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1. Introduction and summary of results.

Spitzer [10] has introduced Markov chains, whose space of “time parameters”
is an infinite tree T, and whose state space is a set {—1, +1}. He investigates
Gibbs distributions on T that are Markov chains of such construction. Several
works [1], [4] and [8] are made on Gibbs distributions on trees.

In the present paper, we generalize Spitzer’s results to the case when the
state space is a compact set. If the state space consists of two points as in the
case of Spitzer, all Markov chains are reversible. So, in that case, the “time
parameter” space T need not be equipped with a direction. But, since Markov
chains may not be reversible in our case, we must introduce a direction into 7.
Thus, we consider Markov chains whose space of “time parameters” is an in-
finite directed tree T, and whose state space is a compact measure space (X, 3, p).

Let F(x, y) be a measurable function on XX X, of which we do not assume
the boundedness nor the symmetry F(x, y)=F(y, x). A Markov chain on T,
whose transition density we denote by p(x, y), is a Gibbs distribution on T
with the potential F, if and only if

p(x, Y=, Mu(x)u(y)v(y)r-leFEv

where u and v are positive solutions of integral equations of the Hammerstein
type

() =A(s, n)S FE Dy () () p(dy)

e
X

v(x)=A(s, n)SYe'””'”’u(y)“‘v(y)"ﬂ(dy).
Numbers s, n and A(s, n) will be defined in the following sections. Let HM(F)
be the set of Markov chains that are, at the same time, Gibbs distributions with
the potential F. Under summability conditions on F, all or no chain in H(F) is
reversible. Roughly speaking, all chains in HM(F) are reversible if and only if
F is nearly symmetric. In a symmetric case, the transition density p(x, y) has
the form;

p(x, Y)=A(s, mu(x) tu(y)*+*-le @,
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where u is a positive solution of the integral equation;

u(x)=2(s, n)SXe‘F“”' Vyu(y)iuldy).
Existence of positive solutions of the integral equations is proved by applying
the theory of cones in a Banach space.

Dobrushin and Shlosman [3] proved that all Gibbs distributions in Z? whose
state space is the circle S!, are invariant under rotation of the circle, if the
potential is of finite range, of C*-class and rotation-invariant. We present an
example of chains in H(F) that are not rotation-invariant although the potential
F is rotation-invariant and of C>-class.

Next, we consider a potential SF, where 8>0 is the reciprocal temparature.
We prove uniqueness of SM(SF) for sufficiently small 8. We present an example
in which the number of chains in H(BF) is exactly calculated for sufficiently
large B.

2. Potentials and Gibbs distributions.

Let X be a compact metric space. Let @ be the topological Borel field of
X and let g be a measure on (X, 8). Let T be the infinite directed tree, in
which s branches emanate from every vertex and n branches flow into every
vertex. Two vertices a#b in T are neighbours if they are connected by a
branch, which we denote by a—b or b—a. If a branch connecting a and b ema-
nates from a, which is equivalent to that the branch flows into b, we write a —b
or b—a. We remark s, n=1. For a subset V of T, let dV be the set of vertices
in V¢ that are neighbours of vertices in V. Let 2=X7. For wef and a<T,
let x.(@w)=w, For VCT. let xy(w) be the restriction w|y of w on V, and let
By, be the o-algebra of 2 generated by x,. Bg is the o-algebra generated by
the cylinder sets.

A potential is a pair F=(F,, F;) of real-valued measurable functions F; and
F,, where F, and F, are defined on X and on XXX, respectively. For a finite
subset V of T and for x4, put

Hy(x0)=HF(0)= T Fi(r)+ 3 Fixe )

a—-b

> Fo(xe, x)+ 2 F(xy, x4).
gg}]’.beﬁV

g%g,bEnV
The family {Hy}, is called Hamiltonian.

Definition. Two potentials F=(F,, F;) and F’'=(Fi, F;) are said to be
equivalent, which we denote by F=%’, if HF(x)—H# (x) does not depend on xy
for every finite subset V. We remark that it may depend on xgy.

Lemma 1. Let F=(F, F,) be a potential and put

1 .
Filx, 9)=Fx, N+ FO+HFGE



Spitzer's Markov chains 43

then F=(0, F3). If F, is symmetric, F; is also symmetric.

Proof. Put Fi(x, y)=—ni_—S{F,(x)+Fl(y)}. We have

S Fi(xa, x0)+ 2 Fi(xa, xo)+ 2 Fi(xs, x4)
a,bev g?_ vV

a€V, b€V V., be
a=b a-b b
1
=a§VF1(xa)+ n—+s—b62w#{aev ; a—b} Fi(x,) .
Therefore, HY F2(x)— HF (x)= > t{aeV ;a—b} Fi(x,), which implies &=
n-—+s oéav

0, F2).

In the following we always assume F;=0. We identify a potential (0, F)
with the function F.

Definition. 1) A potential F is said to be symmetrizable if there exists a
symmetric potential £ with F=F. We call £ a symmetrization of F.

2) A potential F is said to be uniformly symmetrizable if there exists a
symmetrization F of F such that

sIuEIF(x, N—F(x, y)| <+,
We call F' a uniform symmetrization of F.

Lemma 2. 1) A potential F is symmetrizable if and only if there exists a
measurable function f such that

F(x, y)—F(y, x)=f(x)—f(y).

2) A potential F is uniformly symmetrizable if and only if there exists a
bounded measurable function f which satisfies the above equality.

Proof. Assume F(x, y)—F(y, x)=f(x)—f(y). We have

Flx, )= {F(x, D+EG, D+ (Fx, )~ F(, 2)
=5 (F(x, )HFG, D+ 5 DS

Puc £(x, 3)=5 (F(x, )+ P00, 0} + 5 (f)H/G)). - Since

B UG-G+ B A= _S )~ fxo)
asb asp' =

a€V,bedv
a«<b
=(s—n)a§,f(xa)+be§)y[# {aeVia—b—#{acV;a—b]f(xy),

and since

a,
a— a<b

B, UG+, B A1)+ B {0+ 1o
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=(s+n) 2 f(xa)+ 2 #lacV;a—b}f(x0),
we have
5(x)— Hf (x)

Z%b;}y[#{aEV; a—bl—4#{a€eV;a—b}—

s—

" lacV;a—b) |fx),

s+n

which implies F=F. If f is bounded, from an equality
F(x, »)—Fx, y)=—2— (nf(x)—sf(»)
y b n+s )

it follows sup|F(x, y)—F(x, y)| <co.
z,y

Conversely, assume F=F, where I is symmetric. Let a;—a (1<i<n) and
aj—a (1=j=<s). By the equivalence of potentials, the difference H{;,(x)—Hﬂ,(x)

does not depend on x,, which we denote by 4(x4,, Xa, ***, Xap Xay, Xaps s xa's).
Fixing any x,€ X, we take arbitrary x and y from X. Put x,=y, x4,=%, x4,= X0
(2Zi<n) and Xay="%o (1£5=s). Put d(x)=4d(x, xo, =+, x0). We have

A(X):A(xy xO: ttt, xO)
= HFE, (x)— HE, (x)

I

B {F(xay )= Fltay 10} + 3 (FGrar %a))—Flxa, %0y}

={F(x, »)—F(x, y)} +(n—D{F(x0, y)—F(xo, )} +s{F(3, x)—F(y, 2o} .
Consequently,
F(x, 9)=F(x, y)—(n—D{F(x0, y)—F(x0, y)} —=s{F(y, x0—F(y, x)} +4(x).
Exchanging x and y, we have
F(y, x)=F(x, y)—(n—1){F(xo, x)—F(x0, 1)} =s{F(x, xo)—F(x, xo)} +4(9),
from which follows an equality
F(x, 3)—F(y, x)=f(x)—f(3),

where f(x)=4(x)+(n—1){F(xo, x)—F(xo, x)} +s{F(x, xo)—F(x, x0)}.
If sup|F(x, y)—F(x, y)| <-+oo, then 4(x) is bounded, therefore f is also
z, Y

bounded.

For a finite subset V of T, put /Jy(dxv)zal;’,u(dxa).

Definition. A potential F is said to be admissible if for any finite subset V
of T

W, XaV)ESX,,e_H{"(x)/lV(de)< +oo  a.e. (gav).
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Lemma 3. A potential F is admissible, if

A1) [fe-enemresvuanyudy) < oo,
or if
(A, 2) sup {Se'”" Vu(dy), Se'F(V"’/x(dy)}< 400,

Proof. Admissiblity under (A, 1) is a direct consequence of 1) in the follow-
ing Lemma 3’. Under (A, 2) we have Se“”l";""muay(dxyuay)< +o0 by 2) in
Lemma 3, if we put F, ,=F for a—beV\UdV with {a, b} €V, and if we put
Fy v=0 for a—besaV.

Lemma 3'. Let be given a family {F,,;a—beT} of functions Fo,=Fq,,
(x, y). For a finite subset V of T, put

H/x)= 3 Faolxa, xo)+_

a-b a

2 Fa.b(xa» xb)'l' E N Fb.a(xm xa.) ’
gz’, beav 25},"060"

ﬁv(x)za ozev Fo o(xa, xp).
asb

1) If for each a—beT,

(A, 1Y SSe“"”)F“"’("”’#(dx)#(dy)<+°°,

then it holds Se’””""ptv(dxy)< +oo a.e. (uoy).
2) If for each a—beT,

(A2 sup {[eFa.0vp(dy), (e-Farr o p(dy}< oo,
then it holds Se"ﬁ"""yv(dxy)< +o0,

Proof is carried out by induction in #V.
1) Let V be a set consisting of a single vertex a. Let a;—a (1</<n) and
aj—a (1=j<s). We have

ﬁ“’-’(x)ZEIFai' a(xa,;, Xa)+ ElFa,a:ija; xa}) ’

S
1T e Fa.ajFaTayd y(dx,)

n
Se—l?mmﬂ(dxa)_—_SH e~Fa, a(rai-zwj
i=1 =1

=1

n s 1/(n+s)
é{l‘[ Se-(nn)Fai_ a(zai, ‘a),a(dxa)II ge'“‘”“‘"a, a'j (rqg, xus. "u(dxa)}
j=1

<+oo a.e. (Haa)) -

We assume that the statement is true if §V<k. Let $V=~Fk+1. Fix any q,€V
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and let V,=V\{a,}. Put

Fg, ao(x):_

——p log Se“‘"*”“-ao“'”y(dz), if a—a,,

Fly o(x)=— logSe""“’pdo-a“"’y(dz), if e a,,

1
n+s
F}o(x, v)=F.(x, y), if otherwise.
It is clear that SSe'("“)F"l-b(x'”’p(dx)[,t(dy)( 400, We have
HV<x): EUaVFa..ao(xay xao)+aeV%J9V Fao. a,(xa,oy xa)
acag

aeVy
a-ag

+ 3 Fio(xa, x5)+ > Fa o(xq, x5)
e

a€V, bEIV o\ a g}
a_'bO oMao

7
i Fb.a(xb» xa) .
a€Vy, bEadV g\lag)
a«bd

Denote the sum of the first two terms and the sum of the last three terms by
Hi(x) and by H,(x), respectively. Remark that #{asV, U0V ;a—ae} =n+s.
We have by Hoélder’s inequality
By — -Fg a,(Za:Tqa,) -Fq  a(Zay, Ta)
Se dxq,) Saellf_oluave a, 0 aellf—quaVe o alTag a/,g(dxao)
a—ag a«<ag
1/(n+s8)
-(n+8$)F B ) - F ar
é{aellf;[uavge rRTe.aytFarTag F(dxao)aeH Se T e Zao)z“(dxdo)}

VoUov
a-ag a«<ag

=exp{— F, o (xq)— Fi o(xa)}.
p{ ae%‘w @ ap(Xa) aa%uav ag. (X a)}
a-ag a«ag

On the other hand,

Hy(x)+ ae‘%)UaVFa, ao(x a)+aeV§J6V Fao‘ o(%a)
a=ag a<ag

=Hy )+ 3 Fiafxat 3 Figaxa),

a-agp a<ag

where I—?’,;o(x) is the Hamiltonian determined by {F; .}, i.e.,

1y ()= 3 Fiulxe x)+ 2 Fiolxa, x0)
a.65V0

a€eVy, bedV
acho 0

Fy, o(xs, Xa) .
ggz/o. bEIV

Therefore, we have

S2—HV(x)/lV(dXV):Se_ﬁz(x)/lVo(dxVO)Se_ﬁlu)/«‘(dxao)

<exp(— B Fiaiad— 5, Flyalrd (e Mo pydxry)

a=ag a«cay

The last integral is finite a.e. (¢sr,) by the assumption of induction.
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2) If gV=1, ﬁy(x)zo. Consequently, Se"”V“>py(de)<oo is trivial. We

assume that the statement is true if $V<Fk. Let $V=Fk+1. It is easy to see
that there exists a,€V such that #(VNoda,)=0 or 1. Put V,=V\{as. If
#VNoay)=0, I-zlv(x)zlf],,o(x). Therefore, by the assumption of induction.

[l pytd ey ={ fe-Paco py (dxyyutdxay

=) Aoty (d ) <+ o0

v

If VNoa,={b} and if, for example, a,—b, then

Hy(x)=Hy (X)+ Fap.o(Xay, X0) -
Therefore,

Se'ﬁ"(")/«tv(dxV)—TSSe'ﬁVo(‘)'F“o'W’“o'x”)/l(dxao)#vo(dxvo)
Ssup Se‘“o- beFay ”#(dxao)ge‘ﬁ”o“’#vo(dxv0)< +oo.

In the following we consider only admissible potentials without mentioning.
Put

1. _yF
qf" xaV(xV):E(V) xaV) le Hy (o )

which is a probability density on (X", uy). We call ¢¥,.,, conditional Gibbs
density. We remark that ¢f, .,,=¢¥ s, for all finite subset V and for a.a. (pay)
xay, if and only if F=F’,

Definition ([2], [7]). A probability measure P on (2, By) is called Gibbs
distribution with a potential F, if for each finite subset V of T, conditional pro-
bability distributionP( | By¢) relative to By is absolutely continuous with respect
to py and

dP( | Bye)
TVVZQIF; z5v a.e. (P).

Let @(F) be the set of Gibbs distributions with the potential F.

3. Markov chains on the directed tree T.

Let p(x, y) be a positive transition density on (X, 8, p) and let h(x) be the
invariant probability density of p(x, y). Put

px, M=h(Mply, x)h(x)",

which is called reversed transition density of p.

Let V be a connected finite subset of 7. Let us introduce a second direction
— in V. Fix any q,€V. If a—b and there exists a chain a,—a,— - —a,—
a—b, we write a—b or bea. In particular, ap—a if a,—a. We remark that
if a—beV, either a—b or a<—b. Put
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pr(x)=h(xe) TI p(xa, xb)agvﬁ(xa, Xo),

a-b
a«<b

799
S

Py{wE.Q; XV((O)EE} '_—_SE]')V(xV)‘Uv(dXV) for Ee By .

It is easy to see that p, does not depend on the choice of the centre a, and
that {Py} is a consistent cylinder measure. By Kolmogorov’s extension theorem,
{Py} extends to a measure p on (2, Bp). We identify the measure p with its
transition density p(x, v).

Definition. A measure p constructed above is called Spitzer’'s Markov chain
with a potential F if pQ(F). Denote by M(F) the set of Spitzer's Markov
chains with the potential F.

Theorem 1. A transition density p=p(x, y) belongs to M(F), if and only if
p(x, y) has the expression;

p(x, Y)=A%s, mu(x)u(y)v(y)* e F= v,

where A(s, n) is the Perron-Frobenius eigenvalue of the kernel e F<® V) if s=n=1,
and A(s, n)=1 if otherwise, and u and v are positive measurable functions satisfying

u@)=As, | e TPy ud),

) { v(x)=As, ")S P Dy (3 1u(y) (),

e
X

qu(x)sv(x)"p(dx)<—|-oo .

The invariant probability density h(x) has the form;
h(x)=cu(x)*v(x)",

where ¢ is a normalizing constant.

Proof. 1°. Assume p(x, y)e M(F). Let a;—a (1=i=n)and aj—a (1=<j=s)
as before. Choose a as the centre of {a, a;, a,, -, an, ai, as, -, as} in the
definition of the direction —. We have

Qo e2a(0)=5(a, 1, exp { = 2 Flxay, 0= F(x, xa))}
=1 j=1
=2 (r00) (T Blx, 22 )T P, %ay),

where Z(xaa)=gh(x)}—:llﬁ(x, xai)]lillp(x, xep)p(dx). Put Ulx, )=p(z, y)e" =¥,
Then,

Z(xaa) *h()T Bx, 2o )T B(x, o)
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=Z(xa0) T hGeadh(xY " T U oy IL UG, 2a)
X exp {— iz:}lF(xat, x)—?x‘;,lF(x, xarj)} .

Consequently, th(x)l—nﬁlU(xai, x)jf[lU(x, xa,j) does not depend on x.
1= =

Fix x, in X and take arbitrary y from X. Let x,,=x, (1=i=n) and let

Xay=Xo OF y (1=j=<s). Put v=#{j;xa3.=y}. We have

W=h(x)*""U(x,, x)"U(x, y)’U(x, x0)**

Ux, y) }

=h(x)'""U(x,, x)"U(x, xo)s{ U(x, xo)

Letting v=0, we see that A(x)'"U(x,, x)"U(x, x,)* does not depend on x. Next,
Ux, y)
U(x, xo)

V(y). Putting U(x)=U(x, x,), we have U(x, y)=U(x)V(y). Therefore, p(x, ¥)

=U(x)V(y)e F=¥ and ¢;=h(x)'"U(x)*V(x)" does not depend on x.

Case n=1. Put

letting v=1, we see that does not depend on x, which we denote by

U(x)?, if s=1,
u(x)=
ce-vy(x)"t, if s=2.
From ¢,=U(x)*V(x), it follows that
cu(x), if s=1,

ety (x)s, if s=2.

V(x):clU(x)‘s={

We have
p(xr y)':U(x)V(y)e'F(l,v)
{ ciu(x)u(y)eF=v,if s=1,

u(x)'u(y)e v, if s=2.
The equality Sp(x, y)u(dy)=1 implies that
alerevupdy, it s=1,

u(x)=
Se-nz.v)u(y)s#(dy), if s=2.

Since u(x)>0, ¢, is the Perron-Frobenius eigenvalue A(1, 1) of the kernel e F¢=: ),
Thus we have
p(x, »)=A(s, Du(x)u(y)efEv,

u(@)=2(s, D{em Pu(y)udy).
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Put v(x)=u(x)*h(x). The equality h(x)=§h(y)p(y, x)p(dy) implies v(x)=

s, I)Se‘””'”u(y)s'lv(y),u(dy). From Shdp:l, it follows Su*vd/zzl. Thus,

the proof is completed in case n=1.
Case n=2. Put u(x)=U(x)"* and v(x)={Ux)*V(x)} ™V ie,

Ulx)=u(x)", Vix)=u(x)*v(x)*"t,

Consequently, p(x, y)=u(x)'u(y)v(y)* e =¥  The equality Sp(x, Nudy)=1
means

u(x)=Se‘F"' Vu(y) vy uldy).

On the other hand,
o =h(x)""U(x)*V(x)*

= {h(x)'u(x)v(x)" "1,
which means h(x)=c,u(x)’v(x)* with a constant ¢,, The eqtality Shdy=1 im-

plies Su’v"d,u<+00. From h(x)=Sh(y)p(y, 2u(dy), it follows that

v(x)=Se‘“"' Bu(y) vy udy) .

The proof is completed in case n=2.
2°. Assume conversely that positive functions » and v satisfy (). Put

px, M=, n)u(x) 'u(y)v(y)*leF=v,
h(x)=cu(x)*v(x)*  with c=(5u“v"d‘u>_l.
The reversed transition density p(x, y)=h(y)p(y, x)h(x)"! is equal to

P(x, y)=A(s, n)v(x) w(y)*u(y)leFw =

Let V be a connected finite subset of T and fix a,€V as the centre of V\UoV
in the definition of the direction —. We have

Pruav(xvuw)=h(x,,) bguavp(xa’ x5) II  Pp(xa, x4)
b

a, a,bevuav
a- a~b
a-b a<b
=cA(s, )P UINIE(V, xyua0) " €XP {—a'bf%av F(xq, o)},
a>

where we put

EW, xvipan) '=u(x ) v(xan)® I {ulxg)'ulxy) v(xs)™ '}
gfeVUaV
a-b

IT  {v(xa) 'v(xs)"ulxs)* '} .

a,bevVyuoV
a-b
a«bd

As usual, let a;—a, (1=i=n) and aj—a, (1=j=<s). Remark that da,=
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{ay, *+, an, al, - al}CV\UdV. We have

BV, xyio) = ulxa) vxag" 1T (1(xa) u(xay)0ixa )"}

XL ey v(xa ) ulra ™) RUCHRETENTIEO

a,bEV UV, a+a
arb
a-b

vlx ) w(x,)?u(x,)s !
ag;,sl’uav,a*ao{( o) T w(xp) u(xp)* 1}
o<t

T {(eay)'0(xay)" "} IL {0xa ) u(ra ) )

j=1
X II {u(xa)ulxe)v(x,)" "} 11 {(xa)w(xp) u(xe)* 1} .
g,_'boevuav, a#ag g:_?beVuaV, a#ag

a-b a<b

Therefore, E(V, Xyyuav)™? does not depend on x,,. Since g (V, xyuav)™* does not
depend on the choice of the centre a,=V of the direction —, it does not depend
A
on xy. Thus, we have pyusv(xvuar)=E(V, xar) ' exp{— oe;uaV F(xq4xp)}, where
a,
b

é (V, xav) depends only on xjy. It is easy to see that the g{tension of the cylinder
measure {pyuay} belongs to @(F). The proof of Theorem 1 is completed.

We remark that the expression of p(x, y) in Theorem 1 is not unique. If
u and v satisfy (x), then also #=c" 'u and ?=c¢ ©¢-Yy satisfy () and determine
the same p(x, y) as u and v. In order to make the expression unique, we need

summability of u*v™ ! and u®-'v™, which does not follow from Su‘v“dﬂ< + o0,

Lemma 4. Put X(x, M)={yeX; F(x, y)SM} and X*(x, M)={ye X ; F(y, x)
=M}. We assume that there exist M and an integer k such that

;z”{(xl, Xa, 0t xk);p(X\i\:JlX(xi, M))=O}>0,
A, 3) k
e w2 (XN X4, M) =0}>0.

If u and v satisfy (x) in Theorem 1, it holds that

Su‘v"'ld/,z< 400 and Su"‘v"d/z< ~+o0,

Proof. Since u(x)zge'””’ ”’u(y)*v(y)""‘y(dy);e""gx(I. . u(¥)v (" u(dy),

k k
$,,m-1 < s),m-1 < M .
Su v d#=§18x<xi.m>u vildp=e iglu(xl)<+oo.

Theorem 1’. We assume that there exist M and an integer k such that (A, 3)
holds. A transition density p=p(x, y) belongs to M(F), if and only if p(x, y)
has the expression:

p(x, )=2(s, myu(x)'u(y)v(y)*-te-rv
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where u and v are positive measurable functions satisfying

u(x)=2(s, n)Se'F“" Vu(y)v(y)y uldy),
v(x)=2(s, n)Se'F‘”"”’u(y)*“v(y)"y(dy),
(=Y Su<x>su<x>n-wdx):gu(x)*lv(x)“p(dx),

Su(x),u(dx)=gv(x)y(dx):1 , if s=n=1,

Su(x)sv(x)"p(dx)< +co.

N

The expression is unique.

Proof. By Theorem 1, a transition density p(x, y)eM(F) has the follow-
ing expression with # and 9 satisfying ()

p(x, »)=As, n)a(x) ' a(y) o(y)*le~FE v

In case n=s=1, functions u=(gﬁd/,z)_l12 and v=(SDd/.t>_lD satisfy (x)’, and in

case s+n>2, functions wu=c*'4 and v=c “Pp with cz{(Sﬁ"‘O"dy)
- /1(s+n-2)

<Sﬂ’ﬁ"'ldﬂ) l}l e satisfy (*)’. In both cases, u and v determine the same

p(x, ) as @ and ?.
Next, assume that

p(-x) y)ZZ(S, n)u(x)-lu(y)“v(y)n—le—F(.T, ¥
=2(s, n)ii(x) iy v(y)r-te Fe= v

where u, v and #, ¥ satisfy (¥)’. We have #(x)u(x)'=a(y) u(y)*o(y)" v(y) "D,
which implies u(x)=c#i(x) in case n=1, and implies u(x)=c#(x) and v(x)=

¢ ¢DI®by(x) in case n=2. From SudyzSﬁdy=l in case s=n=1, or from
Su’v"“dpzSus'lv"d/,e and Sﬁ”ﬁ"“dﬂ=gﬁ"lﬁ"d,u in case s+n>2, it follows that

c¢=1. Therefore the expression is unique.

In the following, we indentify a transition density p(x, y)e M(F) with a

pair (u, v) of positive solutions of (*)’. The set of pairs of positive solutions of
(%)’ is denoted also by M(F).

Theorem 2. The set M(F) is not empty, either if

(A4 Se‘“" Yu(dy) and Se“‘"(”"’y(dy) do not depend on x,
or if

(A,5) sup {Se“"*””" vYu(dy), Se"“‘”’””"’ﬂ(dy)} <400
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and

(A’ 6) S‘ip {Se(nn)(nﬂ—z)i‘(z, y)#(dy)’ Se(n+s)<n+s-2>F(y. "’p(dy)}< +oo,

Proof. We assume (A,4). Put clzge”’""-“y(dy) and c2=Se‘””’”’/,z(dy).
From SSe'F‘”' Yu(dx)p(dy)=c,u(X)=c,pu(X), it follows ¢;=c,. In case s=n=1,

u(x)=v(x)=p(X)* is a positive solution of (*)’. In case s+n>2, u(x)=v(x)
=c,"Y+-2 g g positive solution of (x)’.

In order to look for positive solutions of ()’ under the assumptions (A,5)
and (A,6), we apply theory of cones in a Banach space. In case s=n=1, (x)
is a system of linear equations with positive kernels. Such equations have
positive eigenfunctions, if the kernels are square-integrable ([6]), which follows
from (A,5), Therefore, it is enough to investigate only a case s+n>2. We
first prove existence of positive solutions of ()’ under the assumptions (A,5)
and iu? F(x, y)<+oo instead of (A,6).

Let L be the set of pairs (u, v) of functions » and v such that

1/(n+s)

||u||ES|u(x)l"+‘y(dx)}ll(n“)<+0° and [ol={{ 1o udn} " <o

If we put [[(u, v)|=lull+v| for (u,v)eL, (L, |-|) becomes a Banach space.
Put for (u, v)elL

Ai(u, v)(x)=Se”’""' Vu(y)yv(y) - tuldy),

Ay(u, v)(x)=Se'F“" Du(y)v(y)"u(dy),
A(u) v)=(A1(u: U), A2(uy 1})) .

Lemma 5. (Theorem 3.2 in Ch. 1 of Krasnosel’skii [5]). Under the assump-
tion (A, 1), A is a completely continuous mapping from L into L.

Put

Ki={un=[e "= Pa(udy); a(»20, lul<+oo},

Ko={o(0)= e 2b(3)u(d ) b(3)20, vl <+o0} .

Let K be the closure of K;XK,. We remark that K is a cone in L, i.e., K is
closed and convex, tKCK if t=0 and (u,v), (—u, —v)eK implies (u, v)=0.
It is clear that A(K)CK.

Lemma 6. We assume (A,5) and sup F(x, y)<-+oo. Then, there exists a
z, Y

positive constant ¢ such that u(x)Zclull and v(x)=clvl| for all (u, v)eK and for
almost all xX.
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Proof. Let u(x)=§e'”‘-”’a(y)/,z(dy)eKl. We have

-sup F(Zx, ¥)

u(x)=e v Sa(y)pt(dy)-

On the other hand, by Holder’s inequality

1/(n+s)

u(x)§(ga dp)("+s~l)/(n+8){ge—<n+s>F(z. '”a(y)y(dy)}

Therefore,

uirs(Jadu)™ [Je-rrorematudnpy)

é(gadyyﬂ s%p Se_(,,mmz. Vy(dx).

Consequently,

u(x)= P A A y>g

adp

v

-sup F(z,v)
e T,y

-1/(n+s)
sup [e-reores o d )} ull.

Thus, there is a constant ¢>0 such that u(x)=c|lu| and v(x)=cl|lv| for (u, v)e
K, XK, Take any (u, v)eK. There exists a sequence (u,, v,)eK; XK, such
that ||(#n, va)—(u, v)|—0, i.e, |u,—ul and |v,—v||—0. We can find a sub-
sequence {n;} such that unj(x)—»u(x) and vnj(x)—w(x) for almost all xeX.
Since [[un;l—lul and [va;l—]vl, we have u(x)=clul and v(x)=clv].

Lemma 7. (Rothe [9], Krasnosel’'skii [5]) Let A=(A,, A,;) be a completely
continuous mapping from a cone KCL into itself. Assume L?csfx | Ai(u, )| >0
and inf [ Auu, 0)I>0. Then there exists (uo, vo)€K such that lud=lvel=1

u,ME
luj=lvi=1
an

_ Ai(uo, vo) Ax(uto, v0)
o 0= ool T o]

Proof. Fix any (@, D)€ K with %,%0 and 9,%0. Put
Ay(u, v)=Asu, V)+A—lul-lvi)i,,
Ay(u, v)=Ax(u, v)+A—lull- oI, .
Let K={(u, v)eK; |ul|=1, |v[|£1}, which is bounded, closed and convex. Our

assumption implies inf [ A,(x, v)|>0 and inf _[A,(x, v)|>0. Put again
(u, ek (u,M»ER

_ A ) — A 0
By(u, v)= "Al(u7 2’ By(u, v)= 1Ax(u, v)||

B=(B,, B,) is a completely continuous mapping from K into K. By Schauder’s
fixed point theorem, there exists (uo, vo)€K such that (u,, ve)=DBu,, vy), i.e.
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Al(uo, Vo) _ I‘L(uo, Vo) . _ _ 2 _
1o, v 2™ 7% Ty, vy~ S8 ol =lvol =1, Ao, vo)=As(auo, v0)

and Ay(uo, vo)=Ax(ito, Vo).

Uo=—

Proof of Theorem 2 under the assumptions (A,5) and sup F(x, y)<+o. By
Lemma 6, we see that for (u, v)eK

Ay(u, v)(x)zc*"""llu||’||vII"“Se“F"' Yuldy),

Ax(u, v)(x)zC””“lluII"‘IIvII”Se'F‘”'”’ﬂ(dy).

Hence, w 1nf |Ay(u, v)| >0 and mf |Ax(u, v)]|>0. By Lemma 7, there exists

Il Il || ||1t|l I|1Jl| 1
(1o, vo)EK Wlth luoll=llvoll=1 satisfying

uo=|Ax(to, vo)l ~*A1(u0, vo),
vo= || Az(uo, vo)ll ~*As(uo, vo) .

Positivity of #, and v, follows from (u,, v.)EK.
On the other hand, we have

Suﬁv'&d;z=Suo(x)"‘vo(x)"uo(x)#(dx)
= Ao, vo>u-lguo(xr-*uo(x)ml(uo, 0)(x)p(d x)
= Ay, vo>||-lgguo(xr-*vo(x)ne-m Duy(yPuoy)p(dx)udy),

Suﬁva‘dp=llAz(uo, vo)ll“Ssuo(y)"‘vo(y)"e'””'”uo(x)svo(x)"‘lp(dx);z(dy) .
Integrals above are finite, since
Suzviozd‘ug(gugﬂd#)sunﬂ)(g n+sd#)n/(n+s) <o,

Consequently, [|Ai(uo, vo)l =11 As(uo, vo)l. Put

s-1ym n-1)1/(n+s-2)
w(x)=1 1 Ax(ato, v0)[ 71 iu—vi walx),
Suév{,‘“d/x

syn-ig s-1)1/(n+s-2)
v ()=1 [ Ao, vl Suv—# | vu(x).
o Suﬁ“vﬁd,u J

It is easy to see that (u, v) is a positive solution of (x)’.

Proof of Theorem 2 under the assumptions (A,5) and (A,6). Let Fu(x, y)=
min {F(x, y), k} for k=1, 2, ---. Let (u, v:) be a positive solution of (x) with
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the potential F;. We have

Lemma 8. Under the assumptions (A,5) and (A,6), there exist positive con-
stants ¢, and ¢, such that ¢;Sup(x), vi(x)<Sc. for all k and almost all xeX

Proof. Remark that

sup {Se“"*”” P u(dy), Se“"“)“ @ ”ﬂ(dy)} <400,

(n+8)(n+s-2)Fp(x, ¥ (n+8)(n+8§-2)Fp (Y, )
sup {Se w(dy), Se & ,u(dy)}<+00.
The proof of Lemma 8 is essentially the same as that of Lemma 12.

Since u;s and v;s are bounded, we can extract a subsequence {k;} such that
U Vs, uiVE; " and ui;'v, are weakly convergent in L, as j—oo. Put u=
w-lim u g, v=w-limv,,, and @#=w-lim ufv};". Remark c;=u(x), v(x)=c, for
almost all xX. Take an arbitrary bounded measurable function f on X. We
have

[ Cunun=({ frerrs vus rvnor-udnmds)
=[§ rweres s yron 0t udnpdy)
+{[ s e ey Gy, 0 ududs)
Since g(y):S F(x)eF= M p(dx) is a bounded function of y, the first term of the

right-hand side converges to

[eamuan={{swerenamudnudy.
As for the second term, we have

|[§ A terase p—erempus (v ) ud o) ptdy)

R Y VRN

The right-hand side converges to 0 as j—oo, since 0<e F*#;—eF=<e %, There-
fore, we have

[reoututan=tim | eous oud

=[{rerewagudnumdy),
from which it follows

u(x)zge—F(z. y)ﬁ(y)#(dy) a.e. x.
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Therefore,

u k,-(x)—u(x)=ge‘”f"' Py kj(y)svk,.(y)”“#(dy)—Se‘“' Va(y)pdy)
=l rm e remyuy (yyv, (3 dy)

+Se-F(J:, v {y kj(y)svkj(y)""—ﬁ(y)} wdy).

The first integral converges to 0 as j—oco for all x., The second integral also
converges to 0, because e F¢¥ belongs to L+ CL,=L% as a function of y
by the assumption (A,5). Consequently, ljim Up j(x)=u(x) for almost all x. By

the same argument, we have lim v,,j(x)zv(x). Letting j—oo in
Jreo

u k,(x)=5e'”j“' Vg (3) v, (9" p(d ),

vk, (%) =Se‘”j"’"’u 1 9) s ()" p(d ),
we conclude by Lebesgue’s convergence theorem that

u(x)=ge"’"‘”' Yy (y)v(y)*uldy),

v(x)=Se'F‘”")u(y)*'lv(y)"/,c(dy).

4. Reversibility of Markov chains.

We say that p=p(x, y) is reversible if p=p, which means h(x)p(x, y)=
h(y)p(y, x). We prove the following

Theorem 3. 1) If there exists a reversible chain in M(F), the potential F
is symmetrizable.
2) Let F be a symmetric potential. Assume (A,3) in Lemma 4 and assume

(A, 5) sup ge-(nu)F(m, ”)/x(dy)< 400,
x
Then, all chains in M(F) are reversible.

Proof. 1) Let p be a reversible chain in H(F). By Theorem 1, we have
p(x, ¥)=2(s, mulx)u(y)v(y)* e F= v and h(x)=culx)v(x)*. From h(x)p(x,y)
=h(y)p(y, x), it follows wv(x)u(x) e TV =p(y)u(y)?re ¥  which means
F(x, y)—F(y, x)=log v(x)u(x)"*—log v(y)u(y)~'. By Lemma 2, F is symmetrizable.

2) Let p=(u, v)eMUF). Put K(x, y)=e F=Vyu(y)-tu(y)"!. We have, by
Theorem 1/,

u(x)=is, MKz, y)uly)udy),



58 M. Miyamoto

v (X)=As, n)jK(x, Y()edy) .

Since sup u(x)<+oo and supv(x)<+oo as will be shown in the following

Lemma 9, we have

SSK(x, 92 p(dx)udy)
< lullze> ol Je-sre v y)

2/(n+s)
} #(X)(n+s—2)/(n+s)

<lullze->folzn {anffe-more v udy)

2/(n+s)

=llu IIZa“"”IIvIIZo"‘">{SUD Se“"”’””' ”’/J(dy)} (X PFeDIMIN L fr00
z
The kernel K(x, y) being square-integrable, positive eigenfunctions in L, are
unique up to a multiple of constants [6]. Consequently, there is a constant c,
such that u(x)=c,»(x). From the equality Sudpszdyzl in case s=n=1, or
from Susv"‘ldyzgus“v"dp in case s+n>2, it follows ¢,=1, i.e., u=v. Therefore
we have p(x, y)=2(s, n)u(x)u(y)*"*1le~¥= v and h(x)=cu(x)**", which implies

h(x)p(x, »)=h()p(y, x).

Corollary. Assume that a symmetric potential F satisfies (A,3) and (A,5).
Then, a transition density p=p(x, y) belongs to M(F), if and only if p(x, y)
has the expression :

plx, y)=A%s, n)u(x) u(y)**s-te-F=v

where u is a positive measurable function satisfying

g

w(x)=1(s, n)Se'F‘”'”)u(y)“"“,u(dy),

(+%) Su(x),u(dx)ZI, if s=n=1,

Su(x)”",u(dx)< +co.

AN

The invariant probability density h(x) has the form:
h(x)=cu(x)**",

where ¢ is a normalizing constant. The expression is unique.

Lemma 9. We assume (A, 3) and (A,5). Then, sup u(x)<-+co and sup v(x)
<400 for each (u, v)e M(F).

Proof. Put 0=Su3v""d/¢=Su“’"v"dy< +oco. We have by Hélder’s inequality
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u(X)=§e‘F""”’u(y)‘v(y)""pt(dy)

1/(n+s)
éa.(n+s—1)/(n+s){ge—(n+s)F(:c. y)u(y)sv(y)n—l‘u(dy)} .

Consequently,

Sus+nd#§an+:-1gge-(n+s)F(z, ”’u(y)’v(y)”“p(dx);t(dy)

<% sup [e-r oy < .
By the same argument, we have
[ dusone sup femmrenmydy)< oo,
We have, by Hoélder’s inequality again,

u(x)é{ge_(nﬂm(x'y)ﬂ(dy)}”(nﬂ){gu(y)"”y(dy)}’l("H){Sv(y)"”/,t(dy)}(n_l)l(nﬂ)

é{sgp Se‘("*'s)F(-"‘- V)F(dy)}”(nlﬁ)(Su’”"d‘u)s,("+8)(Sv"+"dﬂ>(n_l)/<n+3) )

As for reversibility of chains in M(F) with a symmetrizable potential F,
we have the following

Theorem 3’. We assume (A, 3) and

A5 sup{le-rrenpdy), ferioran iyl < oo,

(A, 6) S‘;P {Se(n+s)<n+s—z)'1~‘(x, vu(dy), Se<n+s)(n+s-2)'F<1/. ”’y(dy)}< 40,

where (n+s)(n+s—2) =max{(n+s)(n+s—2), 1}. Then the following three state-
ments are equivalent to each other.

1) A potential F is uniformly symmetrizable.

2) There exists a reversible chain in H(F).

3) All chains M(F) are reversible.

To prove this, we need the followihg

Lemma 10. We assume (A, 3) and
(A,6)" sup {[er » udy), [erropdy)b <o,
Then, i;lf u(x)>0 and il;f v(x)>0 for each (u, v)e M(F).

Proof. We have by Hélder’s inequality
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}n/(2n+s)

S(usvn)(n+s—1)/(2n+s)d#§{Se—F(z, ”u(y)“v(y)"'ly(dy)
><(Su"‘lv"d/,c)w(znﬂ){ge“" V)‘u(dy)}n/(znﬂ)

s/en+s8) n/{2n+s)
éu(x)n/(znﬂ)(gus—lvnd#) {Sup SeF(z,y)#<dy)} s
xz

from which follows inf u(x)>0.

Proof of Theorem 3'. 2)=>1). Let (u, v)e M(F). By the proof of Theorem 3,
F(x,y)—F(y, x)=log v(x)u(x)"'—log v(y)u(y)'. By Lemmas 9 and 10, the func-
tion log v(x)u(x)~! is bounded, hence, F is uniformly symmetrizable by Lemma 2.

1)=>3). Let F be a uniformly symmetrizable potential which satisfies (A, 3)
and (A,5). Then, the uniform symmetrization £ of F also satisfies (A,3) and
(A,5). Therefore, by Theorem 3, all chains in H(F)=.H(F) are reversible.

3)=>2) is trivial, since HM(F)#¢ by Theorem 2.

We present an example in which #(F) contains infinitely many chains. Let
X be the unit circle S* which we identify with the interval [0, 1), and let g be
the Lebesgue measure on S'. Let s+n=3. Let a, a; and a, be positive num-
bers. Put, for £=0, 1, 2,

ap
Te=

’

2
Aip-510);
j=2_2 k=101 51
and put

w(x)= 3 anertire
P=mr
=a,+2a,cos 2rx+2a,cosdrx,
2 )
I'(x)= 3 71me®™ k"
kT2
=7o+2r;co8 2rx+2y, cosdrx .

It is clear by the definition of 7, that u(x)=S:['(x—y)u(y)2dy. If r,—47,>0,
then min I'(x)=1"(x)!cosox z=-1=70—271+27>, since F(x)=472(cos 2rx+ 477‘)2—!—70
z 2

— 27— 7t . We can see
47,
al—6a,a,—8a}
— 4y, = ,
T3 o0t ay) (@i 4 2a0a5)
fom 21 2= atay(a,+2a,)+4aj(ai+a})+2(aa.—al)
[\ 1 2—

(ai+2a2+2ad)(ao,+ax)ai+2a,az)

Let a?>8a.(a,+a,), aiZala, and let a, and a, be sufficiently small in comparison
with a,. Then, functions u and I are positive.
Put
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F(x, y)=—log I'(x—y),
ua(x)=ula+x) (a0, 1)),

then u,s(0<a<1) are positive solutions of (**) in Corollary to Theorem 3, that
are distinguished from each other.

Dobrushin and Shlosman [3] show that all Gibbs distributions in Z* with
the state space S!, whose potential is of finite range, of C®-class and invariant
under rotation of S!, are also rotation-invariant. On the contrary, Spitzer’s
Markov chains determined by u, are not rotation-invariant. But, #(F) con-
tains also a rotation-invariant chain, which is determined by a constant solution

a:(gl"(x)a.’x>_1 of (x%).

5. Uniqueness of Markov chains at high temparature.

In the following we consider potentials with the form BF, where >0 is
the reciprocal temparature. We prove

Theorem 4. Assume (A, 3), as in Lemma 4, and assume
(A,7) sup {Sem(z,y)uﬂ(dy)’ SeIF(%I)I#(dy)}<+OO .
If B is sufficiently small, then M(BF) consists of a unique Markov chain.

Proof. 1f B is sufficiently small, the potential BF satisfies (A,5) and (A, 6).
Therefore H(BF)#¢ by Theorem 2. In case s=n=1, (¥)’ in Theorem 1’ takes
the form

7

u(x):lge‘ﬂ“”' Vyu(y)pu(dy),

u(x)zzge-ﬁm Du(y)pudy),
%
Juwudn={unudn=1,

Su(x)v(x),u(dx)< too.

N

As is shown in Lemma 8, solutions » and v of (x)’ are bounded from above if
ﬁ<%, since (A,15) is satisfied by BF. Since the kernel e-#7¢:¥ ig square-
integrable if 8< o the normalized positive solutions of the Perron-Frobenius
equation (%)’ are unique ([6]).

To prove in case s+n>2, we need several lemmas.

Lemma 11. Assume (A,7). Put

ex(®)=sup {|[e=7 = utdy)—pux)|, |{ext7 2 pdy)— 0|}
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Then, we have lﬁlrrg c(B)=0.

Proof. By Holder’s inequality, we have

Se*ﬂ”" U)#(dy)é{geti'(z. ”)‘u(dy)}ﬂ,u(X)““:

= fsup fores ) -2,

The right-hand side converges to p(X) as f—0. By Holder’s inequality again,
we have

#(X)zz{get(ﬂlz)i'(z. y)ex(ﬂIZ)F(x. ”’/l(dy)}z

1A

{Se*ﬂ”" ”’#(dy)}{Sf BF(z, ”’y(dy)}

A

{SeiﬁF(I. ”’)u(dy)}{sgp Sem(z. U)I‘u(dy)}ﬁﬂ(X)l—ﬁ .

Consequently,
SetﬁF(r.v)#(dy)g{sgp SeIF(.’t. V)I#(dy)}_ﬁ‘u(X)l+ﬁ ,
the right-hand side of which converges to u(X) as 8—0.

Lemma 12. Assume (A,3) and (A,7). Put
c(B)= sup = {llu—p (X)W, lo—pu(X)TH D)

(u, VYEH(BF>

c(f)=  sup  Aluto" = p(X) e, V™ P— (X)) eo, 00" — (X)) e}

(U, MHEHM(BF)

Then, we have Llrrol cz(,B)———lﬁing c:(B)=0.

Proof. Take any (u, )SJH(BF). Put o=(utvr-dp={utvrdp.
1°. Su”"d/,t, Sv”"dyéa“"{y(X)+c1(,8(s-|-n))}.

In fact, we have

u(m)={e-pre vuGyvo) - udy)

éU(s+n-1)/(x+n){ge-ﬁ(s+n)i‘(z.y)u(y)sv(y)n_lﬁ(dy)}ll(nﬂ) )
Therefore,
Sus+nd#§d;+n-1gge—ﬁ(s+n)i‘(z. ’”u(y)sv(y)"“y(dx)/,e(dy)
§0.3+n sup Se-ﬂ(s+n)F(z. 'y)#(dx)
Yy

Sot M {u(X)+ e, (B(s+n))} .
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2°. Put cs(B)= {p(X)+c:(B(s+n))} ¢+n- DI (X e i(B(s+n)(s+n—2))} He+m
—u(X). Then, we have u(x), V()= {p(X)Fca(B)} V-2 gnd 11m ¢s(B)=0.

1

siz o7 D= (s+n)s+n—1), Ps— “pe, and p,=

(n—1)"'p,. Remark that é pi'=1 and p3'+pri=(s-+n)-'. We have

To show this, put p,=

o= ‘usv"“dy
é{se—ﬂf‘cr, Vu(y)u(y)* - p(dy)} um{Se(ﬂpz/poF(r. ">,u(dy)}l/p2

(Juan) " (ean)

Sut oo (P BPEY s m T (a0 e s ) 75
Hence,

u(x)>{ﬂ(X)+c( Bbs )} PP 04 ex(Bls+m))) -Pal

= {p(X)Feo(B)} -,
3% Put ci(B)=p(X)—p(X) 2 {u(X)Fcs( B}~ {u(X) — cu(B)} 2072,
Then, we have azgu’v"‘ld,u:Su’"’v"dyé{y(X)—c.,(,B)}"”‘“"'z’ and léirg c(B)=0.

In fact, we have by 2°,

{,U(X)—I_Cs(ﬁ)} -($+n-8)/2(8+n-2) gu(x)sli—lv(x)(n—l)/z .
‘Therefore,
{#(X)_l_ca(ﬁ)} —(s+n—3)/2(s+n—2)u(x)§ {u(x)sv(x)n—]} 1/2 s

{#(X)"i‘Cs(‘B)} -(s+n—3)/2(8+n-2)gud‘uég(usvn—l)ll2d#

§0.1/2#(X)ll2 .
On the other hand by Lemma 11,

S udfﬁﬂe"“’“' Pu(y)v(y)" - p(dx)udy)

= {uX)—c(p} o,

hence,
{U(X)+ca(B)} ~CHm-Drzesn-n (X)) —c (B} 0 Sa 2 p(X)V2.

Thus, we have
0 = p(X) {p(X)+cs(B} CHn-Dietn=n {y(X)—c,(B)} 2

= {u(X)—c ()} ~M - |

4°. We have u(x), v(x)= {p(X)—c ()} ~C*+n-bie+n=0 {1(X)+c,(B(s+n))} .
In fact, we have by Lemma 11, 1° and 3°,
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u(x)=\e Fr@ vy (y)v(y)*u(dy)

S
{Se'ﬁ("”’”’- y"/J(dy)}”(nﬂ)(gu”"d;l)s,(nﬂ)(Sv“"dy)(n_l)/(Hn)
{
{

iA

IIA

2(X)+c(Bs+n)} ot ?
w(X)Fci(Bls+n)} {u(X)—ca(B)} ~CHr-bicn-®,

The assertions in Lemma 12 follow from 2° and 4°.

IA

Lemma 13. 1) Put
Ry(x)=Ri(uy, v1; ug, v x)=uswd ' — {uiv? sul v 'wi+(n—Dujv? *w,},
Ry(x)=Ro(us, vs; Us, Vo3 x)=ud vf— {ui 0P+ (s —Dui*vfwi+nui vl "ws},
where wy=u,—u,; and w,=v,—v:, Then, there exists a constant ¢>0 suchlthat
| R1lles, lIRzHeéc~62(13)-maX(||ua——u1||eo, lve—v1lle)

for all 0< B=1 and for all (u,, v) and (us, v2) € M(BF).
2) There exists a function cs(B) with lplfrg cs(B)=0 such that

|t wddp=foi—vddp| Scu(Bymax (lue=wile, loa—vil)
for all (uy, v;) and (us, v:)EM(BF).

Proof. 1) The assertion is clear, since

Ri=(u1 4w, )i+ w) '— {ufv? '+ sud~wi wi+(n—Duiv? 2w}

s\/n—1
=3 T, et
jssksn-1\J k

and since sup{|ullw, |v]e; (4, )EMBF), 0<BS1} <+ and [wile, [wele=
2¢5(B) by Lemma 12.
2) We have

p00 |wi—wd
=S[s {pX) ' —ut- i Y wi+H(m—D{pX) ' —uiv? *w.ld p
+ =Dt —p0 Y wit n or = 0 widd

+S[{sui"vi‘“wﬁ(n—l)uivl"zwz}—{(s—l)ui‘zvi'wx—knui“v{‘"wz}Zldpt-
The first integral in the right-hand side is bounded in the absolute value by

{1 X)) = ud 0 et [willot (n =D (X)) = U0} "2l [|ws o} (X))
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which is not less than (s+n—1)cy(B)p(X)max (|willw, [wsl-) by Lemma 12. The
second integral is also bounded in the absolute value by (s+4n—1)ci(f)u(X)max
(lwilloy llwsllw). The third integral is equal to

S{(uivé‘“‘—uivi‘"—Rl)—(u%“vé'—uivi’"—Rz)} d/l:S(Rz—R1)d# )

since Su%v?"dy-——gu’i"v?dy (=1, 2). The absolute value of the right-hand side

is not less than (|| Ry[le+ || Ralle) t(X)=2(X) - ¢ - 2(f) max (| w1, | wellw). Therefore,
we have

[fwi—wdp| s2(s+n—Deip+e- e} O max (fwsle, sl

Proof of Theorem 4 in case s+n>2. Take arbitrary (u,, vi) and (u,, )€

M(BF). Put wy=u,—u,;and w,=v,—v;. From ui(x)=ge'ﬁ””'”)ui(y)svi(y)""u(dy)
(i=1, 2), it follows that

wl(x)=ge"‘“”“' ¥ {su,(y)* wi(y)" wi(3)+(n—Dus(y)vi(0)" " *wey)+ Ri()} u(d y)
=(S+n—l)pt(X)“Swldy+(n—1)p(X)“S(w2~w1)dy
+S/1(X)“S(e"”"' Z”—l)wl(y)pt(dy)-l-(n—1)/«6()()‘15(6"”“" Y—Dw(y)p(dy)
572 {1, () 0i(y)" = X0 wal ) )
+ (=D e ()0 (3)" = X)) y)

+{e-tre Ry .

We have

i widp| sci@ymaxuila, lwslo) (by Lemma 13),

‘Se_pf'(z. W {uy () oy (y)" — (X))t wi(y) pe(d y)

S{pX)+a(BHui v —w(X) o 1wl (by Lemma 11)
= {p(X)+ (B} cx( B max ([wille, [w.]l-) (by Lemma 12),

‘Se'”‘“”Rx(y)#(dy) < {(#X)+c(B) IRile  (by Lemma 11)
SH{u(X)+ci(B)} ¢+ co(B) max (|10:]le, [|wsllee) (by Lemma 13).

As for S(e‘ﬁ”—l)wld/u, we have
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H{e'ﬂF(z.u)_l} wx(y)[l(dy)‘
§{S(e'ﬁF<z.u)_1)2#(dy)}1/2(gw€d#)1/z

/
éIIw1||m°y(X)1’2{Se'zﬁF"'”’—Ze‘ﬁ”"”)+l)p(dy)}l :
The last integral converges to 0 uniformly in x as §—0 by Lemma 11. Con-

sequently, wl(x)=(s+n—l);z(X)"Swldy+Rs(x), where || Rsll=co(8) max ([wl=,

lwslle) With lﬂll’l} cs(f)=0. Hence, we have
1
Judp= = =y (Rudp,
#X)
|Jwidu| = £ 25 1R,

lwille=(s+n—1)p(X)!

Jusdpe| + 1Rl

s+n—1
<(pn =g TL)ed®max (wil, sl

By the same argument as above, we have

s+n—1

lwalo=( =g +1)el Oy max (lwille, el

from which it follows
s+n—1

max ([w; e, Ilwzllw)é(s—+n—_2—+1)ce(ﬁ)maX(Ilellm, lwele) .

s+n—1

s+n—2
means u,;=u, and v;=v,.

If § is so small that ( +1)eH<1, then max (|wilu, lwol)=0, which

6. The number of Markov chains at low temparature. An example.

We present an example, in which the number of chains in H(BF) is exactly
calculated for sufficiently large 5. Let X be a finite set and let p;=pu({})>0
for all ;7€ X. We prove

Theorem 5. Let F be a symmetric potential on X satisfying

(A,8) F@G, H)>F(, J)+m|p(l, D—F(, 1l
for all i#jeX. Then, the number of chains in M(BF) is equal to 2¥¥—1 for

sufficiently large B, if n+s>2.
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Proof. We look for positive solutions of

(%) ui:jezx e‘ﬂ””’u?"'lp} GeX).

For simplicity we put p=s+n—1. If we put
xy={e Fr Dy} 11Dy,
the equation (xx) is transformed into

(**)/ xi=x§’—|- E aijxf (ZEX),
Jig#t

Where @4= /P12 51/P=D exp [— BIFG, H—F(j, f)—Tl_—l (F(, )—FG, z'»}].
Under the assumption (A,8), we have %im a;;=0. Therefore, Theorem 5 is a
corollary to the following

Lemma 14. The number of non-trivial solutions of the equation
(#%x) xi=|x:|P4+ X ailx;|? (1=i£N)
lSj];iN

is equal to 2¥—1, if p>1 and positive coefficients a;;(1=i+j<N) are sufficiently
small.

Proof. Put, for x=(x,, x5, -+, xy) and a=(a;;:1=i#j=N),

Fi(x, a)=|x;|P—x:+ 2 aijllep (1Zi£N),
1§isiN

_ oF;
J(x, a)—det( 31, (x, a))m.jsN,
where
oF; . 1
oz, (x, @)=p0s;| x| P =044+ p(I—0s)a:;| x| P71

1°. The number of non-trivial solutions of (¥x*) is not less than 2V—1, if
a;js are sufficiently small.
In fact, let £=(£,, £,, =+, £x)#0 with £;=0 or 1. We have F; (&, 0)=0

ASISN) and J(8, 0#0, since % (£, 0=pf—1 and 1 (&, 0=0 (i+))

ax]'
Consequently, there exist a constant A and an R?¥-valued continuous function
f*=f%a) defined for a with |a|=max|a;;|<A, such that

=%,
Fi(f¥a), @)=0 for a with |a||<A (<i<N).

Since f¥a)#0 if a is sufficiently small, it is a non-trivial solution of (k).
Remark that if £+#%&/, f¥a)+f%a) for sufficiently small a. The number of
non-trivial solution of (##x) is not less than #{£; £+#0, £,=0 or 1 (I1=</=N)}=
2V —1.
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2°. If a is sufficiently small, then J(x, a)#0 for any solution x=(x1, Xz, ***, Xn)
of (k#%),

In fact, from x;— | x;|P= 2 aq;| x;| =0, it follows 0= x,=<1. From 0=x;— | x;|?
=

=X alx;|1P< X a;=(N=1Dlall, it follows that x; is close to 0 or 1 if [la| is
J#ET J#t aF.,/ l

small. Therefore, ax (x, a)‘zlpx?"—llz 5 for sufficiently small a. On the

other hand, for 7+

oF;
ar. X @=payxi=plal.
J

Hence, J(x, a)#0 if a is sufficiently small.
3°. Let a be sufficiently small and let x=(x1, xq, ">+, Xn) be a solution of (x*x).
There exist continuous functions fi(®), fo(t), -+, fn(@) defined on [0, 1] such that

fil)=x; (I=i£N),
fiH= |fi(t)|p+j§taijlfj(t)|p (1=/=N, 0=t=1).
In fact, put ﬁi(x;t)zlxilp—xi-i— g)_taijllep (1=/<N) and let A, be the
J*t

infimun of A such that there exists a continuous function F£()=(f.(®), f.(0), -,
fn(®) on [A,1] such that

fH=x,
Ff;n=0 (I=<i=N, A<t=<1).

Put f(x, t):det( gf’ (x, t))lé_ sex” Since j(x, 1)#0 by 2°, such a function £(¢)
Jj 1, B

exists in a neighbourhood of 1. Therefore, 4,<1.
Suppose A,=0. Then there exists a sequence A,\ A4, and continuous func-
tions £ () on [A,, 1] such that

rol)=x,
Fuf™@); =0 (1<i=N, A,<t<1).

Since f(f“"(t) ;)#0 by 2°, uniqueness of implicit functions implies £ #)=Ff ()
for m>n and A4,<t<1. Put

FO=F™@C  for A,<t<1 (n=1,2, ).
The function f(¢) satisfies
fH=x,
Ff@);n=0  (I<i=N, A,<t=1).

Remark that every component fi(t) of f(t) satisfies 0=f;(1)=1. Let .\ A,
There exists a subsequence {t,,} such that f(t,,) converges as k—oo. Put
y=limf(t,,). We have

Fuy; Ay=0 (I<i<N),
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hence, j(y;Ao)qu by 2°. There exists a unique function f(t) in some neigh-
bourhood (A,—e, Ay+¢) of A, such that

f(AO):y y
FF0:n=0 (ISi<N, Ay—e<t<Aste).

By uniqueness of implicit functions, we have f(t)=F(t) for t(A,, Ao+¢). There-
fore, A,—e is not less than the infimum of A such that there exists a con-
tinuous function £(t) on [A,1] with f(1)=x and F‘i(f(t):t)zo (1=/=N, AZtZ)),
which we have denoted by A,. This is a contradiction. Hence A,<0.

4°. Let a be sufficiently small. There is a one-to-one correspondence between
non-trivial solutions x of (¥*%) and X=(%,, £, =+, Zx)#+0 with £,=0 or 1.

In fact, let x be a non-trivial solution of (x*x). There is a continuous func-
tion £(¢t) on [0,1] such that

fh=x,
fi(t):lfi(t)|p+j§it(lij|fi(t)]p (I=i=N, 0=t=1).

Since f;(0)=1f:(0)|?, we have f;(0)=0 or 1. If £(0)=0, then £(¢)=0 for all 0<t<1
by uniqueness of implict functions.
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