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Let Ko<= K = K,(x) be fields with x transcendental over K let v, be a valuation
of K, and v be an extension of v, to K; and let VoV, kgck, and Go<G be the
respective valuation rings, residue fields, and value groups.

If k is not algebraic over kg, then there exists y € V such that y specializes to a
transcendental y* over k, under the canonical homomorphism V- k: if this y should
happen to be a generator of K/K,, then it is easily seen that k=ky(y*) and G=G,.
Our main theorem asserts that, under the assumption that char ko =0, if v, is hen-
selian, then the converse holds: if k/k, is simple transcendental and G=G,, then
there exists a generator of K/K, which specializes to a transcendental over k,. We
also prove that “v, is henselian'’ can be replaced by “v, is rk 1°” and that for arbi-
trary finite rk v, onc must assume, in addition, that for every valuation ring W>V
of K, the residue field of W is simple transcendental over the residue field of Wn K.

It requires no new considerations to prove this theorem under the a priori
weaker hypothesis that k, is algebraically closed in k and % k£ and K/Kj, is generically
of index 1 (i.e. every generator of K/K, has value in Gg), and in this form the
theorem yields as a corollary the char 0 case of the following conjecture of Nagata:

Ruled Residue Conjecture. k is either algebraic or ruled over k.

(*‘Ruled’ means that there should bea field k, with kyck, =k and k simple trans-
cendental over k,; in the present setting such a k; is necessarily finite algebraic over
ko.) Nagata [7] has proved, without assumption on the characteristic, that this
conjecture holds for discrete vy and that k is always cither algebraic over kg or
contained in a finite algebraic extension of k, followed by a simple transcendental
extension.

The paper divides into two parts. Part I, consisting of §§ 1-5, is devoted to
proving the above theorem for henselian vy (3.7) and to deriving the above con-
jecture in charO from it (4.6). In Part 11 (§§ 6-8) the corresponding theorem for
vg of finite rk is proved.
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The main portion of this work was done (1978-79) while the author was on sab-
batical leave from LSU, during which time he enjoyed the hospitality of the
University of Wisconsin-Milwaukee.

Notation and terminology.

We fix fields K, < K with K a simple extension of Ky, i.e. there exists v e K, & K,
such that K=K(x). Usually x will be transcendental (abbreviated tr.) over K,
but we do not a priori assume this. We also fix a valuation v of K and its restriction
vy to K,. Moreover, we shall consistently use x to denote a generator of K/K,
of value 0; thecre always exists such a generator since one of x, I +x, or [+(1/x)
must have value 0.

The valuation ring, residue field, and value group of v will be denoted V. k,
and G respectively; a subscript 0 will indicate the corresponding objects for vy: and
KA, vr will denote the henselization (cf. [4] or [9]) of K, v. By the index of K/K,
we shall mean [G: G,]; and we shall say that K/K, (or v/vy) is generically of index 1
if for every generator z of K/K,, v(z)e G,. For example, K/K, is generically of
index 1 if [G: Go]=1. This condition will be used in § 3 and will be discussed in § 4.

The notation ( )* will be reserved for image under the canonical homomorphism
Vo V/m,=k; thus, if ae V, a* denotes the image of a under V—k. To enlarge on
this notation, K- k will signify in our diagrams that k is the residue field of v; and
forae K, a-%, a* (read *‘a specializes to a* under v”’) will mean ae Vand a* is the
image of a under V—k. The reference to v will be omitted when the valuation
involved is clear. Similarly, if f(X)e V[X], f(X)* will denote the image of f(X)
under the homomorphism V[ X]—k[X] obtained by specializing coefficients.

In addition, we shall use Z to denote the integers, Q the rationals, C the complex
numbers, and X an indeterminate.

Part I: The theorem for

henselian v,,, and the Ruled Residue Conjecture.

1. Preliminaries.

As specified above, K= Kg(x), x& Ky, with x either transcendental or algebraic
over Ky and v(x)=0.

In a few special cases it is easy to describe a generating set for k/k,. To begin
with, note that we always have ko(x*)=k since ko< k and x* e k.

1.1. 1Inf extensions (See also 4.3).

For any z e K, v will be called the inf extension (to Ky(z)) of v, w.r.t. v(z) if for
every ¢=dg+az+-+a,z", a;€ Ky, o(é)=inf {vg(a;)+iv(z)|i=0,...,n}. If z s
tr. over K, then it is easily verified that an extension of v, to Ko(z) may be so defined
(cf. [2, p. 160, Lemma 1]). We are mainly interested in the inf extension of v,
w.r.t. v(x)=0, for which the following simple fact is basic: x* is tr. over ko<>x is
tr. over Ko and v is the inf extension of vy w.r.t. (x)=0; and when this is the case,
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then k=ky(x*) and G=G, (cf. [2, p. 161, Prop. 2]).

1.2. Suppose x is algebraic over K,. Then K is algebraic over K,, and therefore
also k is algebraic over k,. Moreover, it is a classical result that [K: Ko]>[k: ko]
x[G: Go](cf. [2,p. 138, Lemma 2]). Therefore if [Kq(x): Ko]=[ko(x*): ko], then
k=ko(x*) and G=G,; or if [Ky(x): Ko]=[G: G,], then k=k,. (A strong form of
the above inequality [2, p. 143, Theorem |] shows that in these two cases v is the
only extension of vy, up to equivalence.) Note also that the inequality implies that
x is tr. over K, whenever k is not finite algebraic over k.

1.3. Suppose k is not algebraic over k,. Then there exists a € k such that « is tr.
over ko,. Let y be a preimage in Vfora. By 1.1, yis tr. over K, and the restriction
of v to Ky(y) has residue field ko(2) and value group G,. Since x is algebraic over
Ko(y), by the inequality of 1.2 we have [G: G,]<oo and [k: ky(a)]<oco. In parti-
cular, k is then a finitely generated extension of k, of tr. degree 1; so if k/kg is an
algebraic extension followed by a simple tr. extension, then it is automatically a
finite algebraic extension followed by a simple tr. extension. (If k/k, is algebraic,
then it can happen that [k: ko]=00; see 5.1.)

1.4. The residue field and value group for the henselization v, K* of v, K are again
k and G (cf. [4, p. 136]). If aek is separably algebraic of degn over k, then by
Hensel’s lemma (cf. [4, p. 118, Cor. 16.6]) there exists a preimage a € KA for o such
that a is separably algebraic over K, of deg n. It follows from 1.2 that G, is the value
group and ky(a) the residue field of v” restricted to Kq(a).

A consequence is that if Kg is the separable algebraic closure of K, in K*, then
the restriction v§ of vr to K§ has a residue field k, which contains the separable
algebraic closure of kg in k, and hence which is itself separably algebraically closed
in k, and a value group G, such that G, <G, =G, and the restriction of v to Kg(x)
has residue field k and value group G:

K3 8(x) K*
| /
| 7/
/I /
|
I
|
|

Ko Ko(x)=K///
Ve

A T

ko k, k

Moreover, v§, K§ is henselian [4, p. 130, Theorem 17.9]. Thus, in considering the
Ruled Residue Conjecture, we may assume k, is separably algebraically closed in
k and K, is henselian.

A word of caution is in order, however. In passing from K, to K§, the notion
of “‘generator’ changes; for if re Kg\K,, then x—r is a generator of K§x) over
K§ but is not a generator of Ky(x) over K, since it is not even in Ky(x).

2. Generating pairs.

Throughout § 2 x, y will be elements of k of value 0, with x tr. over K,.
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2.1. Definition. x will be called a generator for vy if ye Ky[x], or, equivalentl
if y=af(x) for some a#0e K, and some primitive f(X)e Vo[ X]. (f(X)e Vo[ X]
is called primitive if some coefficient has value 0.) The pair x, f(X) will be called
a generating pair for y. The a and f(X) are unique up to unit multiples from Vj;
to be precise, if y=a,f,(x) for some ¢, #0€e K, and some primitive f,(X) e Vo[ X],
then there exists a unit u eV, such that a=ua, and f(X)=(1/u)f,(X). Note also
that v(y)=0 implies v( f(x))= —v(a)>0.

2.2. Multiplicity. The generator for y (or the generating pair x, f(X)) will be
said to have multiplicity n (>0) if x* is a root of multiplicity n for f(X)*, i.e. if
F(X)*=(X —x*)"h(X), with hi(X) e ko[ X] and h(x*)#0.

Suppose 1€ Vis such that r*=x* We may write f(X)=a¢+a (X—r)+---+
a(X—r)"+-+a,(X—r), where the a; arc uniquely determined elements of
Volr]: in fact, a;=f'"(r), where f'i(r) shall denote the i*" derivative of f(X) with
the coefficients formally divided by i!, evaluated at r. Then x* is a root of multi-
plicity n for f(X)*<a¥=---=a¥_ =0 and a%#0. For further reference, note also
that if f(X)=bo+b X+ --+b,X"+---+b,X", then x* is a root of multiplicity
<nforf(X)*if o(h,)=0and v(h;)>0for j>n; for then f(x)=b,+ (terms of value >
0), so f"(x)*=b*£0.

2.3. Multiplicity 0. x is a generator for y of multiplicity O<ye Vy[x]. For,
suppose x, f(X) is a generating pair for y. Since y=af(x), ae Ky, and v(y)=0,
v(a) =0<0(f(x))=0<f(x*)* #£0<>x, f(X) has multiplicity 0. Thus, if x, f(X) is a
generating pair of multiplicity 0, then aeV, and hence ye Vy[x]. Conversely,
if y € Vp[x], then there exists a € V, and a primitive f(X) € V,[ X] such that y=af(x).
Since v(a) >0, it follows from v())=0 that v(a)=0; so x, f(X) has multiplicity 0.

2.4. Existence of generating pairs.

Proposition. Assume [G: Gyl =n< o0, let x be a tr. generator of K over K,
of value 0, and let | be any field such that kocl<k. If there exists aek such
that a" & [, then there exists v € Ky[x] of value O such that y*&|.

Proof. Choose a preimage ae K for a. Since K=Ky(x), a=f,(x)/f5(x),
fAX)e Ko[X]. Let b=a"=f,(x)"/f(x)". The hypothesis [G: Gy]=n implies
v(fix)") e Gy, i=1,2. Therefore there exist ¢;e Ky such that v(c;fi(x)")=0; and
then b=(c,/c,)(c,fi(x)"[c,f2(x)"), where b, c,/c,, c;f{x)", i=1, 2, all have value 0.
But then b* =(c,/c,)*[(c, f1(x)")*/(c,f2(x)")*] implies either (¢, f,(x)")* or (¢, fo(x)")*
is not in ! since b*=a"g . Thus, for i=1 or 2, y=¢;f{x)" is the required element.

Corollary. Let x be a generator of K over Ky of value 0, and suppose k is
not algebraic over ky,. Then there exists v € Ko[x] of value 0 such that y* is tr.
over kg 1f, moreover, x is a generator of multiplicity O for this y, then x* is tr.
over ko and k=ko(x*).

Proof. For the first assertion, note that [G: Gy]<oo by 1.3, and then apply
the above proposition with / =algebraic closure of k, in k. For the second assertion,
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apply 2.3 to conclude ye Vy[x]. It follows that y* e ky[x*] and hence that x* is
tr. over ko. Then by 1.1, k=ky(x*).

2.5. Nagata’s proof [7, p. 91, Thm. 5] that k/k, is either algebraic or k is con-
tained in a finite algebraic extension of k, followed by a simple tr. extension:

Suppose K, is algebraically closed and k/ky is not algebraic. By 2.4 there
exists y € Ko[x] such that y* is tr. over ko. Factor: y=a(x—r,)---(x—r,), a,
r;e Ky. Since [G: Go] <o (1.3)and G, is now divisible, we have G=G,. Therefore
there exist b,,..., b, € K, such that o(x—r;)=b;. Then y*=(ab,----- b, )*((x—r,)/
b)* - - ((x—r,)/b,)*, so y* is tr. over ky implies (x —r;)/b; is tr. over k, for some i.
Thus, we have found a generator x, =(x—r;)/b; of K/K, such that x¥ is tr. over k.
By 1.1, k=ko(x¥}).

If K, is not algebraically closed, pass to the algebraic extension Kgy=K(r, b;).
The residue field of Ky(x) is ko(x*), where kj is the residue field of K and hence is
finite algebraic over ky. Thus, ko< kckg(x¥).

3. Proof of the theorem.

We remind the reader that x always denotes a generator of K over K, of value
0(x&Ky). In addition, throughout § 3 x will be assumed tr. over K, and y will
be an element of K of value O having a fixed generating pair x, f(x) of multiplicity
n>0.

3.1. Definition.. We shall call x rational if x*ek, or equivalently, if there
exists re Kg such that o(x—r)>0. For such an r, v(r)=0 and r*=x*.

Let J3(x)={x, € K| there exist r, 0% b € K, such that x, =(x—r)/b and v(x —r)=
(b)>0}. Whenever we write x, =(x—r)/b € J(x), we shall be tacitly assuming that
r,0#be K, and v(x—r)=v(b)>0. Note that J(x)# ¢ if x is rational and K is
generically of index | over K,. (Reminder: generically index | means every generator
of K over K, has value in G,.) If x, € 3(x) and there exist r,, 0#b, € K, such that
v(x,—r)=v(b)>0, then x,=(x,—r)/b, € J(x) too. Thus, every x, € J(x) is a
generator of K over K, of value 0, and J(x,) = J(x).

The next lemma is crucial to the proof of the main theorem.

3.2. Lemma. Suppose there exists x,=(x—r)/be J(x) such that x, is not a gen-
erator for y of multiplicity <n, and write f(X)=ag+a (X —r)+---+a, (X —r)"+
et a (X —r)y a;€Volr](<V,y). Then
) valx—r))=v((x—r)") for i=0,..., n—1;
i) x, is a generator for y of multiplicity n; and
iii) if char ktn, then v(a,_,)=v(x—r).

Remark. Since we are assuming throughout §3 that x is a generator for y of
multiplicity n>0, ii) may be rephrased: if x is a generator for y of multiplicity n>0,
then every element of J(x) is a generator for y of multiplicity <n. Also, iii) implies
a,.,;#0 because x& K, implies x — r#0.

Proof. Note to begin with that v(a,)=0since r* is a root of multiplicity n of

J(X)*.
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i): Suppose there exists i<n such that v(a(x—r))<v((x—r)"). Choose g
to be the largest integer in {0,..., n—1} such that t(a,(x—r)¥)=min {v(a;(x—r)})|
j=0,...,n—1}, i.e. choose g €{0,..., n— 1} such that

via,(x—=r))<v(a;(x—r))), j=g+1,..., 1,
(%)
and  v(a,(x—r)1) <v(a;(x—r)i), j=0,..., q.

It follows that w(a(x—r)9)<v(a(x—r)), j>n, since ofa,(x—r)")=t(x—r")<
wa x—r)f), j>n.

Now consider (1/a,b®)f(x)=bo+b ,x;+ - +b,x{+---+b,x7, where b;=
a;la,bv4, j=0,..., m. By (#),

v(b;)=0, j=0,...,¢q,
b,=1,
v(b;)>0, j=qg+I,....m.

Let f((X)=bo+b, X+ --4+b,X". Then y=af(x)=aabif\(x,), so x,, fi((X) is a
generating pair for y. Moreover, by 2.2 the multiplicity of x,, f,(X) is <g<n.
Thus, we have a contradiction to the hypothesis that x, is not a generator for y of
multiplicity <n.

ii): Consider (l/ab")f(x)=bo+b,x,+---+b,x%, where now b;=a;/a,b",
j=0,..., m;and again let f,(X)=bo+ b, X+---+b,X". Byi), v(b)>0forj=0,.., n;
and also v(b;)>0for j=n+1,..., m since v(h)>0. By 2.2 we again see that x,, f,(X)
is a generating pair for v of multiplicity <n; and the hypothesis that x; is not a
generator for y of multiplicity <n yields the equality.

iii): Let fi(X) be as inii). Then f{" 'x,)=b,_,+nx,; +cyb,. X1+ +
Co—n+ 1 DX "1 where the ¢; are natural numbers. Therefore f{""(x)*=

¥ 1+nx¥ since vo(b;))>0, j=n+1....,m. But nx}#0 because charkfn; so we
must have b*_, #0 too, for otherwise x, would be a generator for ) of multiplicity
<n, contrary to hypothesis. But b¥_, #0 implies v(b,_,)=0, so (a,_,)=v(a,b)=
v(b)=uv(x—r).

3.3 Corollary. Suppose char kyn and K/K, is generically of index 1. If x is
rational and degf(X)=n, then there exists x, € J(x) which is a generator for y of
multiplicity <n.

Proof. Since x is rational, there exists re K, such that v(x—r)>0. Then
reVy, and f(X)=ao+a (X—r)+-+aX—r), a;e Vo[r]=V,. By our initial
assumption, x, f(X) is a generating pair for y of multiplicity n, so a¥#0 and
a*_,=0. Let t=—a,_q/na,. Then teK, and v(t)>0. Now let r =r+t, and
rewrite f(X)=byo+ b, (X —r,)+ - +b(X —r,)", where b,=a,, b,_,—nb,t=a,_,,....
Since K/K, is generically of index 1, there exists b#0 € K, such that v(x—r,)=
v(b)>0, and hence x, =(x—r,)/be J(x). Butt was chosen so that b,_,; =0. Thus,
the failure of 3.2-iii) yields the conclusion that x, must be a generator for y of
multiplicity <n.
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3.4. Lemma. Suppose x is rational and K, is henselian. Then there exists se€
Vo[x] of value O such that y[s has a generating pair x, g(X) of multiplicity n and
with g(X) monic of deg n.

Proof. Since x* is a root of multiplicity n>0 of f(X)*, f(X)*=(X —x*)"h,(X),
hy(X)eko[X] and h (x*)#0. By Hensel's lemma. [6, p. 189, Thm. 44.4] or [9, p.
185, Thm. 4], there exist g(X), h(X) € V,[X] such that g(X) is monic of deg n, f(X)=
g(X)h(X), and g(X)*=(X—x*)", (X)*=h,(X). Let s=h(x)e V,[x]. Since y=
af (x) for some a € Ky, y=ag(x)h(x) and y/s=ag(x); so x, g(X) is a generating pair
for y/s of the required type. Q.E.D.

Note that for the s of 3.4, se Vy[x] and v(s)=0 imply 0#s* € ko[x*]=k,.

3.5. Proposition. Suppose K, is henselian, K/K, is generically of index 1, and
charktn. If x is rational, then there exists x, € J(x) such that x, is a generator
for y of multiplicity <n.

Proof. By 3.4 there exists se Vy[x] of value 0 and a generating pair x, g(X)
for y/s of multiplicity n, with g(X) monic of degn. By 3.3 there exists x, € J(x)
which is a generator for y/s of multiplicity <n. This means there exists a € K, and
a primitive f,(X)e Vo[ X] such that y/s=af,(x,) and x} is a root of multiplicity
<nfor fi(X)*. If we write s=s(x) € Vy[x], and if x, =(x —r)/b, then s(x)=s(x,b+r)
=s,(x,) € Vy[x,]. Moreover, s,(x})*=s*#0, so x¥ is a root of multiplicity 0 of
si(X)*. Thus, y=as,(x,)f,(x,), and it follows that x,, s,(X)f,(X) is a generating
pair for y of multiplicity <n.

3.6 Corollary. Suppose K, is henselian, K/K, is generically of index 1, and
char k=0. If every element of J(x)U {x} is rational, then there exists x, € J(x)
such that x, is a generator for y of multiplicity 0.

Proof. Since x is rational and K/K, is generically index I, J(x)#@. More-
over, by 3.2 every element of J(x) is a generator for y of multiplicity <n. Choose
x; € J(x) of multiplicity ¢ and such that no element of J(x) has multiplicity <.
If £=0, we are done; if not, by 3.5 there exists x, € J(x,;)=J(x) such that x, is a
generator for y of multiplicity <y, a contradiction to the choice of x,.

3.7 Theorem. Assume K=K(x), where x is tr. over Ko, and v(x)=0; char k=0;
and K, is henselian. If K[K, is generically of index 1 and kg is algebraically
closed in k and #k, then there exists x, € J(x)U {x} such that x¥ is tr. over k.

Proof. If there exists x, € J(x) U {x} such that x*¥e&k,, then by hypothesis
x*¥ is tr. over ky and we are done. Thus we may assume every element of J(x) U {x}
is rational.

By 2.4-Corollary, there exists ), € K of value O such that x is a generator for
vy, and y¥ is tr./ky: and also by 2.4-Corollary, we may further assume that x is a
generator for y, of multiplicity n>0. But then by 3.6 there exists x, € J(x) such
that x, is a generator for y; of multiplicity 0, which means y, € V,[x,]. Therefore
Y¥ € ko[x¥], and hence x¥ is tr./k,. Q.E.D.
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In view of the reduction of 1.4 whereby k, may be assumed separably algebrai-
cally closed in k and K, henselian, 3.7 yields the Ruled Residue Conjecture (char 0)
in the case that [G: Go]=1. For by 1.1 if a generator of K/K specializes to a tr.,
then k/k, is simple transcendental.

4. Extensions generically of index 1.

We assume throughout § 4 that K= Ky(x), x tr. over Ky and v(x)=0.

Before proceeding to the final ingredient in the proof of the Ruled Residue
Conjecture (char 0), we shall make a couple of comments on the notion of *generi-
cally index 1. Recall that K/K is of index | means () € G, for every £ € K and
that K/K, is generically of index 1 was defined to mean v(¢) € G, for every generator
& of K/K,.

4.1 Proposition. The following are equivalent:
i) K/K, is generically of index 1.
iiy If reKyand v(x—r)>0, then v(x —r) e Gg.
iii) Either {v(x—r)|re Ky and v(x—r)>0} has no maximal element, or its
maximal element is in G,.

Proof. Since x—r is a generator of K/K, for all re K, the implications i)=
ii)=>1ii) are immediate. ii)=i): Every generator of Ky(x)/K, is of the form ¢=
(ax+b)(cx+d); a, b, ¢, de Ky, ad—bc#0 (cf. [10, p. 198]). Therefore it suffices
to show v(ax+ b)e G, whenever a0, b e K, or equivalently, to show v(x +(b/a)) e
Go. Since v(x)=0, either v(b/a)<0 and v(x+(b/a))=v(b/a)e G, or v(b/a)=0, in
which case v(x +(b/a)) >0 and ii) applies. iii)=ii): If there exist r, r’ € K, such that
O<v(x—r)<v(x—r"), then wv(x—r)=v((x—r)—(x—r))=v(r'—r)e Gy. Thus, if
v(x—r) is not a maximal element of the set, then it is automatically in G,.

Q.E.D.

4.2 Example of K/K, which is generically of index | but not of index | and which
has x rational, i.e. x* € k.

Let v be the X-adic valuation of Q(\/Z n)(X), i.e. v is the inf extension of the
0-valuation of Q(y/2, m) w.r.t. o(X)=1; let Ko=0(X?); and let K =K,(x), where
x=1 +\/ZX2+nX3. In view of 4.1 to prove K/K, is generically of index 1 it suffices
to show v(x—r)>0, re K,, implies v(x—r)=2. Note first that v(x—r)>0 implies
l=x*=r* so r=1—a, aeK, and v(a)>0. Therefore x—r=a+.2X2+nX3
and (x—r)/X2=(a/X?)+/2+nX; so it remains to show o((a/X?)+./2)=0. But
ae K, and v(a)>0 implies v(a)>2. Then (a/X2)+\/f—>(a/X2)*+\/f: and since
a/X?*e Ko, (a]X?)* e ko=0. Since /2¢ 0, it follows that (a/X2)*+,/2#0. Hence
v((a/X?)+/2)=0.

Finally, to see that K/K, is not of index 1, note that [(x— 1)/X2]2—2=2\/§71’X+
n2X?2 has value 1&€G,. Thus, Gy=2Z and G=Z. Q.E.D.

Exactly when generically index | does imply index 1 for fields K/K, is not
clear. For example, a consequence of 6.2 is that this implication holds if rkv=1,
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ko is algebraically closed in k and sk, and either char k=0 or v is discrete.
The following proposition relates arbitrary inf extensions to those defined with
respect to value 0.

4.3 Proposition (continuation of 1.1). Let z be a (1r.) generator of K[K,, let
v(z)=g, and suppose g+ G, is of finite order n>1 in G|Gy. Let v, =v|K,, where
K,=Ky(z"), and let k| be the residue field of v,. Then the following are equivalent:

i) v is the inf extension of vy w.r.t. v(z)=g.

i) v, is the inf extension of vy w.r.t. v,(z")=ng.

iii) There exists b#0e K, such that v, is the inf extension of vy, w.r.t.

v,(z"/b)=0.

iv) There exists b#0¢e K such that z"[b 2 o tr. over k.
Moreover, when these hold, then k=k,=ky(2) and G|G, is cyclic, generated by
g+ Go.

Proof. i)=ii)=-iii) are immediate from the definitions, and iii)<iv) by I1.1. It
remains to show iii)=i). The value group of v, is G, and the residue field is kq(x)
by 1.1. Since [K: K,]J=n and [G: Gy]=n, it follows from 1.2 that [G: Gy]=n,
[k: k,]=1, and v, extends uniquely, up to equivalence, to K. In particular, then
G=Gy+Zg and k=k,. But the inf extension w of v, w.r.t. w(z)=g is an extension
of v, to K (cf 1.1), so w is equivalent to v. Since G=Gy+Zg and w(z)=g=10v(z),
we must actually have w=v. Q.E.D.

We are now ready for the technical device (4.4 and 4.5) needed to complete the
proof of the Ruled Residue Conjecture (char 0).

44 Lemma. Let (€K, €K, and u&)=g, where g+ G, is of finite order n>1
in G/Ggy; let t be tr. over K, and let v, denote the inf extension of v (to K(t)) w.r.t.
v(t)=g; and let v}, K()A be the henselization of v,, K(1).

If char kyn, kq is algebraically closed in k, and v is not the inf extension of
vy (to Ko(&)) w.r.t. v(E)=g, then there exists be K(t)* algebraic over K(t) with the
following properties:

i) b-b* tr. over k.

il) The residue fields of K'=K(t, b) and Ko=K(1, b) are k(b*) and ky(b*),

respectively.

iti) The value groups of K’ and K are G and Gy+ Zg, respectively.

Proof. Since v(t")=ng € G,, there exists d € K, such that v(1")=v(d); and
by 4.3, t"/d—a tr. over k, and the residue field of K(1)is ko(a). Also, by 1.1, t/&
—f tr. over k and the residuc field of K(t) is k(8). But v(d)=uv(é") implies there
exists ue K of value 0 such that "=ud; and therefore (1/&)"=(1/u)(1"/d), and
consequently " =(1/u*)x.

Claim: wu*ek, For otherwise u* is tr. over k, by hypothesis. But then
u=_¢&"ld—u* tr. over ko implies by 4.3 that v is the inf extension of v, w.r.t. w(€)=g,
a contradiction to our hypotheses.

Thus, f is separably algebraic of degn over ky(a); so by Hensel’s lemma [4, p.
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118, Cor. (16.6)] there exists b e K(1)* algebraic of degn over Ky(1) such that b—f.
Then the residue field and value group for K(t, b) are k() and G since K(t1)< K(t, b)
c K(1)*. By 1.2 and 4.3 the residue field and value group for K(t, b) are ko(a, f)=
ko(B) and Gy + Zg=value group of Ky(1). Q.E.D.

Note that if £ is a generator of K/K,, then by 4.3 k/k, is not simple trans-
cendental implies v is not the inf extension of vy, w.r.t. v(¢). This is how we shall
fulfill the above hypothesis in the following corollary.

4.5 Corollary. If there exist (valued) fields K> K, such that
i) K/K, is simple tr. and char k=0,
il) K, is henselian,
iii) kg is algebraically closed in k and k+# k.
iv) k/kq is not simple tr.,
then there exist such fields with the additional property that K|/K, is generically
of index 1.

Proof. Suppose there exists a generator z of K/K, such that v(z)=ge& G,.
By 4.4 there exist fields K< K'=Kg(z) having residue fields ko=ko(f), k' =k(B),
respectively, f tr. over k, and value groups Gy, G, respectively, with [G: Gy]<
[G: Gy]. It follows from [11, p. 167, Lem. 2] that k’[kg satisfies iii) and from the
generalized Liiroth theorem [8, p. 137, Thm. 4.12.2] that k’/kq satisfies iv). Now
replace K, by its henselization (K)* (inside (K')*) and K’ by (K)*(z); this does not
alter the residue fields or value groups (cf. [4, p. 136, Thm. 17.19] or [8, p. 193,
Thm. 5.11.11]). Thus, under the assumption that K/K, is not generically index I
we have found fields (Kp)» =(Kg)A(z) satisfying i)-iv) and the additional condition
that [G: Gy]<[G: Gy]. The corollary now follows by induction on [G: G4].

4.6 Ruled Residue Theorem (char0). Let K, and K=K(x) be fields with x tr.
over K, let v be a valuation of K with residue field k, and let kg, be the residue field
of v|Ko. Suppose char k=0 and k is not algebraic over k,. Then there exists a
finite algebraic extension k, of ko and an o tr. over k such that k=k(a).

Proof. By 1.3 it suffices to show k is of the form k (a), k, algebraic over k, and
o tr. over k,. By 1.4 we may assume K, is henselian and k, is algebraically closed
in k, and by 4.5 we may additionally assume K/K, is generically of index I. The
theorem now follows from 3.7. Q.E.D.

4.7 Remarks.

1. Itis only in the reduction step of 4.5 that field extensions of K lying outside
vA, KA are used. If one wants to think in terms of working inside a fixed valued
field, he can proceed as follows: If order of G/G,=s, choose preimages g,,..., g,€ G
for the elements of G/G,. Then let t,,..., t, be indeterminates, and extend v to
K(t,,..., t;) by infs w.r.t. v(t;)=g;. Now the construction of 4.5 can be carried
out inside the henselization K(t,..., t,)A.

2. On the char k=0 assumption: It is not at all clear how to adapt our
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methods to the non-zero characteristic case. As noted in the introduction, Nagata
has proved without restriction on the characteristic that the statement of 4.6 remains
valid a) if v is discrete, rk n, i.e. if G is a lexicographic direct sum of n copies of Z,
or b) if the conclusion is weakened to k< k,(«) (cf. [7, Thms. 1 and 5], [8, p. 198,
Thm. 5.12.1]). When K,=0Q, it seems that the discrete, rk 1 case of a) (from which
a) follows by induction) is implicit in the early paper [5] of Mac Lane, although the
terminology of that paper obscures this conclusion (See [5, Thms. 8.1, 12.1, and
14.1]). As for further progress in removing the characteristic 0 assumption from
4.6, in generalizing from Nagata’s result a) above there are two extreme cases to take
into account: one is the case of discrete, infinite rk v, i.e. G is the lexicographic direct
sum of infinitely many copies of Z; and the other (probably the more difficult) is the
case of non-discrete, rk | v, e.g. G=0.

3. Addendum (Oct., 1980). W. Heinzer, after reading a preprint of this paper,
has pointed out that the Ruled Residue Conjecture for k, perfect can be proved as
follows: Let D=Ky[x]nV; and note that V=Dg, where S={units of V}nD.
For, if £ e V, write £=f,[f,, f;€ Ko[x]: since [G: Gy]< 00, there exist a € K, and an
integer n>0 such that v(f5)=u(a); and therefore (f4/a)é € D and & e Dg. 1t follows
that k is the quotient field of D*, where D—D*. Next, Nagata's argument (cf. 2.5)
shows there exists a finite algebraic extension Kj of Ky and an x, =(x—r)/be Ky[x]
= Kp[x,] such that x¥ is tr. over k,. By 1.1, then Ki(x,), v’ is the inf extension of
Ko, vy w.r.t. v'(x;)=0, from which it follows that D' —ky[x}], where D'=Ky[x,]n
V'. Thus, we have ko= D* ckg[x¥]: so by [, p. 322, (2.9)] the integral closure of
D* is of the form kg[z], kg algebraic over ko and z tr. over kg. But then k=kg(2).

Q.E.D.

The theorem of [1] on which Heinzer’s proof rests requires two non-elementary
facts about 1-dim function fields: i) genus does not decrease under a finite separable
extension of the base field and ii) genus O plus the existence of a rational place implies
simple tr.  Thus, while his proof yields the more general case of a perfect k,, it is not
nearly as simple-minded as our proof of 4.6. In any case, both approaches should
be of interest in further efforts to remove the restrictive hypothesis involving the
characteristic.

5. Complements.

We begin with a class of examples to illustrate that all of the possibilities for
kfk, suggested by theorem 4.6 can occur.

5.1. Let k, be a subfield of C =complex numbers, let C((t)) be the field of formal
Laurent series in the indeterminate ¢ with coefficients in C, and let v be the t-adic
valuation of C((t)). Let x=ay+a,t+a,t2+---€C[[t]], and consider the residue
fields given by

Ko=ko(t) — K=ko(t) (x) — C((?))

l J l
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What is a generating set for k over ky?

Lemma. If aq. ay,...,a; (i=0) are algebraic over kg, then aq, a,....,a;
a;+,€k.

Proof. Note that x—a, implies agek. Let f(X)ekyo[X] be the irreducible
polynomial for a, over kg, and let y, =f(x)/t=f"(ao) (x—ao)/D+(tf"(ag)/2) ((x —ag)/
12+---. Since (x—ag)/t=a,+a,t+---, we can write y,=f"(ap)a, +(f'(ag)a,+
bt +(f'(ag)as+b§)2 + -, where b\ € ko(ao,.... a;—,). But y,—y¥=f"(ag)a,
and f'(ay)#0, so a, € k since y% and f'(ay) are in k.

Now let f,(X)e€ ko[ X] be the irreducible polynomial for y* over ko, and let
Y=L D=1 =y DD+ 0D (vy = yDID*+---. Since (y, —yf)/t=
(cVay + b5 + (¢ Vay + b + ---, where ¢V =f"(ay) # 0€ ko(ay) and b e
ko(ags.... a;—y), we can write y,=(c®a,+ b2 +(c'Pay+bP )+, with 2 #
0€ko(ag, a,) and b? eky(aq,....,a;—;). Then y,—r¥=c?a,+b5? implies
asekylag, a,, y¥)ck.

We have thus demonstrated the lemma for i=0, 1; the general casc is by
induction on i and is identical to the i=1 case.

Corollary. If aq....,a,_(n>1) are algebraic over ky and a, is tr. over kg, then
k=ko(ag,..., a,_,, a,). Ifagy, a,,...areall algebraic over ky, then k=ky(ay, ay,...).

Proof. The inclusion > is by the lemma. Suppose a, is tr. over k,, and con-
sider the finite algebraic extension of Kg=kg(t), L=ko(t, ag,...,a,_;). Then
L(x)=L(x,), where x,=a,+a,.,t+---. The residue field of L is ky(ae...., a,_,).
Moreover, since x,—a,, tr. over ko(dg,..., a,_,), by 1.1 the residue field of L(x) must
be ko(ag,..., a,_)(a,). But K< L(x) implies k is < the residue field ky(ay,..., a,_,,
a,) of L. Thus, we have proved the first assertion of the corollary. For the second,
observe that K < kqy(ay, a,,...) ((t)) implies k< kg(aq, ay,...). Q.E.D.

Note that x is necessarily tr. over kq(t) whenever k/k, is not finite algebraic, by
1.2. 1In conclusion, the corollary shows that it is possible to get the residue field k
to be an arbitrary finite algebraic extension of k, followed by a simple tr. extension
(actually, it is only necessary to take n=1 in the corollary since any finite algebraic
extension of k, can be realized as a simple extension), or to be an arbitrary countably
generated algebraic extension of k,. See also [2, p. 173, Exercise 1] and [12, p.
104, Example 4] for examples of this latter type. (Incidentally, the Remark on p.
162 of [2] seems to ignore examples of the former type.)

It is interesting to pursue this example a bit further and inquire about the
completion ve, K¢ of v, K in C((t)) when, say, a, is algebraic over k, and a, tr. over
ko. First observe that V=ko(y,) [x](scx)» Where f(X) is the irreducible polynomial
for a, over k,. For, we have seen that y; specializes to a tr. over ko, which implies
ko(y)=V: and since f(X) is irreducible over k, and therefore also over
ko(¥1), ko(¥1) [X](s(xy is @ DVR contained in V and having the same quotient field
ko(t, x) as V, and hence must be V. We have also seen that the residue field k of Vis
ko(ag, a,), so by Hensel’s lemma (cf. [4, p. 120, 16.7]) there exists a preimage for a,
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in V¢ which is algebraic over k,. But the only such preimage in C[[¢]] is aq itself,
s0 age V<. Thus, ko(y,) [apl=ko(y,, ag)= V< is a coefficient field for V¢, and
Ve is the t-adic topological closure of ko(ag, y;) [t], in C[[t]]; so V< may be thought
of as being the subset of C[[¢]] obtained by taking power series in ¢t with coefficients
in kg(ag, v,) and rewriting them as power series with coefficients in C.

5.2. As mentioned in the introduction, Nagata [7, p. 91, Thm. 5] has proved that if
k/k, is not algebraic, then k is contained in a (finite) algebraic extension of k, followed
by a simple tr. extension. Does this result in itself imply 4.6? That is, given fields
kockc k() with k, finite algebraic over kg, t tr. over k,, and k/k, not algebraic,
is k necessarily a finite algebraic extension of k, followed by a simple tr. extension?
The following example (cf. [3, p. 23] and [8, p. 144, 27]) shows that the answer is
“no’.

Let kg=reals; k=ko(x, y), where x2+y2+1=0; and k,=C =complexes.
Then kgyckaC(x+iy). For x—iy=—1/(x+iy) implies x—iy, x+iye C(x+iy),
and hence x, ye C(x+iy).

Next observe that k is algebraically closed in k, which amounts to verifying
igk. For, if iek, then ko(x, y)=ko(x, y, i); and hence [ko(x, y. i): ko(x)]=2.
But [ko(x, i): ko(x)]=2, and it follows from Gauss’s lemma that Y24+x241 is
irreducible over ko(x, i)=C(x); so [ko(x, y, i): ko(x)]=4.

Now suppose k/k, is simple tr.. Then there exists a valuation v of k/k, having
residue field ky. If v(x)>0, then y2+x2+4+1=0 implies v(y)>0 too; and therefore
in the residue field k,, y*2+x¥2+ 1 =0, which is impossible because k,=reals. If
v(x)<0, then the same argument applied to (y/x)*+(1/x)2+1=0 works. Thus, k
is not a simple tr. extension of k.

The function field k/k, is known to have genus 0, but the additional fact needed
to be able to conclude that k is a simple tr. extension of k is the existence of a k-
rational place. See [3, p. 23].

5.3. An application of the Ruled Residue Theorem (inspired by the applications of
Nagata in [7]. See also [8, p. 199, Thm. 5.12.2]).

Let kg <k be fields of char. 0 and G be any torsion-free abelian group (written
additively). Let k[G] be the group ring of G with coefficients in k, i.e. k[G]=@®
{kX9|geG}, with multiplication defined linearly by X¢X"=X9*" Let k(G)
denote the quotient field of k[G]. Then kq(G) <= k(G).

Cancellation theorem. [If k(G) is a simple tr. extension of ko(G), then k is a simple
tr. extension of k.

Proof. Since G is torsion-free, G can be totally ordered. Then any ¢ e k[G]
may be written {=a,; X9 4..-4+a,X9, a;#0€ek,g,<---<g,eG. Define v: k[G]—
Gbyu()=inf{g;|i=1,.... t}; and extend to a valuation v of k(G) having value group
G and residue field k. The restriction vy of v to ko(G) is similarly a valuation with
residue field k.

Claim: k, is algebraically closed in k(G), and hence a fortiori in k. Since
ko(G) is algebraically closed in k(G) by hypothesis, it suffices to show k, is
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algebraically closed in ko(G). If a€ky(G) is algebraic over kg, then ky[o]=ky(ax) =
Vs, and hence ky(a) would map isomorphically under the residue map V,— k. thereby
yielding a € k.

Thus, by theorem 4.6 and the fact that k, is algebraically closed in k and #k,
we conclude that k is a simple tr. extension of k. Q.E.D.

In the statement of the cancellation theorem, we can replace the hypothesis
that k(G) is a simple tr. extension of ky(G) by the weaker hypothesis that k(G) is =
a simple tr. extension of ky(G), for by Liiroth’s thcorem the former hypothesis is a
consequence of the latter. Finally, the cancellation theorem may be rephrased in
terms of quotient fields of group rings as follows: If G is identified with 0@G
in Z&G, then ky(Z® G)=k(G) implies k= ko(Z).

5.4. The set J(x)U {x}. The statements of 3.6 and 3.7 concerning elements of
J(x) U {x} imply comparable statements for arbitrary gencrators of value 0, as we
shall now show. Assume K= K(x), where x is tr. over K, of value 0.

Proposition. Suppose K[K, is generically of index 1, and let | be a field such
that koclck. If there exists a generator y of K/K, of value 0 such that y*e |,
then there exists x; € J(x) U {x} such that x¥e& 1.

Proof. By [10, p. 198], y=(ax+b)/(cx+d), a, b, ¢, d e K,, ad—bc#0. Since
K/K, is generically of index I, there exists e#£0 € K, such that v(ax + b)=uv(cx+d)=
v(e). Then y=((ax+ b)/e)/((cx +d)/e) implies one of ((ax + b)/e)* or ((cx +d)[e)*& I.
Therefore we may assume y=(ax+b)/e. Dividing a, b, e by the element of least
value from among a, b, e, we may further assume a, b, e have value >0 and one of
them has value 0. If v(e)=0, then y*=(a*/e*)x*+(b*/e*) implies x*e& [, so x,; =x
works: if v(e)>0 but v(a)=0, then x,=y=(x+(b/a))/(e/a)e J(x); and if v(e)>0
and v(b)=0, then v(ax+ b)=uv(e)>0 implies v(a)=0 and we are in the previous case.

Q.E.D.

By taking =k, (resp., | =algebraic closure of k, in k), we have

Corollary. Suppose K/K, is generically of index 1. If there exists a gen-
erator y of K|K, such that y*& ko (resp., y* is tr. over k), then there exists x, €
J(x) U {x} such that x¥& ko (resp., x¥ is tr. over ky).

To carry this a bit further, let us define K to be generically rational over K,
if for every gnerator y of K/K, of value 0, y* € k,. Then under the assumption that
K/K, is generically of index 1, the condition of 3.6 *‘cvery element of J(x)U {x} is
rational”’ is equivalent to “K is generically rational over K,"".

Part II: The theorem for v, of finite rk.

We retain the notation established in the introduction; in particular, K = Ky(x),
where v(x)=0. In addition, we assume throughout I1 that x is tr. over K,.
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6. Theorem 3.7 revisited.

Theorem 3.7 is false without the assumption that K, is henselian if rk v> 1, as
example 7.2 will show; indeed, the henselian hypothesis was employed precisely to
deal with valuations of infinite rk, and if we restrict attention to valuations of finite
rk, a sharper result, which in the rk | case amounts to deleting the henselian hypo-
thesis and in the discrete, rk | case amounts to deleting both the henselian and char 0
hypotheses, can be obtained. Since we are ignorant of the status of this result in the
cases of infinite rk or of non-zero characteristic and arbitrary value group, we shall
first phrase it as a conjecturc.

6.1 Conjecture. For cvery valuation overring Wof V (W< K), the residue field [, of
W n K, is algebraically closed in the residue field | of W, ko #k, and K/K|, is generi-
cally of index 1= there exists a generator x of K/K such that v is the inf extension
of vy w.r.t. v(x)=0; or, equivalently, there exists a generator x of K/K, which
specializes to a tr. over k.

What we know about this conjecture, aside from the henselian case of 3.7, is
summed up in the following theorem."

6.2 Theorem The implication=>of 6.1 is true if either a) rk v is finite and char
k=0, or b) v is discrete.

The converse implication<= to 6.1 is always true. For, if x - x* tr. over k,
and w is the valuation of K whose ring is W, then there exists a valuation u of the
residue field | of w such that x 2 x" -, x*. (See § 7). But x* is tr. over kg, so x’
istr. over Iy, and therefore 1.1 yields I/ly is simple tr., and hence /, is algebraically
closed in [.

In b) rk v is necessarily finite, since by definition of discrete, G is a lexicographic
direct sum of finitely many copies of Z: but char k may be arbitrary. In both a)
and b) the crux of the proof lies in the rk | case, from which the finite rk case follows
by induction.

The remainder of § 6 will be devoted to establishing a) and b) for rk I v. Just
as theorem 3.7 follows from 3.6, this will follow from

6.3 Proposition. Suppose v is rk | and either a) char k=0 or b) visdiscrete, and
suppose K[K, is generically of index | and every element of J(x)U {x} is rational.
If v is an element of K of value 0 and x is a generator for y of multiplicity >0, then
there exists x, € J(x) such that x, is a generator for v of multiplicity 0.

Proof. We first need a lemma.

Lemma. Suppose y € K has ua generating pair x. f(X) of multiplicity n>0,
where char kfn. If x;=(x—r)/beJ(x), then either x, is a generator for v of
multiplicity <n or there exists a generating pair x,, f,(X) for y of multiplicity n

1) Added August, 1981: 1 now have an example (to appear in a sequel) in char. p for which
Gy=G=Q, k/k, is simple tr., and yet no generator of K/K, specializes to a tr. over k,. Thus,
the remaining undecided case of 6.1 is char k=0 and rk v infinite.
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and an r,eKq such that f(x)=b"f(x,), o(x,—r)>0, and o(f{" Vr))>
20(f 1)) =20(b).

Proof of lemma.” Suppose x, is not a generator for y of multiplicity <n. We
may write f(X)=ao+a (X—r)+-+a(X—=r)"+--+a,(X—r), where the g,
arein Vg, af=--=a*_,=0,a¥£0, and a,_, =f""(r)(cf. 2.2). By 3.2, vla(x—r))
>v((x—r)") for i=0,....,n—1, and o(a,_,)=v(x—r)=uv(b). Therefore if we write
b="f(x)=by+b,((x—r)/b)+---, where b;=a;/b""!, then uo(b;)>0, i=0,...,n—1,
and v(b,_,)=0; moreover, the b; for i>n are of thc form b,=a,, b, =a,4b,...,
and hence are also in V,. Let f{(X)=by+b,X+---+b,X". Then x,, fi(X) is a
gencrating pair for v, and f(x)=b"f,(x,). Moreover, computing f{"(X)=a,+ b(--),
we sce that f{"'(x*)*=a*#£0. Therefore x,, f,(X) is a gencrating pair for y of multi-
plicity <n, and hence by our initial assumption of multiplicity n.

It remains to show there exists r, € K, with the specified propertics. We have
i x ) =(a,_,/b)+na,x,+b(---), and " (x)*=0 since x,, f(X) has multi-
plicity n; so 0=(a,_,/b)*+na¥x¥ and x}= —(a,_,/b)*/na¥. Let a=—(a,_,/b)/
na,. Now, as far as the requirement v(x, — r,)>0 is concerned, we are free to choose
r, to be any element of the form r,=a+1, te K, and v(1)>0. For any such r,,
) =(a,_,/b) + na,r, +((n+ )n/2)a,, br} + b2(--+) = na,t + ((n + Dn/2)a, .,
bx? +(terms involving bt, 12, and b?). Therefore if we choose t=—((n+1)/2a,) x
(a,+,bx?) (Note: If char K =2, our hypotheses imply n+ 1 is even.), then f{"~V(r )=
(terms involving bt, 12, and b?). It follows that v(1)>v(b)>0 and v(f{""V(r,))>
2v(b)=2u(a,_,). Q.E.D.

We shall only use the inequality of the lemma in the weak form o(f{"~"(r,))>
o( f'"=Y(r)). We now continue the proof of 6.3.

Choose x, € J(x) U {x} such that x, is a generator for y of multiplicity n and no
clement of J(x) U {x} is a generator for y of multiplicity <n. If n=0, we are done,
so assume n>0. Every element of J(x,)=J(x) is rational by hypothesis, and by
3.2 every element of J(x,) is a generator for y of multiplicity n. Thus, by replacing
x by x, in the formulation of proposition 6.3, we may additionally assume that every
clement of J(x) is a generator for y of multiplicity n>0.

Proof of 6.3-a): Assume char k=0. Suppose we have a generating pair x;, f;(X)
of multiplicity n for v, x;€ J(x), and an r; € K, such that v(x;—r;)>0. Since K/K,
is generically of index 1, there exists b; € K such that (x;—r;)/b;=x;4 € J(x;) = J(x).
By the above lcmma, there exists a generating pair x; ,, f;+ {(X) for y of multiplicity n
and an r;,, € Kg such that f; (x;)=b"fi 1 (x;4 1), 0(X;4 = rFip)>0,and o £330 (14 1)
>o(fi"(r;))=uv(b;). We thus define inductively a scquence x; fi(X), i=
1,2...., of generating pairs for y and elements b; € K such that f;(x;)=b"%f;+ (x;4 )
and o(b;,.)=uv(b,). Then y=afi(x,)=abjfs(x;)=abib}fs(x3)=--+, where 0<
v(b,)<v(b,)<---. Since v is rk I, for sufficiently large ¢t v(aby---b")>0. But then
v(y)>0, a contradiction.

Proof of 6.3-b): Assume v is discrete. To every generating pair x, f{(X) for y
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with x, € J(x) there is associated a coefficient a=y/f,(x,)€ Ky. Since v(f,(x,))>0
because x, is assumed to be a generator for v of multiplicity >0, we have v(a) <0.
Choose a generating pair x,, f,(X) of this type (i.e. for y with x, € J(x)) for which
—v(a) is minimal. (This uses v is discrete, rk 1.) Since x, is rational and K/K, is
generically of index 1, there exists x,=(x;—r|)/b, € J(x,)=J(x). Expand: f,(X)=
ag+a(X—r)+-4a(X—r)"+-+a,(X—=r), a,€V,. Then f(x,)=bi[co+
c((xy=r)/b))+ - +c,((x,—r)/b)"], where ¢;=a;bi™". By 3.2-i), cg,..., ¢,_ 1€V,
and c¢,=a,, ¢, =a,4,b,,....,c,=a,br™" are also in V,. Therefore if fo(X)=
ot X+ +c, X" and x,=(x, —r)/b,, it follows that x,, f,(X) is a generating
pair for y. But y=af,(x,)=ab’f,(x,), and v(b,)>0 (since v(b,)=uv(x,—r;)>0);
so —v(abt) < —v(a), a contradiction to our choice of x,, f,(X).

7. Composite valuations and the induction step for 6.2.

Recall (cf. [12, pp. 43,53]) that a valuation v of K is called composite with
valuations w of K and u of | if V< W, [ is the residuc field of w, and the image V'
of Vunder W—W/m =Iis the valuation ringU of u. The canonical homomorphism
V—V/[m,=k may then be factored: V- V'=U—k. In terms of specialization maps
(or *“places’’; cf. [12, p. 3]), one should keep in mind the following diagram:

lK
vo 10 —_[ v
k

7.1.  We shall now finish the proof of 6.2 by induction on rk v, the rk | case having
been established in § 6. If rk v>1 (and finite), then v is composite with valuations
w and u of strictly smaller rk.

First observe that w/w, is generically of index I. For, vfv, is gencrically of
index | implies for any generator z of K/K, there exists a € K, such that z/a is a unit
of V. But V< W, so z/a is also a unit of W, and thercfore w(z)=w(a) and w/w, is
generically of index 1.

By induction hypothesis applied to w, there exists a generator z of K/K, such
that z2%z" tr. over ;. Replacing z by either 1+z or 14(1/z) if necessary, we may
further assume v(z)=0 and hence also u(z')=0. Now let /,=[y(z")=!, and let
u,=u|l;. We want to check next that the hypotheses of 6.1 hold for u,/u,.

Claim: u,[uy is gencrically of index 1. First observe that for any element
f#0 of | which has a w-preimage b e K which is a generator of K/K,, u(B) € u(ly).
For v/v, is generically of index | implies there exists a #0 € K, such that b/a is a unit
of Ve W. Then w(a)=w(b)=0, a2%x#0¢€l,, and b/ap/«. But b/ais a unit of V
implies f/a is a unit of V'=U, so u(f)=u(a)eu(l,). Next observe that to check
u,fug is generically of index I, it suffices by 4.1 to show that for any r’" €/, such that
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u(z'—r)>0, u(z'—r)eu(ly). But z'—r' has a w-preimage z—r, reK,, in K
which is a generator of K/K,; so the previous observation applies.

Claim: Given any valuation overring R, of U, in [,, the residue field of
R, nly=Ry is algebraically closed in the residue field of R,. To see this, first note
that there exists a valuation overring R of U in [ such that Rnl, =R, (cf. [12, p.
53, Lemma 4]). The inverse image of R under W—/ is a valuation ring T lying
between ¥ and W; so by the hypothesis on V, the residue field ¢, of T n K, is alge-
braically closed in the residue field ¢ of T. Bt @, 0, are also the residue fields of
R, Ry, respectively, and the residue field of R, lies between 0, and @, thereby estab-
lishing our assertion.

Claim: The residue field of wug, l((=ko)# residue field of u,, [,. For, [ is
algebraic over [, implies k is algebraic over the residue field of u,. Sincc k/ky is
not algebraic by hypothesis, ko # residue field of .

Thus, we may apply the induction hypothesis to u,/ug to conclude there exists
a generator of [,/l, which specializes under u to a tr. over k,. By 5.4-Corollary this
generator may be assumed to be of the form (z'—r')/s’, for some r’, 0#s'€l,. But
then if r, s are w-preimages in K, for r’,s’, (z—r)/s2%(z'—r")/s’; and therefore
(z—r)/s is the desired generator of K/K, which specializes under v to a tr. over k.

Q.E.D.

0

7.2. We give next an example to show K, is henselian™ cannot be omitted from
3.7 and the condition on the residue fields in 6.1 cannot be weakened to *“‘k, is alge-
braically closed in k*’. The example will have the following properties: v, v, are
discrete, rk 2; index of vfvo=1; k/k is simple tr.; ko=Q. The idea is to construct
discrete, rk | valuations w, u such that v is composite with w and u and such that
(in the initial notation of § 7) I/, is not simple tr. Then no generator of K/K, can
specialize under v to a tr. over ky; for if it did. it would also specialize under w to a
tr. over /,, and by 1.1 this would imply I/l is simple tr.

Let s, z be complex numbers algebraically independent over Q, and let t be an
indeterminate over C. Let K,=0Q(s, 1) and K=Kg(x), where x=(I+s)""2+zt,
and let w be the restriction of the r-adic valuation of C(f) to K. Then /,=Q(s) and
[=1y((1+5)"2, 2), as we have seen in 5.1, Now let u, be the s-adic valuation of /y;
extend first to a valuation u, of Iy((1 +s5)'/2) and then to a valuation u of I/ by infs
w.r.t. u(z)=0.

The residue field kg of uq is Q; and the residue field &, of u; remains Q, since u,
extends in two ways to [o((1 +5)'/2) (because if E=(1+s)"/2, then s=E2—1=(E—1)-
(&+1) implies uy extends to [o($)=Q(&) either by u (E—1)=1, u,(E+1)=0, or the
reverse).  Therefore by 1.1 the residue field k of u is Q(z*), where z-t,z*,

Finally. vfvg is of index | because w/w, and u/u, arc of index 1. (To see this,
let a#0e K. Then w/wy is of index | implies there exists aq#0€ K, such that
alagp#0. Similarly, u/ug is of index 1 implies there exists f,#0€ [, such that
BlBo-5y#0. Let by be a w-preimage for i, in K,. Then a/aghe-p/Bo-y#0,
so v(a)=uv(ayb,) € v(Ky).)
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7.3. We conclude § 7 with a proposition on composite valuations needed in § 8.

Proposition. Let z be a generator of K/Kq, and suppose [G: Gyl< oo and v
is composite with a valuation w of K. If v is the inf extension of vy w.r.t. v(z),
then w is the inf extension of wy w.r.t. w(z) (and wlw, is of finite index).

Proof. Let H be the value group of w. Il the coset v(z)+ G, has order n in
G/G,, then w(z)+ H, has order n, dividing nin H/H,. For, if there exists b#£0€ K,
such that v(z"/b)=0, then z"/b is a unit of ¥V and a fortiori a unit of W; and therefore
w(z")y=w(b)e Hy. Thus, n=nm for some integer m>1.

By 4.3, there exists b#0 € K, such that z"/b-sn tr. over k,, which implies z"/b_,
n' tr. over ly. Also, there exists c#0e K such that w(z")=w(c). Then (z"/c)"=
z"[cm=2z"[db, d a unit of W,. Hence (z"/c)"2%n'[d’, d"€l,. But n’is tr. over [,
so we must have z"/c also specializes under w to a tr. over /,. Therefore by 4.3
w is the inf extension of w, w.r.t. w(z).

8. Conjecture 6.1 for arbitrary inf extensions.

What is the appropriate generalization of conjecture 6.1 to arbitrary inf ex-
tensions? It is a somewhat surprising fact that the obvious reformulation is not
quite correct; one needs an extra condition, “‘every generator of Kq(z")/K, has value
in G, below, as we shall show in example 8.2.

8.1. Conjecture.

For every valuation overring W c K of V the residue field /, of W n K, is alge-
braically closed in the residue field | of W; ky#k: and there exists a generator z of
K/Ky with o(z)+ G, of order n>1 in G/G, such that every generator of K/K, has
value in {iv(z)+ G, |i=0,...,n—1} and every generator of Ky(z")/K, has value in
Go( &= v is the inf extension of v, w.r.t. v(z,) for some generator z, of K/K, such
that v(z,)+ G, has order n in G/G,.

Note that the converse (<) to the conjecture is true: if v is the inf extension of
v W.I.t. 0(z), then the value group of Ky(z")/K, is G, by 4.3; the group G/G, is
cyclic generated by v(z)+ G, by the definition of inf extension w.r.t. o(z); and I/l is
simple tr., by 7.3 and 4.3, and a fortiori satisfies the hypothesis of the conjecture.

8.2. Examples. If I" is any totally ordered abelian group and L a field, then the
group ring L[I']=@{LX"|yel}, with multiplication defined by XvX%=X7+é
may be given a valuation w by defining w(agX"+---+a,X7)=inf {y;|i=0,..., t};
and, as usual, this valuation extends to the quotient field L(I') of L[I']. Moreover,
the value group of w is I', and one verifies easily that the residue field is L.

Let O(1) be a simple tr. extension of Q, let I" be the additive subgroup of the reals
consisting of {a+ fn|a, feZ}, and let w be the (rk 1) valuation of Q(t)(I') described
above. Let z=X"'+1X", let K=K(z), where K,ocQ(1)(I') will be described
presently, and let vy, v be the restrictions of w to Ky, K respectively. a) Example
where k is simple tr. over ko but G/G, is not cyclic (and hence v cannot be an inf
extension of v, w.r.t. any choice of generator of K/K,). Take K,=0Q(G,), where
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G, is the subgroup of I' consisting of {a+ fin|a, f€2Z}. Then the value group of
vy is Go and the residue field ky is Q. Since z2=X24+2rX'"*74+2X2" and X2=
re Kqy, z2—re K, and therefore v(z?—r)=1+n is in the value group G of v. Since
v(z)=1, it follows that I, e G; so G=TI. Then G/G,=(Z2Z)D(Z]2Z).

Now let us compute k. (Incidentally, we know Q=k,c=k=Q(1)=residue
field of w, so without further ado we already know by Liiroth's theorem that k/k,
is simple tr.)  We have (z2—r)? =412 X2¥2n 4 43X\ F3np A X4n Let s=4X212" ¢
Ky. Then E=(z2—r)?/s512.  Since t? is tr. over kg, it follows that the residue field
of Ko(&) is Q(t?) (cf. 1.1): and the value group of Ky(¢) is G,. But then [G: G,]=4
and [K: Ky(¢)] <4 imply (by 1.2) that the resdidue field k of K is also Q(1?).

Remark. In light of this example, it would be interesting to know just what
finite groups G/G, can occur when k is simple tr. over k, (and, of course, also K is
simple tr. over K,).2' If k=kg,, results of this type, due to Mac Lane-Schilling, are
discussed in [12, p. 102].

b) Example to show that the hypothesis “every generator of Ky(z")/K, has value in
G, is needed in 8.1. Take Kq=0Q(G,), where G, is the subgroup of I' consisting of
{o+pr|ae2Z, feZ}. Then v(z)=1 implies the value group G of K is I'. There-
fore G/Go=Z/[2Z, and v(z)+ G, generates G/G,.

Let K, =Ky(z2). We have seen in a) that v(z2—r)=1+m, so the value group
G, of K, is I'=G. Therefore [G,: Go]=2. Since G, # Gy, v, is not the inf ex-
tension of vy w.r.t. v,(z2)=2( € G,), and hence by 4.3 v cannot be the inf extension of
vy w.r.t. v(z)=1.

Claim: v cannot be the inf extension of vy w.r.t. any generator of K/K,.
Note first that for any se K, v(z)=1#0(s). If v(s)<v(z), then v(z—s)=u(s) and
(z—s)?/s2——1. If, on the other hand, v(z)<wu(s), then v(z—s)=v(z)=1 and
(z—5)?/X2=>1. The claim now follows from the Proposition below, which asserts
that if v is the inf extension of v, w.r.t. some generator of K/K,, then there exists
s€ K, such that for any d#0e K, with o(d)=v((z—s)?), (z—s)?/d specializes to a
tr. over k.

Lemma. Let (€ K. If &/b—tr. over ko for some b#0e K,, then &/b'—tr.
over kg for every b’ € Ky such that v(b")=0v(&).

Proof. uv(b")=v(&)=uv(b) implies there exists a unit u of V, such that b'=ub.
Therefore &/b'=(1/u)(E[b)—(1/u*)(E[b)*. But 1/u* € k,.

Proposition (4.3 continued). Suppose z, is a (1r.) generator of K/Ky such that
(z,)+ Gq has finite order n>1 in G/Go. If v is the inf extension of vy w.r.t. v(z,),
then for any generator z of K/K,, there exists se K, such that for any de K, with
v(d)=nv(z—s), (z—s)"[d—tr. over k.

Proof. By 4.3, there exists b#0¢€ K, such that z}/b—tr. over k,. We may
write z,=(a,z—c)(a,z—¢,), a;, ¢;€ Ko, a,c;—a,c, #0. Since [G: Gy]=n, there

2) Added August, 1981: W. Heinzer has now proved that G/G, may be any finite abelian group.
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exist d;e Ko such that no(a;z—c;)=uv(d;), i=1,2. Therefore z}/(d,[d})=N,[N,,
where N;=(a;z—¢;)"/d; has value 0. By the lemma, z}/(d,/d,)—tr. over k,, so either
N, or N, specializes to a tr. over k, also; say N, does. Then a,#0 and N,=
(z—(c,Ja))"/td,]a}). In view of the above lemma, we are done. Q.E.D.

In order to apply this example to 8.1, it remains to verify k, is algebraically
closed in k. (As in a) we know a priori by Liiroth's thecorem that k/k, is simple
tr., but it is also easy to compute k directly.) We have seen in a) that the residue field
of Ko(&) is Q(t?) and the value group is Gy. Since [K;: Ky(&)]<2 and [G,: Gy]=2,
it follows that the residue field of K, must remain Q(r?). But [K: K,]<2 and
(z2—r)[2X"z25t € k, so we must have k=Q(1).
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