J. Math. Kyoto Univ. JMKYAZ)
22-2 (1982) 293-305

Certain kinds of convergence of holomorphic
abelian differentials on the augmented
Teichmiiller spaces

By
Masahiko TANIGUCHI

(Received Feb. 28, 1981)

Introduction

In this paper we shall introduce three kinds of notions concerning the con-
vergence of holomorphic abelian differentials with finite Dirichlet norms on the
augmented Teichmiiller spaces of compact Riemann surfaces, and investigate re-
lationship among them. Here, we call them the metrical convergence, the
geometrical convergence and the convergence in the sense of the measured folications
(see §1-1). The metrical convergence, the most basic one, has been investigated
by many authors (cf. [3], [4] and [8]). The geometrical convergence concerns the
trajectory structures of the square of holomorphic abelian differentials, which was
originally investigated by K. Strebel and J. A. Jenkins (cf. [6], [9] and [10]). Finally
the definition of the convergence in the sense of the measured foliations is motivated
by the excellent work of Hubbard and Masur [5], (also see [7]).

The main results of this paper state that the geometrical convergence implies
the metrical convergence, and that the metrical convergence implies the convergence
in the sense of the measured foliations (Theorem 2 and 3-(i)). Also we give suitable
conditions under which the converses hold (Theorem 1 and 3-(ii)).

In §1, we state the definitions of the conformal topology and three kinds of
convergence, and summarize the main results in this paper. Next in §2 we give
several examples which clearify the distinction among those kinds of convegence.
All proofs will appear in §3.

§1. Definitions and main results

1.1. Let R* be a compact Riemann surface of genus g(<2), and T, and Tg be the
Teichmiiller space and the augmented Teichmiiller space, respectively, (with the base
point R*). For the definition of Tg, see [1] and [2]. We denote by N(R) the set
of nodes of R for every R e'fg, and by (Ry, R,, ) a deformation from R, onto R,
that is, a continuous marking-preserving surjection from R, onto R, such that
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S VRr,—n(ry is @ homeomorphism into R, and f~'(p) is either a node of R, or a
simple loop (, namely, a closed Jordan curve) on R, for every pe N(R,). For
every deformation {R,, R,, f> and every Borel set E on R,— N(R,) we denote by
D(f, E) the maximal dilatation of f~!|; and call a sequence {{R,, Ro, fi>}i=, an
admissible sequence if klin;D(ﬁ., Ry—K)=1 for every neighbourhood K of N(R).

Then we can define the conformal topology on Tq by the following condition; R,
converges to R, in the sense of conformal topology if and only if there is an admis-
sible sequence {{R,, Ry, fi>}i=, of deformations. We assume that T,, is equipped
with this conformal topology.

In this paper, we investigate relationship among various kinds of convergence of
holomorphic abelain differentials on 'f’g. For the sake of simplicity, we restrict
ourselves to the case of holomorphic differentials with a finite norm (, namely, ele-
ments of I',(R— N(R))), and set for every R ef,,

A(R)(=T (R— N(R)))={0: 0 is holomorphic and with a finite Dirichlet norm

on R—N(R)}.

Remark. The conformal topology on the Teichmiiller space T, is equivalent
with the usual Teichmiiller topology. Also note the following fact; for every
ReT, let T(R)={SeT,: there is a deformation (R, S, f) such that f is a homeomor-
phism}, then we can show that T(R) equipped with the conformal topology is identi-
fied with the product space of a finite number of the Teichmiiller spaces with the
Teichmiiller topology (cf. [11] I, Proposition 2).

We start with three definitions on the convergence of holomorphic differentials
on T,. First suppose that R, converges to R, on T,, and that 0, A(R,) be given
for every k. Let {{R,, Ry, fi>}¥=, be an admissible sequence of deformations.
Recalling that T, can be identified with the augmented Teichmiiller space T(G*) of
the normalized fuchsian group G* associated with R* (cf. [2]), let G, e T(G*) corre-
spond to R,, Q(G,) be the part of the region of discontinuity of G, representing R,
and a,(z)dz and F(z) be the lifts of 8, on Q(C,) and f;! on (G,) which induces the
prescribed isomorphism between G, and G,, respectively, for every k. Then it is
known ([2] Lemma 1) that G, converges to G, elementwise (with respect to the
prescribed isomorphism) and F, converges to the identity locally uniformly on
Q(Gy).

Definition 1. Let {R,}i~,, {0:}i=o and {a,(z)dz}7-, be as above. We say that
0, converges to 0, metrically if one of following (equivalent) conditions holds.

1) There is an admissible sequence {{Ry, Ro, fi>}i=, of deformations such that
the equation

(*) lim [10,=/" = Ooll =0

holds for every compact set E of Ry— N(Ry).
2) For every admissible sequence {{(R;, Ro.fi>}%=, of deformations, the
equation (*) holds for every compact set E of Ry — N(Ry).
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3) a(z) converges to day(z) locally uniformly on Q(G,).
Here 0,of ;! is the pull-back of 0, on Ry— N(Ry) by fi' and || ||z means the Diri-
chlet norm on E.

The proof of the equivalence of the conditions 1), 2) and 3) can be shown by
the same argument as in [8] § 3.3 (also cf. [11] I § 2 Proposition), hence omitted.

Remark. The metrical convergence of holomorphic differentials on Tg has been
investigated by various authors. We cite here only [3] and [4], and for the case of
general open Riemann surfaces, see [8].

Next we set for every Re T,
CA(R)=10¢e A(R): 0% has closed trajectorics} .

Here we say that a holomorphic quadratic differential ¢ on R— N(R) has closed
trajectories if for every component R’ of R— N(R) either ¢ =0 or the point set U,
consisting of all compact regular trajectories of ¢ is dense on R’ (cf. [9]). Recall
that each component of U, is a doubly connected region. And for every 0 e CA(R)
we call each component of Uy a characteristic ring domain of 0. Then the set of
all characteristic ring domains of 0 can be represented by the set of the free homotopy
classes on R— N(R) (modulo {+ 1}, i.e. without orientation) of all compact regular
trajectories of 02.  We denote the latter set by L(0). and for every ¢ € L(0) the chara-
cteristic ring domain of 0 corresponding to ¢ by W, ,. And for every ¢ e L(0) with
0 e CA(R) we write by m_4 and a,,, respectively, the modulus of W, , and the length
of any trajectory of 02 in W, , with respect to the metric induced by 02. In the sequel,

we always assume that every ce L(0) is oriented so that a(.$,,=§ 0>0 (with any
o

loop ¢’ in ¢).

Defintion 2. Let R, converge to R, on Tg, and 0,e CA(R,) be given for every
k. Then we say that 0, converges to 0, geometrically if the following conditions
are satisfied.

1) L(0,) contains L(0,) including orientation for every sufficiently large k.

2) limm, g, =m.,, and lima,., =a for every ce L(0,).
k-

0
k—oo %o

. . ~ _|
3 lim A (R~ NR)= U W)= lim| S 100k~ ¥ aameo,

celL(00) ceL(0o)
=0,
wherc Aq(E) is the arca of E with respect to the metric induced by 02,

Here note that a., and a,,-m., is the circumlerence and the height of W,_,
with respect to the metric induced by 02. So, roughly speaking, 0, converges to
0, geometrically if and only if each W, , converges to W, ,, including the size and ori-

entation for every ce L(0,) and other W, , become to be empty as k tends to + co.
Finally we consider every 0 € A(R) as a measured foliation (F, p), namely, with
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leaves {Im 0=0} and the transverse measure du=|Im0|. For the definition and
basic facts about measured foliations, see [5] Ch. 1 § 1.
Definition 3. Let R, converge to R, on Tg, 0, € A(R,) be given for every k and
(Fy, 1) be the measured foliation induced by 0, for every k. Then we say that 0,
converges to 0y in the sense of the measured foliations if lim S 0k=ag 0,#0 (a>0)
d d

k—>o

for some loop d on Ry—N(Ry) when 0,%#0, and for every free homotopy class ¢
of a simple loop on Ry— N(R,), it holds that

lim Ly, (¢)= Ly, (c),
k=0

where LF(C)=i“fc'ecS du for every measured foliation (F, p).
o

The first condition in Definition 3 is only for the distinction between 6 and
—0. The rclation between holomorphic quadratic differentials and measured foli-
ations has been investigated by J. Hubbard and H. Masur, see [5] and [7].

1.2. First as the relation between the metrical convergence and the geometrical
convergence, we can show the following

Theorem 1. Let R, converge to Ry on Tg and 0,e CA(R,) converges to 0,
€ CA(Ry) metrically. Also suppose that
1) S 0, is real for every ce L(8), and

2) ll‘T_‘S:!P 1011, < 1061l g,

Then 0, converges to 0, geometrically.

Theorem 2. Let R, converge to Ry on Tg and 0,€ CA(R,) converge to 0y €

CA(Ry) geometrically. Then the assumption 1) in Theorem 1 holds, lim ||0,]g, =
ko

1001l r, and 0, converges to 0, metrically.

Corollary 1 (¢f. [10] Theorem 2). Let R, converge to Ry on the Teichmiiller
space T, and 0, e CA(R)) be given for every k. Then 0, converges to 0, geometri-

cally if and only if 0, converges to 0, metrically andS 0, is real for every c e L(6,)

and every sufficiently large k.

Remark 1. Both assumptions 1) and 2) in Theorem | are necessary. In
particular, there is an cxample of {0,}7=, which converges to some 0ye CA(R,)
metrically and satisfies the assumption 1) and the condition

3) |l0,llg, are uniformly bounded,
but does not converges to 0, geometrically. See § 2 Example | and 2.

Next by using Hubbard-Masur’s theorem ([5] and [7]), we can show the follwing
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relation between the mctrical convergence and the convergence in the sense of the
measurcd foliations.

Theorem 3. Let R, converge to R, on Tg and 0, e A(R,) be given for every k.

(i) If 0, converges to 0, metrically, then 0, converges to 0, in the sense of the
mecsured foliations.

(it) If 0, converges to 0y in the sense of the measured foliations and it holds
that

3) 10:lg, are uniformly bounded,
then 0, converges to 0, metrically.

Corollary 2. (c¢f. [5] Introduction and [7] Theorem 3). On the Teichmiiller
space T, the metrical convergence is equivalent to the convergence in the sense
of the measured foliations.

Remark 2. In (i) of Theorem 3, [|0,[ g, need not to be uniformly bounded.
See § 2 Example 3. On the other hand, without the assumption 3). the assertion of
Theorem 3 (ii) does not necessarily holds. See § 2 Example 4.

Finally combining Theorems [, 2 and 3, we have at once the following relations
between the geometrical convergence and the convergence in the sense of the measured
foliations.

Corollary 3. Let R, converge to Ry on 'fg and 0,€ CA(R,) converge to 0,€
CA(Ry) in the sense of the measured foliations. Also suppose that
1) S 0, is real for every k and every ceL(0,), and
c

2) lil:lj_gp 10,1l r, < 1061l go-

Then 0, converges to 0, geometrically.

Corollary 4. Let R, converge to Ry on Tg and 0,€ CA(R,) converge to 0, €
CA(R,) geometrically, then 0, converges to 0 in the sense of the measured foliations.

Remark 3. All of convergences can be defined for more general holomorphic
abelian differentials, and some results are known (cf. [8]. [10] and [11]). But to
generalize results in this section, we need more complicated conditions, hence we shall
not go into such generalizations.

All proofs of Theorems and Corollaries in this section will appear in § 3.

§2. Examples

The holomorphic reproducing differential 6, on Re T, for a loop d is, by

definition, the holomorphic abelian differential on R such that (w, Re t)"’R)R:S w
d
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for every square integrable harmonic differential w on R. And for R e’f"g—Tg, the
holomorphic reproducing differential 0, r can be defined if ¢ does not pass through
N(R), by putting 0, g=04qx g on each component R’ of R—N(R). Because

lmS 04,k =d x ¢ (the intersection number of « and ¢ as I-cycles), we have by [10]

[
Lemma 6 that 0, , € CA(R). Note that we can take as d a degenerate loop freely
homotopic to a puncture of R— N(R), and then 0, ,=0. Now as an application of
main theorems, we can show the following

Proposition. Let Ry converges to Ry on T,, and d be a loop on Ry— N(Ry).
Then 04p, converges to 0, metrically, geometrically and in the sense of the
measured foliations.

“The proof will be given in § 3.

Example 1. Let R, be the two-sheeted covering surface over the z-sphere sewed
along [-2, =11, [1,2] and [ =1, — =], and ¢ correspond to the loop on the
z-sphere separating { —2, 2} from others. Then 0,=0, ., can be written in the form

azd:z

Og=- \/7 (z2—&)(z4—1)

with a suitable real @, hence L(0y)={c}. Now fix a loop ¢’ such that c¢x¢'=1, and
set R,=R, and 0k=00+'}(— 0. r, for every positive k. Then it is clear that every

0, € CA(Ry), 0 converges to 0, metrically and lim [|0, [, = [0ollg,- But Img 0,=
k-0 c

ll( " x ¢#0, and hence 0, can not converge to 0, geometrically.

Example 2. Let R(r) be the two-sheeted covering surface over the z-sphere
sewed along [—2, —1], [1, 2] and [0, r] for every r with O<r<1. Then we can see
that

ho | N-lG-dd

V2 =4) (2= 1)z(z—r)
belongs to CA(R(r)). for every d with r<d<1. Now note that if d (, hence also r)
tends to zero. then S 0, converges to zero, where ¢ corresponds to the loop on the
z-sphere separating {CO, r} from others. So we can choose d, so small that a g,

belongs to the interval <0, }(—> for any r with O<r<d,. Fixsuch d, forevery k, then

it can be seen that m_,, tendsto + oo as r tends to zero for any fixed k. Hence we
can shoose r, so small that m_,, =(a.,,)"* for every k. Finally set R, =R(r,) and
0, =04, for cvery k, then we can sce that R, converges to R, the two sheeted covering
surface over the z-spherc with a nodc over =0 ans sewed along [—2, 1] and [I, 2],
on T, and that 0, converges to

V/:Al d:

o= JEThE g

metrically. Also it is easily seen that the assumption 1) of Theorem 1 is satisfied.
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But because ce&s L(0y) and Ay (W, 4 )=a? , -m g =1, 0, does not converges geome-
trically to 6,. Note that in this example, [|0,] x, are uniformly bounded.

Example 3. In above Example 2, replace r, with smaller r for which m_,, =
k-(a.e, )2 Then 0, still converges to 0, metrically, but ||0’*'”R"L’ tensd to + oo.
Here note that, in general, liminf |0 g, = 0ol ¢, if 0, converges to 0, metrically.

k=

(See Lemma 1-2) in §3.)

Example 4. Let R, be the two-sheeted covering surface over the z-sphere sewed
along [—k, —11, [I, k]and [{/—1, ——1], and

0=  kzdz
2=k (A1

for every positive k. Then as in Example 1, 0, € CA(R;) for every k and L(0,) consists
of the same single element. And it is clear that R, converges to R, the two-sheeted
covering surface over the z-shphere with a node over z=+ o0 and sewed along
(=0, =11, [1, +0)and [\/ = I, —/—1]. and 0, converges metrically to zdz/\/T—z*,
which has poles at punctures of Ro—N(Ry). So we see that [0,k tends to + co.

On the other hand, we can see that L, (¢)=0 for every k and every class ¢ cor-
responding to a simple loop on Ry — N(R,), where (F,, 1) is the measured foliation
induced by 0,. Hence 0, converges to 0,=0 in the sense of the measured foliations.

Example 5. As indicated in Example 3 and 4, the convergence in the sense of
the measured foliations does not always mean the convergence as representations of
the minimal number of geometrical intersections. We give here another example.
Let R, be the two-sheeted covering surface over the z-shpere sewed crosswise along

[—2, —1], er, 7'(—1] and [1. 2], and

l
ak<z—-——+l> z
0= Nk )T e
V- 0GE=r)(s— | +1)
for every k, where r, and «a, are taken so that _|<""<"IL'_1’”">0 and
2 (1/k)=1
2“ Gk’ =2 g 0.|=1. Also let ¢, and ¢, correspond loops on the z-sphere
1 Jri .

separating {— 1, r,} and {2, —2}, respectively, from others. Then for every k the
measured foliation (F,, 1) induced by 0, represents the geometric intersection number
with ¢, +¢,, that is, Ly (d)=i(d, ¢,)+i(d, c,) for every free homotopy class d, where
i(d, ¢) means the minimal number of geometrical intersections between d and c.
On the other hand, we can show that iim a., r,=0 and 0, converges to some
— 0

0o € CA(R,) geometrically (, hence also metrically and in the sense of the measured
foliations), where R, is the limit of R, on Tg. But 0, represents the geometric
intersection number with only ¢, on Ry — N(Ry).
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§3. Proofs

We first show the following lemmas.

Lemma 1 (¢f. [11] 1] Corolllar_v 1) Let R, converge to R, on Tg, 0, € A(R,)
converge to 0y € A(Ry) metrically and d be a loop on Ry— N(R,) (considering as a
loop on Ry). Then it holds that

1) limg 0"=S 0o, and
d d

k=

2) liminf |04]k, 2 100 ko-

Proof. First let {{Ry, Ry, fi>}7=, be an admissible sequence of deformations,
and {G}% ¢, {AG)}te0. {F2)}7=, and {az)}7-, be as in Definition . Also
let dye G, correspond to the loop d and set d,=FodyoF;' (which corresponds to
d on R,) for every k. Then as noted in § I, we have that for any point a € Q(G,)

lim Fi(a)=a and lim d,oF,(a)=d,(a).
k—oo k—oo

And from the assumption, a,(z) converges to ao(z) locally uniformly on €(G,),
hence we conclude that

. . dieFy(a) do(a)
tim { 0,=1im {*" 0,y = [ ag(2)d2={ 0.
d d

k= k= JFk(a) a

Thus we have the assertion 1).
Next for every compact set E on Ro— N(R,) we have that

10x1%. = 10,1315y > D(fis E)7'-11042f "1, and
10cf i 1e= 100l g = 100 — Oxef k' &-
Because lim D(f,, E)=1, we conclude by 2) of Definition | that
k—o

Iiin l,nf 101k, = 1100l 1

And since E is arbitrary we conclude the assertion 2). q.e.d.
Corollary 5. Let R, converge to Ry on T, and 0, € A(Ry) converge to 0,€ A(R,)

metrically. Then lim |0, g, = 0o gy
k—o

Proof. This follows at once from Lemma 1-1) and the period relation (, or
directly, from 2) of Definition 1 with E= Ry). q.e.d.

Lemma 2. Let R, converge to Ry on Tg and 0, € A(R,) be given for every posi-
tive k. If |0llg, are uniformly bounded, then we can take a subsequence {0, }7-,
which converges to some 0y € A(Ry) metrically.

Proof. We can show similarly as the proof of [I1] Il Proposition that if
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0,1l g, are uniformly bounded then a,(z) are locally uniformly bounded on Q(Gy).
Hence {a,(z)}¥-, makes a normal family, which implies the assertion. q.e.d.

Proof of Theorem 2. Let R, converge to R, on f,, and 0, € CA(R,) converge to
0, € CA(R,) geometrically. Then by 2) and 3) in Definition 2, we have that

lim |'0k||%¢k=lim2 > a?-,ok'mc.o,(:z 2 a%,oo‘mo.oo=||00"%zo-
k= -  celL(600) ceL(00)

In particular, [|0,]lx, are uniformly bounded, hence by Lemma 2 we can take a
subsequence {6, }7-, converging to some 0 € A(R,) metrically. Now fix ce L(6,)

n=1

and let ¢’ be a loop on R, in the class ¢, then by Lemma [1-1) we see that

limg ,()k"=g 0o which is positive), hence

n—

n—=% . Jc

S |06|2§ (){,=11m8 O, =lima, o, =a.,
c’ ¢’ ’ n—x

And by Lemma 1-2), [|0,]g,<lim [|0; lig,, =l0ollr,- Hence by the uniqueness of
so-called Jenkins' extremal metric ([6] Theorem 1) we conclude that [0,|=10;|.
Because S 0y is positive for every c¢e L(0,), we have that 0,=0,, hence taking a

subsequence is unnecessary, and we have that 0, converges to 0, metrically. Finally
it is clear from 1) in Definition 2 that the assumption 1) in Theorem 1 holds, and
we have the assertions. q.e.d.

Lemma 3 (¢f. [10] Theorem 1). Let {R,}i¥=o and {0,}7-o be as in Lemma 1,
and {{R,, Ry, fio}i=, be an admissible sequence of deformations. Suppose that

0% has a closed trajectory, say ¢, and S 0, is real for every k. Then for every ¢>0,
.

there is an N such that 6% has a closed trajectory, say ¢, such that f,(c,) is contained
in U/c) for every k>N, where Uy(c) is the set of all points on the component of
R— N(R) containing ¢ whose distance induced by |0y| from ¢ is less than ¢ (, i.e.
the e-neighbourhood of ¢).

Proof. By considering only sufficiently small &, we may assume that U,c) is a
doubly connected region whose boundary components are closed trajectrories of 03
freely homotopic to ¢. Let a point p on ¢ be fixed, z, be a lift of p on Q(G,) and
Vc) be the lift of U,c) on (G,) containing z,. Then because F(z) converges to
the identity locally uniformly on Q(G,), we may assume that F,(z,) is contained in
V,;2(c) for every k.

Next let u(z)=Im S; a(z)dz on the component of V,(c) N Q(G,) containing
zy for every k. Note lh;;-ol;k(z) are harmonic, and {uy(z)=0} and {uy(z)= te}
are the lifts of ¢ and the boundary components of U,(c), respectively. Now because
a,(z) converges to ay(z) locally uniformly on Q(G,) and Fi(z,) converges to z,, by
assumptions, we can conclude that u,(z) converges to uy(z), and hence u,(F,(z)) also
converges to u(z), uniformly on V,(c) n E for every compact set E in Q(G,). Hence
in particular, there is an N such that for every k> N, we can find a suitably long arc
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from F,(z,) contained in {z: u(Fi(z))=0} which is contained in V/c) and covers
a compact loop, say c}, in U,(c) freely homotopic to ¢. Then from the construction,
we see that ¢, =f3'(c;) is a closed trajectory of 02 on R,— N(Ry) for every k> N.

q.e.d.

Proof of Theorem 1. Without loss of generality, we may assume that N(R,)
is empty for every positive k. Also recall that W, ,, can be mapped conformally onto
an annulus {r.<|z|<1} with r.=exp(—2mm,4,) for every ce L(0,). We denote
by 1., the closed trajectory of 03 in W, 4, corresponding to {|z|=p}, and by W,
the subregion of W, , corresponding to {r<|z|<+'} for every ce L(0,). Fix ¢>0 so
small that de<|—max{r.; ce L(8,)}, and let ¢,=t.,_, and c¢,=t., ., for every
ce L(0,). Then because {c;: ce L(0,) and i=1, 2} is finite in number, we can find
an N as follows by the assumption 1) and Lemma 3; for every ce L(0,) and i=1, 2,
there is a closed trajectory, say c¢;,, of 07 freely homotopic to ¢ such that fi(c, ;) and
Sy ) are contained in W, ,_,,, and W, , .. respectively, for every k>N. In
particular, we can see from Lemma 1-1) that L(0,) contains L(0,) for every k>N
(, i.e. 1) in Definition 2 holds).

Moreover we have that for every k>N, fi(W,,,) contains W, , ;. -, for
every ¢ € L(0,), for ¢, , and ¢, , are closed trajectories in the same W, ,,. And because

D,= U W,, +2.1-2 is relatively compact on R,— N(R,), and hence lim D(f,, D,)
celL(6o) k—os

=1, we can see from above that

— e
liminfm(.,,k>—-L log ( ! —:—84> for every ce L(0,).

k— oo = 2n

Since ¢ can be chosen arbitrarily small we conclude that

(%) liminfm, 4, > nzc,%(: .,ln— log (1 /rc)> for every ce L(0,).

k— oo

On the other hand, by Lemma [-1) we have that

k=00

lim ac_(,k:limg 0k=g Oy=a,.p..
JC (4

Hence from (*) we have that

liminf |01}, >liminf 2. ¥ a?,, -m.,,
k—oc k—o celL(00)

>2. Z a%.l]o"”t‘-l’n: ”00“%(0'
cel.(00)

Thus from the assumption 2) we can conclude that
: 2 1 2 -
hm HOkHRk _hm 2 Z ac,o,\.‘mc,ok =2 Z a6,00"nc‘,00’
k=0 k—o0 cel(0p)

cel(f0o)

and hence lim m_ g, =m, 4, for every c € L(0,) and
k—o0

. 1
lim [ 103~ T, ahoueme,o, |=0.
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Namely, we have shown that 2) and 3) in Definition 2 holds. q.e.d.

Remark. Under the same assumptions of Theorem 1, we can show also that

1) the Carathéodory kernel of {fi(W., )=, is equal to W, for every
ce L(b,y), and

2) for every p and every ce L(0,), fi(t.,4) converges to t.,, where t.,, is
defined for 6, similarly as 1., for 6,. (See the proofs of [10] Lemma 5 and Corol-
lary 2.)

Also note that, in the above proof, we only used the assumption that 0, e CA(R,),
but not the ones that 0, € CA(R,). So we might generalize Definition 2 slightly by
assuming only 6, must have closed trajectories, but others may not.

Now to prove Theorem 3, we need the Hubbard-Masur’s theorem which state
that on every R € T, every measured foliation is induced by the unique holomorphic
quadratic differential (, see [5] and [7]). In particular, by recalling that every
element of A(R) can be considered as a holomorphic differential on the union of com-
pact surfaces obtained from R — N(R) by filling the punctures for every Ref,,, we
have the following

Lemma 4. Let R e’f’g and 0, 0" € A(R) be given. And write (F, p) and (F', i)
the measured foliations induced by 6 and @', respectively. Suppose that LF(C)-—4
LyAc) for every non-trivial free homotopy class ¢ of simple loop on R— N(R), then
it holds that 0=0" or —0'

Proof of Theorem 3. (i) The assertion (i) is also contained essentially in the
Hubbard-Masur’s theorem (cf. [S] Lemma 2.11), hence we give a rather sketchy
proof. Suppose that 8, converges to (), metrically, i.e. a,(z) converges to aq(z) locally

uniformly on (G,). Then for any compact arc d on Q(G,), lim S | Im a,(z)dz|=
k—oo Jd

Sul Im ay(z)dz|, hence we can show that
(*) Iin;n sup Ly (¢)<Lg,(c) for every free homotopy class c,

where {(F}, ;t,)}¢=o are as in Definition 3. So if L, (c)=0, then we have that
lim Ly (¢)=Lgy(c).

o If not, we can find a closed curve ¢, on R in the class ¢ which is quasitransversal
to Fy (, and hence L,o(c)=g dpg. Cf. [5] Ch. II §3.) Also recall that critical

co

points of F, (, i.e. zeros of a,(z)) converges to those of F, including multiplicity, and
that any compact arc in transversal open arc of &, is also transversal to F, for every
sufficiently large k, where ¢, is a lift of ¢, on Q(Gy). Hence, for any given £>0,
we can make quasitransversal closed curves ¢, in the class ¢ on R, which satisfies that

lim infg dy,‘zg dpg—e, by deforming &, in a suitable neighbourhood of the
Ck co

k— o0

union of critical leaves and points of ¢, and projecting onto R,. And because ¢ is
arbitrary, we can conclude from (*) that lim Lp (¢)=L(c) even if Ly (¢)#0. Thus
k=0
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we can conclude from Lemma 1-1) converges to 8, in the sense of the measured
foliations.
(ii) Next suppose that 6, converges to ), in the sense of measured foliations,

then for every loop ¢ {Img Gk} %, are bounded, for |ImS 0," < Lg,(c), which con-

verges to L (c). Let {c;}?*, be a set of simple closed curves which gives a canonical
homology basis on the union of compact surfaces obtained from R,— N(R,) by
filling the punctures. Then, taking a subsequence if necessary, we may assume that

a,.,k=ImS 0, converges to, say a,o for every i, and let 0 A(R,) be the unique
diﬂ'erentialiin A(R) such that Im\ 6y=a,, for every i.

(41
Now by the assumption 3) and Lemma 2, we may also assume, again taking a
subsequence if necessary, that 6, converges to some g€ A(R,) metrically. Then by

Lemma 1-1) it holds that lmg Op=a; o for every i, hence from the uniqueness we

see that §,=03. Thus taking at'subsequence of this paragraph is unnecessary and 0,
converges to 8, metrically. Then by Theorem 3-(i), we have that Ly (c)=Lg)(c)
for every class ¢, where (Fy, pg) is the measured foliation induced by 8,. Hence by
Lemma 1-1) and 4 we conclude that ,=0,. Thus taking a subsequence of the last
paragraph is also unnecessary, and the given sequence {0,}7-,; converges to 0,
metrically. q.e.d.

Proof of Proposition. We can show similarly as in the proof of [11] II Theorem
1 that 6, g, converges to 0, g, metrically, and hence also in the sense of the measured
foliations by Theorem 3-(i). Also by Lemma I-1) it holds that lim |0, [}, =
k— o0
lim 28 od,Rk=2S B4 ro=110srollke  And becasue Img Oy p=dx c=Im | 0,4,=0
d d c c

k—
for every ce L(,), we conclude by Theorem I that 0, converges to 0,  also

geometrically. g.e.d.

Proofs of Corollaries. Corollary 1 follows from Theorem | and 2 by using
Corollary 5, and Corollary 2 follows from Theorem 3, where the condition 3) in
(ii) can be shown by using Proposition. Corollary 3 and 4 follows at once from
Theorem 1 and 3-(ii) and Theorem 2 and 3—(i), respectively.
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