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Let K o c K= K o (x) be fields with x transcendental over K o ; let yo be a valuation
of K o and y be an extension of r o t o  K ; and let V0 c  V, k0 k ,  and Go G  be the
respective valuation rings, residue fields, and value groups.

If k is not algebraic over ko , then there exists y e V such that y specializes to a
transcendental y* over ko under the canonical homomorphism V—*k; if this y should
happen to be a generator of KIK 0 ,  then it is easily seen that k=k o (y*) and G=
Our main theorem asserts that, under the assumption that char ko =0, if ro is hen-
selian, then the converse holds: i f  '<II:, is  simple transcendental and G=G o ,  then
there exists a generator of K/K o which specializes to a transcendental over lc,. W e
also prove that "yo is  henselian" can be replaced by "v o is  rk 1" and that for arbi-
trary f inite rk yo one m ust assume, in addition, tha t for every valuation ring WD V
of K , the residue field of W is simple transcendental over the residue field of Wn Ko .

It requires no new  considerations to  prove this theorem  under the a priori
weaker hypothesis that ko is algebraically closed in k a n d  k  and K/K o is generically
of index I (i.e. every generator of K/K o h a s  value in GO, and in th is  fo rm  the
theorem yields as a corollary the char O case of the following conjecture of Nagata:

Ruled Residue Conjecture. k  is either algebraic or ruled over ko .

("Ruled" m eans that there should be a field k , with ko c k ,  c k and k  simple trans-
cendental over k ,; in the present setting such a k , is necessarily finite algebraic over
ko .) Nagata [7] has proved, w ithout assum ption on the characteristic, that this
conjecture holds for discrete vo and th a t  k  is always either algebraic over k c,  or
contained in a finite algebraic extension of ko followed by a simple transcendental
extension.

The paper divides into tw o parts. Part I, consisting of §§ 1-5, is devoted to
proving the above theorem  for henselian yo (3.7) and to deriving the above con-
jecture in char 0 from  it (4 .6 ). In Part II (§§ 6-8) the corresponding theorem for
ro of finite rk is proved.
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The main portion of this work was done (1978-79) while the author was on sab-
batical leave from  LSU, during which tim e he enjoyed the hospitality of the
University of Wisconsin-Milwaukee.

Notation and terminology.

We fix fields K 0  <K with K a simple extension of K 0 , i.e. there exists xe  K,
such that K =K 0 (x). Usually x will be transcendental (abbreviated tr.) over K 0 ,
but we do not a priori assume this. We also fix a valuation y  of K  and its restriction
v  t o  K 0 . Moreover, we shall consistently use x to denote a  generator of K/K 0

of va lue  0; there always exists such a generator since one of x, I + x, or 1 + (I /x)
must have value 0.

The valuation ring, residue field, and value group of y  will be denOted V . k ,
and G respectively; a subscript O will indicate the corresponding objects for t' 0 :  and
K A ,  y A  will denote the henselization  (cf. [4] or [9]) of K , y. By the index  of K/K O

we shall mean [G: G0 ] ; and we shall say that K /K 0  (or v/v0 ) is generically  of  index  I
if for every generator z of  K /K O ,  v(z) E  G0 . For exam ple,  K /K Q is generically of
index I if [G: G 0 ] =  I. This condition will be used in § 3 and will be discussed in § 4.

The notation (  ) will be reserved for image under the canonical homomorphism
V-* V/mv =k ; thus, if a V, a K  deiiotes the image of a under V - k .  To enlarge on
this notation, K_!_ k will signify in our diagrams that k  is the residue field of y ;  and
for a e K , a  L » a * (read "a specializes to a *  under y " )  will mean a e  Vand

 a *  is the
image of a under J/ -+k . The reference to y  will be omitted when the valuation
involved is clear. Similarly, if  f (X )  e V [X ], f ( X ) *  will denote the image of  f(X )
under the homomorphism V [X ]-^ k [X ]  obtained by specializing coefficients.

In addition, we shall use Z to denote the integers, Q the rationals, C the complex
numbers, and X an indeterminate.

Part I: The theorem for

henselian V 0 ,  and the Ruled Residue Conjecture.

1. Preliminaries.

As specified above, K= K 0 (x), x  K 0 , with x either transcendental or algebraic
over K 0  and v(x)=0.

In a few special cases it is easy to describe a generating set for k/k0 . T o  beg in
with, note that we always have  k o ( x * )  k  since k 0 k  and x' e k.

1.1. In f  extensions (See also 4.3).
For any z e K, o will be called the inf extension (to K 0 (z)) of y0 w.r.t. v(z) if for

every =  U y  + a :  + +  a ,,:', a  e K 0 . =  inf (v 0 (a,) + iv(z)I I =  O..... n }. 1 f  z  i s
Ir. over K 0 , then it is easily verified that an extension of u 0 to K 0 (z) may be so defined
(cf. [ 2 ,  p. 160, Lemma I]). W e are mainly interested in the inf extension of y0

w.r.t. v(x)=0, for which the following simple fact is basic: x' is tr. over k 0 x is
over K 0  a n d  u is tile m l extension of vv ( x )  =  0; and  w hen  this is the case,
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then k= k o (x*) and G--= G0 (cf. [2, p . 161, Prop. 2]).

1.2. Suppose x  is algebraic over K o . T h e n  K  is algebraic over K o , and therefore
also k is algebraic over k „ .  Moreover, it is a classical result that [K : K ,]>[k : ko ]

x [G: G0 ] (cf. [2, p.138, Lemma 2]). Therefore if [K 0 (x): K o ]=[k o (x*): ko ], then
k=k o (x*) and G = Go ; or if [K 0 (x): K ,]=[G : Go], then k= k o . (A strong form of
the above inequality [2, p . 143, Theorem 1] shows that in  these two cases u is the
only extension of y„, up to equivalence.) Note also that the inequality implies that
x is tr. over K o whenever k is not finite algebraic over lc,.

1.3. Suppose k is not algebraic over lc,. Then there exists a E k such that a is tr.
over /co . Let y  be a preimage in V for a.. By 1.1, y is tr. over K, and the restriction
of y to K 0 (v) has residue field k 0 (c) and value group G , .  Since x is algebraic over
K o (y), by the inequality o f  1.2 we have [G: Go ]<co and  [k: k o (a)]<oo. In parti-
cular, k is then a  finitely generated extension of ko o f  tr. degree I ; so if klk, is an
algebraic extension followed by a sim ple t r .  extension, then it is automatically a
f in ite  algebraic extension followed by a simple tr . ex ten sio n . (If k/k, is algebraic,
then it can happen that [k: k o ].= oo; see 5.1.)

1.4. The residue field and value group for the henselization y A ,  K A  of y, K are again
k and  G (cf. [4, p . 136]). If a  k is separably algebraic of deg ti over /c o then by
Hensel's lemma (cf. [4, p . 118, C or. 16.6]) there exists a  preimage a e KA for a such
that a is separably algebraic over K o of deg n. It follows from 1.2 that G, is the value
group and k0 (1) the residue field of V A  restricted to K o (a).

A consequence is that if Kg is the separable algebraic closure of Ko in  KA, then
the restriction vg of  V A  t o  Kr, has a  residue field k , which contains th e  separable
algebraic closure of lc , in  k, and hence which is itself separably algebraically closed
in k, and a value group G , such that G ,  G, c G, and the restriction of VA to Kg(x)
has residue field k and value group G:

Moreover, vg, Kg is henselian [4, p . 130, Theorem 17.9]. Thus, in  considering the
Ruled Residue Conjecture, we may assume ko is  separab ly a lgebra ica lly  c losed in
k and K o  is  henselian.

A word of caution is in order, however. In passing from K , to K8, the notion
of "generator" changes; for if  r e Kg\K o , then x — r is a  generator o f  Kg(x) over
K8 but is not a  generator of K 0 (x) over K 0 , since it is not even in  K 0(x).

2. Generating pairs.

Throughout § 2 x, y  will be elements o f k of value 0, w ith  x tr. over Ko.
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2.1. Definition. x  w ill be called a  generator fo r y  i f  r  e K o[x], o r , equivalentl
if y = af (x ) fo r  som e a  0 e K o  a n d  som e primitive f (X )E V o [X ]. (f (X )E V o [X ]
is called prim itiv e if some coefficient has va lue  0 .)  T he  pa ir x , f (X ) will be called
a  generating pair fo r  y . T h e  a and f (X ) are unique up  to  unit multiples from Vo ;
to be precise, if y = a 1 f ( x )  for some a, 00 e K o  a n d  some primitive f 1(X) e Vo [X ],
then there exists a  unit u e  V , such that a = ua, and f (X )=(11u)f ,(X ). N ote also
that v(y)= 0 implies v(f(x))= — v(a)> 0.

2 .2 .  Multiplicity. The generator for y  ( o r  the generating p a ir  x , f (X )) will be
said to have m ultiplicity  n ( > 0 )  if  x*  is a  ro o t o f  multiplicity n  for f (X )* , i.e . if
f(X )* =(X  — x*)"h(X ), with h(X )e k 0 [X ] and h(x*)0 O.

Suppose r e  V  is such that /-*= x*. W e m ay write f (X )=a 0 +a,(X — r)d-...+
a„(X — r)"+•••+a,,,(X — r)" ,  w here  th e  a ; a r e  uniquely determ ined elem ents of
Vo [r]; in fact, a1 =f 1)(r), where f 1

 11 (r) shall denote the  i'"  derivative of f (X )  with
the coef f icients form ally  div ided by  i!, evaluated at r. Then x* is a  root of multi-
plicity n for f (X )* at = •-• = 4_, =0 and at 0 0 .  For further reference, note also
th a t  if f(X )= 1) 0 + b , X + • • • + b„X"+ • • • + b,„Xm, th e n  x *  is  a  ro o t  o f  multiplicity
<n forf(X )* if v(b„)= 0 and r(b i )> 0 for j> n; for then f '"i(x )= b n + (terms of value>
0), so f ( 0 (x)* = 0  O.

2 .3 .  Multiplicity 0. x  is  a  g e n e rato r f o r y  of  m ultiplicity  0 y e Vo [x]. For,
suppose x , f (X ) is a  generating p a i r  f o r  y .  Since y =af (x ) , a G Ko ,  a n d  v(y)=0,
v(a)=0.=.v(f (x))=0<*f(x*)* 00<=>x, f(X ) has m ultip lic ity  0 . T hus, if x , f (X ) is  a
generating p a ir  o f  m ultiplicity  0 , then a e Vo a n d  hence y G Vo [ x ] .  Conversely,
if ye  Vo [x], then there exists a E Vo and a primitive f(X )G V o [X ] su c h  th a t  =af (x).
Since v(a)>O, it follows from  v(y)=0 that v(a)= 0; so x, f (X ) has multiplicity 0.

2.4. Existence of generating pairs.

Proposition. Assume [G : G o ] = n< co, let .v be a  tr. generator o f  K  ov er K .,
of  value 0, and let I be any  f ield such that k o l k .  I f  th e re  e x is ts  Œe k  such
that Œ" l, then there ex ists  yE K 0 [x ] of  value 0 such that y * I .

P ro o f .  C h o o se  a  p re im a g e  a E  K  fo r  a. S i n c e  K= K o (x ) , a=f 1(x)If2 (x),
f i(X )  K o [ X ] .  L e t  b =a" =f 1(x)"1f2 ( x ) " .  T h e  h y p o th esis  [G: G o ] =  n  implies
v(fi(x)")E Go , i = 1, 2. T h ere fo re  th e re  ex is t c 1 e K o  s u c h  th a t  v(cif i(x)")= 0 ;  and
then b=(c2/c1)(cif 1(x)"/c2f2(x)"), where b, c 2 1c,, c if i(x )", i =1, 2 , a ll have value 0.
But then b* =(c 2 1c ,)*[(c, f ,(x)")*1(c 2 f2 (x)")*] implies either (c,f ,(x )")* or (c 2 f 2 (x)")*
is not in / since b* =oc" I. Thus, for i =1  o r 2 , y = c ,fi(x)" is the required element.

Corollary. L et x  be a generator of  K  over K o  o f  v alue  0 , an d  suppose k  is
not algebraic ov er 1(0 . T hen there ex ists y e K 0 [x ]o f  value 0 such that y * is  tr.
over k o  If , m oreov er, x  is  a  generator of  m ultiplicity  0 f o r th is  y , then x * is tr.
over k o  an d  k = k o (x*).

P r o o f  F or the first assertion, no te  tha t [G: G 0 ]<o o  by 1.3, and  then apply
the above proposition with / =algebraic closure of k o  in k. For the second assertion,
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apply 2.3 to conclude y E  V o [x ]. It follows that y* e ko [x*] and hence that x* is
tr. over ko . Then by 1.1, k= k o (x*).

2.5. Nagata's proof [7, p. 91, Thm. 5] that k ik ,  is either algebraic o r  k is con-
tained in a finite algebraic extension of ko followed by a simple tr. extension:

Suppose K ,  is algebraically closed and  k/ko is  no t a lgeb ra ic . B y  2.4 there
exists y e  K 0 [x ] such that y "  is tr. over ko . Factor: y=a(x— r,)• •• • • (x — r„,), a,
j .  e Ko . Since [G : Go ] < oo (1.3) and Go is now divisible, we have G = Go . Therefore
there exist b,,..., b„,e Ko such that v(x— r i)= h i . Then y* =(ab, • • •• • b„,)*((x—r,)1

b,)* • •• • • ((x — r,„)Ib,„)*, so y *  is tr. over ko implies (x — O A  is tr. over lc, for some i.
Thus, we have found a generator x, =(x — r i )lb i o f K/K o  such that xT is tr. over ko .
By 1.1, k=k 0 (4 ) .

If K ,  is not algebraically closed, pass to the algebraic extension K0= K o (r„ b i).

The residue field of K0(x) is kaxt), where k0 is the residue field o f K0 and hence is
finite algebraic over ko . Thus, ko c kc k0(4).

3. Proof of the theorem.

We remind the reader that x always denotes a generator of K  over K0 of value
O ( x  K 0 ). I n  addition, th roughout § 3 x w ill be assum ed tr. over K o and  y  w ill
be an element of K  of value 0 having a fixed generating pair x, f(x) of m u ltip lic ity
n> 0.
3 . 1 .  Definition.. W e shall call x  ra t io n a l i f  x* e k 0 , o r  equivalently, i f  there
exists r e Ko such that v(x — r)> 0. For such an r, v(r) =0 and r* = x*.

Let (x )  =  e K I there exist r, 0 b e Ko such that x, =(x— r)lb and v(x— r)=
v(b)>01. Whenever we write x,=(x— r)lb E 3(x), we shall be tacitly assuming that
r ,0 0 b e  K o  a n d  v(x— r)=v(b)>0. Note that .̀3(x)0 if x is rational and K  is
generically of index 1 over K o . (Reminder: generically index 1 means every generator
of K  over K, has value in Go .) If x, e 3(x) and there exist r,, 00 b, e K0 such that
v(x,— r0= v(b,)>O, then x2 .---(x, —1- 1 )/b, e 3 ( x )  too . T hus, every  x, e3(x) is  a
generator of K  over K o of value 0, and 3(x,)c 3(x).

The next lemma is crucial to the proof of the main theorem.

3 .2 .  L em m a. Suppose there exists x,= (x— r)lbe 3(x) such  tha t x , is not a gen-
erator fo r  y  o f m u lt ip lic ity  <n, and write f(X )= a 0 +a,(X ••• + a„(X —r)"+

• • • + a „,(X — a ; e Vo [r](c  V o ). Then
i) v(a i(x — r)i)> v((x — r)")) fo r  i =0,..., n — I ;
ii) x, is  a generator for y o f m u ltip lic ity  n; and
iii) tf char k,rn, then v(a„_,)=v(x—r).

R em ark. Since we are assuming throughout §3 that x is a generator for y  of
multiplicity n>0, ii) may be rephrased: if x is a generator for y of multiplicity n>0,

then every element of 3(x) is a generator for y of multiplicity < n .  Also, iii) implies
a,_ 1 00 because xe K o implies x —1-00.

P r o o f .  Note to begin with that v(a„)=0 since r* is a  root of multiplicity n of
f(X)*.
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i): Suppose there  exists i <n su ch  th a t v(a i(x—r) 1)< v ((x — r)"). C hoose  q
to  b e  the  largest integer in n — II such  tha t v(aq(x— r)")= m in  Iv(ai (x— r)i)i
j= 0 ...... n — II, i.e. choose q E {0 , ....  n — II such that

v(a o (x—r)")< v(a i (x—r)j), f= a + 1 ,,,,, n,

{  a n d  v(a,(x—r)")< v(a i (x— 0 1 ), ]=0,..., a.

I t  fo llo w s  th a t  v(aq (x— r)")< v(a i (x — r)j), j> n, s in c e  v(a„(x — r)")= r((x — r)")<

v(a j (x — r)j), j> n.

N o w  c o n s id e r  (11a,,b9f(x)=b 0 +b l x,+•••+ b„.x? + •• • + bxT, w h e r e  b1 =

ai la g b" - j, j=0,..., in. By (a),

v(b . ) > 0, i = 0 ,.. . ,  q,{

h,, = I,

v (b )> 0 , j= q+ 1 ,..., oz.

Let f ,(X )= 1)0 + b i X + ••• + b ,„X ". T hen y=af(x)=aa q b"f,(x,), so  x ,, f ,(X )  is  a
generating p a i r  f o r  y .  M oreover, by 2.2 th e  multiplicity o f  x,, f i (X )  i s  <g <n.

Thus, we have a contradiction to  the hypothesis that x, is not a  generator for y  of
multiplicity <n.

ii): Consider ( I la n b")f(x)= b o + b, x, + •• • + b„,x'(", w h e re  n o w  b
j=0,..., m; and again let f,(X)= b 0 + b, X+ ••• + b,„Xm. By i), 0  for j=0,..., n:
and also v(bi ) > 0  fo r j= i1+ 1 ,..., in since v(b)> 0. By 2.2 we again see that x ,,f ,(X )
is a  generating p a ir  fo r y  o f multiplicity <n ; and  the  hypothesis that x , is not a
generator for y of multiplicity <n  yields the equality.

iii): L e t f , ( X )  b e  a s  in  i i ) .  T hen  f r n ( x 1)=b„_,+nx, + c,b„,,x i+ -••+

c,„_„,,b„,x'," - "+1, w here  t h e  ci a r e  n a tu ra l n u m b e rs . T h e re fo re  f;" - "(x,)*=

b_ 1 + n x f since v(b.d> 0, j =n+1,..., m .  B ut nx t 0 0  because char k,f'n ; so  w e
must have b_ , 00  too, for otherwise x, would be a  generator for y  of multiplicity
<n, contrary  to  hypothesis. But b _ , 0 0  implies v(b„_ 1 )=0, so  v(a„_,)=v(ab)=

v(b)= v(x — r).

3 . 3  Corollary. Suppose char k,rn and KIK 0 is generically o f in d e x  1. I f  x  is

rational and degf(X )=  n, then there exists x, e 3(x) which is a generator for y of

multiplicity <n.

P ro o f.  S in c e  x  is  ra tional, there exists r e 1( 0  su ch  th a t v (x —  r)> 0 . T hen
r E Vo , a n d  ,f (X)= a o + a ,(X — r)+••• + a„(X — r)", a ;  E  V0 [r]=1/0 . B y  o u r  initial
assum ption, x , f(X )  is  a  generating p a ir  f o r  y  o f  multiplicity n , s o  a*„ 00 and

= 0 .  L e t t=  — a„_,Ina„. T hen  t E K 0  a n d  v(1)> 0. N o w  le t r , =  r + t, and
rewrite f(X)= b o + b,(X —r 1)+••• +b„(X — r,)", where b„=a„, b„_,—nb„t=a„_,,....

Since K/K o  is generically of index I, there  exists  b 0 0  E  K 0  such that v(x — r,)=

v(b)> 0, and hence x, =(x— r,)lb e  3 ( x ) .  But t was chosen so that b,,_ , = 0. T h u s ,
th e  failure of 3.2—iii) yields the conclusion th a t  x ,  m ust b e  a  generator fo r  y  of
multiplicity <n.

(g )
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3.4. Lemma. Suppose x is  ra t io n a l and K, is henselian. Then there exists S  E
Vo [x] of value 0 such that yls has a generating pair x, g(X) o f m u lt ip lic ity  n and
w ith g(X) monic of deg n.

P r o o f .  Since x* is a root of multiplicity n >0 of .f(X)*, f (X )*  =(X — x*)nh,(X),
hi (X)e k 0 [X] and h,(x*)0 O. By Hensel's lem m a, [6, p. 189, Thm. 44.4] or [9, p.
185, Thm. 4], there exist g(X), 17(X) c Vo [X] such that g( X ) is monic of deg n, f (X)=
g(X)11(X), and g(X)* = (X — x*)", h(X)* = h ,(X). Let s= h(x) E  V o [x ].  Since y=
af(x) for some a e Ko , y=ag(x)h(x) and yls=ag(x); so x, g(X) is a generating pair
for yls of the required type. Q. E. D.

Note that for the s of 3.4, s E Vo[X] and v(s)=0 imply 0 Os* e ko [x*]=

3.5. Proposition. Suppose K o  i s  henselian, KIK, is  generica lly of index 1, and
char 14 1 1 . I f  x is rational, then there exists X1 E 3(X) such that x ,  is  a generator
fo r  y o f m u lt ip lic ity  <n.

P r o o f .  By 3.4 there exists s e Vo[X] of value 0 and a generating pair x, g(X)
for y/s of multiplicity n, with g(X) motile of deg n. By 3.3 there exists x, e 3. (x)
which is a generator for yls of multiplicity < n .  This means there exists a E K , and
a primitive f,(X)e 1/0 [X ]  such that yls= af,(x,) and x f is a  roo t o f multiplicity
<n fo rf,(X )* . If we write s=s(x )e Vo [x], and if x, = (x — r)/b, then s(x )=s(x ,b+r)
=s,(x,)e Vo [ x i .  Moreover, s,(xf)*= s*0 0, so x f is a  root of multiplicity 0 of
s i (X )* . Thus, y=as,(x i )f,(x,), and it follows that x,, s1(X )f 1(X) is a  generating
pair for y of multiplicity <n.

3.6 Corollary. Suppose K o  i s  henselian, KIK 0 is  g e n e r ic a l ly  o f  index I ,  and
char k = 0 .  If eve ry  e lem ent of Zi(x)U {x} is  rational, then there exists x, e3(x)
such that x, is a generator for y o f m u ltip lic ity  0.

P r o o f .  Since x is rational and K/K o  is generically index I, 3(x)0 O . M ore-
over, by 3.2 every element of ZÇ(x) is a generator for y of multiplicity < n .  Choose
x, e 3(x) of multiplicity p and such that no element of 3(x) has multiplicity < p.
If p=0, we are done; if not, by 3.5 there exists X, G 3(x1) < ( X )  such that x2 i s  a
generator for y of multiplicity <p, a contradiction to the choice of x 1 .

3 .7  Theorem. Assume K=K o (x), where x  is  tr. over K o and v(x)=0; char k=0;
and K o i s  henselian. If K IK 0 is  g e n e ric a lly  of in d e x  1 and k o  is  a lg e b ra ic a lly
closed in k a n d  k, then there exists x, e 3(x) u {x} such that x t is tr. over ko .

P r o o f .  I f  there exists x, eli(x)u {x} such that x l  k o ,  then by hypothesis
xf is tr. over ko and we are done. Thus we may assume every element of Zi(x) u {x}
is rational.

By 2.4-Corollary, there exists y, e K of value 0 such that x is a  generator for
y, and y* is tr./k0 : an d  also by 2.4-Corollary, we may further assume that x is a
generator for y , of multiplicity n > O .  But then by 3.6 there exists x, e3(x) such
that x, is a generator for y, of multiplicity 0, which means y, e Vo [ x i .  Therefore
yr E ko [xf], and hence xf is tr./k0 . Q .E.D .
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In view of the reduction of 1.4 whereby k o may be assumed separably algebrai-
cally closed in k  and K o  henselian, 3.7 yields the Ruled Residue Conjecture (char 0)
in the case that [G: G 0 ] = 1 .  For by 1.1 if a generator of K /K , specializes to a tr.,
then k lk , is simple transcendental.

4 .  Extensions generically of index 1.

We assume throughout § 4 that K =K ,(x ), x  tr. ov er K , and v(x)-= O.
Before proceeding to the final ingredient in  the  proof o f the  Ruled Residue

Conjecture (char 0), we shall make a couple of comments on the notion of "generi-
cally in d e x  1 " . Recall that KIK G is of index 1 means v() e G o for every  e  K  and
that K/K o is generically of index 1 was defined to mean v()  e G , for every generator

of K/K o .

4.1 Proposition. The following are equivalent:
i) K IK , is generically  of  index  I.

ii) If  r e K 0  and v(x—  r)> 0, then v(x— r)e Go .
iii) Either Iv(x—  r) Ir E K 0 and v(x—  r)> 0} has no m ax im al elem ent, or its

m axim al elem ent is in G 0 .

P ro o f . Since x — r is a generator o f K/K o  fo r all r e K o ,  the implications
are immediate. Every generator of K 0 (x)/K 0  i s  of the form

(ax +b)1(cx +d): a, b, c, d e K 0 ,  ad—  bc00 (cf. [10, p. 198]). Therefore it suffices
to show v(ax + b)e Go whenever a 0, bE K 0 , or equivalently, to show v (x +(bla))e
G , .  Since v(x)= 0, either v (bla)<0 and v (x +(bla))=v (bla)e Go ,  o r v(bla)>O, in
which case v (x+(bla))> 0 and ii) applies. If there exist r, r' E Ko  such that
0 < v(x— r)<v (x  —  r'), then v(x—  r)= v((x — r)—(x — r'))=v(r' — r) e G,. T h u s ,  if
v(x — r) is not a maximal element of the set, then it is automatically in G,.

Q. E. D.

4.2 Example of K/K o  which is generically of index 1 but not of index 1 and which
has x rational, i.e. x*e k o .

Let v be the X-adic valuation of Q( \/2, n)(X ), i.e. I, is the inf extension of the
0-valuation of Q( \ /2, ir) w .r.t. v(X )= I; le t K o =Q(X 2 ) ; and le t K =K ,(x ) , where
x =1 +,./2X 2 + rcX3 . In  v iew  of 4.1 to prove K/K o is generically of index 1 it suffices
to  show v(x — r)> 0, r E Ko , implies v(x — r)= 2. Note first that v(x — r)> 0 implies
1= x*= r* ,  s o  r =1 —  a, a e K 0 a n d  v(a)> O. Therefore x —  r = a + \ F2- X 2  + irX 3

and (x —  r)1X 2 =(a1X 2 ) +,1f +T rX ; so it rem ains to show  v((a1X 2 ) +,12)= 0. B u t
a E K , and v(a)> 0  im plies v(a)>2. Then (a1X 2 ) +,12 --■(a/X 2 )*+„12: and since
alX 2  E K 0 ,(aIX 2 )* E ko = Q .  Since \,/2 , Q ,  it follows that (aIX 2 )*+ \/ 2  0. Hence
v((a I X 2 ) + .\1 )= 0.

Finally, to see that K/K o is not of index 1, note that [(x — 1)/X 2 ] 2 — 2 = 2 \ 72- 7rX +
n2 X2 has value 1 G0 . T h u s , G o =2Z and G =Z . Q. E. D.

Exactly when generically index 1 does imply index 1 for fields K/K o  is  no t
clear. F o r  example, a  consequence of 6.2 is that this implication holds if rk  v= I,
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ko is algebraically closed in k  and k, and either char k =0 or y is discrete.
The following proposition relates arbitrary inf extensions to those defined with

respect to value 0.

4 . 3  Proposition (c o n t in u a t io n  o f 1.1). L e t z  be a (tr.) g e n e ra to r o f  K IK „ ,  let
v(z)=g , and suppose g +G 0 is  o f fin ite  o rd e r n > 1  in  GIG ° . L e t v1 -=y1K 1 ,  where
K ,= K o (z"), and let k , be the residue field of v i . Then the following are equivalent:

i) y is the in f extension of yo w .r.t. v(z)=g.
ii) y , is the in f extension o f y, w .r.t. v,(z")=ng.

iii) There exists bOOEK 0 s u c h  th a t  y ,  i s  th e  in f  e x te n s io n  o f vo  w .r .t.
v1(z"lb )=0.

iv) There exists b 0  e K ,  such that z"Ib tr. over lc,.
M oreover, when these hold, then k = k ,= k o (a) a n d  G IG , is  cyc lic , genera ted  by
g + Go .

Proof. are immediate from the definitions, and by  1 .1 . It
remains to show T h e  v a l u e  group of y, is Go and the residue field is k o (y)
by 1.1. Since [K : K ] = n  and [G: Go ] > n ,  it follows from 1.2 that [G: Go ] = n,
[k :  k , ]= 1 ,  and v, extends uniquely, up to equivalence, to K .  In particular, then
G=G 0 + Z g  and k = k , .  But the inf extension w of v o w .r.t. w(z)=g is an extension
of y, to  K  (cf 1.1), so w is equivalent to v. Since G=G 0 + Z g  and w(z)=g=v(z),
we must actually have w= v. Q .  E .  D.

We are now ready for the technical device (4.4 and 4.5) needed to complete the
proof of the Ruled Residue Conjecture (char 0).

4 . 4  Lemma. Let 4 e K ,  1 ( 0 a n d  v ( ) = g ,  where g + G o  is  o f :f in ite  o rd e r  n>1
in  GIG o ; le t t  be tr. over K , and  le t v, denote the in f extension o f y  (to  K(t)) w .r.t.
y1(0 = g ; and le t vp, K (t)^  be the henselization of v„ K(t).

if  char k)(n, k o  is  a lgebra ica lly  c losed  in  k, and y  is  n o t th e  in f  extension of
y, (to  K 0 ( ))  w .r .t. v ()= g , then there exists b e K (t)^  algebraic over  K 0 (t) w ith  the
fo llow ing properties:

i) —)b* tr. over k.
ii) The residue fields of K '= K (t, b )  and KO =K 0 (t, b) are  k (b *) and k o (b*),

respectively.
iii) The value groups o f K ' and K ; are G and Go + Z g , respectively.

P r o o f .  Since vt(t")= n g  e Go ,  there exists d e  K o  su c h  th a t vt (t")=y ,(d); and
by 4.3, t"Id— a tr. over k o  and  the  residue field of K 0 (t) is k 0 (Œ). A lso, by 1.1,
--,13 tr. over k and the residue field of K (t) is k(/3). B u t  v(d)=- v( N  implies there
exists u e K  of value 0  such that and  therefore (t1)"=(110(t"Id), and
consequently fin = (1 I u*)oc.

C la im : u*e ko . F o r  otherw ise u* is tr. over lc, by hypothesis. But then
u = "/d— u tr . ove r k o  implies by 4.3 that u is the inf extension of v o w .r.t. v ( )=g ,
a contradiction to our hypotheses.

Thus, /3 is separably algebraic of deg n over k 0 (Œ); so by Hensel's lemma [4, p.



210 Jack  Ohm

118, Cor. (16.6)] there exists b e K(t)" algebraic of deg n over K 0 (t) such that b—>
Then the residue field and value group for K(t, b) are k(13) and G since K(t)OEK(t, b)
c  K (0 ^ . By 1.2 and 4.3 the residue field and value group for K 0 (t, b) are k 0 (a, ,e)=
k0 (f3) and G 0  +Zg =value group of K 0 (t). Q. E. D.

Note that if is a  generator of K/K 0 ,  then by 4.3 k/k, is not simple trans-
cendental implies y is not the inf extension of y, w.r.t. v( ). This is how we shall
fulfill the above hypothesis in the following corollary.

4 .5  Corollary. If  there exist (valued) fields KD K 0  such that
i) K IK , is sim ple tr. and char k =0,

ii) K 0  is  henselian,
iii) k , is algebraically  closed in k and k0
iv) k/k, is not simple tr.,

then there exist such fields with the additional property  that K IK , is generically
of index I .

P ro o f . Suppose there exists a  generator z  o f K/K, such that y (z )= g  Go-
By 4.4 there exist fields K'o c K ' = K (z) having residue fields k  k o (fl), k' = k( i3),
respectively, $ tr. over k, and value groups G , G , respectively, with [G: G ] <
[G: Go ]. It follows from [11, p. 167, Lem. 2] that k'/k/ satisfies iii) and from the
generalized Liiroth theorem [8, p. 137, Thm. 4.12.2] that k'/V0  satisfies iv). Now
replace K'„ by its henselization (KO" (inside (K')^) and K' by (& )" (z ); this does not
alter the residue fields o r  value groups (cf. [4, p. 136, Thm. 17.19] or [8, p. 193,
Thm. 5.11.11]). Thus, under the assumption that K/K, is not generically index 1
we have found fields (K D A  c(K ^ (z ) satisfying i)—iv) and the additional condition
that [G : q ) ] < [G: G0 ]. The corollary now follows by induction on [G : Go].

4 .6  Ruled Residue Theorem (char 0). L et K , and K = K o (x) be f ields with x  tr.
over K o , let v be a valuation of K with residue field k, and let k, be the residue field
of  vl K 0 . Suppose char k =0  and  k is not algebraic over ko . Then there exists a
f inite algebraic extension k, of k, and an a tr. over k, such that k=k,(a).

P ro o f . By 1.3 it suffices to show k is of the form k,(a), k, algebraic over k, and
Œ tr. over lc,. By 1.4 we may assume K , is henselian and  k , is algebraically closed
in k, and by 4.5 we may additionally assume K/K, is generically of index 1. The
theorem now follows from 3.7.  Q .  E .  D.

4 .7  Remarks.
1. It is only in the reduction step of 4.5 that field extensions of K lying outside

vA, K A  a re  u s e d . If one wants to think in terms of working inside a  fixed valued
field, he can proceed as fo llo w s: If order of GIGO = s, choose preimages g,,..., g s e G
for the  elements o f  G/G,. Then let t 1 ,..., ts  be indeterminates, and  extend y to
K(t i ,..., t s )  by infs w .r.t. v(t1) = g , .  Now the construction of 4.5 can be carried
out inside the henselization K(t,,..., t s ) .̂

2. O n the  char k =0  assum ption : It is not at all clear how  to adapt our
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methods to the non-zero characteristic case. As noted in the introduction, Nagata
has proved without restriction on the characteristic that the statement of 4.6 remains
valid a) if y is discrete, rk n, i.e. if G is a lexicographic direct sum of n copies of Z,
or b) if the conclusion is weakened to k c k ,(a)  (cf. [7, Thms. 1 and 5], [8, P .  198,
Thm . 5.12.1]). When K, = Q, it seems that the discrete, rk 1 case of a) (from which
a) follows by induction) is implicit in the early paper [5 ] of Mac Lane, although the
terminology of that paper obscures this conclusion (See [5, Thms. 8.1, 12.1, and
1 4 .1 ]) . As for further progress in removing the characteristic 0  assumption from
4.6, in generalizing from Nagata's result a) above there are two extreme cases to take
into account: one is the case of discrete, infinite rk y, i.e. G is the lexicographic direct
sum of infinitely many copies of Z; and the other (probably the more difficult) is the
case of non-discrete, rk 1 y, e.g. G = Q.

3. Addendum (Oct.. 1980 ). W. Heinzer, after reading a preprint of this paper,
has pointed out that the Ruled Residue Conjecture for lc, perfect can be proved as
fo llow s: Let D= M x ] n V ; and note th a t  V= Ds ,  where S = {units of V } fl D.
For, if G V, write K 0 [x ] since [G: Go] < oo, there exist a E K o and an
integer n >0 such that v (f3)=v(a); and therefore (f V ag E D a n d  e D .  It follows
that k  is the quotient field of D*, where D -4 3 * . Next, Nagata's argument (cf. 2.5)
shows there exists a finite algebraic extension K , of K , and an x , = (x  —  b e K [x ]
= K ax  j such that x1 is tr. over k o . By 1.1, then K ax 0 , y' is the inf extension of

w.r.t. v'(x ,)= 0, from which it follows that D '— >4[4], where D ' =K [x i ] n
V '.  Thus, we have ko D *  c k , [4 ];  so by [1, p. 322, (2.9)] the integral closure of
D* is of the form k az ], lc; algebraic over ko and z  tr. over k .  But then k = k (z ).

Q. E. D.

The theorem of [1] on which Heinzer's proof rests requires two non-elementary
facts about 1-dim function fields: i) genus does not decrease under a finite separable
extension of the base field and ii) genus 0 plus the existence of a rational place implies
simple tr. Thus, while his proof yields the more general case of a perfect k o , it is not
nearly as simple-minded as our proof of 4 .6 .  In any case, both approaches should
be of interest in further efforts to remove the restrictive hypothesis involving the
characteristic.

5 . Complements.

We begin with a class of examples to illustrate that all of the possibilities for
k/k o  suggested by theorem 4.6 can occur.

5.1. Let k ,  be a subfield of C = complex numbers, let C((t)) be the field of formal
Laurent series in the indeterminate t  with coefficients in C, and let y be the t-adic
valuation of C((t)). Let x =a 0 +a 1 t +a 2 t2 +••• e C[[d ], and consider the residue
fields given by

K0= k 0 (t)  K =  k o (t) (x )   C ( ( t ) )

k ,
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What is a generating set for k over lc,?

Lemma. I f  a„, a 1 ,..., a ; ( i > 0 )  are  algebraic  ov er k„, then  a„, 0 1 ,..., a i ,
ai + , E k.

Pro o f . N ote that x—>a, implies a , E k. Let f (X ) e k 0 [X ] be the irreducible
polynomial for a, over k0 , and let y, = f(x )It '(a 0 )((x — a 0 )1 t) +(tf"(a,)12)((x — a,)I

+ • • • . Since (x— a 0 )1 t = a 1 + a 2 1 + • • • , w e can  w rite  y 1'  (a ,)a + ( f ' (a 0 )a 2 +
b(

2 ' ) )t + (f '(a 0 )a 3 + b (
3 ' ) )t 2  + • • • , where by )  E  k 0 (a 0 ,... , a  _ 1 ). B u t  y ,  y't '(a o )a,

and f '(a 0 ) 00, so a, E k since t i  and f'(a o ) are in k.
Now let f,(X )e  k 0 [ X ]  be the irreducible polynomial for over k0 , and let

Y2 =fi(y 1)1 =f ;(.01((y — 4)10 + 7( 4 )12)  ((y 1 — st)102  + • • • . Since (y, — yr)/ t-
(e ( l ) a2  + b(

2 ' 1) +  (c" ) a3  + b (
3 ' ) )t + • • • , w h e re  c1 "  f  '  (a 0 ) e k0 (a 0 ) a n d  b(

i "  e
k0 (a 0 ,..., a i _ , ) ,  w e can w rite  y 2 =(y ( 2 ) a 2 + b(

2
2 ) ) +(c ( 2 ) a 3 +/) (

3
2 ) )t+ ••., w ith  y( 2 ) 0

E k0 (a 0 , a 1) a n d  b(7 ) e k-
 0 (a 0 ,..., (11 _ ,). T h e n  y 2 y l` =  c (  2 ) a 2 + b (

2
2 )  im p lie s

a, e k0 (a„, a 1 , yflc k.
W e have thus demonstrated the  lemma fo r  i= 0 , 1 ; the  general case is by

induction on i and is identical to the i = 1 case.

Corollary. I f  a0 ,..., a„_,(n>1) are algebraic over k , and a„ is tr. ov er ko ,  then
k=k 0 (a, ...... a ,  an ). I f  a0 , a i ,... are all algebraic over k„, then k=k 0 (a o , a 1 ,...).

P ro o f . The inclusion D is by the lem m a . Suppose a„ is tr , over k0 , and con-
s id e r  t h e  finite algebraic ex tension  o f K0 = W O, L = k o (t, a 0 ,..., a„_ 1 ). Then
L (x)= L (x ), where x = an + a„ + ,t + • • • . The residue field of L  is kaa o ,...,
Moreover, since xn —w„ tr. over k0 (a 0 ,..., a„_,), by 1.1 the  residue field of L(x) must
be k0 (a 0 ,..., a„_ ,)(a„). But K c L (x ) implies k is c  the residue field k0 (a 0 ,..., a„_,,
a„) of L . Thus, w e have proved the first assertion of the co ro lla ry . For the second,
observe that Kc k 0 (a,, a 1 , . . . ) ( (t ) )  implies kc k 0 (a 0 , a 1 ,...). Q. E. D.

Note that x is necessarily tr. over k0 (t) whenever k/k, is not finite algebraic, by
1.2. In conclusion, the corollary shows that it is possible to get the residue field k
to be an arbitrary finite algebraic extension of k, followed by a simple tr. extension
(actually, it is only necessary to take n  1 in the corollary since any finite algebraic
extension of k, can be realized as a simple extension), or to be an arbitrary countably
generated algebraic extension of k„. See also [2 , p. 173, Exercise 1] and [12, p.
104, Example 4 ] for examples of this la tter type . (Incidentally, the Remark on p.
162 of [2 ] seems to ignore examples of the former type.)

It is interesting to pursue this example a  b it  further and  inquire about the
completion vc, Ke of y, K in C(( t)) when, say, a, is algebraic over k, and a, tr. over
k0 . First observe that V= k0 (y 1) [x ] , f ( x ) ,, where [(X ) is the irreducible polynomial
for a, over k„. For, we have seen that p1 specializes to a tr. over k„, which implies
k0 (y 1) c  V ; a n d  since f ( X )  is ir re d u c ib le  o v e r  k ,  a n d  therefore also over
k0 (y 1 ), k o (y , ) [x ] ( f ,,o )

 is  a  DVR contained in  V and having the same quotient field
ko (t, x) as V, and hence must be V. We have also seen that the residue field k of Vis
ko (a o , a,), so by Hensel's lemma (cf. [4, p . 120, 16.7]) there exists a preimage for a,
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in Ve which is algebraic over ko . But the only such preimage in  C [[t ] ]  is a ,  itself,
so  a, e V .  T h u s ,  ko(y,)[ao]=ko(YI, ao)OEV` is  a coefficient field for V ", and
V" is the t-adic topological closure of ko (a o ,  y , ) [ t ]  in C [[t ] ] ;  so V" may be thought
of as being the subset of C [[t ] ]  obtained by taking power series in t with coefficients
in k0 (a0 , y,) and rewriting them as power series with coefficients in C.

5.2. As mentioned in the introduction, Nagata [7, p. 91, Thm. 5] has proved that if
klko  is not algebraic, then k is contained in a (finite) algebraic extension of 1(0 followed
by a simple tr. extension. Does this result in itself imply 4.6? That is, given fields
k ,  kc k i (t ) with k, finite algebraic over /c o , t tr. over k,, and k/k, not algebraic,
is k necessarily a finite algebraic extension of k, followed by a simple tr. extension?
The following example (cf. [3, p. 23] and [8, p . 144, 2]) shows that the answer is

4 n  0 ,,

L e t  ko =reals; k=k 0 (x, y ) ,  w here x2 + y2 + 1 = 0 ;  a n d  k 1 =C =complexes.
Then k, c C (x  +  iy ). F o r x— iy= —1/(x+ iy ) implies x— iy, x+iyEC(X-1- iy),
and hence x, y c C(x + iy).

Next observe that ko  is algebraically closed in  k, which amounts to verifying
F o r, if  i E k, then  ko (x, y )=k ,(x , y, i ) ;  and  hence [k,(x, y. i): k o (x )] =2.

But [ko (x, i): k 0 (x ) ]= 2 ,  a n d  it follows from G auss's lem m a that Y2 + x2 + 1  is
irreducible over ko (x , i)= C (x ); so [k o (x, y, i): k o (x)] =4.

Now suppose k/k0 is simple tr.. Then there exists a valuation y of klk o  having
residue field ko . If y(x)› 0, then y2 +x 2 + 1 =0 implies v(y )>0  too ; and therefore
in the residue field ko , y* 2 +x* 2 + 1 =0, which is impossible because k, =reals. If
v(x)<O, then the same argument applied to (y/x)2 +(1 /x)2 + 1 =0 w orks. T hus, k
is not a simple tr. extension of k0 .

The function field k/k0 is known to have genus 0, but the additional fact needed
to be able to conclude that k is a simple tr. extension of k, is the existence of a k 0 -
rational p la c e . See [3, p. 23].

5.3. An application of the Ruled Residue Theorem (inspired by the applications of
Nagata in [7]. See also [8, p . 199, Thm. 5.12.2]).

Let k 0  <k  be  fields of char. 0 and G be any torsion-free abelian group (written
additively). Let k [G ] be the group ring of G with coefficients in k, i.e. k[G] = 1CD
{kX g lge  G l, w ith  multiplication defined linearly  by X 9 X 4 = X 9 +". L e t  k(G)
denote the quotient field of k [G ] .  Then ko (G)c k(G).

Cancellation theorem. If  k(G) is a sim ple tr. extension of ko (G), then k is a simple
tr. extension of lc,.

P ro o f . Since G is torsion-free, G can  be  to ta lly  ordered . T hen  any  e k[G]
may be written = a , X (I, + • • • + a, X g , , a1 0 e k, g 1 < • • • <g,c G .  Define y: k[G]—>
G by y( ) = inf {ai l / } ; and extend to a valuation y of k(G) having value group
G and residue field k. The restriction y, of y to k 0 (G ) is similarly a valuation with
residue field lc,.

C la im :  k , is algebraically closed in  k(G), and hence a fortiori in  k. Since
k0 (G ) is algebraically closed in  k (G ) by hypothesis, it suffices to show  k , is
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algebraically closed in ko (G ) .  If a e k0 (G) is algebraic over ko , then k0 [1]= k0 (c)c
Vo , and hence k0 (c) would map isomorphically under the residue map 1/0 —>k0 . thereby
yielding a e ko .

Thus, by theorem 4.6 and the fact that ko is algebraically closed in k and k,

we conclude that k is a simple tr. extension of ko . Q. E. D.

In  the statement of the  cancellation theorem, we can replace the hypothesis
that k(G) is a simple tr. extension of k0 (G) by the weaker hypothesis that k(G) is  c
a simple tr. extension of ko (G), for by Ltiroth's theorem the former hypothesis is a
consequence o f  th e  la tte r . Finally, the cancellation theorem may be rephrased in
terms of quotient fields of group rings as fo llo w s: If  G  is identified with OS G
in  ZO G , then k0 (Z G)= k(G) implies k k,(Z).

5.4. The set 3(x) u { x ) .  The statements o f  3.6 and 3.7 concerning elements of
3(x) u {x} imply comparable statements for arbitrary generators of value 0 , as we
shall now show. Assume K= K o (x), where x  is tr. over K , of value O.

Proposition. Suppose K IK , is generically of index 1, and let I be a field such
th a t ko l c  k .  If there exists a generator y o f K IK , of value 0 such  tha t 1.* 1,

then there exists x,e3(x)u {x} such that xt e I.
P r o o f .  By [10, p. 198], y = (ax+ b)I(cx+d), a, b, e, d e K,, ad— b c 0 0 .  Since

K/Ko is generically of index 1, there exists e0O e K , such that v(ax + h)=v(cx+d)=

v(e). Then y = ((ax + b)le)I((cx+d)le) implies one of ((ax+ b)le)* or ((ex +d )le )* I.
Therefore we may assume y --(ax + b)le. Dividing a, b, e by the element of least
value from among a, b, e, we may further assume a, b,e have value > 0  and one of
them has value 0. If v(e)= 0, then y* =(a*le*)x* +(b*le*) implies x*ES /, so x, = x
w orks; if v(e)> 0  b u t v(a)= 0 , then x 1 = y=(x+(bla))1(ela) 0 ( x ) ;  and  if v(e)> 0
and v(b)=0, then v(ax + b)= v(e)> 0 implies v(a)=0 and we are in the previous case.

Q. E. D.

By taking /=k0 (resp., /=algebraic  closure of ko in  k), we have

Corollary. Suppose KIK, is  g e n e rica lly  o f index 1 . If there exists a  gen-
erator y of KIK 0  such  tha t y* k0  (resp., .y* is  tr. o ve r k0 ), then there exists X 1 E

3 (X ) U  {X} such that x lçk ,(resp ., x f is tr. over k0 ).

To carry this a  bit further, let us define K  to be gene rica lly  ra tiona l over Ko

if for every gnerator y of K IK , of value 0, y* e 1(0 . Then under the assumption that
K/Ko is generically of index 1, the condition of 3.6 "every element of Zi(x) u {x} is
rational" is equivalent to "K  is generically rational over Ko ".

P art II: T he theorem for y, of finite rk.

We retain the notation established in the introduction; in particular, K = K o (x),
where v (x )= 0 . In addition, we assume throughout II that x is tr. over K0.
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6. Theorem 3.7 revisited.
Theorem 3.7 is false without the assumption that K ,  is henselian if rk > 1, as

example 7.2 will show; indeed, the henselian hypothesis was employed precisely to
deal with valuations of infinite rk, and if we restrict attention to valuations of finite
rk, a sharper result, which in the rk 1 case amounts to deleting the henselian hypo-
thesis and in the discrete, rk 1 case amounts to deleting both the henselian and char 0
hypotheses, can be obtained. Since we are ignorant of the status of this result in the
cases of infinite rk or of non-zero characteristic and arbitrary value group, we shall
first phrase it as a conjecture.

6.1 Conjecture. For every valuation overring W of V (1f K), the residue field lo  of
W n Ko is algebraically closed in the residue field 1 of W , k, k, and K /K , is generi-
cally of index 1 there exists a generator x of K IK , such that y is the inf extension
of v, w.r.t. y(x)=0; or, equivalently, there exists a  generator x  of K/K, which
specializes to a tr. over k0 .

What we know about this conjecture, aside from the henselian case of 3.7, is
summed up in the following theorem))

6.2 Theorem The implication of 6.1 is  true  if e ithe r a) rk y is  f in ite  and char
k=0, o r b) y is discrete.

The converse implication to  6.1 is always true. F o r ,  i f  x_t_•'  x* tr. over k,
and w is the valuation of K  whose ring is  W, then there exists a valuation u  of the
residue field / of w such that x x '  x * .  (See § 7). But x* is tr. over k0 , so x'
is tr. over 10 , and therefore 1.1 yields 1110  is sim ple tr., and hence /0  is algebraically
closed in 1.

In b) rk y is necessarily finite, since by definition of discrete, G is a lexicographic
direct sum of finitely many copies of Z; but char k m ay be arbitrary. In both a)
and b) the crux of the proof lies in the rk 1 case, from which the finite rk case follows
by induction.

The remainder of § 6 will be devoted to establishing a) and b) for rk 1 v. Just
as theorem 3.7 follows from 3.6, this will follow from

6.3 Proposition. Suppose v is rk I  and either a) char k=0 or b) y is discrete, and
suppose K IK , is  generica lly  o f index 1 and every element of 3(x)u {x} is  ra tional.
I f  y is an element of K of value 0 and x is a generator for y of mu Itiplicity>0, then
there exists x, e 3(x) such that x , is a generator for y of m u ltip lic ity  O .

P r o o f .  We first need a lemma.

Lemma. Suppose .y E K  has a  genera ting  pa ir x, f(X) o f m u lt ip lic ity  n>0,
where char k)(11. If x,=(x—r)lb E 3(x), th e n  e ith e r x ,  is  a generator fo r  y  o f
m u lt ip lic ity  <n or there exists a generating pair x 1 , f 1(X) f o r  y o f m u ltip lic ity  n

1) Added A ugust, 1981: 1 now  have an example (to appear in  a  sequel) in  char. p  fo r  which
Go k l k ,  is simple tr., and yet no generator of K IK , specializes to a  tr. over k„. Thus,
the remaining undecided case of 6.1 is char k —0 and rk y infinite.
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a n d  a n  r, E K 0  s u c h  t h a t  f (x )= b"f ,(x ,), v (x , - r,)> 0, a n d  v(f (,"- "(r,))>
2v( f ) ( r) )=2 v (b ) .

Proof  o f  lem m a. Suppose x 1 is  n o t a generator for y of multiplicity < n .  We
m a y  w r ite  .f (X )= a , + a ,( X - r)+ • • • + a„(X - r)" + • • • +a,„(X - O m , w h e re  the a,
are in Vo , 4 = • • • = 0, a :0 0 ,  and a„_ , =f" - 1 )(r) (cf. 2.2). By 3.2, v (a,(x -r)')
> v((x - r)") for i =0,..., n  - 1, and v (a_ ,)= v (x  - r)= v (b). Therefore if we write
b- nf(x )=b 0 + b , ( ( x -  b ) +  •  •  w h e re  bi =  b " - 1 , t h e n  v(bi ) > 0, 1 =0 ,..., n -1 ,
and v( b„_ ,)= 0; moreover, the b, for i >n  are of the form  bn =a„, =an+ ,
and hence are also in V,. Let f ,(X )= b o + b i X  + • • +b„,X ". Then x ,. f ,(X ) is  a
generating Pair for y, and f (x)= bilf 1 (x 1 ). Moreover, computing f  f," ) (X)= a„+ b(• • •),
we see that f ) (x f )*= a: 0 0 .  Therefore x,, f 1 (X ) is a generating pair for y of multi-
plicity <n, and hence by our initial assumption of multiplicity n.

It remains to show there exists r, E K 0 w ith  the specified properties. W e  h a v e
f ru (x ,)=(a„_ ,Ib )+n a„x 1 + b(•• •), and f '," - "(x ,)* =0 since x ,, f ,(X ) has multi-
plicity n ; so  0 =(a„_ 1 1b)* +na'.x f  and x i ' = - (a„_ ,Ib )* In a:. Let oc= -(a„_ 1 1b)1
n a„. Now, as far as the requirement v(x, - r,)> 0 is concerned, we are free to choose
r, to be any elem ent of the form  r, =  t, ie K o  and v(t)> O. For any such r,,
f " - 1 ) (1. 1 ) =(a„_,Ib)+ na„r,+((n+1)1112)a„ ± ,bq + b 2 (• • •) = nan t +((n + 1)n12)a„ + ,
bc<2 +(term s involving bt, t 2 ,  and b2 ). Therefore if we choose t = -((n+1)/2a„) x
(a„±  , bx 2 ) (Note: If char K =2, our hypotheses imply n + 1 is even.), then f'," - "(r 1 ) =
(terms involving bt, 1 2 ,  and b2 ). It follow s that v (t)> v (b)>0 and v(P," - "(r,))>
2v(b)=2v(ct„_,). Q. E. D.

We shall only use the inequality of the lemma in the weak form v (f " - ' 1( -,))>
v(f ( "- 1 ) (r)). We now continue the proof of 6.3.

Choose x, E 3(x) u {x } such that x, is a generator for y of multiplicity n and no
element of 3(x) U tx; is a generator for y  of multiplicity < n .  If n=0 , we are done,
so  assume n > O . E very  e lem ent of 3(x ,)c 3(x) is rational by hypothesis, and by
3.2 every element of 3(x ,) is a generator for y of multiplicity n. Thus, by replacing
x by x, in the formulation of proposition 6.3, we may additionally assume that every
element of 3(x) is a generator for y of multiplicity n >0.

Proof  of  6.3-a): Assume char k = 0. Suppose we have a generating pair x 1, ./.,(X )
of multiplicity n for y, x1 E 3(x), and an ri e K, such that v(x,- r,)> 0. Since K IK ,
is generically of index 1, there exists 13; E K, such that (x i -  ri )lb i = x i +  , E  3 ( X i)  3(x).
By the above lemma, there exists a generating pair x , ,  f1+  ,(X ) for y of multiplicity n
and an r 1 E  K , such that f i (x i )=b7f i ,,(x i .4.,), v(x i + , - r 1 + ,)> 0, and v (f -, 1 ) (1-, + ,))
> v (f " - ' ) (ri )) = v(b i ). W e  th u s  d e f in e  in d u c tiv e ly  a  sequence x i , l i (X ), i=

2,..., of generating pairs for y and elements b i c K, such that f ,(x i )-=bilf ,,,(x ,,,)
and v(b i , i )> v (k ) . T h e n  _v= af ,(x ,)= abr f ,(x 2 )= ab? blf 3 (x 3 ) = • • •, w h e re  0 <
v(b,)<v(b 2 )<• • •  .  Since v is rk 1, for sufficiently large t v(ab?•-•b0> O. But then
v(y)> 0, a contradiction.

Proof  of  6.3-b): Assume v is discrete. To every generating pair x ,,f ,( X )  fo: - y
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with X 1 E  3(x ) there is associated a coefficient a= yl f ,(x ,)E K . ,. Since v(f ,(x  ,))>
because x , is assumed to be a generator for y of multiplicity > 0 , we have v(a) <0.
Choose a generating pair x 1, /,(X ) of this type (i.e. for y with .X 1 E  3(x)) for which
-v (a) is  m in im a l. (This uses v is discrete, rk  1.) Since x , is rational and K IK , is
generically of index I, there exists x, =(.v,  -  r 1 )1b 1 e 3 (x ,)c  3(x). Expand: f ,(X )=
00 + a ,(X  - r,)+ • • • + a„(X  - r,)"+ •• • + a„,(X  - r, a ;  e V,. T h e n  f 1 (x 1 )=M [c 0 +

- r 1 )1b 1 )+ • •• + c„,((x - r,)1b 1 )m], where ci = O r " .  By 3.2-i), c o ,..., c„_ ,eVo ;
and c„= an , c „,,=a„,,b , ...., c „,=a„,b r"  are a l s o  in  Vo . T herefo re  if  .f,(X )=
co +c, X  +•••+c„,X 'n and x2 = ( x ,  i.,)/b,, it follow s that x 2 , f 2 (X ) is  a generating
pair for y. But y = a f ,(x ,)= a /V 2(x ,), and v(b ,)> 0  (since v(b 1 )=v ( x ,- r 1 )>0);
so  -v (ab0< -v (a), a contradiction to our choice of x ,,f,(X ).

7. Composite valuations and the induction step for 6.2.

Recall (cf. [12, pp. 43,53]) th a t a valuation y o f K  is called composite with
valuations w of K  and u of /  if V c W, I is the residue field of w, and the image V'
of V under W-4 W/ni,,,= I is the valuation ring U of u .  The canonical homomorphism

V/m„=k may then be factored: V- ,  V'= In term s of specialization maps
(or "places"; cf. [12, p. 3]), one should keep in mind the following diagram:

vo 1 .0

k ,

7.1. We shall now finish the proof of 6.2 by induction on rk y, the rk 1 case having
been established in § 6. If rk y> I (and finite), then y is composite with valuations
w and u of strictly smaller rk.

First observe that iv/w 0 is generically of in d e x  I .  F o r ,  v/v, is generically of
index 1 implies for any generator z of K/Ko there exists a e K , such that c/a is a unit
of V. But V c W, so c/a is  a lso  a unit of W, and therefore Iv(z)=w(a) and w/wo is
generically of index I .

By induction hypothesis applied to w, there exists a generator z  of K/Ko such
that z --z ' tr . o v e r /0 . Replacing z  by either 1+ z or 1 +( l/z) if necessary, we may
further assume v(z)=0 and hence also  u(z')= 0. N o w  let /, =1 0 (z ic  1 , and let
u, W e want to check next that the hypotheses of 6.1 hold for u

C laim : v i t a ,  is generically of index I. F ir s t  o b s e rv e  th a t  for any element
/3A0 of 1 which has a w-preimage b e K which is a generator of K/Ko , u(fl)e u(10 ).
For v/vo  is generically of index 1 implies there exists a 00 e K o such that bla is a unit
of V = W . Then w(a)=w(b)=0, a=Y -.20 0 e 10 , and b l a . 1 3 *  But bla is a unit of V
implies 131a is a unit o f  V'= U, so u(13)- u(7.)e u(1 0 ). N ext observe th a t to  check
//d u ,  is generically of index 1, it suffices by 4.1 to show that for any r' e l ,  such that
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u(z' — r')>O, u(z'— r') E t1(10 ). But z' —  r' h a s  a  w-preimage z—  r, re  K o ,  in  K
which is a generator of K/K 0 ; so the previous observation applies.

C la im : G iven any valuation overring R ,  o f U , in /,, the residue field of
R , n /0 = Ro is algebraically closed in the residue field of R , .  To see this, first note
that there exists a valuation overring R  o f U in 1 such  tha t R n 1, =R , (cf. [12, p.
53, Lemma 4 ] ) .  The inverse image of R  under W-3I is  a valuation ring T  lying
between V an d  W; so by the hypothesis on V, the residue field 00 of T  n K ,  is alge-
braically closed in the residue field 9  of T. But C, Co  are also the residue fields of
R, R o , respectively, and the residue field of R , lies between 00 and 0 , thereby estab-
lishing our assertion.

C la im : The residue field of u„, 10 ( =k 0 )0  residue field o f  u , , 1 , .  For, / is
algebraic over 1, implies k  is algebraic over the residue field of u,. Since k/k0 is
not algebraic by hypothesis, k0 0  residue field of u,.

Thus, we may apply the induction hypothesis to u ,/u , to conclude there exists
a generator of /,// 0 which specializes under u to a tr. over k0 . By 5.4-Corollary this
generator may be assumed to be of the form (z' i l l s ' ,  for some r', 00s' c l o . But
th e n  if r, s  are w-preimages in K 0 fo r  r', s', —  r ' ) / s ' ;  and therefore
(z— r)ls is the desired generator of K IK , which specializes under v to  a tr. over k0 .

Q. E. D.

7 .2 . We give next an example to show "K 0 is  henselian" cannot be om itted from
3.7 and the condition on the residue fields in 6.1 cannot be weakened to "k 0  is alge-
braically closed in k " .  The example will have the following properties: v, v, are
discrete, rk 2; index of viv o = I ;  k/k o  is  simple t r .;  k 0 = Q .  The idea is to construct
discrete, rk 1 valuations w, u  such that V  is composite w ith w and u and such that
(in the initial notation of § 7) ///0 is not simple tr. T h e n  no generator of K/K 0 can
specialize under ti to  a tr. over k 0 ; for if it did, it would also specialize under w to  a
tr. over /o , and by 1.1 this would imply /Po is simple tr.

Let s, z  be complex numbers algebraically independent over Q, and let t be an
indeterm inate over C .  Let K 0 = Q(s, t) and K= K o (x ) , w here  x =(1+s)'/ 2 +z t,
and let w be the restriction of the l-adic valuation of C(t) to  K .  Then lo =Q(s) and
1=10 ((1 + s) 1 /2 , z), as we have seen in 5.1 . N o w  let u , be the s-adic valuation of /0 ;
extend first to a valuation u , of /0 ((1-1-5) 1/2 ) and th e n  to  a valuation u  of / by infs
w.r.t. u(z)=0.

The residue field ko of uo is  Q; and the residue field k , of u 1 remains Q, since uo

extends in two ways to /0 ((l +s)'/ 2 ) (because if I +s)' 1 2 , then s =  2 - 1 =( - 1 ) •
+ 1) im plies u0 ex tends to  /0 (0 = Q ( )  either by u 1)= 1, u ( +1 )=0 , or the

reverse). Therefore by 1.1 the residue field k of u is Q(z*), where
Finally, v/yo  is  of index 1 because w/wo and Ott o are of index I. (T o  se e  th is ,

let a 00 e K .  T hen w/w0  i s  of index I im plies there exists a0 0 0 EK, such that
a/a0 -24 0 0 .  Similarly, it/u 0 i s  of index 1 implies there exists )30 00 e lo such that
/3//30-2,y0 O. Let b0  b e  a w-preimage for $0 in K o . Then ala 0 b0-24131,80 .2L.q00,
so v(a)= v(ao bo )c v(Ko).)
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7.3. We conclude 9 7 with a  proposition on composite valuations needed in 9 8.

Proposition. Let z be a generator of  KIK o , and  suppose [G: Go ]< c o  an d  y
is composite w ith a  v aluation w of  K .  I f  y  is  the inf extension of  v0 w.r.t. v(z),
then w is the inf extension of w„ w.r.t. w(z)(and wIw o  is of  f inite index).

P ro o f .  Let H  be the value group o f  w .  If the coset v(74+ G , has order n in
GIGO , then w(z)+H 0  has order n, dividing n in H U I , .  For, if there exists b0 O e K 0

such that v(znlb)= 0, then z"Ib is a unit of Vand a fortiori a unit of W ; and therefore
w(z")= w(b)e H o . Thus, n= 11 n i  fo r  some integer in >I.

By 4.3, there exists b 00 e K o  such that z"I b-f-,q tr. over k 0 , which implies z"I
n' tr. over / 0 . A lso, there exists c0 0 e K, such that w(z" , ) = w(c). T h e n  (z"i/c)m-
z"/cm=z"lc/b, d a  unit of W0 . Hence (z" , 1c)"'.2177c1', d' e I,• But q' is tr. over / 0 ,
so we must have z"i/c also specializes under w to a  tr. over / 0 . T h e re fo re  b y  4 .3
w is the inf extension of w 0 w .r.t. w(z).

8. Conjecture 6.1 for arbitrary inf extensions.

W hat is  th e  appropriate generalization o f  conjecture 6.1 to arbitrary inf ex-
te n s io n s?  I t  is  a  somewhat surprising fact that th e  obvious reform ulation is not
quite correct; one needs an extra condition, "every generator of K 0 (z")IK 0  has value
in G 0 "  below, as we shall show in example 8.2.

8.1. Conjecture.
For every valuation overring W c K  o f  V the residue field / 0  of W  n K o  is alge-

braically closed in the residue field / of W; k 0 0 k; and there exists a  generator z of
K/K 0  with v (z )+G 0  o f  order n> I  in  G/G0  such that every generator o f K IK , has
value in fiv(z)+ G0 1 i = n  — I}  and every generator o f  K o (z " )IK , has value in
G0 ( .1=0 u is the inf extension of v, w .r.t. v(z 1) for some generator z 1 o f  K/K, such
that v(z i )+  G0  has order n in GIG,.

Note that the converse ( ) to the conjecture is true: if y is the inf extension of
y , w .r.t. v(z), then the value group of K 0 (z")/K 0 is  G 0  b y  4 .3 ;  the group G/G0  is
cyclic generated by v (z)+G 0  by  the definition of inf extension w.r.t. v(z); an d  i l l ,  is
simple tr., by 7.3 and 4.3, and a fortiori satisfies the hypothesis of the conjecture.

8.2. E xam ples. If  r is any totally ordered abelian group and L a field, then the
group  r in g  L [F ]= $ 1 . LX7ly e  F 1 , w ith  m ultip lication defined by X 7 V = X 7+ 6 ,
may be given a  valuation w  by defining w(a0 XY0 + • • • +at iV' , ) = in f
and, as usual, this valuation extends to the quotient field L (F ) of L [ 1 ] .  Moreover,
the value group of w is F, and one verifies easily that the residue field is L.

Let Q(t) be a simple tr. extension of 0, let r  be the additive subgroup of the reals
consisting of {OE + 137r la, f ie  Z1, and let w be the (rk 1) valuation of Q (t)(F ) described
a b o v e . L e t  z = X  + /X ,  l e t  K =K 0 (z ) ,  w here  K 0 c Q ( t ) ( r )  w ill be described
presently, and le t y0 , y be the restrictions of w to  K o , K  respectively. a )  Example
where k is simple tr. over k 0  b u t  G/G0  is not cyclic (and hence u cannot be an inf
extension of v o  w .r .t .  any choice of generator o f  K/K 0 ). Take K 0 =Q(G 0 ), where
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G , is the subgroup of F consisting of la+ /37 I /, /3 e 2ZI. Then the value group of
vo i s  G , and the residue field k ,  is Q. S in c e  z ' =  X 2 + 2 tX t+n  t2 X 2 g  and  X 2 =
re  K 0 , z2 — re  K, and therefore v(z 2 — r)=1 + 1T is in the value group G of v. S in c e
v(z)= 1, it follows that 1, ut e G; so  G = F .  Then GIGO L:(Z/2Z)0(212Z).

N ow  le t  u s  com pute k. (Incidentally, we know Q= ko c k  Q(t)=residue
field of w, so without further ado we already know by Lilroth's theorem that klk„
is simple tr.) W e  have (z 2 — 0 2 _ 4 ( 2x2+27, 4 t 3x +37 ± 14 X 4 . Let s=4X 2 +2 R e
K o .  Then =(,2_02/s2L,,2.t Since t 2 is tr. over k„, it follows that the residue field
of 1(0 ( ) is Q(t 2 ) (cf. 1.1); and the value group of K 0( ) is G o . But then [G: G0 ]=4
and [K : K 0 ( )] <4  imply (by 1.2) that the resdidue field k  of K  is also Q(t 2 ).

Remark. In light of this example, it would be interesting to know just what
finite groups GIG, can occur when k  is simple tr. over k , (and, of course, also K  is
simple tr. over K 0 ).2 ) If k = k„, results of this type, due to  Mac Lane-Schilling, are
discussed in [12, p . 102].

b )  Example to show that the hypothesis "every generator of K o (z")/K o  has value in
Go " is needed in 8.1. Take K o = Q(G„), where G, is the subgroup of F consisting of
fry + /371 of e 2Z, 13 e Zi. Then v(z)= I implies the value group G of K  is F. T h e re -
fore G/G 0 Z/2Z, and v (z )+ G0 generates G/G o .

Let K 1 =K 0 (z 2 ). We have seen in a) that v(z 2 — r)=1  + 7r, so  the value group
G , o f K , is F = G .  Therefore [G ,: Go ] = 2 . S in c e  G ,  G o , vt is  n o t  the inf ex-
tension of vo w.r.t. v 1(z 2 ) =2( e Go ), and hence by 4.3 y cannot be the inf extension of
vo w.r.t. v(z)= 1.

C la im :  y  cannot be the inf extension of vo w .r . t .  an y  generator o f  K /K o .
Note first that for any s c Ko ,  v(z)= I v(s). If v (s)<v (z ), then v(z —s)= v(s) and
(z  _ s )2/s 2_, _ I. I f ,  o n  t h e  o ther hand , v (z )<v (s), th en  v(z —s)= v(z)= I and
(z—s) 2 1X 2 - 1 .  The claim now follows from the Proposition below, which asserts
that if y is the inf extension of vo w .r .t . some generator o f K /K o , then there exists
se  K , such that for any d 00 e K o w ith  v(d)= v((z —s) 2 ), (z —s) 2 1d specializes to a
tr. over k o .

Lemma. Let e  K .  I f  lb.--■tr. over k , fo r  so m e  bOOE K 0 ,  t h e n  11f—>tr.
over k , f or ev ery  b' e K , such that v(b')= v(0.

P ro o f .  v(b')= v( ) = v(b) implies there exists a  unit u  of Vo such that b' = u b.
Therefore 1/)' =(11u)(0 b)—>(1 1 u*)(/ b)* . But 1/1t* ko .

Proposition (4.3 continued). S uppose z , is a (tr.) generator of  K IK , such that
v(z,)+ G 0 has f inite order I in G IG ,. I f  y  is  the ittf ex tension of  v, w .r.t. v(z ,),
then f o r any  generator z  of  KIK 0 , there ex ists se K , such that f o r any  de  K , with
v(d)= nv(z —s), (z— s)"/d—> tr. ov er k 0 .

P ro o f .  By 4.3, there exists bOOE K 0  such that z','//2—qr. over ko . We may
write z, =(a,z— c,)1(a,z— e 2 ), a i , v i e K 0 , a,c 2 —a2 c, 0 0 . S in c e  [G: G d =n , there

2) Added August, 1981 : W . Heinzer has now proved that GIG„ may be any finite abelian group.
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e x is t  c/i  E K ,  s u c h  th a t  tiv(ct i .z — (.0= v(d,), i =1, 2. T h e re fo re  z7/(d 1/t/2 )= N  I N 2 ,

where N,=(a,z—c,)"Id, has value O. B y  the lemma, z?/(d 1/c/2 )—>tr. over k o , so either

N , o r  N 2  sp e c ia liz e s  to  a  t r .  o v e r  k o a ls o  s a y  N , d o e s .  T h e n  a, 0 0  a n d  N, =

(z —(c 1 /a))"/(d 1 /a?).la7). In view  of the above lemma, we are done. Q. E. D.

In  o rd e r to  ap p ly  th is  e xam p le  to  8.1, it  re m a in s  to  v e r ify  k o is  a lg eb ra ica lly

c losed  in  k. (A s  in  a )  w e  know  a  p r io r i b y  L iiro th 's  theorem  that kit:, is  simple

tr., but it is also easy to compute k d ire c t ly .)  W e  have seen in a) that the residue field

of K 0 (0  is Q(t 2 ) and the value group is G o . S in c e  [K,: K,( )]< 2 and  [G,: G, ] = 2,

it  fo llo w s  th a t  th e  res idue f ie ld  o f  K ,  m ust rem a in  Q(t 2 ). B u t  [ K :  K  < 2 and

(z2 -012X7z-E4 E k, so we m ust have k=Q(t).
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