mu(dx) \\ & = \|A_1(u_0, v_0)\|^{-1} \int & u_0(x)^{s-1} v_0(x)^n A_1(u_0, v_0)(x) \mu(dx) \\ & = \|A_1(u_0, v_0)\|^{-1} \int \int & u_0(x)^{s-1} v_0(x)^n e^{-F(x, y)} u_0(y)^s v_0(y)^{n-1} \mu(dx) \mu(dy) \,, \\ & \int & u_0^s \, v_0^n d \, \mu = \|A_2(u_0, v_0)\|^{-1} \int \int & u_0(y)^{s-1} v_0(y)^n e^{-F(y, x)} u_0(x)^s v_0(x)^{n-1} \mu(dx) \mu(dy) \,. \end{split}$$

Integrals above are finite, since

$$\int u_0^s v_0^n d\mu \leq \left(\int u_0^{n+s} d\mu\right)^{s/(n+s)} \left(\int v_0^{n+s} d\mu\right)^{n/(n+s)} < +\infty.$$

Consequently, $||A_1(u_0, v_0)|| = ||A_2(u_0, v_0)||$. Put

$$u(x) = \left\{ \|A_1(u_0, v_0)\|^{-1} \left(\frac{\int u_0^{s-1} v_0^n d\mu}{\int u_0^s v_0^{n-1} d\mu} \right)^{n-1} \right\}^{1/(n+s-2)} u_0(x),$$

$$v(x) = \left\{ \|A_2(u_0, v_0)\|^{-1} \left(\frac{\int u_0^s v_0^{n-1} d\mu}{\int u_0^{s-1} v_0^n d\mu} \right)^{s-1} \right\}^{1/(n+s-2)} v_0(x).$$

It is easy to see that (u, v) is a positive solution of (*)'.

Proof of Theorem 2 under the assumptions (A, 5) and (A, 6). Let $F_k(x, y) = \min\{F(x, y), k\}$ for $k=1, 2, \cdots$. Let (u_k, v_k) be a positive solution of (*)' with

the potential F_k . We have

Lemma 8. Under the assumptions (A,5) and (A,6), there exist positive constants c_1 and c_2 such that $c_1 \leq u_k(x)$, $v_k(x) \leq c_2$ for all k and almost all $x \in X$

Proof. Remark that

$$\begin{split} &\sup_{k,\,x} \left\{ \int \! e^{-(n+s)F_k(x,\,y)} \mu(d\,y), \, \int \! e^{-(n+s)F_k(y,\,x)} \mu(d\,y) \right\} \! < \! + \! \infty \,, \\ &\sup_{k,\,x} \left\{ \int \! e^{(n+s)(n+s-2)F_k(x,\,y)} \mu(d\,y), \, \int \! e^{(n+s)(n+s-2)F_k(y,\,x)} \mu(d\,y) \right\} \! < \! + \! \infty \,. \end{split}$$

The proof of Lemma 8 is essentially the same as that of Lemma 12.

Since u_k' s and v_k' s are bounded, we can extract a subsequence $\{k_j\}$ such that $u_{k_j}, v_{k_j}, u_{k_j}^s v_{k_j}^{n-1}$ and $u_{k_j}^{s-1} v_{k_j}^n$ are weakly convergent in L_2 as $j \to \infty$. Put $u = \text{w-lim } u_{k_j}, v = \text{w-lim } v_{k_j}$, and $\hat{u} = \text{w-lim } u_{k_j}^s v_{k_j}^{n-1}$. Remark $c_1 \le u(x), v(x) \le c_2$ for almost all $x \in X$. Take an arbitrary bounded measurable function f on X. We have

$$\begin{split} \int f(x)u_{k_{j}}(x)\mu(dx) &= \iint f(x)e^{-F_{k_{j}}(x,y)}u_{k_{j}}(y)^{s}v_{k_{j}}(y)^{n-1}\mu(dx)\mu(dy) \\ &= \iint f(x)e^{-F(x,y)}u_{k_{j}}(y)^{s}v_{k_{j}}(y)^{n-1}\mu(dx)\mu(dy) \\ &+ \iint f(x)\left\{e^{-F_{k_{j}}(x,y)} - e^{-F(x,y)}\right\}u_{k_{j}}(y)^{s}v_{k_{j}}(y)^{n-1}\mu(dx)\mu(dy) \;. \end{split}$$

Since $g(y) = \int f(x)e^{-F(x,y)}\mu(dx)$ is a bounded function of y, the first term of the right-hand side converges to

$$\int g(y)\hat{u}(y)\mu(dy) = \iint f(x)e^{-F(x,y)}\hat{u}(y)\mu(dx)\mu(dy).$$

As for the second term, we have

$$\begin{split} &\left| \iint f(x) \left\{ e^{-F_{k_j}(x, y)} - e^{-F(x, y)} \right\} u_{k_j}(y)^s v_{k_j}(y)^{n-1} \mu(dx) \mu(dy) \right| \\ & \leq \|f\|_{\infty} c_2^{s+n-1} \iint \left\{ e^{-F_{k_j}(x, y)} - e^{-F(x, y)} \right\} \mu(dx) \mu(dy) \; . \end{split}$$

The right-hand side converges to 0 as $j \to \infty$, since $0 \le e^{-F_k} - e^{-F} \le e^{-kj}$. Therefore, we have

$$\int f(x)u(x)\mu(dx) = \lim_{j\to\infty} \int f(x)u_{k_j}(x)\mu(dx)$$
$$= \iint f(x)e^{-F(x,y)}\hat{u}(y)\mu(dx)\mu(dy),$$

from which it follows

$$u(x) = \int e^{-F(x, y)} \hat{u}(y) \mu(dy)$$
 a.e. x.

Therefore,

$$\begin{split} u_{\,k_{\,j}}(x) - u(x) &= \int \! e^{-F_{\,k_{\,j}}(x,\,y)} u_{\,k_{\,j}}(y)^{s} v_{\,k_{\,j}}(y)^{n-1} \mu(d\,y) - \int \! e^{-F(x,\,y)} \hat{u}(y) \mu(d\,y) \\ &= \int \{ e^{-F_{\,k_{\,j}}(x,\,y)} - e^{-F(x,\,y)} \} \, u_{\,k_{\,j}}(y)^{s} v_{\,k_{\,j}}(y)^{n-1} \mu(d\,y) \\ &+ \int \! e^{-F(x,\,y)} \, \{ u_{\,k_{\,j}}(y)^{s} v_{\,k_{\,j}}(y)^{n-1} - \hat{u}(y) \} \, \mu(d\,y) \,. \end{split}$$

The first integral converges to 0 as $j\to\infty$ for all x. The second integral also converges to 0, because $e^{-F(x,y)}$ belongs to $L_{(n+s)}\subset L_2=L_2^*$ as a function of y by the assumption (A, 5). Consequently, $\lim_{j\to\infty}u_{k_j}(x)=u(x)$ for almost all x. By the same argument, we have $\lim_{j\to\infty}v_{k_j}(x)=v(x)$. Letting $j\to\infty$ in

$$\begin{cases} u_{k_j}(x) = \int e^{-F_{k_j}(x,y)} u_{k_j}(y)^s v_{k_j}(y)^{n-1} \mu(dy), \\ v_{k_j}(x) = \int e^{-F_{k_j}(y,x)} u_{k_j}(y)^{s-1} v_{k_j}(y)^n \mu(dy), \end{cases}$$

we conclude by Lebesgue's convergence theorem that

$$\begin{cases} u(x) = \int e^{-F(x,y)} u(y)^{s} v(y)^{n-1} \mu(dy), \\ v(x) = \int e^{-F(y,x)} u(y)^{s-1} v(y)^{n} \mu(dy). \end{cases}$$

4. Reversibility of Markov chains.

We say that p = p(x, y) is reversible if $p = \hat{p}$, which means h(x)p(x, y) = h(y)p(y, x). We prove the following

Theorem 3. 1) If there exists a reversible chain in $\mathfrak{M}(F)$, the potential F is symmetrizable.

2) Let F be a symmetric potential. Assume (A, 3) in Lemma 4 and assume

(A,5)
$$\sup_{x} \int e^{-(n+s)F(x,y)} \mu(dy) < +\infty.$$

Then, all chains in $\mathfrak{M}(F)$ are reversible.

Proof. 1) Let p be a reversible chain in $\mathcal{M}(F)$. By Theorem 1, we have $p(x,y)=\lambda(s,n)u(x)^{-1}u(y)^{s}v(y)^{n-1}e^{-F(x,y)}$ and $h(x)=cu(x)^{s}v(x)^{n}$. From h(x)p(x,y)=h(y)p(y,x), it follows $v(x)u(x)^{-1}e^{-F(x,y)}=v(y)u(y)^{-1}e^{-F(y,x)}$, which means $F(x,y)-F(y,x)=\log v(x)u(x)^{-1}-\log v(y)u(y)^{-1}$. By Lemma 2, F is symmetrizable.

2) Let $p=(u, v) \in \mathcal{M}(F)$. Put $K(x, y) = e^{-F(x, y)} u(y)^{s-1} v(y)^{n-1}$. We have, by Theorem 1',

$$u(x) = \lambda(s, n) \int K(x, y) u(y) \mu(dy),$$

$$v(x) = \lambda(s, n) \int K(x, y) v(y) \mu(dy).$$

Since $\sup_{x} u(x) < +\infty$ and $\sup_{x} v(x) < +\infty$ as will be shown in the following Lemma 9, we have

$$\begin{split} & \iint K(x, y)^{2} \mu(dx) \mu(dy) \\ & \leq \|u\|_{\infty}^{2(s-1)} \|v\|_{\infty}^{2(n-1)} \iint e^{-2F(x, y)} \mu(dx) \mu(dy) \\ & \leq \|u\|_{\infty}^{2(s-1)} \|v\|_{\infty}^{2(n-1)} \int \mu(dx) \left\{ \int e^{-(n+s)F(x, y)} \mu(dy) \right\}^{2/(n+s)} \mu(X)^{(n+s-2)/(n+s)} \\ & \leq \|u\|_{\infty}^{2(s-1)} \|v\|_{\infty}^{2(n-1)} \left\{ \sup_{x \in \mathbb{R}} \left\{ e^{-(n+s)F(x, y)} \mu(dy) \right\}^{2/(n+s)} \mu(X)^{2(n+s-1)/(n+s)} < + \infty \right\}. \end{split}$$

The kernel K(x, y) being square-integrable, positive eigenfunctions in L_2 are unique up to a multiple of constants [6]. Consequently, there is a constant c_1 such that $u(x)=c_1v(x)$. From the equality $\int u d\mu = \int v d\mu = 1$ in case s=n=1, or from $\int u^s v^{n-1} d\mu = \int u^{s-1} v^n d\mu$ in case s+n>2, it follows $c_1=1$, i.e., u=v. Therefore we have $p(x, y)=\lambda(s, n)u(x)^{-1}u(y)^{s+n-1}e^{-F(x,y)}$ and $h(x)=cu(x)^{s+n}$, which implies h(x)p(x, y)=h(y)p(y, x).

Corollary. Assume that a symmetric potential F satisfies (A,3) and (A,5). Then, a transition density p=p(x, y) belongs to $\mathfrak{M}(F)$, if and only if p(x, y) has the expression:

$$p(x, y) = \lambda(s, n)u(x)^{-1}u(y)^{n+s-1}e^{-F(x, y)}$$
.

where u is a positive measurable function satisfying

$$(**) \begin{cases} u(x) = \lambda(s, n) \int e^{-F(x, y)} u(y)^{s+n-1} \mu(dy), \\ \int u(x) \mu(dx) = 1, & \text{if } s = n = 1, \\ \int u(x)^{s+n} \mu(dx) < +\infty. \end{cases}$$

The invariant probability density h(x) has the form:

$$h(x) = c u(x)^{s+n}$$
.

where c is a normalizing constant. The expression is unique.

Lemma 9. We assume (A, 3) and (A, 5). Then, $\sup_{x} u(x) < +\infty$ and $\sup_{x} v(x) < +\infty$ for each $(u, v) \in \mathcal{M}(F)$.

Proof. Put $\sigma = \int u^s v^{n-1} d\mu = \int u^{s-1} v^n d\mu < +\infty$. We have by Hölder's inequality

$$u(x) = \int e^{-F(x,y)} u(y)^{s} v(y)^{n-1} \mu(dy)$$

$$\leq \sigma^{(n+s-1)/(n+s)} \left\{ \int e^{-(n+s)F(x,y)} u(y)^{s} v(y)^{n-1} \mu(dy) \right\}^{1/(n+s)}.$$

Consequently,

$$\int u^{s+n} d\mu \le \sigma^{n+s-1} \iint e^{-(n+s)F(x,y)} u(y)^{s} v(y)^{n-1} \mu(dx) \mu(dy)$$

$$\le \sigma^{n+s} \sup_{x} \int e^{-(n+s)F(x,y)} \mu(dy) < +\infty.$$

By the same argument, we have

$$\int \!\! v^{s+n} d\mu \! \le \! \sigma^{n+s} \sup_x \int \!\! e^{-(n+s)F(y,x)} \mu(dy) \! < \! + \! \infty \; .$$

We have, by Hölder's inequality again,

$$\begin{split} u(x) & \leq \left\{ \int e^{-(n+s)F(x,y)} \mu(dy) \right\}^{1/(n+s)} \left\{ \int u(y)^{n+s} \mu(dy) \right\}^{s/(n+s)} \left\{ \int v(y)^{n+s} \mu(dy) \right\}^{(n-1)/(n+s)} \\ & \leq \left\{ \sup_{x} \int e^{-(n+s)F(x,y)} \mu(dy) \right\}^{1/(n+s)} \left(\int u^{n+s} d\mu \right)^{s/(n+s)} \left(\int v^{n+s} d\mu \right)^{(n-1)/(n+s)}. \end{split}$$

As for reversibility of chains in $\mathcal{M}(F)$ with a symmetrizable potential F, we have the following

Theorem 3'. We assume (A, 3) and

(A,5)
$$\sup_{x} \left\{ \int e^{-(n+s)F(x,y)} \mu(dy), \int e^{-(n+s)F(y,x)} \mu(dy) \right\} < +\infty,$$

$$(A,6)' \qquad \sup_{x} \left\{ \left\{ e^{(n+s)(n+s-2)'F(x,y)} \mu(dy), \left\{ e^{(n+s)(n+s-2)'F(y,x)} \mu(dy) \right\} < +\infty \right\} \right\}$$

where $(n+s)(n+s-2)'=\max\{(n+s)(n+s-2), 1\}$. Then the following three statements are equivalent to each other.

- 1) A potential F is uniformly symmetrizable.
- 2) There exists a reversible chain in $\mathfrak{M}(F)$.
- 3) All chains $\mathfrak{M}(F)$ are reversible.

To prove this, we need the following

Lemma 10. We assume (A, 3) and

$$(A,6)'' \qquad \sup_{x} \left\{ \int e^{F(x,y)} \mu(dy), \int e^{F(y,x)} \mu(dy) \right\} < +\infty.$$

Then, $\inf_{x} u(x) > 0$ and $\inf_{x} v(x) > 0$ for each $(u, v) \in \mathcal{M}(F)$.

Proof. We have by Hölder's inequality

$$\begin{split} & \int (u^s v^n)^{(n+s-1)/(2n+s)} d\mu \leqq \left\{ \int e^{-F(x,y)} u(y)^s v(y)^{n-1} \mu(dy) \right\}^{n/(2n+s)} \\ & \qquad \times \left(\int u^{s-1} v^n d\mu \right)^{s/(2n+s)} \left\{ \int e^{F(x,y)} \mu(dy) \right\}^{n/(2n+s)} \\ & \qquad \leqq u(x)^{n/(2n+s)} \left(\int u^{s-1} v^n d\mu \right)^{s/(2n+s)} \left\{ \sup_x \left\{ \int e^{F(x,y)} \mu(dy) \right\}^{n/(2n+s)} \right\}, \end{split}$$

from which follows $\inf_{x} u(x) > 0$.

Proof of Theorem 3'. 2) \Rightarrow 1). Let $(u, v) \in \mathcal{M}(F)$. By the proof of Theorem 3, $F(x, y) - F(y, x) = \log v(x) u(x)^{-1} - \log v(y) u(y)^{-1}$. By Lemmas 9 and 10, the function $\log v(x) u(x)^{-1}$ is bounded, hence, F is uniformly symmetrizable by Lemma 2. $1) \Rightarrow$ 3). Let F be a uniformly symmetrizable potential which satisfies (A, 3) and (A, 5). Then, the uniform symmetrization \hat{F} of F also satisfies (A, 3) and (A, 5). Therefore, by Theorem 3, all chains in $\mathcal{M}(F) = \mathcal{M}(\hat{F})$ are reversible.

3) \Rightarrow 2) is trivial, since $\mathcal{M}(F) \neq \emptyset$ by Theorem 2.

We present an example in which $\mathcal{M}(F)$ contains infinitely many chains. Let X be the unit circle S^1 which we identify with the interval [0, 1), and let μ be the Lebesgue measure on S^1 . Let s+n=3. Let a_0 , a_1 and a_2 be positive numbers. Put, for k=0, 1, 2,

$$\gamma_k = \frac{a_k}{\sum_{j=-2}^2 a_{+k-j} a_{+j}}$$
,

and put

$$u(x) = \sum_{k=-2}^{2} a_{1kl} e^{2\pi i kx}$$

$$= a_0 + 2a_1 \cos 2\pi x + 2a_2 \cos 4\pi x ,$$

$$\Gamma(x) = \sum_{k=-2}^{2} \gamma_{1kl} e^{2\pi i kx}$$

$$= \gamma_0 + 2\gamma_1 \cos 2\pi x + 2\gamma_2 \cos 4\pi x .$$

It is clear by the definition of γ_k that $u(x) = \int_0^1 \Gamma(x-y) u(y)^2 dy$. If $\gamma_1 - 4\gamma_2 > 0$, then $\min_x \Gamma(x) = \Gamma(x)|_{\cos 2\pi x = -1} = \gamma_0 - 2\gamma_1 + 2\gamma_2$, since $\Gamma(x) = 4\gamma_2 \Big(\cos 2\pi x + \frac{\gamma_1}{4\gamma_2}\Big)^2 + \gamma_0 - 2\gamma_2 - \frac{\gamma_1^2}{4\gamma_2}$. We can see

$$\begin{split} \gamma_1 - 4\gamma_2 &= \frac{a_1^2 - 6a_0a_2 - 8a_2^2}{2(a_0 + a_2)(a_1^2 + 2a_0a_2)} \;, \\ \gamma_0 - 2\gamma_1 + 2\gamma_2 &= \frac{a_1^2a_2(a_0 + 2a_2) + 4a_2^2(a_0^2 + a_2^2) + 2(a_0^3a_2 - a_1^4)}{(a_0^2 + 2a_1^2 + 2a_2^2)(a_0 + a_2)(a_1^2 + 2a_0a_2)} \;. \end{split}$$

Let $a_1^2 > 8a_2(a_0 + a_2)$, $a_1^4 \le a_0^3 a_2$ and let a_1 and a_2 be sufficiently small in comparison with a_0 . Then, functions u and Γ are positive.

Put

$$F(x, y) = -\log \Gamma(x - y),$$

$$u_{\alpha}(x) = u(\alpha + x) \qquad (\alpha \in [0, 1)),$$

then $u'_{\alpha}s(0 \le \alpha < 1)$ are positive solutions of (**) in Corollary to Theorem 3, that are distinguished from each other.

Dobrushin and Shlosman [3] show that all Gibbs distributions in Z^2 with the state space S^1 , whose potential is of finite range, of C^2 -class and invariant under rotation of S^1 , are also rotation-invariant. On the contrary, Spitzer's Markov chains determined by u_α are not rotation-invariant. But, $\mathcal{M}(F)$ contains also a rotation-invariant chain, which is determined by a constant solution $\hat{u} = (\int \Gamma(x) dx)^{-1}$ of (**).

5. Uniqueness of Markov chains at high temparature.

In the following we consider potentials with the form βF , where $\beta > 0$ is the reciprocal temparature. We prove

Theorem 4. Assume (A, 3), as in Lemma 4, and assume

(A,7)
$$\sup_{x} \left\{ \int e^{|F(x,y)|} \mu(dy), \int e^{|F(y,x)|} \mu(dy) \right\} < +\infty.$$

If β is sufficiently small, then $\mathcal{M}(\beta F)$ consists of a unique Markov chain.

Proof. If β is sufficiently small, the potential βF satisfies (A,5) and (A,6). Therefore $\mathcal{M}(\beta F) \neq \emptyset$ by Theorem 2. In case s=n=1, (*)' in Theorem 1' takes the form

$$(*)' \begin{cases} u(x) = \lambda \int e^{-\beta F(x, y)} u(y) \mu(dy), \\ v(x) = \lambda \int e^{-\beta F(y, x)} v(y) \mu(dy), \\ \int u(x) \mu(dx) = \int v(x) \mu(dx) = 1, \\ \int u(x) v(x) \mu(dx) < +\infty. \end{cases}$$

As is shown in Lemma 8, solutions u and v of (*)' are bounded from above if $\beta < \frac{1}{2}$, since (A,5) is satisfied by βF . Since the kernel $e^{-\beta F(x,y)}$ is square-integrable if $\beta < \frac{1}{2}$, the normalized positive solutions of the Perron-Frobenius equation (*)' are unique ([6]).

To prove in case s+n>2, we need several lemmas.

Lemma 11. Assume (A, 7). Put

$$c_1(\beta) = \sup_{x} \left\{ \left| \int e^{\pm \beta F(x, y)} \mu(dy) - \mu(X) \right|, \left| \int e^{\pm \beta F(y, x)} \mu(dy) - \mu(X) \right| \right\}.$$

Then, we have $\lim_{\beta \to 0} c_1(\beta) = 0$.

Proof. By Hölder's inequality, we have

$$\begin{split} \int & e^{\pm \beta F(x, y)} \mu(dy) \leq & \left\{ \int & e^{\pm F(x, y)} \mu(dy) \right\}^{\beta} \mu(X)^{1 - \beta} \\ & \leq & \left\{ \sup_{x} \int & e^{+ F(x, y)} \mu(dy) \right\}^{\beta} \mu(X)^{1 - \beta} \; . \end{split}$$

The right-hand side converges to $\mu(X)$ as $\beta \to 0$. By Hölder's inequality again, we have

$$\begin{split} \mu(X)^2 &= \left\{ \int \!\! e^{\pm (\beta/2)F(x,\,y)} e^{\mp (\beta/2)F(x,\,y)} \mu(d\,y) \right\}^2 \\ &\leq \left\{ \int \!\! e^{\pm \beta F(x,\,y)} \mu(d\,y) \right\} \left\{ \int \!\! e^{\mp \beta F(x,\,y)} \mu(d\,y) \right\} \\ &\leq \left\{ \int \!\! e^{\pm \beta F(x,\,y)} \mu(d\,y) \right\} \left\{ \sup_x \int \!\! e^{|F(x,\,y)|} \mu(d\,y) \right\}^\beta \mu(X)^{1-\beta} \;. \end{split}$$

Consequently,

$$\int \! e^{\pm\beta F(x,y)} \mu(dy) \! \ge \! \left\{ \sup_x \int \! e^{|F(x,y)|} \mu(dy) \right\}^{-\beta} \! \mu(X)^{1+\beta} \; ,$$

the right-hand side of which converges to $\mu(X)$ as $\beta \rightarrow 0$.

Lemma 12. Assume (A, 3) and (A, 7). Put

$$\begin{split} c_2(\beta) &= \sup_{(u,\,v) \in \mathcal{H}(\beta F)} \left\{ \|u - \mu(X)^{-1/(n+s-2)}\|_{\infty}, \ \|v - \mu(X)^{-1/(n+s-2)}\|_{\infty} \right\} \,, \\ c_2'(\beta) &= \sup_{(u,\,v) \in \mathcal{H}(\beta F)} \left\{ \|u^{s-1}v^{n-1} - \mu(X)^{-1}\|_{\infty}, \ \|u^{s}v^{n-2} - \mu(X)^{-1}\|_{\infty}, \ \|u^{s-2}v^n - \mu(X)^{-1}\|_{\infty} \right\} \,. \end{split}$$

Then, we have $\lim_{\beta \to 0} c_2(\beta) = \lim_{\beta \to 0} c'_2(\beta) = 0$.

Proof. Take any
$$(u, v) \in \mathcal{M}(\beta F)$$
. Put $\sigma = \int u^s v^{n-1} d\mu = \int u^{s-1} v^n d\mu$.
1°. $\int u^{s+n} d\mu$, $\int v^{s+n} d\mu \leq \sigma^{s+n} \{\mu(X) + c_1(\beta(s+n))\}$.

In fact, we have

$$\begin{split} u(x) &= \int e^{-\beta F(x,y)} u(y)^s v(y)^{n-1} \mu(dy) \\ &\leq \sigma^{(s+n-1)/(s+n)} \Big\{ \Big\{ e^{-\beta (s+n)F(x,y)} u(y)^s v(y)^{n-1} \mu(dy) \Big\}^{1/(n+s)} \,. \end{split}$$

Therefore,

$$\int u^{s+n} d\mu \leq \sigma^{s+n-1} \iint e^{-\beta(s+n)F(x,y)} u(y)^{s} v(y)^{n-1} \mu(dx) \mu(dy)
\leq \sigma^{s+n} \sup_{y} \int e^{-\beta(s+n)F(x,y)} \mu(dx)
\leq \sigma^{s+n} \{\mu(X) + c_{1}(\beta(s+n))\}.$$

2°. Put $c_s(\beta) = \{\mu(X) + c_1(\beta(s+n))\}^{(s+n-1)/(s+n)} \{\mu(X) + c_1(\beta(s+n)(s+n-2))\}^{1/(s+n)} - \mu(X)$. Then, we have u(x), $v(x) \ge \{\mu(X) + c_3(\beta)\}^{-1/(s+n-2)}$ and $\lim_{\beta \to 0} c_3(\beta) = 0$.

To show this, put $p_1 = \frac{s+n-1}{s+n-2}$, $p_2 = (s+n)(s+n-1)$, $p_3 = s^{-1}p_2$, and $p_4 = (n-1)^{-1}p_2$. Remark that $\sum_{i=1}^4 p_i^{-1} = 1$ and $p_3^{-1} + p_4^{-1} = (s+n)^{-1}$. We have

$$\begin{split} \sigma &= \int u^s v^{n-1} d\mu \\ & \leq \left\{ \int e^{-\beta F(x,y)} u(y)^s v(y)^{n-1} \mu(dy) \right\}^{1/p_1} \left\{ \int e^{(\beta p_2/p_4)F(x,y)} \mu(dy) \right\}^{1/p_2} \\ & \times \left(\int u^{s+n} d\mu \right)^{1/p_3} \left(\int v^{s+n} d\mu \right)^{1/p_4} \\ & \leq u(x)^{1/p_1} \left\{ \mu(X) + c_1 \left(\frac{\beta p_2}{p_2} \right) \right\}^{1/p_2} \sigma^{(s+n)(p_3^{-1} + p_4^{-1})} \left\{ \mu(X) + c_1 (\beta (s+n)) \right\}^{p_3^{-1} + p_4^{-1}} . \end{split}$$

Hence,

$$u(x) \ge \left\{ \mu(X) + c_1 \left(\frac{\beta p_2}{p_1} \right) \right\}^{-p_1/p_2} \left\{ \mu(X) + c_1 (\beta(s+n)) \right\}^{-p_1/(s+n)}$$

$$= \left\{ \mu(X) + c_3(\beta) \right\}^{-1/(s+n-2)}.$$

3°. Put $c_4(\beta) = \mu(X) - \mu(X)^{-(s+n-2)} \{\mu(X) + c_3(\beta)\}^{-(n+s-3)} \{\mu(X) - c_1(\beta)\}^{2(s+n-2)}$. Then, we have $\sigma = \int u^s v^{n-1} d\mu = \int u^{s-1} v^n d\mu \le \{\mu(X) - c_4(\beta)\}^{-1/(s+n-2)}$ and $\lim_{\beta \to 0} c_4(\beta) = 0$. In fact, we have by 2°,

$$\{\mu(X)+c_3(\beta)\}^{-(s+n-3)/2(s+n-2)} \leq u(x)^{s/2-1}v(x)^{(n-1)/2}.$$

Therefore,

$$\{\mu(X) + c_{s}(\beta)\}^{-(s+n-3)/2(s+n-2)} u(x) \leq \{u(x)^{s} v(x)^{n-1}\}^{1/2},$$

$$\{\mu(X) + c_{s}(\beta)\}^{-(s+n-3)/2(s+n-2)} \int u \, d\mu \leq \int (u^{s} v^{n-1})^{1/2} \, d\mu$$

$$\leq \sigma^{1/2} \mu(X)^{1/2}.$$

On the other hand by Lemma 11,

$$\int u d\mu = \int \int e^{-\beta F(x,y)} u(y)^{s} v(y)^{n-1} \mu(dx) \mu(dy)$$

$$\geq \{\mu(X) - c_1(\beta)\} \sigma,$$

hence,

$$\{\mu(X) + c_3(\beta)\}^{-(s+n-3)/2(s+n-2)} \{\mu(X) - c_1(\beta)\} \ \sigma \! \leqq \! \sigma^{1/2} \mu(X)^{1/2} \ .$$

Thus, we have

$$\begin{split} \sigma & \leq \mu(X) \left\{ \mu(X) + c_3(\beta) \right\}^{(s+n-3)/(s+n-2)} \left\{ \mu(X) - c_1(\beta) \right\}^{-2} \\ & = \left\{ \mu(X) - c_4(\beta) \right\}^{-1/(s+n-2)}. \end{split}$$

4°. We have u(x), $v(x) \le \{\mu(X) - c_4(\beta)\}^{-(s+n-1)/(s+n-2)} \{\mu(X) + c_1(\beta(s+n))\}$. In fact, we have by Lemma 11, 1° and 3°,

$$\begin{split} u(x) &= \int e^{-\beta F(x, y)} u(y)^{s} v(y)^{n-1} \mu(dy) \\ &\leq \left\{ \int e^{-\beta (n+s)F(x, y)} \mu(dy) \right\}^{1/(n+s)} \left(\int u^{s+n} d\mu \right)^{s/(n+s)} \left(\int v^{s+n} d\mu \right)^{(n-1)/(s+n)} \\ &\leq \left\{ \mu(X) + c_1(\beta (s+n)) \right\} \sigma^{s+n-1} \\ &\leq \left\{ \mu(X) + c_1(\beta (s+n)) \right\} \left\{ \mu(X) - c_4(\beta) \right\}^{-(s+n-1)/(s+n-2)}. \end{split}$$

The assertions in Lemma 12 follow from 2° and 4°.

Lemma 13. 1) Put

$$\begin{split} R_1(x) &\equiv R_1(u_1, v_1; u_2, v_2; x) = u_2^s v_2^{s-1} - \{u_1^s v_1^{n-1} + s u_1^{s-1} v_1^{n-1} w_1 + (n-1) u_1^s v_1^{n-2} w_2\} , \\ R_2(x) &\equiv R_2(u_1, v_1; u_2, v_2; x) = u_2^{s-1} v_2^n - \{u_1^{s-1} v_1^n + (s-1) u_1^{s-2} v_1^n w_1 + n u_1^{s-1} v_1^{n-1} w_2\} , \end{split}$$

where $w_1=u_2-u_1$ and $w_2=v_2-v_1$, Then, there exists a constant c>0 such that

$$||R_1||_{\infty}$$
, $||R_2||_{\infty} \le c \cdot c_2(\beta) \cdot \max(||u_2 - u_1||_{\infty}, ||v_2 - v_1||_{\infty})$

for all $0 < \beta \le 1$ and for all (u_1, v_1) and $(u_2, v_2) \in \mathcal{M}(\beta F)$.

2) There exists a function $c_{\delta}(\beta)$ with $\lim_{\beta \to 0} c_{\delta}(\beta) = 0$ such that

$$\left| \int (u_2 - u_1) d\mu - \int (v_2 - v_1) d\mu \right| \le c_5(\beta) \max(\|u_2 - u_1\|_{\infty}, \|v_2 - v_1\|_{\infty})$$

for all (u_1, v_1) and $(u_2, v_2) \in \mathcal{M}(\beta F)$.

Proof. 1) The assertion is clear, since

$$R_{1} = (u_{1} + w_{1})^{s}(v_{1} + w_{2})^{n-1} - \{u_{1}^{s}v_{1}^{n-1} + su_{1}^{s-1}v_{1}^{n-1}w_{1} + (n-1)u_{1}^{s}v_{1}^{n-2}w_{2}\}$$

$$= \sum_{\substack{j+k \geq 2\\j \leq s, k \leq n-1}} \binom{s}{j} \binom{n-1}{k} u_{1}^{s-j}v_{1}^{n-1-k}w_{1}^{j}w_{2}^{k}$$

and since $\sup\{\|u\|_{\infty}, \|v\|_{\infty}; (u, v) \in \mathcal{M}(\beta F), 0 < \beta \le 1\} < +\infty \text{ and } \|w_1\|_{\infty}, \|w_2\|_{\infty} \le 2c_2(\beta) \text{ by Lemma 12.}$

2) We have

$$\begin{split} &\mu(X)^{-1}\!\!\int\!(w_1\!-\!w_2)d\,\mu\\ =&\int\!\!\!\!\int\!\!\!\left[s\left\{\mu(X)^{-1}\!-\!u_1^{s-1}v_1^{n-1}\right\}w_1\!+\!(n\!-\!1)\left\{\mu(X)^{-1}\!-\!u_1^sv_1^{n-2}\right\}w_2\right]\!d\,\mu\\ &+\int\!\!\!\!\int\!\!\!\left[(s\!-\!1)\left\{u_1^{s-2}v_1^n\!-\!\mu(X)^{-1}\right\}w_1\!+\!n\left\{u_1^{s-1}v_1^{n-1}\!-\!\mu(X)^{-1}\right\}w_2\right]\!d\,\mu\\ &+\int\!\!\!\!\left[\left\{su_1^{s-1}v_1^{n-1}w_1\!+\!(n\!-\!1)u_1^sv_1^{n-2}w_2\right\}-\left\{(s\!-\!1)u_1^{s-2}v_1^nw_1\!+\!nu_1^{s-1}v_1^{n-1}w_2\right\}\right]\!d\,\mu\,. \end{split}$$

The first integral in the right-hand side is bounded in the absolute value by

$$\{s\|\mu(X)^{-1}-u_1^{s-1}v_1^{n-1}\|_{\infty}\cdot\|w_1\|_{\infty}+(n-1)\|\mu(X)^{-1}-u_1^{s}v_1^{n-2}\|_{\infty}\cdot\|w_2\|_{\infty}\}\,\mu(X)\,,$$

which is not less than $(s+n-1)c_2'(\beta)\mu(X)\max(\|w_1\|_{\infty}, \|w_2\|_{\infty})$ by Lemma 12. The second integral is also bounded in the absolute value by $(s+n-1)c_2'(\beta)\mu(X)\max(\|w_1\|_{\infty}, \|w_2\|_{\infty})$. The third integral is equal to

$$\int \left\{ \left(u_{2}^{s}v_{2}^{n-1} - u_{1}^{s}v_{1}^{n-1} - R_{1} \right) - \left(u_{2}^{s-1}v_{2}^{n} - u_{1}^{s}v_{1}^{n-1} - R_{2} \right) \right\} d\mu = \int (R_{2} - R_{1}) d\mu,$$

since $\int u_i^s v_i^{n-1} d\mu = \int u_i^{s-1} v_i^n d\mu$ (i=1, 2). The absolute value of the right-hand side is not less than $(\|R_1\|_{\infty} + \|R_2\|_{\infty})\mu(X) \leq 2\mu(X) \cdot c \cdot c_2(\beta) \max(\|w_1\|_{\infty}, \|w_2\|_{\infty})$. Therefore, we have

$$\left| \left\lceil \left((w_1 - w_2) d \, \mu \right| \leq 2 \, \{ (s + n - 1) c_2'(\beta) + c \cdot c_2(\beta) \} \, \mu(X) \max \left(\| \, w_1 \|_{\infty}, \, \, \| \, w_2 \|_{\infty} \right) \right.$$

Proof of Theorem 4 in case s+n>2. Take arbitrary (u_1, v_1) and $(u_2, v_2) \in \mathcal{M}(\beta F)$. Put $w_1=u_2-u_1$ and $w_2=v_2-v_1$. From $u_i(x)=\int e^{-\beta F(x,y)}u_i(y)^s v_i(y)^{n-1}u(dy)$ (i=1,2), it follows that

$$\begin{split} w_1(x) &= \int e^{-\beta F(x, \, y)} \left\{ s \, u_1(y)^{s-1} v_1(y)^{n-1} w_1(y) + (n-1) u_1(y)^s v_1(y)^{n-2} w_2(y) + R_1(y) \right\} \mu(d \, y) \\ &= (s+n-1) \mu(X)^{-1} \int w_1 d \, \mu + (n-1) \mu(X)^{-1} \int (w_2 - w_1) d \, \mu \\ &+ s \mu(X)^{-1} \int (e^{-\beta F(x, \, y)} - 1) w_1(y) \mu(d \, y) + (n-1) \mu(X)^{-1} \int (e^{-\beta F(x, \, y)} - 1) w_2(y) \mu(d \, y) \\ &+ s \int e^{-\beta F(x, \, y)} \left\{ u_1(y)^{s-1} v_1(y)^{n-1} - \mu(X)^{-1} \right\} w_2(y) \mu(d \, y) \\ &+ (n-1) \int e^{-\beta F(x, \, y)} \left\{ u_1(y)^s v_1(y)^{n-2} - \mu(X)^{-1} \right\} w_2(y) \mu(d \, y) \\ &+ \int e^{-\beta F(x, \, y)} R_1(y) \mu(d \, y) \, . \end{split}$$

We have

$$\left| \int (w_{2} - w_{1}) d\mu \right| \leq c_{5}(\beta) \max (\|w_{1}\|_{\infty}, \|w_{2}\|_{\infty}) \qquad \text{(by Lemma 13)},$$

$$\left| \int e^{-\beta F(x, y)} \left\{ u_{1}(y)^{s-1} v_{1}(y)^{n-1} - \mu(X)^{-1} \right\} w_{1}(y) \mu(dy) \right|$$

$$\leq \left\{ \mu(X) + c_{1}(\beta) \right\} \|u_{1}^{s-1} v_{1}^{n-1} - \mu(X)^{-1}\|_{\infty} \cdot \|w_{1}\|_{\infty} \qquad \text{(by Lemma 11)}$$

$$\leq \left\{ \mu(X) + c_{1}(\beta) \right\} c_{2}'(\beta) \max (\|w_{1}\|_{\infty}, \|w_{2}\|_{\infty}) \qquad \text{(by Lemma 12)},$$

$$\left| \int e^{-\beta F(x, y)} R_{1}(y) \mu(dy) \right| \leq \left\{ \mu(X) + c_{1}(\beta) \right\} \|R_{1}\|_{\infty} \qquad \text{(by Lemma 11)}$$

$$\leq \left\{ \mu(X) + c_{1}(\beta) \right\} c \cdot c_{2}(\beta) \max (\|w_{1}\|_{\infty}, \|w_{2}\|_{\infty}) \qquad \text{(by Lemma 13)}.$$

As for $\int (e^{-\beta F}-1)w_1 d\mu$, we have

$$\begin{split} & \left| \int \{ e^{-\beta F(x,\,y)} - 1 \} \, w_1(y) \mu(d\,y) \right| \\ & \leq & \left\{ \int (e^{-\beta F(x,\,y)} - 1)^2 \mu(d\,y) \right\}^{1/2} \left(\int w_1^2 d\,\mu \right)^{1/2} \\ & \leq & \| w_1 \|_{\infty} \cdot \mu(X)^{1/2} \left\{ \int e^{-2\beta F(x,\,y)} - 2e^{-\beta F(x,\,y)} + 1 \right) \mu(d\,y) \right\}^{1/2} \,. \end{split}$$

The last integral converges to 0 uniformly in x as $\beta \to 0$ by Lemma 11. Consequently, $w_1(x) = (s+n-1)\mu(X)^{-1} \int w_1 d\mu + R_3(x)$, where $\|R_3\|_{\infty} \le c_6(\beta) \max(\|w_1\|_{\infty}, \|w_2\|_{\infty})$ with $\lim_{\beta \to 0} c_6(\beta) = 0$. Hence, we have

$$\begin{split} & \int \! w_1 d\, \mu \! = \! -\frac{1}{s+n-2} \! \int \! R_3 d\, \mu \,, \\ & \left| \int \! w_1 d\, \mu \right| \! \leq \! \frac{\mu(X)}{s+n-2} \, \|R_3\|_\infty \,, \\ & \|w_1\|_\infty \! \leq \! (s+n-1)\mu(X)^{-1} \! \left| \int \! w_1 d\, \mu \right| \! + \! \|R_3\|_\infty \\ & \leq \! \left(\frac{s+n-1}{s+n-2} \! + \! 1 \right) \! c_6(\beta) \max \left(\|w_1\|_\infty , \, \|w_2\|_\infty \right) . \end{split}$$

By the same argument as above, we have

$$\|w_2\|_{\infty} \le \left(\frac{s+n-1}{s+n-2}+1\right) c_6(\beta) \max(\|w_1\|_{\infty}, \|w_2\|_{\infty}),$$

from which it follows

$$\max(\|w_1\|_{\infty}, \|w_2\|_{\infty}) \leq \left(\frac{s+n-1}{s+n-2}+1\right) c_{\epsilon}(\beta) \max(\|w_1\|_{\infty}, \|w_2\|_{\infty}).$$

If β is so small that $(\frac{s+n-1}{s+n-2}+1)c_6(\beta)<1$, then $\max(\|w_1\|_{\infty}, \|w_2\|_{\infty})=0$, which means $u_1=u_2$ and $v_1=v_2$.

6. The number of Markov chains at low temparature. An example.

We present an example, in which the number of chains in $\mathcal{M}(\beta F)$ is exactly calculated for sufficiently large β . Let X be a finite set and let $\mu_i \equiv \mu(\{i\}) > 0$ for all $i \in X$. We prove

Theorem 5. Let F be a symmetric potential on X satisfying

(A,8)
$$F(i, j) > F(j, j) + \frac{1}{n+s-1} |F(i, i) - F(j, j)|$$

for all $i \neq j \in X$. Then, the number of chains in $\mathcal{M}(\beta F)$ is equal to $2^{*x}-1$ for sufficiently large β , if n+s>2.

Proof. We look for positive solutions of

$$u_i = \sum_{j \in X} e^{-\beta F(i,j)} u_j^{s+n-1} \mu_j \qquad (i \in X).$$

For simplicity we put p=s+n-1. If we put

$$x_i = \{e^{-\beta F(i,i)} \mu_i\}^{1/(p-1)} \mu_i$$

the equation (**) is transformed into

$$(**)'$$
 $x_i = x_i^p + \sum_{j:j \neq i} a_{ij} x_j^p \quad (i \in X),$

where $a_{ij}=\mu_i^{1/(p-1)}\mu_j^{-1/(p-1)}\exp\left[-\beta\{F(i,j)-F(j,j)-\frac{1}{p-1}(F(j,j)-F(i,i))\}\right]$. Under the assumption (A,8), we have $\lim_{\beta\to\infty}a_{ij}=0$. Therefore, Theorem 5 is a corollary to the following

Lemma 14. The number of non-trivial solutions of the equation

$$(***) x_i = |x_i|^p + \sum_{\substack{1 \le j \le N \\ i \ne i}} a_{ij} |x_j|^p (1 \le i \le N)$$

is equal to 2^N-1 , if p>1 and positive coefficients $a_{ij}(1 \le i \ne j \le N)$ are sufficiently small.

Proof. Put, for
$$\mathbf{x} = (x_1, x_2, \dots, x_N)$$
 and $\mathbf{a} = (a_{ij} : 1 \le i \ne j \le N)$,
$$F_i(\mathbf{x}, \mathbf{a}) = |x_i|^p - x_i + \sum_{1 \le j \le N} a_{ij} |x_j|^p \qquad (1 \le i \le N),$$

$$\int_{j\neq i}^{15j \le N} \delta F_i$$

$$J(x, a) = \det \left(\frac{\partial F_i}{\partial x_j}(x, a) \right)_{1 \le i, j \le N},$$

where

$$\frac{\partial F_{i}}{\partial x_{j}}(x, a) = p \delta_{ij} |x_{i}|^{p-1} - \delta_{ij} + p(1 - \delta_{ij}) a_{ij} |x_{j}|^{p-1}.$$

1°. The number of non-trivial solutions of (***) is not less than $2^{N}-1$, if a_{ij} 's are sufficiently small.

In fact, let $\hat{\mathbf{x}} = (\hat{x}_1, \hat{x}_2, \dots, \hat{x}_N) \neq \mathbf{0}$ with $\hat{x}_i = 0$ or 1. We have $F_i(\hat{\mathbf{x}}, \mathbf{0}) = 0$ $(1 \leq i \leq N)$ and $J(\hat{\mathbf{x}}, \mathbf{0}) \neq 0$, since $\frac{\partial F_i}{\partial x_i}(\hat{\mathbf{x}}, \mathbf{0}) = p\hat{x}_i - 1$ and $\frac{\partial F_i}{\partial x_j}(\hat{\mathbf{x}}, \mathbf{0}) = 0$ $(i \neq j)$. Consequently, there exist a constant A and an R^N -valued continuous function $\mathbf{f}^{\hat{\mathbf{x}}} = \mathbf{f}^{\hat{\mathbf{x}}}(\mathbf{a})$ defined for \mathbf{a} with $\|\mathbf{a}\| = \max |a_{ij}| \leq A$, such that

$$f^{\hat{x}}(0) = \hat{x}$$
,
 $F_i(f^{\hat{x}}(a), a) = 0$ for a with $||a|| \le A$ $(1 \le i \le N)$.

Since $f^{\hat{\mathbf{r}}}(a) \neq 0$ if a is sufficiently small, it is a non-trivial solution of (***). Remark that if $\hat{\mathbf{x}} \neq \hat{\mathbf{x}}'$, $f^{\hat{\mathbf{r}}}(a) \neq f^{\hat{\mathbf{r}}}(a)$ for sufficiently small a. The number of non-trivial solution of (***) is not less than $\sharp \{\hat{\mathbf{x}} : \hat{\mathbf{x}} \neq 0, \ \hat{x}_i = 0 \text{ or } 1 \ (1 \leq i \leq N)\} = 2^N - 1$.

2°. If a is sufficiently small, then $J(x, a) \neq 0$ for any solution $x = (x_1, x_2, \dots, x_N)$ of (***).

In fact, from $x_i - |x_i|^p = \sum_{j \neq i} a_{ij} |x_j|^p \ge 0$, it follows $0 \le x_i \le 1$. From $0 \le x_i - |x_i|^p = \sum_{j \neq i} a_{ij} |x_j|^p \le \sum_{j \neq i} a_{ij} \le (N-1) \|\boldsymbol{a}\|$, it follows that x_i is close to 0 or 1 if $\|\boldsymbol{a}\|$ is small. Therefore, $\left|\frac{\partial F_i}{\partial x_i}(\boldsymbol{x}, \boldsymbol{a})\right| = |px_i^{p-1} - 1| \ge \frac{1}{2}$ for sufficiently small \boldsymbol{a} . On the other hand, for $i \ne j$

$$\frac{\partial F_i}{\partial x_j}(\mathbf{x}, \mathbf{a}) = p a_{ij} x_j^{p-1} \leq p \|\mathbf{a}\|.$$

Hence, $I(x, a) \neq 0$ if a is sufficiently small.

3°. Let a be sufficiently small and let $x=(x_1, x_2, \dots, x_N)$ be a solution of (***). There exist continuous functions $f_1(t), f_2(t), \dots, f_N(t)$ defined on [0, 1] such that

$$f_i(1) = x_i$$
 $(1 \le i \le N)$,
 $f_i(t) = |f_i(t)|^p + \sum_{i \ne i} t a_{ij} |f_j(t)|^p$ $(1 \le i \le N, 0 \le t \le 1)$.

In fact, put $\widetilde{F}_i(x;t) = |x_i|^p - x_i + \sum_{j \neq i} t a_{ij} |x_j|^p$ $(1 \le i \le N)$ and let A_0 be the infimum of A such that there exists a continuous function $f(t) = (f_1(t), f_2(t), \cdots, f_N(t))$ on [A, 1] such that

$$f(1)=x$$
,
$$\tilde{F}_i(f(t);t)=0 \qquad (1 \le i \le N, \ A \le t \le 1).$$

Put $\tilde{J}(\mathbf{x}, t) = \det\left(\frac{\partial \tilde{F}_i}{\partial x_j}(\mathbf{x}, t)\right)_{1 \le i, j \le N}$. Since $\tilde{J}(\mathbf{x}, 1) \ne 0$ by 2°, such a function f(t) exists in a neighbourhood of 1. Therefore, $A_0 < 1$.

Suppose $A_0 \ge 0$. Then there exists a sequence $A_n \setminus A_0$ and continuous functions $f^{(n)}(t)$ on $[A_n, 1]$ such that

$$f^{(n)}(1) = x$$
,
$$\widetilde{F}_i(f^{(n)}(t); t) = 0 \qquad (1 \le i \le N, A_n \le t \le 1).$$

Since $\tilde{J}(\mathbf{f}^{(n)}(t);t)\neq 0$ by 2°, uniqueness of implicit functions implies $\mathbf{f}^{(n)}(t)=\mathbf{f}^{(m)}(t)$ for m>n and $A_n\leq t\leq 1$. Put

$$f(t) = f^{(n)}(t)$$
 for $A_n \le t \le 1$ $(n = 1, 2, \dots)$.

The function f(t) satisfies

$$f(1)=x$$
,
 $\widetilde{F}_i(f(t);t)=0$ $(1 \le i \le N, A_0 < t \le 1)$.

Remark that every component $f_i(t)$ of f(t) satisfies $0 \le f_i(t) \le 1$. Let $t_n \setminus A_0$. There exists a subsequence $\{t_{n_k}\}$ such that $f(t_{n_k})$ converges as $k \to \infty$. Put $y = \lim f(t_{n_k})$. We have

$$\widetilde{F}_i(\boldsymbol{y}; A_0) = 0 \qquad (1 \leq i \leq N),$$

hence, $\tilde{J}(\boldsymbol{y}; A_0) \neq 0$ by 2°. There exists a unique function $\tilde{\boldsymbol{f}}(t)$ in some neighbourhood $(A_0 - \varepsilon, A_0 + \varepsilon)$ of A_0 such that

$$\tilde{f}(A_0) = \mathbf{y}$$
,
 $\tilde{F}_i(\tilde{f}(t); t) = 0$ $(1 \le i \le N, A_0 - \varepsilon < t < A_0 + \varepsilon)$.

By uniqueness of implicit functions, we have $f(t) = \tilde{f}(t)$ for $t \in (A_0, A_0 + \varepsilon)$. Therefore, $A_0 - \varepsilon$ is not less than the infimum of A such that there exists a continuous function f(t) on [A,1] with f(1)=x and $\widetilde{F}_i(f(t):t)=0$ $(1 \le i \le N, A \le t \le 1)$, which we have denoted by A_0 . This is a contradiction. Hence $A_0 < 0$.

4°. Let **a** be sufficiently small. There is a one-to-one correspondence between non-trivial solutions \mathbf{x} of (***) and $\hat{\mathbf{x}} = (\hat{x}_1, \hat{x}_2, \dots, \hat{x}_N) \neq \mathbf{0}$ with $\hat{x}_i = \mathbf{0}$ or 1.

In fact, let x be a non-trivial solution of (***). There is a continuous function f(t) on [0,1] such that

$$f(1) = x,$$

$$f_i(t) = |f_i(t)|^p + \sum_{i \neq i} t a_{ij} |f_i(t)|^p \qquad (1 \le i \le N, \ 0 \le t \le 1).$$

Since $f_i(0) = |f_i(0)|^p$, we have $f_i(0) = 0$ or 1. If f(0) = 0, then f(t) = 0 for all $0 \le t \le 1$ by uniqueness of implict functions.

Institute of Mathematics Yoshida College Kyoto University

References

- [1] A. Coniglio, Some cluster-size and percolation problems for interacting spins, Phys. Review B, 13 (1976), 2194-2207.
- [2] Р. Л. Добрушин, Описание случайного поля при помощи условных вероятностей и условия его регурярности, Теория вероят. примен., **13** (1968), 201-229.
- [3] R.L. Dobrushin and S.B. Shlosman, Absence of breakdown of continuous symmetry in two-dimensional models of statistical physics, Commun. math. Phys., 42 (1975), 31-40.
- [4] Y. Higuchi, Remarks on the limiting Gibbs states on a (d+1)-tree, Publ. RIMS, Kyoto Univ., 13 (1977), 335-348.
- [5] М. А. Красносельский, Топологические методы в теории нелинейных интегральных уравнений (1956).
- [6] М.Г. Крейн и М.А. Рутман, Линейные операторы, оставляющие инвариантным конус в пространстве Банаха, Успехи матем. наук, 3 (1948), 3-95.
- [7] O.E. Lanford and D. Ruelle, Observables at infinity and states with short range correlations in statistical mechanics, Commun. math. Phys., 13 (1969), 194-215.
- [8] C.J. Preston, Gibbs states on countable sets (1974).
- [9] E. Rothe, On non-negative functional transformations, Amer. J. Math., 66 (1944), 245-254.
- [10] F. Spitzer, Markov random fields on an infinite tree, Ann. of Prob., 3 (1975), 387 -398.